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Abstract - Condition based maintenance (CBM) aims to reduce maintenance cost and improve 

equipment reliability by effectively utilizing condition monitoring and prediction information. It 

is observed that the prediction accuracy often improves with the increase of the age of the 

component. In this research, we develop a method to quantify the remaining life prediction 

uncertainty considering the prediction accuracy improvement, and an effective CBM 

optimization approach to optimize the maintenance schedule. Any types of prognostics methods 

can be used, including data-driven methods, model-based methods and integrated methods, as 

long as the prediction method can produce the predicted failure time distribution at any given 

inspection points. Furthermore, we develop a numerical method to accurately and efficiently 

evaluate the cost of the CBM policy. The proposed approach is demonstrated using vibration 

monitoring data collected from pump bearings in the field as well as simulated degradation data. 

The proposed policy is compared with two benchmark maintenance policies and is found to be 

more effective. 
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1. Introduction 

Condition based maintenance (CBM) is a maintenance strategy which decides maintenance 

actions using information collected through condition monitoring. CBM optimization attempts to 

minimize maintenance cost by taking maintenance actions only when there is evidence that the 

failure is approaching. Effective implementation of CBM optimal policy greatly depends on the 

accurate prediction of the component or equipment health condition. Currently many health 

condition prediction methods can be used to predict the health condition of the component or 

equipment at certain inspection points. These methods can be roughly classified into model-

based methods and data-driven methods. Model-based methods predict the health condition of 

equipment or component using damage propagation models based on damage mechanics 

(Vachtsevanos et al, 2006; Inman et al, 2005). Usually the propagation process of equipment or 

component is very complicated and it is difficult to accurately model the damage propagation 

process. Many aspects have to be considered carefully when building a physics-based model, for 

example, dynamics, reciprocity, etc. But it can greatly improve the prediction accuracy of health 

condition if an authentic physics-based model can be built successfully. Currently the reported 

model-based methods for prediction of health condition mainly focus on building physical 

models for gears and bearings. In (Kacprzynski et al, 2002), an approach for health condition 

prediction of gear system was proposed. This method was developed based on gear tooth crack 

initiation and propagation physical models. Another model-based prediction method for gears 

with a fatigue tooth crack was proposed by Li and Lee (2005) using a gear meshing stiffness 

identification model, a gear dynamic model and a fracture mechanics model. In (Marble and 

Morton, 2006), the method developed by Marble and Morton can predict the health condition of 

propulsion system bearings based on the bearing spall propagation physical model and finite 

element model. Different with model-based methods, data-driven methods predict the health 

condition for equipment or component based on the collected condition monitoring data. The 

condition monitoring data may be vibration analysis data, oil analysis data, acoustic emissions 

data, fuel consumption data, environmental conditions data, and so on. Many data-driven 

prediction methods are available and typical methods may be proportional hazards model (PHM), 

artificial neural network (ANN), proportional covariate model (PCM), etc. In (Banjevic et al, 

2001), a proportional hazards model approach for CBM was developed. In this method, health 
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condition of equipment or component is predicted using transition probability matrix. ANN has 

been demonstrated to be very promising in achieving accurate prediction results in equipment or 

component remaining useful life prediction. A ball bearing health condition prediction method 

was developed by Gebraeel et al. based on feedforward neural networks (Gebraeel and Lawley, 

2004). This ANN model outputs a condition monitoring measurement, for example, overall 

vibration magnitude. Wu et al. (2007) proposed another RUL prediction method based on ANN. 

The output of this ANN model was the life percentage at certain inspection point of time. In (Sun 

et al, 2006), a PCM for CBM was developed by Sun et al. This method can reduce the number of 

failure test histories, and works well when historical failure data are sparse or zero.  

To optimize CBM maintenance, various methods have been proposed to minimize the overall 

expected maintenance costs, such as PHM based methods (Elsayed and Zhang, 2007; Lugtigheid 

et al, 2008), multi-component system CBM methods (Castanier et al, 2005; Tian and Liao, 2011) 

and ANN based methods (Wu et al, 2012). For CBM optimization, we need to quantify the 

prediction uncertainty if health condition prediction is explicitly utilized. In (Wu et al, 2012), the 

ANN based replacement policy also uses prediction error to estimate the prediction uncertainty 

(Tian et al, 2010). It assumes that the standard deviation of prediction error is always the same 

during the whole history. That is, the prediction accuracy does not improve during the history of 

a component. This is also the situation considered in other reviewed previous work (Banjevic et 

al, 2001; Castanier et al, 2005; Lugtigheid et al, 2008; Tian and Liao, 2011). However, as 

discussed in (Gebraeel, 2006), the prediction accuracy often improves with the increase of the 

age of the component as it approaches the failure time. Prediction results based on our 

experimental data also show that prediction accuracy improves with time. In this paper, we 

propose a CBM optimization approach, in which the prediction uncertainty of health condition is 

estimated based on prediction errors. We assume that the prediction accuracy improves with time. 

By modeling the relationship between the mean value of prediction error and the life percentage, 

and the relationship between the standard deviation of prediction error and the life percentage, 

we can quantify the remaining life prediction uncertainty considering the prediction accuracy 

improvements. The cost evaluation of CBM policy is critical for CBM optimization. In this work, 

an accurate and efficient numerical method is also developed to evaluate the maintenance cost of 

the CBM policy. 
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The remainder of the paper is organized as follows. The proposed CBM approach considering 

improving prediction accuracy is discussed in Section 2. In Section 3, the effectiveness of the 

proposed CBM approach is demonstrated using one real-world condition monitoring data set 

collected from pump bearings and one simulated degradation data set. Section 4 gives the 

conclusion of this research. 

 

2. The Proposed CBM Approach  

The proposed CBM approach utilizes the health condition prediction information to optimize the 

maintenance schedules. Any type of prognostics methods can be used, including data-driven 

methods, model-based methods and integrated methods, as long as the prediction method can 

produce the predicted failure time distribution at any given inspection point. The procedure of 

the proposed CBM method is shown in Figure 1.  

 

Figure 1 Procedure of the proposed CBM approach 

 

2.1 Prediction Accuracy and Uncertainty Modeling  

Suppose at a certain inspection point where the age of the component is ݐ, the predicted failure 

time is ௡ܶ,௧, and the actual failure time of the component is ௠ܶ. Here "n" is used to indicate that it 

is the "predicted" failure time value. The prediction error is defined in this paper as ݁௡,௧ ൌ൫ ௡ܶ,௧ െ ௠ܶ൯ ௠ܶ⁄ . We also define the life percentage as ݌௧ ൌ ݐ ௠ܶ⁄ . The prediction error indicates 

the prediction accuracy in some way. According to our assumption regarding the prediction 

accuracy, the standard deviation of ݁௡,௧ decreases with the increase of life percentage ݌௧, which 

represents how close it is to the failure time of the component. To model prediction accuracy, the 

prediction error values at the inspection points in the test histories are used. The general idea 

proposed in this paper is to model the relationship between the mean value of the prediction error ݁௡,௧  and the life percentage ݌௧ , and the relationship between the standard deviation of the 

prediction error ݁௡,௧ and life percentage ݌௧. We don’t use the absolute value of ݁௡,௧ because the 

trend in ݁௡,௧ can be more clearly modeled by using the original value itself.  
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To model the relationship between the mean value of the prediction error ݁௡,௧  and the life 

percentage ݌௧ , we can first plot the prediction error data points, and select an appropriate 

function type to fit the points. Generally a polynomial function will be sufficient. As an example, 

in the case study to be presented in this paper, it is observed that a linear function is suitable. 

After fitting the data points, the mean value of the prediction error can be calculated as:  ߤ௘೙,೟ ൌ ܽఓ · ௧݌ ൅ ఓܾ,                                                         (1) 

This formula is used in the health condition prediction process to adjust the predicted failure time. 

That is, suppose at inspection point ݐ, the predicted failure time is ௡ܶ,௧, and the adjusted predicted 

failure time, due to the existence of the prediction error, is denoted by ௔ܶ. Based on the definition 

of the prediction error and Equation (1), we have:  

  ೙்,೟ି்ೌ்ೌ ൌ ܽఓ · ቀ ௧்ೌ ቁ ൅ ܾఓ,                                                  (2) 

and thus 

  ௔ܶ ൌ ೙்,೟ି௧·௔ഋଵା௕ഋ .                                                           (3) 

To model the relationship between the standard deviation of the prediction error ݁௡,௧ and the life 

percentage ݌௧, we need to first divide the prediction error data points into different ranges in 

order to estimate the standard deviation value for each range. For example, we may divide it into 

10 ranges: 0-0.1, 0.1-0.2, 02.-0.3, …, 0.9-1.0. Using the standard deviation values estimated in 

these ranges, similarly, we can select an appropriate function type based on observation, fit these 

values and build the relationship between the prediction error standard deviation and the life 

percentage. Again in our case study, it is observed that a linear function is a suitable choice, and 

the function can be represented as:  ߪ௡,௧௣ ൌ ܽఙ · ௧݌ ൅ ܾఙ,                                                    (4) ߪ௡,௧ ൌ ௡,௧௣ߪ · ௔ܶ,                                                    (5) 

where ߪ௡,௧௣  is the standard deviation of the life prediction percentage error, and ܽఙ and ܾఙ  are 

function coefficients. Suppose the prediction error corresponding to inspection point t follows 

normal distribution with standard deviationߪ௡,௧௣ , the predicted failure time corresponding to 



6 

 

inspection point t also follows normal distribution with the same standard deviation. So ߪ௡,௧ is 

the standard deviation of the predicted failure time corresponding to inspection point t. Since the 

prediction accuracy is measured by the prediction error, the standard deviation of prediction error 

is the key measure of the prediction accuracy. The decrease in ߪ௡,௧  means the increase of 

prediction accuracy. Since it is assumed that the prediction accuracy improves over time, ߪ௡,௧ 

should decrease with time. Thus, at inspection point t, the predicted failure time distribution can 

be represented by 

( )2
,,  ,~ tnatn TNT σ .                                                      (6)  

For other applications, higher order polynomial functions may be needed to model the 

relationship between the mean value and the standard deviation of the prediction error ݁௡,௧ and 

the life percentage ݌௧. A similar procedure can be used to build those relationships.  

As can be noted, it is assumed that the predicted failure time of a specific unit based on the 

health condition prediction at a certain inspection time follows Normal distribution. For a 

specific unit being monitored, it has specific material and geometry parameters. Although these 

specific parameters are unknown, they can be considered using the condition monitoring and 

prediction information from the specific unit. The uncertainty in the predicted failure time can be 

summarized in the prediction error from the data-driven perspective. Thus, we assume that the 

predicted failure time distribution for a specific unit, based on condition monitoring data, follows 

Normal distribution. Such assumptions are also used in many studies in the literature, such as 

Ref. (Kacprzynski et al, 2002), (Marble and Morton, 2006) and (Gebraeel, 2006). 

2.2 The CBM Decision Process  

The CBM policy used in this paper is similar to that proposed in (Wu et al, 2012). The key 

differences are that the prediction accuracy improvement is considered, and the predicted failure 

time distribution quantification and the conditional failure probability calculation are different.   

In this approach, we assume that the component is inspected at constant interval T , for example, 

every 20 days. At any inspection point of time, we can obtain the predicted failure time 

distribution using Equation (6); and the conditional failure probability during the next inspection 

interval, which is denoted by conPr , can be calculated using Equation (14) given in Section 2.3.2. 
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By performing CBM optimization, the optimal threshold failure probability Pr* which 

corresponds to the lowest cost can be determined. Assuming that no lead time is necessary for 

carrying out a preventive replacement, at each inspection point of time, the proposed 

maintenance policy is summarized as follows: 

(1) Perform preventive replacement if the conditional failure probability during next inspection 

interval conPr  exceeds the optimal failure probability threshold Pr*. Otherwise, the 

component can be continued to be used.  

(2) Perform failure replacement at any time when a failure occurs. 

2.3 Cost Evaluation and Optimization of the CBM Policy 

2.3.1. The Overall Procedure 

The objective of CBM optimization is to determine the optimal threshold failure probability Pr* 

with respect to the lowest cost. The optimization model can be briefly formulated as follows:  

( )

0       Pr

s.t.

Pr  min

>

EC

                                                               (7) 

where ܥா is the expected cost corresponding to the CBM policy with threshold failure probability 

Pr. Pr is the only design variable in this optimization problem. The output of the optimization 

process is the optimal threshold failure probability Pr*.  

To perform CBM optimization, we need to evaluate the cost ܥாሺPrሻ corresponding to a certain 

threshold failure probability Pr. In the proposed cost evaluation method, we first calculate the 

expected cost with respect to a certain actual failure time ௠ܶ , denoted by ்ܥሺ ௠ܶሻ, and the 

expected replacement time with respect to a certain actual failure time ௠ܶ, denoted by ்ܶሺ ௠ܶሻ. 

The actual failure time of the component population varies and follows a certain distribution, 

with probability density function f(t). Considering all the possible component actual failure times, 

the expected cost with respect to failure probability threshold value Pr, denoted by TAC , takes the 

form 
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
∞

×=
0

)()( mmTmTA dttCtfC ,                                               (8) 

and the expected total replacement time with respect to failure probability threshold value Pr, 

denoted by TAT , takes the form 


∞

×=
0

)()( mmTmTA dttTtfT .                                             (9) 

The actual failure time of the component population typically follows Weibull distribution. For 

the population of a certain type of component, different specific units have different failure times 

due to the variations in their material properties, geometry parameters and operating conditions. 

Weibull distribution has been demonstrated to be effective and flexible in modeling the failure 

time distribution for the component population. In this case, the two equations above can be 

written as:  
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and  
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And, the total expected cost per unit of time, ܥாሺPrሻ, with respect to failure probability threshold 

value Pr can be calculated as:  

TA

TA
E T

C
C =(Pr)                                                             (12) 

2.3.2. Evaluation of ࢀ࡯ሺ࢓ࢀሻ 

Now we will focus on the evaluation of ்ܥሺ ௠ܶሻ, the expected cost with respect to a certain actual 

failure time ௠ܶ . The general procedure is that we go from the first inspection point, 

corresponding to age t, to the actual failure time ௠ܶ , at which time a failure occurs. The 

probability that a component has not been replaced yet is denoted by ௥ܲ௘௠௧ , which is equal to 1 at 
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time 0. At a certain inspection point t, ௥ܲ௘௠ may decrease since there is chance of preventive 

replacement because the preventive replacement condition, described in Section 2.2, is satisfied. 

At time ௠ܶ, the probability of failure replacement is thus ௥ܲ௘௠೘் .  

At a certain inspection point t, when we perform failure time prediction, the predicted failure 

time follows the normal distribution with mean ௠ܶ and standard deviation ߪ௠,௧: ߪ௠,௧ ൌ ሺܽఙ · /ݐ ௠ܶ ൅ ܾఙሻ · ௠ܶ,                                                    (13) 

according to the method described in Section 2.1 if the standard deviation can be described using 

a linear function. Otherwise, a higher order polynomial function can be used. Suppose the 

adjusted predicted failure time is ௔ܶ, the associated standard deviation ߪ௡,௧ can be obtained using 

Equation (5). Thus, the predicted failure time distribution can be represented as ( )2
,,  ,~ tnatn TNT σ . 

The conditional failure probability can be calculated for interval [t, t+T] as follows:   

dxe

dxe

t

Tx

tn

Tt

t

Tx

tn
con

tn

a

tn

a





∞









 −
−

+









 −
−

=
2

,

2

,

2

1

,

2

1

,

2

1

2

1

Pr

σ

σ

πσ

πσ
                                                          (14) 

If Pr௖௢௡ ൐ Pr, the preventive replacement should be performed. Thus, at inspection point t, the 

probability that a preventive replacement will be performed is:  

( ) ≥⋅=





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 −−
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m dTTIetTP tm

ma

Pr)(Pr
2

1
) ,(

2

,2

1

,

σ

πσ
                            (15) 

where ( ) 1Pr)(Pr =≥acon TI  if Pr)(Pr ≥acon T . ௥ܲ௘௠೘்   should be updated by reducing ܲሺ ௠ܶ, ∆  :ሻݐ ௥ܲ௘௠೘் ൌ ௥ܲ௘௠೘் ሾ1 െ ܲሺ ௠ܶ,  ሻሿ                                                      (16)ݐ

Such actions will lead to cost and time changes. The total time and total cost increments are:  ∆ ்்ܶሺ ௠ܶሻ ൌ ௥ܲ௘௠೘் · ܲሺ ௠ܶ, ሻݐ · ሺ்்ܥ∆ (17)                                                     ݐ ௠ܶሻ ൌ ௥ܲ௘௠೘் · ܲሺ ௠ܶ, ሻݐ ·  ௣                                                     (18)ܥ
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Finally, at the actual failure time ௠ܶ, the probability ௥ܲ௘௠೘்   corresponds to the failure probability, 

and the total time and total cost increments are:  ∆ ்்ܶሺ ௠ܶሻ ൌ ௥ܲ௘௠೘் · ௠ܶ                                                     (19) ∆்்ܥሺ ௠ܶሻ ൌ ௥ܲ௘௠೘் ·  ௙                                                     (20)ܥ

At the end of this procedure, ்ܥሺ ௠ܶሻ, the expected cost with respect to a certain actual failure 

time ௠ܶ, can be calculated as:  ்ܥሺ ௠ܶሻ ൌ ሺ்்ܥ ௠ܶሻ ்்ܶሺ ௠ܶሻ⁄ .                                             (21) 

Now, combining what have been described in this section and Section 2.3.1, we can evaluate the 

total expected cost per unit of time, ܥாሺPrሻ.  

2.3.3. A Procedure to Improve the Cost Evaluation Efficiency 

A procedure to improve the efficiency in evaluating ்ܥሺ ௠ܶሻ is presented in this section. The 

procedure described in Equation (15) is very time-consuming, since the evaluation of )(Pr acon T  

demands heavy computation, and it needs to be performed a large number of times for the 

integral calculation. From sample calculations, we observe that at any inspection point, 

( ) 1Pr)(Pr =≥acon TI  when ௔ܶ  is smaller than or equal to a certain value ௔ܶ଴ , and 

( ) 0Pr)(Pr =≥acon TI  when ௔ܶ ൐ ௔ܶ଴. This is reasonable since when the predicted failure time 

becomes larger, and thus moves away to the right from the current inspection age, the 

conditional failure probability becomes smaller, and it is less likely that a preventive replacement 

will be performed. In another word, the value Pr)(Pr −acon T  is a decreasing function and is 

equal to 0 at point ௔ܶ଴. The objective of Equation (15) is to find the probability that a preventive 

replacement will be performed at inspection point t, denoted by ) ,( tTP m . Thus, we can first find 

point ௔ܶ଴ by solving equation 0Pr)(Pr 0 =−acon T , and then evaluate the preventive replacement 

probability as follows:  
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To solve equation 0Pr)(Pr 0 =−acon T , a bisection method is utilized. We first define the function 

Pr)(Pr)( −= xxf con , which is a decreasing function, and try to find the value to make the 

function equal to 0. The procedure is described as follows. (1) Let tmmTa ,6σ−= , tmmTb ,6σ+= , 

and calculate ( )af , ( )bf . (2) At a certain iteration i, let 2/)( baxi += , and calculate ( )ixf . If 

( ) 0≥ixf , ixa = . Otherwise, ixb = . (3) If 1<− ab , stop the algorithm, and ixx =* . Otherwise, 

go to step (1).  

The ்ܥሺ ௠ܶሻ  evaluation results obtained using this method agree with those obtained using 

Equation (15). But by using this method, the evaluation process is thousands of times faster, 

which is very important for the overall cost evaluation and the CBM optimization.  

 

3. Examples 

In this section, we will demonstrate the proposed CBM approach using one real-world condition 

monitoring data set collected from bearings in a group of Gould pumps (Stevens, 2006), and one 

simulated degradation data set. 

3.1 Case Study 

3.1.1. Case Study Introduction 

In this section, the proposed CBM optimization approach is demonstrated using a real-world case.  

This condition monitoring data with 10 failure histories and 14 suspension histories was 

collected from bearings on a group of Gould pumps at a Canadian kraft pulp mill company 

(Stevens, 2006).  For each pump, seven types of measurements were recorded at eight sensor 

locations: five different vibration frequency bands (8× 5), and the overall vibration reading (8× 1) 

plus the bearing’s acceleration data (8× 1). So the original inspection data includes 56 (=8× 5+8

× 1+8 × 1) vibration measurements. Significance analysis was performed for the 56 vibration 

measurements by the software EXAKT (Stevens, 2006). Two measurements were identified to 

be significantly correlated to the health of bearings: P1H_Par5 (band 5 vibration frequency in 

Pump location P1H), and P1V_Par5 (band 5 vibration frequency in Pump location P1V).  
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3.1.2. Prediction Accuracy and Uncertainty Modeling 

As discussed previously, any type of prognostics methods which can produce the predicted 

failure time distribution at any given inspection point can be used to obtain prediction results for 

the proposed approach. Because of its great promise in achieving accurate remaining useful life, 

ANN is selected as prediction method in this case study. 

In this case, 5 failure histories and 10 suspension histories are used to train the ANN model. And 

then another 5 test histories are used to test the prediction performance of the trained ANN 

model and the test process is repeated for three times. Altogether there are 468 inspection points 

at which the prediction performance is tested. Based on the probability plot result, prediction 

error ݁௡,௧  follows normal distribution. Next we will model the relationship between the mean 

value of prediction error ݁௡,௧  and the life percentage ݌௧ , and the relationship between the 

standard deviation of prediction error ݁௡,௧ and life percentage ݌௧.  

To model the relationship between the mean value of prediction error ݁௡,௧ and the life percentage ݌௧ , firstly we plot the obtained 468 points, and it is observed that a linear function is good 

enough to describe the relationship between the mean value of prediction error ݁௡,௧ and the life 

percentage ݌௧, After fitting the data points using function (1), the relationship between mean 

value of prediction error and the life percentage can be modeled as:  ߤ௘೙,೟ ൌ ௧݌0.7371 െ 0.6765                                                   (23) 

As discuss beforehand, to model the relationship between the standard deviation of prediction 

error  ݁௡,௧ and the life percentage ݌௧, we need to first divide the prediction error data points into 

different ranges in order to estimate the standard deviation value for each range. In this case, we 

can divide the 468 points into 10 ranges: 0-0.1, 0.1-0.2, 02.-0.3,…, 0.9-1.0. Again by plotting 

these standard deviation values, it is observed that a linear function is sufficient to model the 

relationship between the standard deviation of the prediction error and the life percentage as 

follows:   ߪ ,݊݌ ݐ ൌ െ0.1076݌௧ ൅ 0.1440                                            (24) 
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3.1.3. Cost Evaluation and Optimization of the CBM Policy 

In this section, we will evaluate the total expected maintenance cost for each possible failure 

probability threshold and find the optimal threshold Pr* using the proposed algorithms in Section 

2.3.1. Based on Equations (10) and (11), we need to model the lifetime distribution of the 

components as a population based on the available failure data and suspension data. Generally 

the lifetime distribution of bearings follows Weibull distribution and in this case the parameters 

of Weibull distribution are estimated as: 8.1,3.1386 == βα . Based on expertise and experience 

the total cost of a preventive replacement pC is estimated to be $3000 and the total cost of a 

failure replacement fC is $16000. Using the algorithm presented in Section 2.3.1, the optimal 

threshold failure probability Pr* is found to be 0.1096, and the corresponding total expected 

replacement cost is 2.65 $/day, as shown in Figure 2.   

 

 Figure 2 Expected replacement cost corresponding to different threshold failure probability 

values 

 

3.1.4. Maintenance Decision Making 

After obtaining the optimal threshold failure probability Pr*, we can determine the optimal CBM 

policy. To perform the optimal CBM policy, firstly we inspect a new component at constant 

interval. At each inspection point, the conditional failure probability conPr  during next interval is 

calculated and compared with the optimal threshold failure probability Pr*. Perform preventive 

replacement when conPr  exceeds Pr* and continue to use the component if it doesn’t exceed the 

threshold. Whenever a failure occurs, we have to perform a failure replacement. In this case, 5 

test histories are used to demonstrate the proposed CBM optimization approach. These data were 

collected at unequally spaced inspection points but the ANN model in the policy can handle this 

situation.  

Next an example is given to illustrate the implementation of the optimal CBM policy. The 

selected inspection point is the 567th day in a failure history. In this case the inspection interval is 
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assumed to be 20 days. Using the age data and condition monitoring measurements at the 

previous inspection point 545th day and the current inspection point 567th day as input into the 

trained ANN model, the lifetime of this bearing is predicted as 616.10 days. Considering the 

prediction error, the predicted failure time is adjusted as 612.57 days using Equation (2) and (3). 

And using Equation (4) and (5), the standard deviation of the lifetime prediction error is 

calculated as 26.03 days. Thus, at inspection point 567th day, the predicted failure time follows 

the following normal distribution: 

( )203.26,57.612~ NTp                                                       
(25) 

So the failure probability during the next inspection interval can be obtained as 0.1329, as shown 

in Figure 3. Since this failure probability exceeds the optimal failure probability threshold 0.1096, 

we need to perform a preventive replacement to avoid a very highly possible failure during next 

inspection interval.  

 

Figure 3 Failure probability value at age 567 days 

 

Using the same procedure we can calculate the failure probability at each inspection point for all 

the test histories. And the replacement decisions can be made for each history, as shown in Table 

1. In this table, the replacement time according to the proposed CBM approach and the actual 

failure time are given for each history. From this table we can see all the 5 histories are 

preventive replacements.  

 

Table 1: Test results using the proposed CBM approach 

 

3.1.5. Comparison between Proposed Approach and Benchmark Replacement Policies 

For individual component, age-based replacement policy usually performs better than constant 

interval replacement policy. So in this paper, we will compare the performance of the proposed 

approach with the age-based replacement policy, and the ANN based replacement policy which 
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is developed by Wu et al (2012) where prediction accuracy improvement is not considered. The 

comparison is performed both in optimization results and in practical implementation results. 

The lifetime distribution parameters and the cost information have already been obtained in the 

previous section, which are 8.1,3.1386 == βα , 3000$=pC , 16000$=fC . By performing 

optimization, the optimal replacement interval is found to be 715.40 days for the age-based 

replacement policy, and the corresponding expected cost is 9.94 $/day. For the ANN based 

replacement policy, the expected replacement cost is 3.88 $/day. In Section 3.1.3, we can find 

the optimal expected total maintenance cost for the proposed CBM approach is 2.65$/day. Thus 

by implement the proposed CBM approach we can achieve a cost saving of 74.67% comparing 

to the age-based replacement policy, and 31.80% comparing to the ANN based replacement 

policy reported in (Wu et al, 2012). The comparison results can be found in Table 2.   

 

Table 2: Comparison between the proposed approach and two benchmark policies  

 

Next we will apply the three maintenance policies to 5 testing histories respectively, and 

investigate how they perform when applying to real inspection histories. Using the same 

procedure illustrated in Section 3.1.4., the implementation results for the 5 histories are shown in 

Table 3. In this table, for each history and for all the three maintenance policies, the replacement 

times, replacement types and replacement costs are listed. The average replacement cost using 

the proposed CBM approach considering prediction accuracy improvement is again the lowest, 

which is 2.89 $/day. It is around 31.13% lower than age-based replacement policy and 26.30% 

lower than the ANN based replacement policy in (Wu et al, 2012). The results further 

demonstrate the advantage of the proposed CBM approach over the two benchmark maintenance 

policies. 

 

Table 3: Comparison between the proposed approach and two benchmark policies applying to 

the 5 failure histories 
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3.2 Simulated Degradation Data Set 

In this example, the degradation signals are simulated using the degradation model presented in 

(Wu et al, 2012) and (Gebraeel et al, 2005): 

( ) )
2

)(exp(
2t

tttS
σεβθφ −++=                                                   (26) 

where ( )tS denotes a continuous degradation signal, φ  is a constant and θ is a lognormal random 

variable, and θln has mean 0μ  and variance 2
0σ . β  is a normal random variable with mean 1μ

and variance 2
1σ . )()( tWt σε = is a centered Brownian motion with mean 0 and variance t2σ . θ , 

β and )(tε  are assumed to be mutually independent. The logarithm of the degradation signal, 

( )tL , is:  

( ) )(
2

ln
2

tttL εσβθ +







−+=                                                 (27) 

Let  
2

'
2σββ −=  be a normal random variable with mean '

1μ  and variance 2
1'σ . And the 

parameters in the equations for generating the simulated degradation signals are: ,50 =μ  ,10 =σ  

,5'
1 =μ  ,5.1'

1 =σ  2=σ . And the failure threshold D  is set as 400. That is, when the degradation 

signal goes beyond the failure threshold, the unit is considered to be failed.  

Same as the case study, ANN is selected as prediction method in this example. Totally 50 

degradation paths are generated, as shown in Figure 4. 20 failure histories and 10 failure histories 

are selected randomly as training histories and testing histories respectively. Altogether there are 

154 lifetime prediction error data points for the 10 testing histories. Using probability plot the 

prediction error  ݁௡,௧ is found to follow normal distribution. Same as the case study, next we can 

model the relationship between the mean value of prediction error  ݁௡,௧ and the life percentage ݌௧, 

and the relationship between the standard deviation of prediction error ݁௡,௧  and the life 

percentage ݌௧.  
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Figure 4: 50 simulated degradation paths 

 

After plotting the obtained data points, it is found that 4th order polynomial function is suitable to 

model the relationship between the mean value of prediction error tne ,  and the life percentage ݌௧ 

as follows: 

54
2

3
3

2
4

1,
apapapapa tttte tn

++++=μ                                     (28) 

By fitting the 154 data points, the relationship between mean value of prediction error and the 

life percentage can be modeled as:  

1042.09814.10164.85624.114775.5 234

,
+−+−= tttte pppp

tn
μ                  (29) 

For the relationship between the standard deviation of prediction error ݁௡,௧  and the life 

percentage ݌௧, the 154 points in this case can be divided into 9 ranges: 0.1-0.2, 0.2-0.3, … , 0.9-

1.0 to estimate the standard deviation. By plotting these standard deviation values, it is observed 

that a linear function is good enough to model the relationship between the standard deviation of 

the prediction error and the life percentage as follows:  

0748.00382.0, +−= t
p

tn pσ                                                    (30) 

The total cost of a preventive replacement pC is assumed to be $3000 and the total cost of a 

failure replacement fC is $16000. And the lifetime of the components is determined to follow 

Weibull distribution with 7895.4,9373.106 == βα . The inspection interval is set to be 5 days, 

that is 5=T . After performing optimization, the optimal threshold probability Pr* is found to be 

0.1995 and the corresponding expected total replacement cost per day is 32.97 $/day, as shown 

in Figure 5.  

By applying the two benchmark policies to the degradation signal data respectively, we can 

obtain the comparison results as shown in Table 4. Again we can see the expected total 

replacement cost for the proposed CBM approach is still the lowest, which is 32.97 $/day. It 

saves 48.37% comparing to the age-based replacement policy, and 13.60% comparing to the 
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ANN based replacement policy reported in (Wu et al, 2012) considering constant prediction 

accuracy.   

 

Figure 5: Expected replacement cost corresponding to different failure probability values 

 

Table 4: Comparison between the proposed approach and two benchmark policies 

 

Next we will apply the three maintenance policies to 10 testing histories respectively to 

investigate the practical implementation results. In this example, the inspection interval is set to 

be 5 days. But since the lifetime is relatively short, we reduce the inspection interval from 5 days 

to 1 day when approaching the end of the history. Table 5 is the practical implementation results 

for each maintenance policy.  

 

Table 5: Comparison between the proposed approach and two benchmark policies when applying 

to the 10 failure histories 

 

From the comparison results we can see that the average replacement cost using the proposed 

CBM approach considering prediction accuracy improvement is the lowest, which is $33.41/day. 

It results in 33.18% cost savings comparing to the age-based replacement policy, and 8.46% cost 

savings comparing to the ANN based replacement policy considering constant prediction 

accuracy (Wu et al, 2012). The results further demonstrate the advantage of the proposed CBM 

approach over the two benchmark maintenance policies.  
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4. Concluding Remarks 

In this paper, we propose a CBM optimization approach considering improved prediction 

accuracy.  In this approach, we quantify the remaining life prediction uncertainty by modelling 

the relationship between the mean value of prediction error and the life percentage, and the 

relationship between the standard deviation of prediction error and the life percentage.  An 

effective method is also developed to accurately evaluate the cost of the CBM policy. We 

demonstrate the effectiveness of the proposed approach using vibration monitoring data collected 

from pump bearings in the field and another data set from simulated degradation. For mechanical 

components such as bearings and gears, it is true that the prediction accuracy improves over time. 

However, for other components, the prediction accuracy improvement may not be obvious. Thus, 

we need to study the historical data first to determine if the prediction accuracy does improve 

significantly with age by applying the prediction models, and decide if it is necessary to 

explicitly consider this effect. The proposed approach is compared with two benchmark 

maintenance policies: age-based maintenance policy and an ANN based maintenance policy 

considering constant prediction accuracy, and it has been found to be more effective. 
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Figure 1: Procedure of the proposed CBM approach 
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Figure 2: Expected replacement cost corresponding to different threshold failure probability 
values 
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Figure 3: Failure probability value at age 567 days 
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Figure 4: 50 simulated degradation paths 

 

 

 

 

 

 

 

 

 

 

0 50 100 150
0 

100 

200 

300 

400 

500 

600 Degradation Signal

Time(day)

Amplitude 

D=400



27 

 

Total Expected Cost per Day 

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
32

33

34

35

36

37

38

39

40

41

 

 Figure 5: Expected replacement cost corresponding to different failure probability values 
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Table 1: Test results using the proposed CBM approach 
 

History 
Replacement age 

(days) 
Prcon Actual failure time (days) 

1 945 0.1869 986 

2 1062 0.2463 1402 

3 1049 0.1792 1246 

4 1177 0.1531 1468 

5 958 0.6507 964 
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Table 2: Comparison between the proposed approach and two benchmark policies  

 

Maintenance policy 
Expected total replacement 
cost per unit of time ($/day)

Optimal replacement 
time (days) 

Age-based replacement policy 9.94 715.40 

ANN based replacement policy  
(Wu et al, 2012)  

3.88  

The proposed CBM approach 2.65  
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Table 3: Comparison between the proposed approach and two benchmark policies applying to 
the 5 failure histories 

History 
Actual 
failure 
time 

Age-based  
replacement 

policy 

ANN based  
replacement 

policy  
(Wu et al, 2012)

The proposed 
CBM policy 

TimeType Cost Time Type Cost Time Type Cost

1 986 715 P 3000 944 P 3000 945 P 3000
2 1402 715 P 3000 516 P 3000 1062 P 3000
3 1246 715 P 3000 785 P 3000 1049 P 3000
4 1468 715 P 3000 803 P 3000 1177 P 3000
5 964 715 P 3000 778 P 3000 958 P 3000

Total 3575   15000 3826   15000 5191   15000
Average replacement 

time 715 765.2 1038.2 
Average cost per day $4.20 $3.92 $2.89 
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Table 4: Comparison between the proposed approach and two benchmark policies 

Maintenance policy 
Expected total replacement 
cost per unit of time ($/day)

Optimal replacement 
time (days) 

Age-based replacement policy 63.87 59.68 

ANN based replacement policy  

(Wu et al, 2012) 
38.17  

The proposed CBM approach 32.97  
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Table 5: Comparison between the proposed approach and two benchmark policies when applying 
to the 10 failure histories 

History 
Actual 
failure 
time 

Age-based  
replacement 

policy 

ANN based 
replacement policy

(Wu et al, 2012) 

The proposed  
CBM policy 

TimeType Cost Time Type Cost Time Type Cost 

1 86 60 P 3000 76 P 3000 81 P 3000 
2 111 60 P 3000 101 P 3000 107 P 3000 
3 126 60 P 3000 106 P 3000 117 P 3000 
4 91 60 P 3000 81 P 3000 87 P 3000 
5 101 60 P 3000 81 P 3000 87 P 3000 
6 101 60 P 3000 86 P 3000 92 P 3000 
7 66 60 P 3000 56 P 3000 62 P 3000 
8 86 60 P 3000 67 P 3000 76 P 3000 
9 66 60 P 3000 52 P 3000 57 P 3000 
10 146 60 P 3000 116 P 3000 132 P 3000 

Total 600   30000 822   30000 898  30000
Average replacement 

time 60 82.2 89.8 
Average cost per day $50.00 $36.50 $33.41 

 

 

 

 

 

 

 

 

 


