
Supplementary Material - Rethinking Planar
Homography Estimation Using Perspective

Fields

Rui Zeng[0000−0003−0155−1288], Simon Denman[0000−0002−0983−5480], Sridha
Sridharan[0000−0003−4316−9001], and Clinton Fookes[0000−0002−8515−6324]

Queensland University of Technology, Brisbane, Australia
{r5, s.denman, s.sridharan, c.fookes}@qut.edu.au

In this document, we provide additional materials to supplement our main
submission. In Section 1, we compare the performance of PFNet when optimised
with the smooth-l1 and l2 loss to further demonstrate the effect of the loss choice.
Section 2 further compares the performance of FRCN, FRCN-IB, and PFNet in
terms of l2 loss to supplement the evalution using the smooth-l1 loss in the main
submission. In Section 3, additional qualitative experiments on real world data
are presented, which have been conducted to demonstrate the applicability of
PFNet for “in the wild” scenes.

1 l2 Loss V.S. Smooth l1 Loss

In main submission, we claim that the l2 loss is not suitable for PFNet because
the l2 loss places emphasis on outliers. This property is contrary to the goal
of PFNet, which aims to regress dominant inliers. A small quantity of outliers
does not adversely affect the accuracy of the PFNet as we use RANSAC to
further process predictions generated by PFNet. To verify this hypothesis, we
train PFNet using smooth-l1 and l2 loss respectively. Both of the training phases
contains 300 epochs and the learning rate is divided by 10 after each 100 epochs.
A sufficiently large number of epochs can help us examine loss trend during
training.

Figure 1 shows the MACE trend training and validation regarding the two
losses. We find that the smooth-l1 consistently converges faster than the l2 in
both training and validation phases. The smooth-l1 trained PFNet needs far
fewer epochs to reach the same accuracy as the l2 trained PFNet.

2 Comparison between FRCN, FRCN-IB, and PFNet

To thoroughly verify our hypothesis on the difference between these networks,
we provide an extra set of experiments to compare the performance of FRCN,
FRCN-IB, and PFNet. Regarding experimental setting, we use 300 epochs train-
ing and divide the learning rate by 10 after each 100 epochs. The loss function
in this case is set to the l2 loss to supplement the smooth-l1 loss evaluation pre-
sented in main submission. All other parameters remain the same. The 300 epoch
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Fig. 1. The training and validation MACE of PFNet regarding smooth-l1 and l2 loss.

Method MACE

FRCN 3.21
FRCN-IB 2.39

PFNet 1.46

Table 1. Mean average corner error (MACE) comparison between FRCN, FRCN-IB,
and PFNet regarding l2 loss training.

training ensures that training for all networks has converged to best identify the
most effectively network for homograph estimation.

Table 1 reports the results of these three networks. We find that PFNet
greatly outperforms the other two networks. The greater the number of training
epochs, the more noticeable performance gap between these three networks.

Observing Figure 2, we can see that the FCRN validation loss oscillates
significantly during the first 100 epochs, suggesting that the network does not
generalise as well to unseen data as the proposed approach. With respect to
training and validation metric, PFNet consistently outperforms the other two
networks.

3 Additional qualitative results

We provide additional qualitative results with a focus on examining the applica-
bility of the PFNet to real world scenes. Considering there are no publicly avail-
able real world homography datasets, we use photos captured from an IPhone
6S as the experimental materials. To generate IA, we capture a random scene
on a university campus. Regarding the generation of IB, we capture the same
scene but randomly perturb the pose of the camera to artificially generate a
perspective transform. All images are then resized to 320 × 240

Figure 3 shows the qualitative results of the in-the-wild homography esti-
mation. One can clearly see that the warped image generated by the predicted
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Fig. 2. The MACE and the loss value in the training and validation phases for FCRN,
FCRN-IB, and PFNet regarding l2 loss.

homography (see the last column of Figure 3) is almost the same as the IB (the
second column of Figure 3). The high level of performance provides further evi-
dence that the PFNet, which is trained on a large-scale image dataset, has good
applicability to real world scenes. More examples can be found in Figures 4 and
5.
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Fig. 3. Demonstration of the applicability of the PFNet on real-world scenes. From
left to right: IA, IB (captured from the same scene using a randomly perturbed camera
pose), the image generated by warping IA using the predicted homography. Every
square has the same place in the image. The squares in the first two columns of the
figure are used to generated the input tensor for PFNet. The image content in the
green square in the last column is used to qualitatively compare with that shown in
the second column. We clearly see that the image content contained in the squares of
the second and third column are almost the same. These results demonstrate that our
method has a good applicability to real-world scenes.
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Fig. 4. Extra examples of predictions by PFNet for real-world scenes. Column and
red/green bounding box descriptions are as per Figure 3.
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Fig. 5. Extra examples of predictions by PFNet for real-world scenes. Column and
red/green bounding box descriptions are as per Figure 3.
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