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ABSTRACT
We introduces and formalizes the notion of group-oriented
proofs of storage (GPoS). In GPoS, each file owner, after be-
ing authorized as a member by a group manager, can out-
source files to a group storage account maintained by an
untrusted party, for example, a cloud storage server, while
anyone can efficiently verify the integrity of the remotely
stored files without seeing the files. The file owner’s iden-
tity privacy is preserved against the cloud server while the
group manager can trace the one who outsourced any sus-
picious file for liability investigation. By novelly identifying
and exploiting several useful properties, that is, homomor-
phic composability and homomorphic verifiability in some
signatures, we propose a generic GPoS construction relying
on the security of the underlying signature scheme and the
hardness of the computational Diffie–Hellman (CDH) prob-
lem. Following the generic construction, we instantiate a
concrete GPoS scheme with the well-known Boneh–Boyen
short signature. By leveraging the polynomial commitment
technique, the proposed GPoS proposal is optimized with
constant-size bandwidth consumption in proof of storage by
the cloud server. Theoretical analyses and comparisons show
that our GPoS proposal is advantageous over existing PoS-
like schemes in user privacy, public audibility and/or perfor-
mance in a multi-user setting.

Categories and Subject Descriptors
E.5 [Data]: Files
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1. INTRODUCTION
Cloud computing provides convenient storage services to

the clients and is widely believed to be a promising technique
to reduce the clients’ local hardware and software mainte-
nance burden of large-scale data storage [6]. However, this
remote storage paradigm also brings security concerns about
integrity and privacy over the outsourced files [25, 7]. To
address the integrity concern, a number of cryptographic
concepts have been introduced, for example, Proofs of Stor-
age [3], Provable Data Possession (PDP) [1] and Proofs of
Retrievability (PoR) [11].

Although PoS/PDP/PoR have received considerable at-
tentions, most existing proposals, for example, [2, 9, 11,
13, 15, 20, 22, 27], cannot well fit in some real-world ap-
plications. Consider a company purchases remote storage
services from some cloud storage provider (CSP) for storing
files. The employees should be authorized (e.g., by the IT
department of the company) in a way such that they can up-
load files to the company’s account maintained by the cloud
storage server. It is easy to see that some specific informa-
tion (e.g., identity) of the file owner should be embedded
into the outsourced version of the file so that the company
manager can know who outsourced the file if necessary. Oth-
erwise, some dishonest employee may misuse/abuse his/her
file-outsourcing capability and even worse, unauthorized out-
siders may also upload malicious data to the company’s
cloud storage account without being caught. Also, the file
uploading information may be used to count up the employ-
ee’s workload, which is usually taken as a critical factor for
evaluating employees’ performance. However, it is usually
the case that the company or the employees would not like
to let the cloud storage server know the identity of the file
owner who outsources the file.

1.1 Our Work
Motivated by the above application, we introduce and for-

malize a system of group-oriented proof of storage equipped
with a number of enjoyable functionalities: (1) A trusted
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group manager issues secret keys associated with the mem-
bers’ unique identities. Every member can validate his/her
secret key from the group manager. The members do not
need to share any secret parameters among them. (2) Each
group member can locally process the files with the issued se-
cret key, without any further help from the group manager.
The produced meta-data in the processed file is aggregat-
able, which implies economic bandwidth consumption and
storage occupation. (3) Any one can serve as an auditor to
validate the integrity of the outsourced files for unbound-
ed times by only interacting with the cloud storage server.
The integrity can be successfully audited with overwhelming
probability without retrieving the outsourced file or inspect-
ing all the file blocks. (4) The file owner is anonymous to
the cloud storage server. The server can only know the file
is uploaded by a legal member of some group, but cannot
trace the identity of the member. In the meanwhile, the
group manager can reveal the identity of the file owner for
liability investigation.

We provide a secure generic construction of GPoS schemes.
We first formalize the security model for GPoS schemes with
public auditability. A GPoS scheme should be secure a-
gainst conspiracy attacks from group members for forging
secret keys and meta-data. It should be also able to prevent
the cloud storage server involved in auditing the outsourced
files from forging an integrity proof and from extracting the
file owner’s identity from maintained files. The meta-data
must be (1) generated with a secret key issued by the group
manager, (2) aggregatable, (3) publicly auditable, and (4)
ownership privacy-preserving. These requirements raise a
great challenge in GPoS construction. We manage to ad-
dress this challenge by identifying some useful properties,
that is, homomorphic composability and homomorphic ver-
ifiability (defined in Section 3.1) in some signature schemes.
By exploiting these properties, we propose a generic GPoS
construction proven secure if the underlying signature is
existentially unforgeable and the standard Computational
Diffie–Hellman (CDH) assumption holds.

We implement efficient concrete GPoS schemes. Observe
that the well-known Boneh–Boyen short signature scheme
[4] satisfies the required properties. By following the generic
construction, we instantiate a practical GPoS scheme un-
der the CDH assumption in the standard model. Particu-
larly, the Boneh–Boyen short signature scheme is employed
to issue secret keys for group members. The resulting G-
PoS scheme takes linearly computation and communication
complexities. The instantiation is further optimized in terms
of communication overheads and computation costs at the
auditor side for auditing the integrity of the outsourced
files. This optimization leverages the polynomial commit-
ment technique [12] to commit to the aggregated file block,
which means that the created commitment instead of the
aggregated block itself will be responded to the auditor. To
this end, the security of the optimized instantiation is re-
duced to the s-SDH assumption. One may observe that G-
PoS/PoS/PDP/PoR schemes built over symmetric bilinear
groups may be optimized in the same way, which indicates
that the polynomial commitment based communication op-
timization approach is general and universally useful.

The performance of our GPoS instantiations is compre-
hensively analyzed and compared. The analysis shows that
our schemes are advantageous over existing PoS/PDP/PoR
schemes in the multi-user setting. Our optimized instanti-

ation enjoys an efficient tradeoff for the basic one, that is,
although some additional but affordable computation bur-
den is brought to the resource-redundant cloud server, the
communication overheads are significantly saved during au-
dition of the outsourced files. Particularly, the transmitted
proof comprises of only three elements, independent of the
sector number in a block and the block number in a chal-
lenge.

1.2 Related Work
Considerable efforts have been made to remotely check the

integrity of the outsourced files in a single-user setting. Ate-
niese et al. [1] and Juels and Kaliski [11] independently in-
vestigated secure storage in untrusted clouds and introduced
the notions of PDP and PoR, respectively. With these tech-
niques, the integrity of the outsourced files can be audited
without retrieving them back. Specifically, Ateniese et al.’s
scheme supports unbounded number of integrity auditing.
Shacham and Waters [13] proposed privately and publicly
auditable PoR schemes with strong security proofs. In pri-
vately auditable PDP/PoR, the integrity of the outsourced
file can only be audited by the one who has the correspond-
ing secret key, that is, the file owner, while anyone can play
the role as an auditor in publicly auditable schemes. Ate-
niese, Kamara, and Katz [3] showed how to convert a ho-
momorphic identification protocol into a public-key homo-
morphic linear authenticator (HLA) and further constructed
PoS from HLA. Dodis, Vadhan, and Wichs [8] improved PoR
using the tools based on the coding and complexity theory.
Wang et al. [20] incorporated a third party auditor (TPA)
into the scheme. Such a TPA is able to audit the outsourced
files on behalf of owners, but learns nothing about file con-
tents. Zheng and Xu [30] discussed how to avoid maintain-
ing multiple copies of the same file in PoS setting. In [24],
Xu and Chang presented a privately auditable PoR using
polynomial commitment technique [12], which greatly saves
communication overheads compared with the scheme in [13].
Yuan and Yu [27] showed a publicly auditable PoR with the
same polynomial commitment technique. Noticed too many
heavy computations should be taken at the client side, Wang
et al. [23] investigated how to offload PDP schemes by se-
curely outsourcing them to a computation server.

In practice, there is a need of dynamic PDP/PoR/PoS
schemes in which the outsourced files can be further updat-
ed at a block level with insertion, deletion and modification
operations. Some early works [1, 2] can partially support
those operations. The recent works [22, 9, 29] are equipped
with all those functionalities. Among them, Wang et al.’
scheme [22] is constructed using Merkle Hash Tree, while
Erway et al.’s [9] schemes are based on the authenticated
skip lists and RSA trees. Zhang and Blanton [29] present-
ed a dynamic PDP scheme by employing balanced update
trees. Built on oblivious RAM, Cash, Küpçü, and Wichs
[5] investigated how to ensure the latest version of the out-
sourced file maintained by the storage server. Shi, Stefanov,
and Papamanthou [14] provided a more efficient dynamic
PoR based on special authenticated structures.

Some proposals have been proposed to address the in-
tegrity concern of the remote files in a multi-user setting.
Wang, Li, and Li [16] investigated how to share data by a
group of members through clouds. Although their scheme
achieves privacy of the group member’s identity in audit-
ing the integrity, it cannot support public auditability or
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Table 1: Comparison with Related Works in Multi-user Setting
Scheme Issuing member’s key Shared secret para. ID-based Auditability Ownership privacy

Wang, Li, and Li [16] Group manager Yes × TPA (Private) X
Wang, Li, and Li [17] Local No × TPA X
Wang et al. [15] – No × Public X
Wang, Li, and Li [19] Group manager Yes × TPA X
Wang et al. [18] Local No × TPA ×
Yuan and Yu [28] Local No × Public ×
Wang et al. [21] Group manager No X Public∗ X
Yu et al. [26] Local Yes × TPA ×
Our instantiations Group manager No X Public X

∗The public auditor should hold a secret parameter of the file owner when auditing outsourced files.

identity-based deployment. In [17], they revisited the same
problem using ring signatures. Each group member should
locally prepare his/her secret key, instead of issuing by a
group manager. Wang et al. [15] considered a scenario such
that the group members do not hold secret keys. For any file
to be outsourced, the file owner should process it by inter-
acting with a security-mediator in a blind manner, which en-
sures that the mediator cannot know the file content. Wang,
Li, and Li [19] proposed a secure cloud storage scheme that
supports dynamic group member changes (for example, join
and revocation). However, the group secret key must be
delivered to all group members, which is not desirable in
practice. Wang et al. [18] presented a scheme that enables
user revocation without requiring any secret information to
be shared among group members. Yuan and Yu [28] pre-
sented a scheme that supports multiple users in a group to
modify the outsourced file. To this end, the involved mem-
bers should locally generate secret keys and cooperate in
producing public parameters in key generating algorithm.
The scheme proposed by Wang et al. [21] requires the audi-
tor to hold a secret parameter of file owner when verifying
the integrity of the outsourced files. Also, in their scheme
[21], the secret key of each group member consists of two el-
ements in G and Zp. Yu et al.’s proposal [26] achieves own-
ership privacy-preserving against TPA when auditing the
outsourced files, although the group members should locally
generate their keys and interact to negotiate a pair of group
public/secret keys.

Table 1 summarizes the comparison among the above men-
tioned PoS-related schemes in multi-user setting. They are
compared in terms of comparable properties, that is, the
manner of generating secret keys for group members, whether
some secret parameters should be shared among group mem-
bers, whether the scheme is proposed in identity-based set-
ting, auditability of the outsourced files, and whether the
identity of file owner is privacy-preserving against the cloud
storage server. From the table, it can be seen that our
schemes are advantageous over related schemes in ownership
privacy, public audibility, freeness of sharing secret parame-
ters and/or freeness of certificates (due to our identity-based
design).

2. MODELLING GPOS
In this section, we define the architecture of GPoS schemes

and formalize the corresponding security model as well.

2.1 System Architecture
A GPoS system involves four types of entities (as illus-

trated in Figure 1). The cloud storage server which is a
semi-trusted party and maintained by some cloud storage
provider, offers the remote storage services to cloud users,
for example, file owners. This server also has powerful com-
putation capability to respond the clients’ requests. The
group manager trusted by its members initiates the system
and issues the secret keys for all the members. A file owner,
that is, a group member, holds files and would like to out-
source them to the cloud storage server. The auditor is also
a cloud user, but may be not a group member. The group
public information as well as the file tags of the outsourced
files are accessible to the auditor. In this way, the audi-
tor can audit the integrity of these files on behalf of group
manager and the file owners.

Group manager

Members

Keys

Files
Auditor

Auditing

Cloud storage server

Figure 1: GPoS system model

2.2 Formal System Definition
A GPoS scheme with public auditability comprises six

polynomial-time computable algorithms, that is, Setup, KeyExt,
PrFile, Chall, PrfGen and Verify.

• (gpk, gsk) ← Setup(1λ): On input a security parame-
ter λ, the system setup algorithm, run by the group
manager, outputs a pair of group public key and group
secret key (gpk, gsk).

• sk` ← KeyExt(gpk, gsk, id`): On input a group public
key gpk, a group secret key gsk and a member identity
id`, the key extraction algorithm, run by the group
manager, outputs a secret key sk`. This secret key
is verifiable by its holder, that is, member id`, under
group public key gpk.

• (τ, F ∗)← PrFile(gpk, sk`, F ): On input a group public
key gpk, a member’s secret key sk` and a file F ∈
{0, 1}∗, the processing file algorithm, run by the file
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owner id` (a group member), outputs a file tag τ and
a processed file F ∗ that comprises of F and a number
of meta-data ~σ.

• C ← Chall(gpk, τ): On input a group public key gpk
and a file tag τ , the challenge generation algorithm,
run by the auditor, outputs a challenge C.

• R← PrfGen(gpk, F ∗, C): On input a group public key
gpk, a processed file F ∗ and a challenge C, the proof
generation algorithm, run by the cloud storage server,
outputs a proof R.

• 0/1 ← Verify(gpk, τ, C,R): On input a group public
key gpk, a file tag τ and a challenge/proof pair (C,R),
the verification algorithm, run by the auditor, outputs
“1” if R is a valid proof for C, or “0” otherwise.

Informally, the correctness property of a GPoS scheme re-
quires that for any file that processed by any member in the
group, if the cloud storage server performs honestly, then the
proof R is valid for the challenge C in any round of integrity
auditing protocol, that is, Chall-PrfGen-Verify. Formally, we
have

Definition 1 (Correctness). A GPoS scheme (Setup,
KeyExt, PrFile, Chall, PrfGen, Verify) is correct if for any
group key pair (gpk, gsk)← Setup(1λ), any member id` with
secret key sk` ← KeyExt(gpk, gsk, id`), and any file F ∈
{0, 1}∗, let (τ, F ∗) ← PrFile(gpk, sk`, F ), the verification e-
quation Verify(gpk, τ, C,PrfGen(gpk, F ∗, C)) = 1 holds for
any challenge C ← Chall(gpk, τ).

2.3 Adversary Model and Security Definitions
Note that we do not need to specially consider outsider at-

tackers as they cannot be more powerful than insider attack-
ers, that is, the colluding members or the server. Intuitively,
a GPoS scheme may encounter the following conspiracy at-
tacks from the group members and the cloud storage server.

• Secret key forgery. Several group members may col-
lude to forge a secret key with respect to another group
member.

• Meta-data forgery. The group members or the cloud
storage server may forge meta-data for some file and
group member.

• Proof forgery. The cloud storage server and group
member may collude to forge a proof when auditing
the integrity of some outsourced file with respect to
some group member.

An insightful observation indicates the second type of at-
tacks about meta-data forgery can be captured by the third
case. Hence, in the following discussion, we only need to
consider the secret key forgery and proof forgery. To cap-
ture them, we define a formal security model with the fol-
lowing game where a probabilistic polynomial-time (PPT)
adversary A interacts with the challenger C.

Setup: Suppose that the adversary controls a set Sc of
corrupted members in the group and sends this set to C.
The challenger runs Setup(1λ) to generate a pair of group
public/secret keys (gpk, gsk) and gives gpk to A.

Queries: The adversary adaptively queries the challenger.
For each query, the challenger records the queried informa-
tion as well as response in lists that are initiated as empty.

• Key extraction: The adversary adaptively queries the
challenger to obtain the secret key of a member in the
corrupted set Sc. The challenger returns the result of
KeyExt for each queried member identity.

• Processing file: The adversary sends a file F and a
member identity id` to the challenger. If the secret key
of member id` has not been queried before, then the
challenger should first run KeyExt(gpk, gsk, id`). The
challenger computes (τ, F ∗) ← PrFile(gpk, sk`, F ) and
sends (τ, F ∗) to A. Note that for each file, there is a
unique file identifer in the file tag τ . For guaranteeing
its uniqueness, we let it be randomly chosen by the
challenger during the query.

• Integrity auditing: For any processed file in above pro-
cessing file queries, the challenger (acting as the au-
ditor) can audit its integrity by challenging the ad-
versary (acting as the prover). That is, they jointly
carry out the integrity auditing protocol. In detail, for
any file F in the query list, the challenger can chal-
lenge A with C ← Chall(gpk, τ), and A responds with
a proof R. Then, the challenger verifies R by invoking
Verify(gpk, τ, C,R) and gives the results to A.

End-Game: Finally, the adversary outputs a secret key
sk′` for some member id′`, or a pair of challenge/proof (C′, R′)
with regard to some file F ′ identified by file tag τ ′.

Definition 2 (Soundness). A GPoS scheme is sound
if for any PPT adversary A playing the above mentioned
security game by interacting with the challenger, the outputs
are neither of the following cases:

• Case 1. The secret key sk′` is valid under the group
public key gpk for a member id′` but id′` 6∈ Sc.

• Case 2. The pair of challenge/proof (C′, R′) is valid
but R′ does not equal to that generated by the chal-
lenger from locally maintained information.

A secure GPoS scheme also requires that, in the entire
life span of an outsourced file, its owner identity should be
hidden from the cloud storage server. Essentially, this own-
ership privacy-preserving property requires the files should
be uploaded in the name of the group. As in the real ap-
plication scenario, the files are uploaded by the employee
under the company’s account. Also, in any round of in-
tegrity auditing protocol with regard to any outsourced file,
the cloud storage server should be able to respond with a
valid integrity proof R without using the file owner’s identi-
ty. More technically,

Definition 3 (Ownership privacy). A GPoS scheme
is ownership privacy-preserving against the cloud storage
server if for any file F ∈ {0, 1}∗ and any two distinct mem-
bers id`,1 and id`,2 in the same group, the following two dis-
tributions are identical from the view of the cloud storage
server: ~σ1 :

(gpk, gsk)← Setup(1λ),
sk`,1 ← KeyExt(gpk, gsk, id`,1),
(τ1, F

∗
1 )← PrFile(gpk, sk`,1, F )

 ,

and ~σ2 :
(gpk, gsk)← Setup(1λ),

sk`,2 ← KeyExt(gpk, gsk, id`,2),
(τ2, F

∗
2 )← PrFile(gpk, sk`,2, F )

 .
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3. GENERIC GPOS CONSTRUCTION
Suppose G1 = 〈g1〉 and G2 = 〈g2〉 be (multiplicative)

cyclic groups of prime order p with efficient group actions.
The groups (G1,G2) are bilinear if there exists a (multi-
plicative) cyclic group GT of the same order and an efficient
bilinear map ê : G1 ×G2 → GT such that:

(1) Bilinearity: ∀h ∈ G1, ~ ∈ G2, and ∀α, β ∈ Z∗p, ê(hα, ~β) =

ê(h, ~)αβ ;
(2) Non-degeneracy: ê(g1, g2) 6= 1.
Our GPoS scheme and instantiations rely on the following

well-known computational assumptions.
Computational Diffie–Hellman Assumption: Given a triple

(g, gα, gβ) for α, β ∈R Z∗p, any PPT algorithm A has negli-
gible probability, that is,

Pr[A(g, gα, gβ) = gαβ : α, β ∈R Z∗p]

to compute gαβ .
s-Strong Diffie–Hellman (s-SDH) Assumption [4]: Given

a (s+ 1)-tuple

(g, gα, · · · , gα
s

)

for randomly chosen α ∈R Z∗p, any PPT algorithm A has
negligible probability

Pr
[
A(g, gα, · · · , gα

s

) = (z, g
1

α+z ) : α ∈R Z∗p, z ∈ Z∗p \{−α}
]

to compute a pair (z, g
1

α+z ).

3.1 Useful Properties in Signatures
To construct GPoS, we first need a secure way to gen-

erate secret keys for the group members. It is well-known
that in group-oriented cryptographic primitives, the group
members should not be allowed to (freely) generate secret
keys by themselves. Instead, these keys are usually gener-
ated and distributed for all members by a (trusted) group
manager. The secret key of a group member should be asso-
ciated with his/her identity. To this end, the group manager
usually signs the identity of the member and outputs the sig-
nature as the secret key of the member. An advantage of
this approach is that it is naturally collusion-resistant in the
sense that even colluding users cannot forge a valid secret
key if the underlying signature is existentially unforgeable.
However, this approach also brings a challenge in construct-
ing group-oriented PoS schemes, not only because the files
are processed by group members with their secret keys and
each meta-data should incorporate at least a file identifier
and a file block with many sectors, but also the produced
meta-data should be aggregatable and publicly auditable. In
fact, the situation will be even worse in constructing generic
GPoS schemes equipped with user privacy.

We observe that some signature schemes enjoy several in-
teresting properties useful to address the above challenge.
We refer to these properties as homomorphic composabil-
ity and homomorphic verifiability defined as follows. Let
S = (KGen, Sign,Vrfy) be a signature scheme defined over
some cyclic group G = 〈g〉, andM, K and Σ be the message
space, secret key space and signature space of S, respec-
tively, where the signature space is assumed to be a finite
multiplicative cyclic group.

Definition 4 (Homomorphic Composability). A sig-
nature scheme S is (ϕ,z)-homomorphic composable if

(1) there exist two efficiently computable functions such
as ϕ : K ×M → R where R denotes some ring, and z :
G×R → Σ; and

(2) for each message m ∈RM and every key pair (pk, sk)←
S.KGen(1λ), the corresponding signature has the form σ =
z(g, ϕ(sk,m))← S.Sign(sk,m). It holds that

z(g, ϕ(sk,m))x = z(gx, ϕ(sk,m))

for any value x ∈R R, where z()x is the exponentiation
operation over Σ.

Definition 5 (Homomorphic Verifiability). A sig-
nature scheme S is (ϕ,z)-homomorphic verifiable if

(1) there is an efficient test algorithm Ξ(pk;m,σ; ẍ, ÿ)
which takes a public key pk, a message/signature pair (m,σ),
and a pair of elements ẍ ∈ G and ÿ ∈ Σ; and

(2) the algorithm Ξ outputs “1” if the given pair of mes-
sage/signature is valid under pk, that is, S.Vrfy(pk,m, σ) =
1, and ϕ1 = ϕ2 in R, where ϕ1 = z−1(g, σ) and ϕ2 =
z−1(ẍ, ÿ). Otherwise, outputs “0”.

We provide two exemplary signature schemes that satisfy
these properties.

Boneh–Boyen scheme [4]. Let ê : G1 × G2 → GT be an
asymmetric bilinear map, where G1 = 〈g1〉, G2 = 〈g2〉 and
GT are (multiplicative) cyclic groups of prime order p.

• KGen(1λ): Pick a random value γ ∈R Z∗p to be the
secret key sk, and compute $ = gγ2 . The public key is

pk = (ê,G1,G2,GT , g1, g2, p,$)

• Sign(pk, sk,m): For any given message m ∈R Zp, com-
pute the signature

σ = g
1

γ+m

1

If m + γ = 0, then set the signature as the identity
element in G1.

• Vrfy(pk,m, σ): If the equality

ê(σ,$ · gm2 )
?
= ê(g1, g2)

holds, then the signature σ is valid for m and thus
output “1”; otherwise, output “0”.

We define

ϕ(sk,m) =
1

γ +m
mod p

and

z(g1, ϕ(sk,m)) = g
ϕ(sk,m)
1

For any x ∈R Z∗p, the function z satisfies homomorphic
composability property, that is,

z(g1, ϕ(sk,m))x = g
x· 1
γ+m

1 = z(gx1 , ϕ(sk,m)).

Define the testing algorithm Ξ to output “1” if and only if
both

ê(σ,$ · gm2 ) = ê(g1, g2)

and

ê(ÿ, $ · gm2 ) = ê(ẍ, g2)

hold. Hence, it also satisfies homomorphic verifiability.

Gennaro–Halevi–Rabin scheme [10]. LetH : {0, 1}∗ →
{2n+ 1 : n ∈ Z} be a collision-resistant hash function.
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• KGen(1λ): Pick two random primes p, q ∈R [2λ, 2λ+1]
such that both p−1

2
and q−1

2
are also primes. Compute

N = pq. Let G be a subgroup of squares in Z∗N . Pick a
random element g ∈R G. The secret key is sk = (p, q),
and the public key is pk = (N, g).

• Sign(pk, sk,m): For any given message m ∈ {0, 1}∗,
compute the signature

σ = g
1

H(m)

• Vrfy(pk,m, σ): If the equality

σH(m) ?
= g

holds, then the signature σ is valid for m and thus
output “1”; otherwise, output “0”.

For GHR signature scheme, we have

ϕ(sk,m) =
1

H(m)
mod ξ(N)

and

z(g, ϕ(sk,m)) = gϕ(sk,m) mod N

where ξ(N) is the Euler totient function of N . For any
x ∈R Z∗, the function z satisfies homomorphic composabil-
ity property, that is,

z(g, ϕ(sk,m))x = g
x· 1
H(m) = z(gx, ϕ(sk,m)).

Define the testing algorithm Ξ to output “1” if and only if
both

σH(m) = g

and

ÿH(m) = ẍ

hold. Hence, it also satisfies homomorphic verifiability.

3.2 Our GPoS Construction
Let Sk = (KGen, Sign,Vrfy) be a secure signature scheme

which has the properties described in Section 3.1. Also
let St = (KGen, Sign,Vrfy) be a secure standard signature
scheme. Suppose the group consists of n members and
H0 : {0, 1}∗ →R be a collision-resistant hash function.

For GPoS construction with the above defined properties,
a group member id` only holds his/her secret key in the
form of z(g, ϕ(gsk, id`)), where gsk denotes a group secret
key. Thus, he/she cannot directly use gsk or ϕ(gsk, id`) for
producing meta-data (signature for a file block). We explain
how to employ trapdoor technique to circumvent this issue.
In detail, the group member id` can randomly pick (secret)
values αi ∈R R and compute the corresponding powers ui =
gαi as public parameters. When signing on a list of messages
{mi}, the member id` first evaluates a linear function

fe = f({mi, αi}) =
∑

αimi

over ring R, and then computes

σ′ = (z(g, ϕ(gsk, id`)))
fe = z(gfe , ϕ(gsk, id`)).

In this way, it is easy to see that the component gfe can be
recovered using public parameters {ui} and messages {mi}.

Hence, under group public key gpk, the test algorithm Ξ can
go through as follows

Ξ
(
gpk; id`,z(g, ϕ(gsk, id`)); g

fe , σ′
)

= 1.

Now we are ready to describe our generic construction.

Setup(1λ): The group manager invokes Sk.KGen(1λ) to ob-
tain a pair of public/secret keys, and sets them as the
group public key and group secret key (gpk, gsk).

KeyExt(gpk, gsk, id`): For each member id` (1 ≤ ` ≤ n) in
the group, the group manager computes a signature of
his/her identity as follows

sk` ← Sk.Sign(gsk, id`) ∈ Σ.

Such a signature serves as his/her secret key. When
receiving sk`, the member id` is able to validate it by
invoking Sk.Vrfy with group public key gpk.

PrFile(gpk, sk`, F ): Given a file F , the member id` splits it
into blocks such that each block has s sectors (as ele-
ments in R) as follows

F = {Fi = (fi,1, · · · , fi,s) : 1 ≤ i ≤ r}. (1)

Then choose a random file identifier fid ∈R R and
(s+ 1) random values α0, α1, · · · , αs ∈R R. Compute

uj = gαj ∈ G

for each 0 ≤ j ≤ s. Let τ0 be the concatenation string
of

(gpk, id`, u0, u1, · · · , us, fid, r)

Generate the file tag by the following steps:

• Compute (tpk, tsk) ← St.KGen(1λ) to obtain a
pair of public/secret keys;

• Compute ϑ ← St.Sign(tsk, τ0) to obtain a signa-
ture of string τ0.

• Send the file tag τ = (τ0, tpk, ϑ) to the group
manager.

For each file block Fi (1 ≤ i ≤ r), the member id`
computes

θi = α0H0(fid ‖ i) +

s∑
j=1

αjfi,j ∈ R

and generates meta-data as

σi ← skθi` ∈ Σ

Send the processed file

F ∗ = {(Fi, σi) : 1 ≤ i ≤ r}

to the cloud storage server. Deletes the random values
α0, α1, · · · , αs, secret key tsk and the file locally.

Chall(gpk, τ): The auditor runs the algorithm as follows.

1. Invoke St.Vrfy(tpk, τ0, ϑ) to validate the file tag τ .
If it is invalid, outputs “0” and terminates.
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2. Pick a random subset Q ⊆ [1, r] and choose a
random value βi ∈R R for each i ∈ Q. Send the
challenge

C = (fid,Q, {βi : i ∈ Q})

to the cloud storage server.

PrfGen(gpk, F ∗, C): The cloud storage server computes the
aggregated file block ~µ = (µ1, · · · , µs) and meta-data
σ as follows

µj =
∑
i∈Q

βifi,j ∈ R for each j ∈ [1, s],

and

σ =
∏
i∈Q

σβii ∈ Σ. (2)

Return the proof R = (~µ, σ) to the auditor.

Verify(gpk, τ, C,R): If R cannot be parsed, output “0” and
terminates. Otherwise, check

Ξ

(
gpk; id`, sk`;u

∑
i∈Q βiH0(fid‖i)

0 ·
s∏
j=1

u
µj
j , σ

)
?
= 1.

(3)
If so, output “1”; otherwise, output “0”.

3.3 The Security

Theorem 1. The proposed GPoS scheme is correct.

Proof. We only show Equation (3) holds as the other
parts are straightforward. Observing that

sk` = z(g, ϕ(gsk, id`))

we have

σ =
∏
i∈Q

σβii =
∏
i∈Q

z
(
g, ϕ(gsk, id`)

)θiβi
= z

(
g, ϕ(gsk, id`)

)∑
i∈Q θiβi

= z
(
g
∑
i∈Q βi(α0H0(fid‖i)+

∑s
j=1 αjfi,j), ϕ(gsk, id`)

)
= z

(∏
i∈Q

gβiα0H0(fid‖i) ·
∏
i∈Q

s∏
j=1

gβiαjfi,j , ϕ(gsk, id`)
)

= z
(∏
i∈Q

gβiα0H0(fid‖i) ·
s∏
j=1

u
∑
i∈Q βifi,j

j , ϕ(gsk, id`)
)

= z
(
u
∑
i∈Q βiH0(fid‖i)

0 ·
s∏
j=1

u
µj
j , ϕ(gsk, id`)

)
.

It can be seen that σ has the same component ϕ(gsk, id`) as
the secret key sk`. According to the definition of algorithm
Ξ, the correctness follows.

Theorem 2. Suppose that the signature scheme St for
file tags is existentially unforgeable. The proposed GPoS
scheme is sound for any PPT adversary A if the CDH as-
sumption holds.

Proof. Since the unforgeability of group members’ secret
keys is guaranteed by a secure signature scheme Sk, it is
omitted in the following discussion while only the soundness

with regard to the integrity auditing of outsourced files is
considered.

Suppose a PPT adversaryA who controls a set Sc of group
members and breaks the soundness of the proposed generic
GPoS scheme. Let the adversary play the security game
described in Definition 2 by interacting with the challenger
C. We show that if the adversary can output a (forged) valid
pair of challenge/proof (C′, R′) with regard to a file F ′ and a
tag τ ′, then we can construct an algorithm B by interacting
with A to break the CDH assumption.

Setup: The adversary A sends the corrupted set Sc to B.
On input a security parameter λ, the challenger generates a
pair of group public key and secret key (gpk, gsk). Send gpk
to B, who forwards it to the adversary A.
Queries: The adversary can adaptively interact with the

simulator B who maintains all the intermediate information,
that is, all the queries and responses.

• Processing file: For each query from A with a file F
and a member identity id`, the simulator B passes them
to C. If the identity has not been queried before, then
the challenger first invokes KeyExt to extract a private
key sk` for it. After running the algorithm PrFile, the
challenger gives the private key sk`, a file tag τ and a
list of meta-data {σi}1≤i≤r to B, where the file iden-
tifier fid (an element in τ) is randomly chosen by C.
The simulator B forwards the received information to
A. If id` 6∈ Sc, then sk` cannot be given to A.

• Integrity auditing: For this type of queries, the sim-
ulator and the adversary play the roles as a verifi-
er and a prover, respectively. For any file F that
has been queried for processing, the simulator B runs
Chall(gpk, τ) to generate a challenge

C = (fid,Q, {βi : i ∈ Q})

and sends it toA. The adversary responds with a proof
R = (~µ, σ). The simulator verifies the proof P by
running Verify(gpk, τ, C,R) and gives the verification
results to A.

End-Game: Finally, the adversary outputs a (forged)
valid pair of challenge/proof (C′, P ′) with regard to a file F ′

and a tag

τ ′ = (τ ′0, tpk, ϑ
′)

that is, the pair of

C′ = (fid,Q, {βi : i ∈ Q})

and

R′ = (~µ′, σ′)

satisfy the testing algorithm Ξ. Note that file F ′ has been
queried for processing. Assume it belongs to some member
id` 6∈ Sc and has identifier fid, both of which are specified
in τ ′. As we discussed, the forged and real proofs have the
following representations, that is,

σ′ = z
(
u
∑
i∈Q βiH0(fid‖i)

0 ·
s∏
j=1

u
µ′j
j , ϕ(gsk, id`)

)
= z

(
g, ϕ(gsk, id`)

)α0
∑
i∈Q βiH0(fid‖i)+

∑s
j=1 αjµ

′
j
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and

σ = z
(
u
∑
i∈Q βiH0(fid‖i)

0 ·
s∏
j=1

u
µj
j , ϕ(gsk, id`)

)
= z

(
g, ϕ(gsk, id`)

)α0
∑
i∈Q βiH0(fid‖i)+

∑s
j=1 αjµj

.

Notice that, at least one pair of {(µ′j , µj)}1≤j≤s should be
different, since otherwise, σ′ = σ would also hold. Without
loss of generality, assume µ′1 6= µ1, while µ′j = µj for 2 ≤
j ≤ s. In this case, the simulator, having the private key

sk` = z(g, ϕ(gsk, id`)) ∈ G

and the public parameter u1 = gα1 ∈ G with unknown ex-
ponents, can compute the CDH answer z(g, ϕ(gsk, id`))

α1

as follows(
σ′

σ

) 1
µ′1−µ1

=
(
z(g, ϕ(gsk, id`))

α1(µ
′
1−µ1)

) 1
µ′1−µ1

= z(g, ϕ(gsk, id`))
α1 .

Thus, the simulator breaks the CDH assumption.

Theorem 3. The proposed GPoS scheme is ownership
privacy-preserving against the cloud storage server.

Proof. On one hand, it is easy to see that, when audit-
ing an outsourced file with respect to a group member id`,
the cloud storage server does not know this specific mem-
bership. On the other hand, the produced meta-data in the
processed file look random to the cloud server if the elements
in both the ring R and the group G are uniformly distribut-
ed. Since all the values such as αi-es are randomly chosen
in R, the meta-data σi ∈ G are random elements in G and
independent of the file owner’s identity in the view of the
cloud storage server.

4. INSTANTIATIONS
In this section, we first present an instantiation based on

the Boneh–Boyen short signature [4]. We next show that
a special type of GPoS instantiations can be further opti-
mized with a polynomial commitment technique [12]. The
signature scheme St is the same as in Section 3.2. Let
H0 : {0, 1}∗ → Z∗p be a collision-resistant hash function.

4.1 A CDH-based Instantiation
Setup(1λ): The group manager picks a bilinear pairing ê :

G×G→ GT , where G = 〈g〉 and GT are cyclic groups
of prime order p. Choose a random value γ ∈R Z∗p and
computes $ = gγ . Let H : {0, 1}∗ → Z∗p be a collision-
resistant hash function. The group public key is

gpk = (ê,G,GT , g,$,H)

and the group secret key is gsk = γ.

KeyExt(gpk, gsk, id`): For each member id` (1 ≤ ` ≤ n) in
the group, the group manager computes a secret key

sk` = g
1

γ+H(id`) .

Once receiving sk`, the member id` can validate it by
checking whether

ê
(
sk`, $ · gH(id`)

)
?
= ê(g, g)

holds.

PrFile(gpk, sk`, F ): The member id` splits the file F into
blocks as shown in Equation (1). Choose a random
file identifier fid ∈R Z∗p and (s + 1) random values
α0, α1, · · · , αs ∈R Z∗p, and compute

uj = gαj ∈ G

for each 0 ≤ j ≤ s. Then, generate the file tag τ in the
same way as in Section 3.2 and send it to the group
manager.

For each file block Fi (1 ≤ i ≤ r), do the follows:

• Compute

θi = α0H0(fid ‖ i) +

s∑
j=1

αjfi,j ∈ Zp

• Generate meta-data as

σi ← skθi` ∈ G

Then, send the processed file

F ∗ = {(Fi, σi) : 1 ≤ i ≤ r}

to the cloud storage server, and deletes the random
values α0, α1, · · · , αs, secret key tsk and the file locally.

Chall(gpk, τ): The auditor runs the algorithm in two steps.

1. The same to Section 3.2 for validating the file tag.
If τ is invalid, output “0” and terminate.

2. Pick a random subset Q ⊆ [1, r] and choose a
random value βi ∈R Z∗p for each i ∈ Q. Send the
challenge

C = (fid,Q, {βi : i ∈ Q})

to the cloud storage server.

PrfGen(gpk, F ∗, C): Compute the aggregated file block ~µ =
(µ1, · · · , µs) as follows

µj =
∑
i∈Q

βifi,j mod p for each j ∈ [1, s],

and calculate the aggregated meta-data σ as shown in
Equation (2) but over G. Return the proof R = (~µ, σ)
to the auditor.

Verify(gpk, τ, C,R): If R cannot be parsed, output “0” and
terminates. Otherwise, check whether the following
equality holds

ê
(
σ,$ · gH(id`)

)
?
= ê

(
u
∑
i∈Q βiH0(fid‖i)

0 ·
s∏
j=1

u
µj
j , g

)
.

If so, output “1”; otherwise, output “0”.

Theorem 4. The proposed GPoS instantiation is correct.
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Proof. Observe the following equalities

ê
(
σ,$ · gH(id`)

)
= ê

(∏
i∈Q

σβii , g
γ · gH(id`)

)

= ê

(∏
i∈Q

(
g

1
γ+H(id`)

)θiβi
, gγ · gH(id`)

)

= ê

(∏
i∈Q

gβi(α0H0(fid‖i)+
∑s
j=1 αjfi,j), g

)

= ê

(∏
i∈Q

gβiα0H0(fid‖i) ·
∏
i∈Q

s∏
j=1

gβiαjfi,j , g

)

= ê

(∏
i∈Q

gβiα0H0(fid‖i) ·
s∏
j=1

u
∑
i∈Q βifi,j

j , g

)

= ê

(
u
∑
i∈Q βiH0(fid‖i)

0 ·
s∏
j=1

u
µj
j , g

)
.

Hence, the correctness follows.

According to Theorem 2 and Theorem 3, we have the
following corollaries.

Corollary 1. Suppose that the signature scheme St for
file tags is existentially unforgeable. The proposed GPoS in-
stantiation is sound for any PPT adversary A if the CDH
assumption holds.

Corollary 2. The proposed GPoS instantiation is own-
ership privacy-preserving against the cloud storage server.

For easiness to compare with the improved instantiation
as shown in next section, the above instantiation is present-
ed over symmetric bilinear groups. In fact, it can also be
implemented over asymmetric bilinear groups, that is, by
setting the group private key sk`, the public parameters ui
(0 ≤ i ≤ s) and the meta-data {σi : 1 ≤ i ≤ r} in G1, while
defining $ in G2.

4.2 Optimized Instantiation
We proceed to optimize the above proposed GPoS instan-

tiation by the leveraging polynomial commitment technique
[12]. Our optimization approach is universal in the sense
that the communication overheads for integrity auditing in
a GPoS scheme may be further reduced if the PoS schemes
are built over symmetric bilinear groups. At a high level,
similarly to [24, 27], the public parameters uj-es are gener-
ated using a single random element α, that is, they are as-
sociated with different powers of α. Furthermore, when an
outsourced file is audited, a polynomial commitment with
respect to the challenged blocks is produced by the cloud
storage server and then validated by the auditor.

Setup(1λ): The same to Section 4.1.

KeyExt(gpk, gsk, id`): The same to Section 4.1.

PrFile(gpk, sk`, F ): The member id` splits the file F into
blocks as shown in Equation (1). Choose a random file
identifier fid ∈R Z∗p and two random values α0, α ∈R
Z∗p, and compute

υ = gα0 ∈ G

and

uj = gα
j

∈ G
for each 0 ≤ j ≤ s−1. Generate the file tag τ and sends
it to the group manager in the same way as Section 3.2
while τ0 denotes a concatenation string of

(gpk, id`, υ, u0, u1, · · · , us−1, fid, r)

For each file block Fi (1 ≤ i ≤ r), do the follows:

• Compute

θi = α0H0(fid ‖ i) + φ~πi(α) mod p

where

φ~πi(α) =

s−1∑
j=0

fi,jα
j mod p

• Generate the meta-data as σi ← skθi` ∈ G.

Then, send the processed file

F ∗ = {(Fi, σi) : 1 ≤ i ≤ r}

to the cloud storage server and locally discards the
random values α0, α, secret key tsk and the file infor-
mation.

Chall(gpk, τ): The auditor runs the algorithm as follows.

1. The same to Section 3.2 for validating the file tag.
If τ is invalid, outputs “0” and terminates.

2. Pick a random subset Q ⊆ [1, r] and chooses two
random values z, δ ∈R Z∗p. Sends the challenge

C = (fid,Q, z, δ)

to the cloud storage server.

PrfGen(gpk, F ∗, C): For each i ∈ Q, the cloud storage serv-
er calculates a value βi = δi mod p. Generate the
aggregated file block

~µ = (µ0, µ1, · · · , µs−1)

by computing

µj =
∑
i∈Q

βifi,j mod p for each j ∈ [0, s− 1],

and calculate the aggregated meta-data σ as shown in
Equation (2) but over G. Then, define a polynomial

φ~µ(x) =

s−1∑
j=0

µjx
j mod p

and calculates κ = φ~µ(z) mod p. Compute the fol-
lowing polynomial

ψ~ω(x) =
φ~µ(x)− φ~µ(z)

x− z
using polynomial long division. Let

~ω = (ω0, ω1, · · · , ωs−2)

be the coefficient vector of ψ~ω(x). Compute

ζ = gψ~ω(α) =

s−2∏
j=0

(
gα

j
)ωj

.

Return the proof R = (ζ, κ, σ) to the auditor.
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Verify(gpk, τ, C,R): If R cannot be parsed, output “0” and
terminate. Otherwise, check the following equality

ê
(
σ,$ · gH(id`)

)
?
=ê
(
υ
∑
i∈Q δ

iH0(fid‖i) · gκ · ζ−z, g
)

· ê(ζ, u1). (4)

If so, output “1”; otherwise, output “0”.

Theorem 5. The optimized GPoS instantiation is cor-
rect.

Proof. Since

ê
(
σ,$ · gH(id`)

)
= ê

(∏
i∈Q

σβii , g
γ · gH(id`)

)

= ê

(∏
i∈Q

(
g

1
γ+H(id`)

)θiβi
, gγ · gH(id`)

)

= ê

(∏
i∈Q

gβi(α0H0(fid‖i)+φ~πi (α)), g

)

= ê

(∏
i∈Q

υβiH0(fid‖i) ·
∏
i∈Q

gβiφ~πi (α), g

)

= ê
(
υ
∑
i∈Q βiH0(fid‖i), g

)
ê
(
g
∑
i∈Q βiφ~πi (α), g

)
= ê

(
υ
∑
i∈Q δ

iH0(fid‖i), g
)
ê
(
gφ~µ(α), g

)
and

ê
(
gκ · ζ−z, g

)
ê(ζ, u1)

= ê
(
gφ~µ(z)g−zψ~ω(α), g

)
ê
(
gψ~ω(α), gα

)
= ê
(
g(α−z)ψ~ω(α)+φ~µ(z), g

)
= ê
(
gφ~µ(α)−φ~µ(z)+φ~µ(z), g

)
= ê
(
gφ~µ(α), g

)
,

the verification equation (4) is satisfied.

Theorem 6. Suppose that the signature scheme St for
file tags is existentially unforgeable. The optimized GPoS
instantiation is sound for any PPT adversary A if the s-
SDH assumption holds.

Proof. Suppose that there is a PPT adversary A break-
ing the soundness of the improved GPoS instantiation. Sim-
ilarly to Theorem 2, at the end of security game, the adver-
sary outputs a (forged) valid pair of challenge/proof (C′, R′)
with regard to a file F ′ with tag τ ′ and member id`, where file
F ′ has been queried for processing. Suppose the challenge
C′ = (fid,Q, z, δ) and the proof R′ = (ζ′, κ′, σ′) Hence, the
pair (C′, R′) satisfies Equation (4). However, since this pair
is forged, R′ must be unequal to that generated from the
maintained information by the simulator. It further means
that (ζ′, κ′) 6= (ζ, κ), since otherwise, σ′ would be equal to σ
due to Equation (4). Then the simulator obtains two com-
mitments (z, ζ′, κ′) and (z, ζ, κ) for the same polynomial and
both for the evaluation at z. According to the security re-
sults [12] of polynomial commitment scheme due to Kate,
Zaverucha and Goldberg, the simulator can find a solu-

tion (−z, g
1

α−z ) for the s-SDH instance (G, u0, u1, · · · , us−1)
which contradicts the security assumption.

According to Theorem 3, we have the following corollary.

Corollary 3. The optimized GPoS instantiation is own-
ership privacy-preserving against the cloud storage server.

5. PERFORMANCE EVALUATION
In this section, we evaluate and compare the performance

of our GPoS instantiations.

5.1 Theoretical Analysis
For comparing the efficiency of both GPoS instantiation-

s (see Section 4), we first analyse their computation costs
in each stage. We only consider the most time-consuming
computations, i.e., exponentiation and pairing in G, GT and
Zp, etc., while the other light-weight operations such as addi-
tions and multiplications are omitted. In the table, H denotes
one hash evaluation for both H and H0, and E represents one
exponentiation in G or Zp. That is, these evaluations are not
discriminated in different groups or ring. The computation
times for polynomial long division and a pairing evaluation
are denoted by D and P, respectively. The time to randomly
sample an element from a group or a ring is also omitted
in the analysis, since it is in fact much less than that taken
by an exponentiation. We also treat the digital signature
scheme St for file tag as a black-box. Specifically, we let
O(Skgen), O(Ssign) and O(Svrfy) denote the computation
complexity of each algorithm in St, that is, St.KGen, St.Sign
and St.Vrfy.

Table 2 summarizes the computational costs of every al-
gorithm of both proposed instantiations. Both GPoS in-
stantiations rely on the same key extracting algorithm to
create secret keys for group members. Each key extraction
takes one hash evaluation and one exponentiation in G. Re-
garding the file processing algorithm, the secret values αi

(2 ≤ i ≤ s− 1) can be pre-computed by the group member
in the optimized GPoS instantiation, then both instantia-
tions take roughly the same computational complexity for
processing a file. There are two ways for producing ui in
optimized GPoS instantiation. That is, either by computing
ui = uαi−1 or by raising g to the power of a pre-computed val-
ue αi. Both cases bring the identical complexity for prepar-
ing these values ui. It can be seen from Table 2 that the al-
gorithm PrFile in basic GPoS instantiation requires (r+s+1)
exponentiations in G, which determines the overall efficiency
for processing a file. In fact, r exponentiations are carried
out for producing meta-data for r file blocks, while the other
(s+ 1) exponentiations are due to preparing public param-
eters u0, · · · , us. Consider a file F of L bytes. If it is split
such that each sector has l bytes (as an element in Zp), then
processing this file would take in total

T =
⌈ L

s · l

⌉
+ s+ 1 (5)

exponentiations. The case for the optimized GPoS instanti-
ation is similar, that is, it would take T ′ = T − 1 exponen-
tiations in G. Furthermore, for processing file F with either
GPoS instantiation, a preferable way is to set s as

√
L/l

since it would cost the minimum exponentiation operations.
For auditing an outsourced file in optimized instantiation,

the cloud storage sever will carry out a bit more operations
than the basic one. This is because that not only the co-
efficients βi (i ∈ Q) should be online calculated through
exponentiations, but also an addition polynomial evaluation
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for κ, polynomial long division and multi-exponentiation for
ζ need to be computed. This would not degrade practicality
of the instantiations as the cloud servers are usually assumed
to be powerful enough. At the auditor side for verification,
the efficiency depends on the parameters |Q| and s. If the
auditor challenges a number of file blocks less than s, then
the optimized GPoS instantiation is superior to the basic
one. Note that most exponentiations taken by the auditor
in optimized instantiation are due to computing the coeffi-
cients βi (i ∈ Q). These computations can be carried out
after sending out the challenge C and before receiving the
response R from the cloud storage server. In this way, the
auditor will take only ((|Q|+1)H+4E+3P) operations, which
is much superior to that of basic instantiation.

We proceed to compare the communication overheads for
both instantiations in auditing the integrity of the outsourced
files. The details are summarized in Table 3 where SG de-
notes the element size of G. In optimized instantiation, the
coefficients βi (i ∈ Q) are not transmitted directly across the
network as in basic instantiation, but generated by both the
cloud storage server and the auditor. Thus, these additional
computations greatly reduce the communications from the
auditor to the cloud server. The similar communication re-
duction occurs for avoiding directly transmitting the aggre-
gated file block from the cloud server to auditor. As shown
in Section 4.2, this is realized by polynomial commitment to
commit at a random point z. It can be seen from the Table
that, the polynomial commitment trick brings great savings
about the overall communication overheads.

Table 3: Communication overheads of auditing in-
tegrity in both instantiations

Instantiation Communication overheads

Section 4.1 (2|Q|+ s)l + 1SG
Section 4.2 (|Q|+ 3)l + 2SG

6. CONCLUSION
In this paper, we introduced GPoS which guarantees the

integrity of the outsourced group’s files in clouds. We first
formalized the system framework and the security model
for GPoS schemes, and then proposed a generic GPoS con-
struction. The construction is based on the newly identi-
fied properties of some digital signature schemes and a trap-
door trick. The effectiveness of this generic construction
was showcased with two concrete instantiations over bilin-
ear groups. The second instantiation illustrates extra ad-
vantageous features of lower communication overheads for
auditing the outsourced files. We provided formal securi-
ty proof and comprehensive performance evaluations. The
analyses show that the proposed scheme and instantiations
are secure and practical for real-world applications.
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