
DEMO: Query Encrypted Databases Practically

Dongxi Liu Shenlu Wang
∗

CSIRO ICT Centre, Marsfield, NSW 2122, Australia
dongxi.liu@csiro.au, shenlu.wang@gmail.com

ABSTRACT
The cloud database services are attractive for managing outsourced
databases. However, the data security and privacy is a big concern
hampering the acceptance of cloud database services. A straight-
forward way to address this concern is to encrypt the database, but
an encrypted database cannot be easily queried.

In this demo paper, we demonstrate that aggregate SQL queries
with range conditions can be performed efficiently over encrypted
databases, without decrypting the databases first, by using our new
homomorphic encryption scheme. The techniques in this paper can
be applied to existing Database Management Systems (DBMSs).
Moreover, the techniques do not need to predetermine the maxi-
mum sum and number of data in one database table column. These
features make our technologies suitable to manage long-standing
and large encrypted databases.

Categories and Subject Descriptors
E.3 [Data]: Data Encryption; H.2 [Information Systems]: Database
Management

General Terms
Security

Keywords
Database, Homomorphic Encryption, Order-Preserving Index, SQL
Query

1. INTRODUCTION
Cloud database services, such as Amazon Relational Database

Service (RDS) and Microsoft SQL Azure, are attractive for enter-
prises to outsource their databases. The database services allow
enterprises to deploy their databases quickly without making the
large upfront investment on their proprietary hardware and soft-
ware, hence reducing the total cost of ownership. Moreover, due to
the elasticity of cloud database services, an enterprise can dynam-
ically increase or decrease the compute resources allocated to its
databases according to its business requirements.

When a database is deployed into a public database service, the
service provider has the complete physical control over the database.

∗Shenlu was a vacation student in CSIRO ICT Centre, coming from
RMIT university, Australia.

Copyright is held by the author/owner(s).
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
ACM 978-1-4503-1651-4/12/10.

The data in the database might be improperly accessed by the ser-
vice provider accidentally or intentionally, or by attackers who com-
promise the database service platforms. Hence, though attractive,
cloud database services may not be fully exploited if the problem
of data privacy and security is not satisfyingly addressed [1].

For cloud database services, a straightforward approach to ad-
dressing the security and privacy problem is to encrypt data before
they are sent to the cloud. By this way, the service provider or an
attacker only can see meaningless encrypted data. However, af-
ter being encrypted, a database cannot be easily queried. When a
database is large, it is not acceptable to decrypt the entire database
before performing each query because the decryption might be very
slow. On the other hand, if the decryption is done on the cloud, the
decrypted database is again at the risk of having its security and
privacy breached. Ideally, a query should be executed directly over
the encrypted database, producing encrypted query result, which
can only be decrypted by service users.

The CryptDB [10] is a system supporting SQL queries over en-
crypted databases. This system needs the extension of existing
DBMSs to support homomorphic operations like SUM and AVG,
because the used homomorphic encryption scheme [9] performs
multiplication on ciphertexts to get the sum of corresponding plain-
texts. The existing DBMSs cannot natively support multiplication
of values in one table column.

In [5], a mechanism of supporting aggregate queries is proposed,
which is designed only for column-based databases by encrypting
multiple values in one table column into one ciphertext. Hence,
the mechanism in [5] is not flexible for data insertion and deletion,
since the data to be updated is always packed together with other
data not to be updated.

In [8, 4], a homomorphic encryption scheme is proposed to be
efficient and practical. But it needs users to determine the maxi-
mum sum of plaintexts, which should not be bigger than the mod-
ulo. Otherwise, the scheme is not homomorphic. That is, if it is
used to encrypt values in a table column, the maximum sum of
such values must be predetermined and not be bigger than the mod-
ulo. This requirement is not practical for long standing and large
encrypted databases, since the data there might have their charac-
teristics changed over a long period of time.

In this demo paper, we demonstrate the management of encrypted
databases by using a new homomorphic encryption scheme [6] to-
gether with an order-preserving indexing scheme [7]. Our tech-
niques in this demo can be applied to existing Database Manage-
ment Systems (DBMSs) without any change or extension. The en-
crypted data are still stored relationally, so they can be updated by
using standard SQL statements. Moreover, there is no any require-
ment on the maximum sum of plaintexts in one table column, and

1049



Figure 1: Architecture of Querying Encrypted Databases

their number and range. Our demo also shows that a query over
encrypted database can be completed efficiently.

2. ARCHITECTURE OF MANAGING EN-
CRYPTED DATABASES

The architecture of querying encrypted databases is shown in
Figure 1. In this architecture, there is a database service provided
in a public cloud, and an enterprise that deploys into the cloud a
database, which is encrypted by the enterprise to protect its privacy.

To query or update the encrypted database, the enterprise has a
query proxy managing the communication between the database
applications and the encrypted database. In this architecture, the
proxy is deployed into the administrative boundary of the enter-
prise. Hence, the untrusted cloud database administrators can ac-
cess only the ciphertexts stored in the cloud databases and cannot
know the encryption keys and schemas of the encrypted databases.

3. OVERVIEW OF TECHNIQUES IN DEMO
We demonstrate a system of managing encrypted databases. Par-

ticularly, the system can efficiently process the aggregate queries
over encrypted databases with range conditions. For example, such
a query can be: select the average income of persons, who are born
from year 1980 to 1990. Our system processes such queries by im-
plementing the homomorphic encryption scheme [6] and the order-
preserving indexing scheme [7].

3.1 Order-Preserving Indexing
The order-preserving indexing scheme [7] has the following fea-

ture: given two values v1 < v2, we have OPS(k, v1) < OPS(k, v2),
where OPS(k, vi) means the order-preserving index of value vi un-
der the secret key k. Unlike the order-preserving encryption schemes
[2, 3], the order-preserving indexing scheme is not required to re-
cover the value v from OPS(k, v). Hence, the design of the order-
preserving indexing scheme can be simpler than the order-preserving
encryption schemes. The order-preserving index scheme is en-
hanced in our recent work by introducing nonlinearity into indexes.

The order-preserving indexing scheme is designed to perform
range queries over encrypted databases, together with existing en-
cryption algorithms. In [7], the scheme is used together with the
AES algorithm. Since AES is not homomorphic, the aggregate
queries are not supported in [7]. In this paper, the order-preserving
indexing scheme is combined with homomorphic encryption, so
aggregate queries with range conditions can be processed.

3.2 Homomorphic Encryption
The (additive) homomorphic encryption scheme used in this demo

is proposed in a patent application [6]. Let Enc be the encrypting
operation in the scheme, Dec the decrypting operation and K(n)
the key. Then, given a value v, the encryption Enc(K(n), v) will
generate a ciphertext (c1, ..., cn), which consists of n subcipher-
texts c1, ..., and cn. The parameter n in a key indicates the num-
ber of subciphertexts to be generated. In decryption, the opera-
tion Dec(K(n), (c1, ..., cn)) will return v. Given another value
v′, let Enc(K(n), v′) = (c′1, ..., c

′
n). Then, this scheme ensures

Dec(K(n), (c1 + c′1, ..., cn + c′n)) = v + v′ for homomorphism.
The scheme [6] defines the generic forms of the Enc and Dec

operations, and also their correctness conditions. Based on the
generic forms and conditions, many instances of the scheme can
be defined. Here, we introduce two instances to make this demo
paper more self-contained.

In the first instance, the key K(n) is a list of n pairs of real
numbers, [(k1, s1), ..., (kn, sn)], where n ≥ 3,

∑n−2
i=1 ki 6= 0 and

kn−1 6= 0 and kn + sn 6= 0. The operation Enc, encrypting v into
(c1, ..., cn), is defined by the following steps.

• Let r1,..., rn−2 be n− 2 random numbers.

• ci = ki ∗ v + si + ri for 1 ≤ i ≤ n− 2.

• cn−1 = kn−1 ∗
∑n−2

i=1 ri + sn−1.

• cn = kn + sn.

For this instance, the operation Dec, decrypting (c1, ..., cn) into
v, is defined below, where the division of cn is used for counting
the number of ciphertexts added or averaged.

• L =
∑n−2

i=1 ki.

• S = cn/(kn + sn).

• I = cn−1 − S ∗ sn−1.

• v = (
∑n−2

i=1 (ci − S ∗ si)/L)− I/(L ∗ kn−1).

In the second instance, we let the key K(n) be a list of n tuples
of real numbers, [(k1, s1, t1), ..., (kn, sn, tn)], where n ≥ 3, ki 6=
0 (1 ≤ i ≤ n− 1),

∑n−2
i=1 si 6= 0, sn−1 6= 0 and kn + sn +

tn 6= 0. The operation Enc of the second instance encrypts v into
(c1, ..., cn) by the following steps.

• Let r1,..., rn−2 be n− 2 random numbers.

• ci = ki ∗ ti ∗ v + si + ki ∗ ri for 1 ≤ i ≤ n− 2.

• cn−1 = kn−1 ∗ tn−1 ∗
∑n−2

i=1 ri + sn−1.

• cn = kn + sn + tn.

The operation Dec of the second instance decrypts the ciphertext
(c1, ..., cn) into v by the steps below. Compared with the first in-
stance, the last step below divides different ci − S ∗ si (1 ≤ i ≤
n− 2) with different secret values L ∗ ki, rather than only by L,
hence increasing the robustness against brute-force attacks.

• L =
∑n−2

i=1 ti.

• S = cn/(kn + sn + tn).

• I = cn−1 − S ∗ sn−1.

• v = (
∑n−2

i=1 (ci − S ∗ si)/(L ∗ ki))−I/(L∗kn−1 ∗tn−1).

1050



Moreover, the instances of the encryption scheme [6] can be
composed into new instances, which are still homomorphic. A
composed instance is more robust than its constituent instances.
For example, each subcipertext from the second instance above can
be encrypted again by using the first instance, and vice versa.

Our homomorphic scheme is very efficient. For example, on a
Dell Latitude E4310 laptop, the second instance takes averagely
4.1 seconds to encrypt and decrypt 10000 values, with 64 subci-
phertexts for each value, and with key components and noises con-
taining 5 digits. To increase the robustness, a user just needs to
increase the number of subciphertexts, instead of producing large
subciphertexts. Hence, each subciphertext in our scheme can still
be treated as a numeric value by existing DBMSs, rather than as a
long string. Our homomorphic scheme is designed to be scalable
with respect to the number of subciphertexts. On the contrary, the
encrypting operation in [11] and the decrypting operation in [8, 4]
have the exponential complexity with respect to the number of se-
cret shares, that is, they are not scalable with the number of shares.

3.3 Database Encryption and Query
Suppose a value is encrypted into n subciphertexts by using our

scheme. Then, in our system, the n subciphertexts are stored into
n columns in one record, not necessarily in the order of subcipher-
texts generated from encryption. Moreover, the subcipertexts of
one value can be mixed with the subcipertexts of another value in
one record. Hence, the attackers lose the information on which
subciphertexts can be meaningfully combined in a correct order to
perform an attack.

In the same record, there is also a column storing the order-
preserving index and another column storing the hash of the value.
The indexes are used by DBMSs to check range query conditions,
and the hashes are used to check equality query conditions. For
encrypted data satisfying the conditions, all corresponding subci-
phertexts are included in the query result, or their sum or average
are included in the query result. That is, for the SUM or AVG op-
erations in a query, DBMSs just need to perform the standard SQL
SUM or AVG operations over each column of subciphertexts.

In [1], the Shamir’s secret sharing mechanism [11] is used to pro-
duce a number of secret shares, which are then stored into databases
managed by different service providers. Our system does not re-
quire a user to use multiple cloud database services to store sub-
ciphertexts. Due to this feature, our system is also suitable for
databases deployed within the premises of an enterprise.

As shown above, our scheme does not reply on modulo opera-
tions, so it can work on infinite fields. Hence, using our scheme
does not need to predetermine the maximum sum of values in one
table column. This feature allows our system to manage large and
long-standing encrypted databases.

4. CASE STUDIES
Our demo assumes that a family census has been done by a gov-

ernment agency. Since the census data contains sensitive informa-
tion, such as name, birth date and income, the government agency
hopes that the census data can be encrypted in their databases,
which might be deployed into a public cloud, and more importantly
the encrypted data can still be managed and queried smoothly.

To demonstrate the correctness of our system, we put each data
into three databases: 1) a plain database, where data is not en-
crypted, 2) an encrypted database, where data is encrypted by us-
ing the first homomorphic encryption instance introduced above,
and 3) another encrypted database, where data is encrypted by us-
ing the second homomorphic encryption instance. Note that the
plain database is only used to check query results, just for the

demo purpose and not needed in practice. In addition, the names of
databases, tables and columns are all hashed in encrypted databases.

Our demo includes the creation and deletion of encrypted databases,
in particular, the table schemas in the plain database and two en-
crypted databases are totally different. Hence, from the schemas,
the untrusted cloud database administrators or attackers cannot learn
any information about the stored data.

Our demo shows the operations of updating, inserting and delet-
ing data in the encrypted database, demonstrating that the encrypted
data can be managed smoothly in our system. These operations are
an integral part of encrypted database management. For example,
we can insert family members into the person table, change the
salaries of particular family members, and delete records of per-
sons satisfying some conditions.

We also demonstrate various queries by using our system, in par-
ticular aggregate queries with range conditions. For example, over
the encrypted data, we can query the average income for persons in
an area specified by postcode, who are born in some range of years.

Our demo is available at http://150.229.2.229/familySys/home,
where detailed steps are included to guide the demo.

5. REFERENCES
[1] D. Agrawal, A. E. Abbadi, F. Emekçi, and A. Metwally.

Database management as a service: Challenges and
opportunities. In Proceedings of the 25th International
Conference on Data Engineering, pages 1709–1716, 2009.

[2] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu. Order
preserving encryption for numeric data. In Proceedings of
the 2004 ACM SIGMOD international conference on
Management of data, SIGMOD ’04, pages 563–574, 2004.

[3] A. Boldyreva, N. Chenette, Y. Lee, and A. O’Neill.
Order-preserving symmetric encryption. In Proceedings of
the 28th Annual International Conference on Advances in
Cryptology, EUROCRYPT ’09, pages 224–241, 2009.

[4] Z. Brakerski and V. Vaikuntanathan. Fully homomorphic
encryption from ring-lwe and security for key dependent
messages. In Proceedings of the 31st annual conference on
Advances in cryptology, CRYPTO’11, pages 505–524, 2011.

[5] T. Ge and S. Zdonik. Answering aggregation queries in a
secure system model. In the 33rd international conference on
Very large data bases, pages 519–530, 2007.

[6] D. Liu. Homomorphic encryption for database querying.
Australian Provisional Patent (filed by CSIRO), 2012.

[7] D. Liu and S. Wang. Programmable order preserving secure
index for encrypted database query. In Proceedings of the 5th
IEEE International Conference on Cloud Computing, pages
502–509, 2012.

[8] M. Naehrig, K. Lauter, and V. Vaikuntanathan. Can
homomorphic encryption be practical? In Proceedings of the
3rd ACM workshop on Cloud computing security workshop,
CCSW ’11, pages 113–124, 2011.

[9] P. Paillier. Public-key cryptosystems based on composite
degree residuosity classes. In Proceedings of the 17th
international conference on Theory and application of
cryptographic techniques, EUROCRYPT’99, 1999.

[10] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and
H. Balakrishnan. Cryptdb: protecting confidentiality with
encrypted query processing. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems
Principles, SOSP ’11, pages 85–100, 2011.

[11] A. Shamir. How to share a secret. Commun. ACM,
22:612–613, November 1979.

1051




