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Abstract
Objectives: To present an extraction technique for the classification of the
hyperspectral crop using the spatial-spectral feature. Methods: This paper
presents a spatial-spectral feature extraction method employing the Image
fusion technique and intrinsic feature extraction and a model for Improved
Decision Boundary (IDB) using Support Vector Machine (SVM). Findings:
The experiments have been conducted by using the Indian pines dataset
which was extracted using the AVIRIS sensor. The dataset comprises of
16 distinctive classes such as corn, wheat, oats etc, which have used for
evaluation of our model. Before the evaluation of the dataset the model
has been trained using different training datasets in order to increase the
accuracy and reduce misclassification. Moreover, the Spatial-Spectral Feature
(SSF) model aided in distinguishing between crop intrinsic features and
shadow element under dynamic environment condition. Our model attained
99.54%, 99.4%, 99.25% and 9.8 sec for OA accuracy, AA accuracy, Kappa
and Time respectively. Furthermore, the overall accuracy of the model for
the Support Vector Machine-3-dimensional discrete wavelet transform (SVM-
3DDWT), Convolutional Neural Network and Spatial-Spectral Feature Extraction
Technique showed result of 94.28%, 96.12% and 99.4% respectively. Other
existing models showed a low accuracy for the same dataset. Further,
for addressing class imbalance issues this work modelled an improved
decision boundary model for SVM by considering soft-margin rather than
hard margin. The SSF-IDBSVM model achieves much better accuracies with
less misclassification in comparison with recent deep learning-based HSI
classification model. Novelty: Recently, several feature extraction and deep
learning-based crop classification model have been modelled. However,
existing crop classification fails to distinguish crop intrinsic feature concerning
shadow feature; further, consider hard decision boundary; as a result, high
misclassification is induced for smaller class size. Hence, this study provides
an extraction feature which provides the classification of the crop in less time
with higher classification and less misclassification.
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1 Introduction
The crop classification model is one of the principal components of agriculture crop
checking by using hyperspectral imaging acquired through satellites. Harvest planning
through hyperspectral imaging arrangement help in settling on the different dynamic
in farming climate, for example, yield determining, crop region evaluation, etc. (1,2).
Precision crop planning is vital and sways crop recognizable proof applications. In
any case, any obstacles that exist in crop identification utilizing hyperspectral imaging
should bemet (3). To start with, the conceivable highmeasurement size of hyperspectral
imaging information is as yet an open issue. Second, hyperspectral imaging information
takes after high likenesses of surfaces, spectral signatures marks, and shapes among
various yields. Ultimately, the existence of mixed pixels in hyperspectral imaging
altogether sways the correctness of the existing hyperspectral imaging crop arrangement
model.

With the development of hyperspectral imaging systems, the spatial resolutions
have also been improved. Along these lines, examining hyperspectral imaging is
troublesome. Moreover, by consideration of the personality of the hyperspectral
imaging there exists a higher connection between the adjoining spectral band set
and pixels (4–6). At that point, due to the large dimensions of the image in the
hyperspectral image, there are more chances of expansion in space-time, and overhead
computation (7). Subsequently, decreasing the measurement size of the repetitive
components in HSI is fundamentally essential for handling hyperspectral pictures.
Band Selection (8–10) is one of the proficient measurements for reducing the dimension
spectrally by eliminating excess features. The main aim of using the band selection is
to pick the most productive subset of a band which is made out of data inside unique
groups. On contrary, the feature extraction models (11) lessens measurement size as per
intricate feature change. Consequently, feature selection techniques are clearer and can
be utilized for useful reasons.The component determination technique can pick groups
just inside hyperspectral pictures. On the other hand, the element extractor can utilize
the hyperspectral image band set to produce an improved separating highlight set.
The Laplacian discriminant examination of hyperspectral image (11), introduced joint
feature extraction and feature selection strategies for hyperspectral image classification.
Like (11) their work centers around building up the dimensionality decrease strategy by
mining the semantically helpful list of capabilities from the raw HSI.

Various sorts of HSI dimensional decrease strategies that incorporate both
unsupervised and supervised methods have been introduced in late time. This model
centers on supervised philosophies, for example, a linear discriminant investigation (12),
and ICA (13), and PCA (14). From the examination, it is seen that foremost part
investigation procedures extract much better components when contrasted and
different approaches. The PCA highlight extraction procedure can ensure that further
related elements of hyperspectral imagery can be reserved with the negligible size
of valuable head parts. On contrary, ICA-based procedures can ensure that the
changed segments are free just about as much as possible. However, independent
component analysis-based procedures induce high computational overhead because of
their unpredictable calculation. Further, the independent component analysis systems
don’t consider spatial setting data for removing highlights as they treat and interact with
every pixel freely. The larger part of the existing hyperspectral imagery measurement
decrease procedure can’t straightforwardly use spatial data of hyperspectral pictures and
the highlight extraction technique utilizes just phantom data of each pixel which
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is expressed to be productive for upgrading the characterization correctness’s (15,16). The earth’s climate is made out of various
kinds of crops like soil, wheat, corn, and so forth hyperspectral image characterization strategy targets recognizing this
significant portrayal of harvests. Consequently, it is important to mine significant spatial capabilities. Thusly, for removing
significant spatial data from the HSI made out of blended pixel, it is imperative to catch intrinsic properties of actual attributes
of various crops. Along these lines by separating spatial data from the neighbor crops can help in expanding the precision
of separating various harvests present in earth climate. The intrinsic HSI is composed of shading components and object
intrinsic features. Extricating these parts assumes a vital part in crop identification jobs and simultaneously it is trying to
remove these segments from a single HSI. This is because intrinsic capabilities depend on crops highlights of the earth and
differ regarding environmental and climatic conditions. Accordingly, for separatingmore significant spatial elements of various
yields, this work presents an effective intrinsic feature extraction technique namely Spatial-Spectral Feature (SSF) that keeps
a spatially and spectrally significant portrayal of various harvests. Then, for decreasing the hyperspectral band measurement
size that is productive against mixed pixel and noisy conditions, the image fusion strategy presented in (17) is used. Later these
features extracted are trained using SVM. However, achieve very poor classification accuracy especially for the crop with less
feature; To address class imbalance issues number of Deep learning-based classification models has been emphasized in recent
times (18–22). However, most of the existing deep learning-based HSI object classification model (18,23–28) achieves very good
classification accuracies but induces more computation overhead; Further, this model requires a high number of features for
trainingmodel and classificationmodel are designed considering hard decision boundaries; To overcome these issues, this work
employs improved decision boundary (IDB) by considering soft-margin for SVM (29,30). The SSF trained using IDBSVM aided
in overcoming class imbalance issues, reducing misclassification, and improving classification accuracies.

The rest of the paper is organized as follows. In section II spatial-spectral feature and improved decision boundary support
vector machine-based hyperspectral crop classification is presented. Section III discusses the outcome achieved using SSF-
IDBSVM and other existing crop classification models. The last section’s significance of work is discussed and future research
direction put forth.

2 Hyperspectral Crop Classification using Spatial-spectral feature and Improved
Decision Boundary Support Vector Machine
This section presents hyperspectral crop classification using improved feature extraction of spatial-spectral features and also
presents enhanced decision boundaries that can work well under a mixed cropping environment.The working of SSF-IDBSVM
is shown in Figure 1.

Fig 1.The architecture of Spatial-Spectral feature using IDBSVM based Hyperspectral Crop Classification
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2.1 Spatial-spectral feature extraction for crop classification:

This section presents feature selection methodologies for agriculture crop classification. This model is designed to bring a
tradeoff between reducing feature size and retaining useful information; that is the work reduces the L bands toR bands through
segmentation process applying fusion methodologies. This work considers fusion methodologies (8) rather than PCA because
of high spectral information retain efficiency as described as follows

Lm =
∑mo

n=(m−1)0+1 kn

o
, m =

(
L
R

⌋
, (1)

where m defines the dimension of real spectral band indices information which can be obtained using the following equation

m =

(
L
R

⌋
, (2)

and n define the nth dimension of real spectral band indices information, Kn defines repeated feature spectral data in every
band, and o defines the sub-group band size of each band. The above equation is used for removing repeated features within
each subgroup.

Generally, multiple crops have been grown in an agricultural environment. The spectral information is captured using a
satellite. Existing methodologies randomly extract these features and train the machine learning model and then perform
crop classification. However, each crop has its absorption and reflectance properties concerning varying climatic conditions.
Therefore, it is important to extract crop intrinsic properties to obtain better features aiding superior classification performance.
Let the intensity value of hyperspectral data be K ∈ T t∗e whereU ∈ T t∗e and T ∈ T t∗e describes shading features and intrinsic
features, respectively; Thus, hyperspectral data of respective pixel r intrinsic feature can be represented as follow

Kr = TrUr, (3)

where r describe its pixel’s locations. The shading component parameterUr is computed as follows

Ur =
1
Kr

(4)

and the reflectance properties Tr is computed using the following equation

Tr = ∑s∈P(r) crsTs, (5)

where r and s describes pixel matrix positions, P(r) describes adjacent pixel r and crs depicts features of pairwise similarity
matrix betweenKr andKs.Thus, usingEq. (1) to (5)we establish reflectance value for each crop bymitigating shading concerning
semantic features. Thus, we will have the spatial-spectrally useful feature by eliminating useless spatial information of shading
elements across different bands.Then, the features of each crop are trained using an improved decision boundary support vector
machine for multiclass crop classification.

2.2 Agriculture crop classification using improved decision boundary support vector machine:

To classify the optimal hyperspectral feature set, this model utilizes the pixel-support-vector machine classification technique.
SVM is usually used to solve regression, classification, and detection problems. The SVM builds a hyperplane or a set of
hyperplanes in the high dimensional space. Hence, from (14) we can know the structure of SVM. Therefore, the hyperplane
linear model of SVM can be defined as

y = wT ϕ (X)+b (6)

where ϕ (X) is transformed feature space. The margin is defined as the smallest distance from the decision hyperplane to the
closest point from the dataset. In the SVM problem, we are trying to construct the decision boundary hyperplane to maximize
the margin with the dataset. For each data point, ti is the target label, where t ∈ (1,−1}. In our case, the problem is not linearly
separable, we will use soft-margin SVM and introduce slack variable φ i ≥ 0. φ allows the misclassification of the outline.When
φi > 1, the data point is misclassified. At the same time, we should have inequality constraint as follows:

ti
(
W T

i ϕi (X)+b
)
≥ 1− φ i (7)
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To find the maximummargin solution, we solve the following problem:

− (8)

With the simplification of the problem and the soft-margin slack variable, the SVM problem eventually becomes:

− (9)

In Equation (9) the variable C is utilized to regularize the parameter which can control the trade-off among the tolerance and
margin of misclassification. Moreover, as the dataset is non-linearly separable, the kernel trick which is used to transform the
data to a high linear dimension like the Gaussian Kernel can be used. As the SVM problem is a convex optimized problem, a
globally optimized solution can be obtained from the model. With the optimal decision boundary, we can use it to classify our
dataset into different labels. However, through the experimental study we have noticed that when a high noise and a mixed-
cropping environment is applied, a large number of false positives are obtained. For addressing an improved decision boundary
is introduced in below equation

− (10)

where δ1 and δ2represent a variable that is used for bringing ideal crop classification outcomes,
−
γ and γ̂ represent decision

boundaries difference and decision boundaries mean, respectively. These boundaries are computed using the following
equations

γ̂ =
1
n2

n

∑
j=1

n

∑
k=1

(
z jxU α (y j)− z jxU α (y j)

]2
(11)

−
γ =

1
n

n

∑
j=1

z jxU α (y j) =
1
n
(Y z)U x, (12)

The proposed spatial-spectral feature trained with improved decision boundary-SVM crop classification achieves much better
classification accuracy when compared with existing crop classification methodologies which are by experimentation shown in
the next section.

3 Results and Discussions
In this section performance evaluation of the proposed SSF-IDBSVM model is carried out, performance evaluation is carried
out by comparing the proposed HSI-based crop classification model with the existing crop classification model (23); the
further model is evaluated on the data which is gathered from the AVIRIS sensor (31). This dataset comprises 224 spectral
reflectance bands along with0.42.5*10−6 meters wavelength and also it comprises class variables from vegetation, forest, and
agriculture. Dataset has 16 distinctive classes used for the evaluation; further detail of the dataset is given in Table 1. Indian Pine
hyperspectral data is captured through the AVIRIS sensor; dataset holds 10249 samples. Comparative analysis of proposed crop
classification and various existing crop classification methods is performed. Moreover, the evaluation is carried out on basis of
average accuracy and overall accuracy (17); overall accuracy shows the absolute classification over the complete test feature an
average accuracy shows the individual class average;moreover, in the case of all themetrics higher value indicates the superiority
of classification approach.

3.1 Indian Pines Dataset

The Indian Pines Dataset is a standard Hyperspectral Image Segmentation dataset. The input data consists of hyperspectral
bands over a single landscape in Indiana, US, (Indian Pines data set) with 145×145 pixels. For each pixel, the data set
contains 220 spectral reflectance bands which represent different portions of the electromagnetic spectrum in the wavelength
range 0.4−2.5·10−6. The Indian Pines scene contains two-thirds agriculture, and one-third forest or other natural perennial
vegetation. There are two major dual lane highways, a rail line, as well as some low-density housing, other built structures, and
smaller roads. Since the scene is taken in June some of the crops present, corn, soybeans, are in early stages of growth with less
than 5% coverage. The ground truth available is designated into sixteen classes and is not all mutually exclusive. Indian Pines
data are available through Pursue’s univeristy MultiSpec site.
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Table 1.The total number of features present in each crop of Indian Pines Hyperspectral data.
Number Classes Total Samples
1 Al f al f a 46
2 Corn notill 1428
3 Corn mintill 830
4 Corn 237
5 Grass pasture 483
6 Grass trees 730
7 Grass pasture moved 28
8 Hay windrowed 478
9 Oats 20
10 Soybean notill 972
11 Soybean mintill 2455
12 Soybean clean 593
13 wheat 205
14 woods 1265
15 Buildings Grass Trees Drives 386
16 Stone Steel Towers 93

3.2 Classification performance achieved using Indian Pines dataset:

Here the performance of SSF-IDBSVM-based hyperspectral crop classification performance outcome achieved is compared
with standard SVM, multiscale joint collaborative representation with a locally adaptive dictionary (MLJCRC) (32), and
CNN-AL-MNF (23) based hyperspectral crop classification. Here we have considered 5% data for training and accuracies
and misclassification i.e., Kappa coefficient is metrics considered for validating hyperspectral crop classification model. The
remaining 95% of data is used for testing the hyperspectral crop classification model.The result attained by using different crop
classification models is sown in Figure 2 and Table 2. From the overall result attained it can be seen the SSF-IDBSVM achieves
much better classification accuracies with less misclassification when compared withMLJCRC and CNN-AL-MNF-based crop
classification model. Further, we can notice using IDBSVM significantly reduces computation overhead in comparison with
deep learning-based hyperspectral crop classification.

Fig 2.The classification outcome was attained using SSF-IDBSVM and the existing hyperspectraldata-based crop classification model.
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Table 2.The classification outcome attained by the proposed HSI classification method over thestate-of-art HSI classification method
Class name Train SVM (30) LJCRC (32) MLJCRC (32) CNN-AL-MNF (23) SSF-HSI
Alfalfa 6 70.37 87.96 94.44 84.17 100
Corn notill 144 68.87 91.35 93.27 91 100
Corn mintill 84 73.82 87.35 94.24 83.64 99.74
Corn 24 57.98 93.16 99.36 87.01 100
Grass pasture 50 92.42 96.38 96.53 91.57 99.81
Grass trees 75 95.94 99.80 99.87 95.18 99.91
Grass pasture moved 3 67.95 73.08 76.35 89.13 100
Hay windrowed 49 98.09 100 100 98.93 98.99
Oats 2 50.00 30.00 12.50 16.08 98.11
Soybean notill 97 79.82 89.82 92.92 90.68 97.02
Soybean mintill 247 85.63 98.18 98.91 94.7 98.41
Soybean clean 62 70.20 97.07 98.25 91.51 99.94
wheat 22 97.27 99.53 100 99.25 100
woods 130 96.86 97.68 98.88 95.73 100
Buildings Grass Trees Drives 38 49.12 88.55 90.86 83.996 98.56
Stone Steel Towers 10 81.40 98.27 98.35 92.08 100
OA (%) 82.79 94.90 96.8 86.54 99.54
AA (%) 80.33 91.22 91.63 92.26 99.4
Kappa (%) 79.44 94.5 96.34 0 99.25
Time (s) 23.60 58.44 545.81 5913.78 9.8

3.3 Effect of training varying training sample:

Here experiment is conducted to study the effect of training sample size affecting classification performance. Here the training
sample size is changed from 5% to 20% and classification outcome achieved using different crop classification models such
as SSF-IDBSVM, MLJCRC (32), CNN-MBF (20), BS-Net-Conv (22), and CNN-AL-MNF (23) is measured as shown in Figure 3.
From the overall result achieved we can see the proposed SSF-IDBSVM-based crop classification model achieves much better
accuracies with less misclassification in comparison with existing crop classification models.

Fig 3. Effect of training sample size on classification outcome using SSF-IDBSVM and other existing crop classification models
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3.4 Effect of spectral-spatial feature:

Here we studied the importance of using the spatial-spectral feature in training IDBSVM. The graphical representation of
classification outcomes achieved using differentmodels such as SVM-3DDWT-GC,CNN-AL-MNF, and SSF-IDBSVMis shown
in Figure 4 From Figure 4 we can see the SSF-IDBSVM outperforms other existing models. In Figure 5 the effect of using SSF is
studied. From the result achieved it can be seen that using SSF significantly aided in improving classification accuracies.Thus, it
proves the SSF aided in distinguishing crop intrinsic features with respect to shadow component; further, employing improved
decision boundary aided in addressing class imbalance issues and achieving higher accuracies for classes with small feature
sizes.

Fig 4. Graphical representation of classification outcome obtained by all methods on the Indian Pines dataset

Result and discussion

TheSSF-IDBSVM-based crop classificationmodel attains very good results in comparison with the existingmodel.The existing
model used a deep learning model (23) for extracting spatial feature across different bands; however, they require high training
samples and fails to obtain good feature across spectrally. On the other, the proposed model is efficiently extracted good spatial
and spectral features. Similarly, the existing model (23,32), fails to distinguish between crop features and shadow features; thus,
resulting in degradation of classification accuracy. However, the proposed model uses a pairwise matrix to distinguish between
shadow elements with crop features. Further, the existing model deep learning model (29,30), uses SVM for building decision
boundary; however, these model considers hard decision boundary. As a result, when there no enough training data higher is
classification occurs. In addressing the proposed SSS-IDBSVM introduces a softmargin-based decision boundary aiding in the
reduction of misclassification. All these novelties introduced attributed enhancement achieving better performance.
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Fig 5. Graphical representation of classification outcome obtained by all methods on the Indian Pines dataset

4 Conclusion
This study provides a spatial-spectral feature extraction method employing the image fusion and intrinsic feature extraction
mechanism. As the color of the crops keeps changing and also the climatic conditions change there are few chances that a
given model may not be able to classify the given class of crops correctly which may lead to wrong results. Our Spatial-Spectral
Feature (SSF)model aided in distinguishing between crop intrinsic features and shadowelements under dynamic environmental
conditions. Further, for addressing class imbalance issues this work modeled an improved decision boundary model for SVM
by considering soft-margin rather than hard margin. The SSF-IDBSVM model is tested using the Indian pines dataset. The
metric used for validating the model is average accuracy, overall accuracy, and Kappa coefficient. Here we validated the model
considering varied training sizes and also experiment is conducted to study the effect of using SSF. The overall accuracy of
the models for the Support Vector Machine-3-dimensional discrete wavelet transform (SVM-3DDWT), Convolutional Neural
Network and Spatial-Spectral Feature Extraction Technique showed result of 94.28%, 96.12% and 99.4% respectively. In each
case study, the SSF-IDBSVM model achieves significant performance in comparison with the recent HSI classification model.
From the overall result attained we can see the SSF-IDBSVM outperforms other recent HSI classification models in terms
of accuracy, overall accuracy, and Kappa coefficient. Further, the SSF-HIS significantly reduces computation overhead in
comparison with deep learning-based HSI classification models. Furthermore, the future studies can use the different dataset
to classify the different classes of crops and attain higher accuracy.

References
1) Athani SS, Tejeshwar CH. Support Vector Machine-Based Classification Scheme of Maize Crop. 2017 IEEE 7th International Advance Computing

Conference (IACC). 2017;p. 84–88. doi:10.1109/IACC.2017.0032.
2) Murmu S, Biswas S. Application of Fuzzy Logic and Neural Network in Crop Classification: A Review. Aquatic Procedia. 2015;4:1203–1210. Available

from: https://dx.doi.org/10.1016/j.aqpro.2015.02.153. doi:10.1016/j.aqpro.2015.02.153.
3) Tatsumi K, Yamashiki Y, TorresMAC, Taipe CLR. Crop classification of upland fields using Random forest of time-series Landsat 7 ETM+data. Computers

and Electronics in Agriculture. 2015;115:171–179. Available from: https://dx.doi.org/10.1016/j.compag.2015.05.001.
4) GongM,ZhangM,YuanY. UnsupervisedBand SelectionBased onEvolutionaryMultiobjectiveOptimization forHyperspectral Images. IEEETransactions

on Geoscience and Remote Sensing. 2016;54(1):544–557. Available from: https://dx.doi.org/10.1109/tgrs.2015.2461653.
5) Sun W, Du Q. Graph-Regularized Fast and Robust Principal Component Analysis for Hyperspectral Band Selection. IEEE Transactions on Geoscience

and Remote Sensing. 2018;56(6):3185–3195. Available from: https://dx.doi.org/10.1109/tgrs.2018.2794443.
6) Zhai H, Zhang H, Zhang L, Li P. Laplacian-Regularized Low-Rank Subspace Clustering for Hyperspectral Image Band Selection. IEEE Transactions on

Geoscience and Remote Sensing. 2019;57(3):1723–1740. Available from: https://dx.doi.org/10.1109/tgrs.2018.2868796.
7) Eeti LN, Buddhiraju KM. Classification of Hyperspectral Remote Sensing Images by an Ensemble of Support Vector Machines Under Imbalanced Data.

IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium. IGARSS 2018 - 2018 IEEE International Geoscience and Remote
Sensing Symposium. 2018;p. 2659–2661. doi:10.1109/IGARSS.2018.8519564.

8) ZhangM, GongM, Chan Y. Hyperspectral band selection based onmulti-objective optimization with high information and low redundancy. Applied Soft
Computing. 2018;70:604–621. Available from: https://dx.doi.org/10.1016/j.asoc.2018.06.009.

https://www.indjst.org/ 89

http://dx.doi.org/10.1109/IACC.2017.0032
https://dx.doi.org/10.1016/j.aqpro.2015.02.153
http://dx.doi.org/10.1016/j.aqpro.2015.02.153
https://dx.doi.org/10.1016/j.compag.2015.05.001
https://dx.doi.org/10.1109/tgrs.2015.2461653
https://dx.doi.org/10.1109/tgrs.2018.2794443
https://dx.doi.org/10.1109/tgrs.2018.2868796
http://dx.doi.org/10.1109/IGARSS.2018.8519564
https://dx.doi.org/10.1016/j.asoc.2018.06.009
https://www.indjst.org/


V G & K / Indian Journal of Science and Technology 2022;15(2):81–90

9) Hu P, Liu X, Cai Y, Cai Z. Band Selection of Hyperspectral Images UsingMultiobjective Optimization-Based Sparse Self-Representation. IEEE Geoscience
and Remote Sensing Letters. 2019;16(3):452–456. Available from: https://dx.doi.org/10.1109/lgrs.2018.2872540.

10) Wang Q, Zhang F, Li X. Optimal Clustering Framework for Hyperspectral Band Selection. IEEE Transactions on Geoscience and Remote Sensing.
2018;56(10):1–13. Available from: https://dx.doi.org/10.1109/tgrs.2018.2828161.

11) Jiang X, Song X, Zhang Y, Jiang J, Gao J, Cai Z. Laplacian Regularized Spatial-Aware Collaborative Graph for Discriminant Analysis of Hyperspectral
Imagery. Remote Sensing. 2018;11(1):29–29. Available from: https://dx.doi.org/10.3390/rs11010029.

12) Huang Y, Sun Z. Semi-supervised Locality Preserving Discriminant Analysis for hyperspectral classification. 2016 9th International Congress on Image
and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). 2016;p. 151–156. doi:10.1109/CISP-BMEI.2016.7852699.

13) Jayaprakash C, Damodaran BB, V S, Soman KP. Dimensionality Reduction of Hyperspectral Images for Classification using Randomized Independent
Component Analysis. 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN). 2018. doi:10.1109/SPIN.2018.8474266.

14) IslamMR, Ahmed B, Hossain MA. Feature Reduction Based on Segmented Principal Component Analysis for Hyperspectral Images Classification. 2019
International Conference on Electrical, Computer and Communication Engineering (ECCE). 2019. doi:10.1109/ECACE.2019.8679394.

15) Wang L, Zhang J, Liu P, Choo KKR, Huang F. Spectral–spatial multi-feature-based deep learning for hyperspectral remote sensing image classification.
Soft Computing. 2017;21(1):213–221. Available from: https://dx.doi.org/10.1007/s00500-016-2246-3.

16) Jiang J, Chen C, Yu Y, Jiang X, Ma J. Spatial-Aware Collaborative Representation for Hyperspectral Remote Sensing Image Classification. IEEE Geoscience
and Remote Sensing Letters. 2017;14(3):404–408. Available from: https://dx.doi.org/10.1109/lgrs.2016.2645708.

17) Ye Z, Tan L, Bai L. Hyperspectral image classification based on spectral-spatial feature extraction. 2017 International Workshop on Remote Sensing with
Intelligent Processing (RSIP). 2017;17(6):1042–1046. doi:10.1109/RSIP.2017.7958808.

18) Liang Y, Zhao X, Guo AJX, Zhu F. Hyperspectral Image Classification With Deep Metric Learning and Conditional Random Field. IEEE Geoscience and
Remote Sensing Letters. 2020;17(6):1042–1046. Available from: https://dx.doi.org/10.1109/lgrs.2019.2939356.

19) Santara A, Mani K, Hatwar P, Singh A, Garg A, Padia K, et al. BASS Net: Band-Adaptive Spectral-Spatial Feature Learning Neural Network for
Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing. 2017;55(9):5293–5301. Available from: https://dx.doi.org/
10.1109/tgrs.2017.2705073. doi:10.1109/tgrs.2017.2705073.

20) Cao X, Zhou F, Xu L, Meng D, Xu Z, Paisley J. Hyperspectral Image Classification With Markov Random Fields and a Convolutional Neural Network.
IEEE Transactions on Image Processing. 2018;27(5):2354–2367. Available from: https://dx.doi.org/10.1109/tip.2018.2799324.

21) Haowen L. Shorten Spatial-spectral RNN with Parallel-GRU for Hyperspectral Image Classification. Arvix. 2018. Available from: https://arxiv.org/pdf/
1810.12563.pdf.

22) Cai Y, Liu X, Cai Z. BS-Nets: An End-to-End Framework for Band Selection of Hyperspectral Image. IEEE Transactions on Geoscience and Remote Sensing.
2020;58(3):1969–1984. Available from: https://dx.doi.org/10.1109/tgrs.2019.2951433.

23) CaoX,Yao J, XuZ,MengD. Hyperspectral ImageClassificationWithConvolutionalNeuralNetwork andActive Learning. IEEETransactions onGeoscience
and Remote Sensing. 2020;58(7):4604–4616. Available from: https://dx.doi.org/10.1109/tgrs.2020.2964627.

24) Lin L, Chen C, Xu T. Spatial-spectral hyperspectral image classification based on information measurement and CNN. EURASIP Journal on Wireless
Communications and Networking. 2020;2020(1). Available from: https://dx.doi.org/10.1186/s13638-020-01666-9.

25) Alotaibi B, Alotaibi M. A Hybrid Deep ResNet and Inception Model for Hyperspectral Image Classification. PFG – Journal of Photogrammetry, Remote
Sensing and Geoinformation Science. 2020;88(6):463–476. Available from: https://dx.doi.org/10.1007/s41064-020-00124-x.

26) Ye M, Ji C, Chen H, Lei L, Lu H, Qian Y. Residual deep PCA-based feature extraction for hyperspectral image classification. Neural Computing and
Applications. 2020;32(18):14287–14300. Available from: https://dx.doi.org/10.1007/s00521-019-04503-3.

27) Yu C, Zhao M, Song M, Wang Y, Li F, Han R, et al. Hyperspectral Image Classification Method Based on CNN Architecture Embedding With
Hashing Semantic Feature. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing. 2019;12(6):1866–1881. Available from:
https://dx.doi.org/10.1109/jstars.2019.2911987.

28) Roy SK, Krishna G, Dubey SR, Chaudhuri BB. HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE
Geoscience and Remote Sensing Letters. 2020;17(2):277–281. Available from: https://dx.doi.org/10.1109/lgrs.2019.2918719.

29) OkwuashiO,NdehedeheCE. Deep support vectormachine for hyperspectral image classification. PatternRecognition. 2020;103:107298–107298. Available
from: https://dx.doi.org/10.1016/j.patcog.2020.107298.

30) Kalaiarasi G, Maheswari S. Deep proximal support vector machine classifiers for hyperspectral images classification. Neural Computing and Applications.
2021;33(20):13391–13415. Available from: https://dx.doi.org/10.1007/s00521-021-05965-0.

31) Wang L, Feng Y, Gao Y, Wang Z, He M. Compressed Sensing Reconstruction of Hyperspectral Images Based on Spectral Unmixing. IEEE Journal of
Selected Topics in Applied Earth Observations and Remote Sensing. 2018;11(4):1266–1284. Available from: https://dx.doi.org/10.1109/jstars.2017.2787483.

32) Yang J, Qian J. Hyperspectral Image Classification via Multiscale Joint Collaborative Representation With Locally Adaptive Dictionary. IEEE Geoscience
and Remote Sensing Letters. 2018;15(1):112–116. Available from: https://dx.doi.org/10.1109/lgrs.2017.2776113.

https://www.indjst.org/ 90

https://dx.doi.org/10.1109/lgrs.2018.2872540
https://dx.doi.org/10.1109/tgrs.2018.2828161
https://dx.doi.org/10.3390/rs11010029
http://dx.doi.org/10.1109/CISP-BMEI.2016.7852699
http://dx.doi.org/10.1109/SPIN.2018.8474266
http://dx.doi.org/10.1109/ECACE.2019.8679394
https://dx.doi.org/10.1007/s00500-016-2246-3
https://dx.doi.org/10.1109/lgrs.2016.2645708
http://dx.doi.org/10.1109/RSIP.2017.7958808
https://dx.doi.org/10.1109/lgrs.2019.2939356
https://dx.doi.org/10.1109/tgrs.2017.2705073
https://dx.doi.org/10.1109/tgrs.2017.2705073
http://dx.doi.org/10.1109/tgrs.2017.2705073
https://dx.doi.org/10.1109/tip.2018.2799324
https://arxiv.org/pdf/1810.12563.pdf
https://arxiv.org/pdf/1810.12563.pdf
https://dx.doi.org/10.1109/tgrs.2019.2951433
https://dx.doi.org/10.1109/tgrs.2020.2964627
https://dx.doi.org/10.1186/s13638-020-01666-9
https://dx.doi.org/10.1007/s41064-020-00124-x
https://dx.doi.org/10.1007/s00521-019-04503-3
https://dx.doi.org/10.1109/jstars.2019.2911987
https://dx.doi.org/10.1109/lgrs.2019.2918719
https://dx.doi.org/10.1016/j.patcog.2020.107298
https://dx.doi.org/10.1007/s00521-021-05965-0
https://dx.doi.org/10.1109/jstars.2017.2787483
https://dx.doi.org/10.1109/lgrs.2017.2776113
https://www.indjst.org/

	Introduction
	Hyperspectral Crop Classification using Spatial-spectral feature and Improved Decision Boundary Support Vector Machine
	2.1 Spatial-spectral feature extraction for crop classification:
	2.2 Agriculture crop classification using improved decision boundary support vector machine:

	Results and Discussions
	3.1 Indian Pines Dataset
	3.2 Classification performance achieved using Indian Pines dataset:
	3.3 Effect of training varying training sample:
	3.4 Effect of spectral-spatial feature:
	Result and discussion

	Conclusion

