Condensation of Free Volume in Structures of Nematic and Hexatic Liquid Crystals

Richard J Mandle*, N Stock, Stephen J Cowling, Rachel R Parker, Sam Hart, Adrian C Whitwood and John W Goodby
Richard.mandle@york.ac.uk Department of Chemistry, the University of York, York YO10 5DD, UK

1.1. General Techniques

Miscellaneous solvents were purchased from Fisher Scientific dried by sequential percolation through columns of activated alumina and copper Q5 catalyst prior to use. Chemical intermediates were obtained from commercial suppliers and used without further purification. Reactions were monitored by thin layer chromatography (TLC) using an appropriate solvent system. Silica coated aluminium TLC plates used were purchased from Merck (Kieselgel $60 \mathrm{~F}-254$) and visualised using UV light at wavelengths of both 254 nm and 365 nm . Column chromatography was performed using flash grade silica from Fluorochem (40-63 $\mu \mathrm{m}$ particle size). Yields refer to chromatographically (HPLC) and spectroscopically (${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}\{1 \mathrm{H}\} \mathrm{NMR}$) homogenous material.

1.2. Nuclear Magnetic Resonance (NMR)

NMR spectra were recorded on a JEOL ECS spectrometer operating at $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ and $100.5 \mathrm{MHz}\left({ }^{(13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}\right)$ as solutions in deuterated chloroform.

1.3. Mass Spectrometry (MS)

Mass spectra were recorded on a Bruker micrOTOF MS-Agilent series 1200LC spectrometer. We thank Mr. Karl Heaton of the University of York for acquiring MS data.

1.4. High Performance Liquid Chromatography (HPLC)

High-performance liquid chromatography was performed on a Shimadzu Prominence modular HPLC system comprising a LC-20A quaternary solvent pump, a DGU-20A degasser, a SIL-20A autosampler, a CBM-20A communication bus, a CTO-20A column oven, and a SPO-20A dual wavelength UV-vis detector operating at $220 / 250 \mathrm{~nm}$. The column used was an Allech C18 bonded reverse-phase silica column with a $5 \mu \mathrm{~m}$ pore size,
an internal diameter of 10 mm and a length of 250 mm . In all cases the mobile phase used was neat acetonitrile, purchased from Fisher Scientific UK.

1.5. Polarised Optical Microscopy (POM)

Polarised optical microscopy was performed on a Zeiss Axioskop 40Pol microscope using a Mettler FP82HT hotstage controlled by a Mettler FP90 central processor. Photomicrographs were captured via an InfinityX-21 MP digital camera mounted atop the microscope.

1.6. Differential Scanning Calorimetry (DSC)

Differential scanning calorimetry was performed on a Mettler DSC822e fitted with an autosampler operating with Mettler Stare software and calibrated before use against an indium standard (onset $=156.55 \pm 0.2^{\circ} \mathrm{C}, \Delta \mathrm{H}=$ $28.45 \pm 0.40 \mathrm{Jg}^{-1}$) under an atmosphere of dry nitrogen.

1.7. Small Angle X-ray Scattering (SAXS)

Small angle X-ray scattering was performed using a Bruker D8 Discover equipped with a temperature controlled, bored graphite rod furnace, custom built at the University of York. The radiation used was copper Ka ($\lambda=$ 0.154056 nm) from a $1 \mu \mathrm{~S}$ microfocus source. A silver behenate standard was used to calibrate d-spacings and determine instrumental broadening. Diffraction patterns were recorded on a 2048×2048 pixel Bruker VANTEC 500 area detector set at a distance of 121 mm from the sample. Samples were filled into 0.9 mm O.D. capillary tubes (approx. I.D. $\sim 0.85 \mathrm{~mm}$) and aligned with a pair of 1 T magnets, with the field strength at the sample position being approximately 0.6 T Diffraction patterns were collected as a function of temperature and the data processed using Matlab as follows. Two-dimensional scattering patterns were collected on cooling from the isotropic liquid until crystallisation in $\sim 1.2{ }^{\circ} \mathrm{C}$ intervals. These were radially averaged (0.05° step size) to give scattered intensity as a function of 2θ for each frame. Fitting of this integrated data with a Voigt function (in all cases $\mathrm{R}^{2}>0.99$) allowed the peak position and FWHM to be determined for both the small- and wide- angle peaks; the FWHM was corrected for instrumental broadening then used to determine correlation lengths parallel and perpendicular to the director. FWHM and d-spacing values were converted into 2θ allowing us to obtain domain sizes from the Scherrer equation. All data processing was carried out using custom Matlab scripts which may be made available on request from the corresponding author.

1.8. Computational Chemistry

Quantum chemical calculations were performed using the Gaussian 09 revision e. 01 suite of programmes. [1]

1.9. Single Crystal X-ray Diffraction

Single-crystal diffraction data were collected at 110 K on an Oxford Diffraction SuperNova diffractometer with CuK_{α} radiation ($\lambda=1.54184 \AA$ ' using a EOS CCD camera. The crystal was cooled with an Oxford Instruments Cryojet. diffractometer control, data collection, initial unit cell determination, frame integration and unit-cell refinement was carried out with "Crysalis".[2] Face-indexed absorption corrections were applied using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm. [3] OLEX2 [4] was used for overall structure solution, refinement and preparation of computer graphics and publication data. Within OLEX2, the algorithms used for structure solution were Superflip charge-flipping" [5] for 10 and "ShelXT dual-space" [6] for 14. Refinement by full-matrix least-squares used the SHELXL-97 [7] algorithm within OLEX2. [4] All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were placed using a "riding model" and included in the refinement at calculated positions. Both structures exhibited disorder of the branched alkyl chain. For 10, the 2,4,4-trimethylpentanol group was disordered and modelled in two positions with refined occupancies of $0.766: 0.234(3)$, the ADP of the disordered atom pairs were constrained to be the same. For 14 , the $3,5,5-$ trimethylhexanol group was disordered and modelled in two positions with refined occupancies of 0.731:0.269(4). The $\mathrm{C}_{22}-\mathrm{O}_{3}$ and $\mathrm{C}_{22}-\mathrm{O}_{3 \mathrm{a}}$ bond lengths were restrained to be equal, $\mathrm{C}_{22 a-}-\mathrm{C}_{23 \mathrm{a}}$ was restrained to be 1.52 angstroms and the ADP of C_{22} and $\mathrm{C}_{22 \mathrm{~A}}$ constrained to be equal.

Scheme 1

1.2. Synthetic Details and Chemical Characterisation

4-(2,4,4-Trimethylpentyloxy)benzoic acid (4)

To a stirred solution of $2,4,4$-trimethylpentan- 1 -ol ($5 \mathrm{~g}, 38.46 \mathrm{mmol}$), triphenyl phosphine ($10.1 \mathrm{~g}, 38.46 \mathrm{mmol}$) and methyl 4 -hydroxybenzoate ($6.4 \mathrm{~g}, 42.31 \mathrm{mmol}$) in anhydrous THF (125 ml), under an atmosphere of dry nitrogen, was added neat DIAD ($7.8 \mathrm{~g}, 7.6 \mathrm{ml}, 38.46 \mathrm{mmol}$) dropwise over a period of 0.5 h . The resulting solution was stirred for 6 h , and the solvent removed in vacuo. Ethanol (100 ml) was added to the crude residue and the solution was heated under reflux before the addition of 4M sodium hydroxide solution (30 ml). The solution was heated under reflux for 16 h , cooled to r.t. and diluted with water (100 ml) and filtered. The filtrate was acidified to pH 1 with $36 \% \mathrm{HCl}$, the resulting precipitate collected by filtration and recrystallised from ethanol giving the title compound as translucent needles.

Yield:	7.4 g (73\%)
Melting Point:	$106.3{ }^{\circ} \mathrm{C}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)	$\begin{aligned} & 0.79(9 \mathrm{H}, \mathrm{~S}), 0.88\left(3 \mathrm{H}, \mathrm{~d}, J_{H H-H}=6.4 \mathrm{~Hz}\right), 0.94-1.03(1 \mathrm{H}, \mathrm{~m}), 1.17-1.24 \\ & (1 \mathrm{H}, \mathrm{~m}), 1.42-1.54(1 \mathrm{H}, \mathrm{~m}), 1.58-1.68(2 \mathrm{H}, \mathrm{~m}), 3.96\left(2 \mathrm{H}, \mathrm{t}, J_{\mathrm{H}-\mathrm{H}}=6.4\right) \text {, } \\ & 6.90\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.8 \mathrm{~Hz}, J_{H H H}=8.9 \mathrm{~Hz}\right), 7.80\left(2 \mathrm{H}, \text { ddd, } J_{H-H}\right. \\ & \left.=2.1 \mathrm{~Hz}, J_{H H-H}=2.8 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right) . \end{aligned}$
MS M/Z (ESI+):	$273.1462\left(\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{NaO}_{3}\right.$, cacld. for $\left.\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3}: 273.1461 \mathrm{M}+\mathrm{Na}\right)$, $251.1650\left(\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3}\right.$, calcd. for $\left.\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{O}_{3}: 251.1642, \mathrm{M}+\mathrm{H}\right)$
FT-IR (v max, cm^{-1}) :	$\begin{aligned} & 547,640,771,840,941,1026,1118,1157,1249,1296,1427,1604,1674, \\ & 2553,2669,2826,2947 \end{aligned}$

4-(3,5,5-Trimethylhexyloxy)benzoic acid (5)
Quantities used: $3,5,5-$ Trimethylhexan-1-ol ($15 \mathrm{~g}, 18.2 \mathrm{ml}, 0.113 \mathrm{~mol}$), methyl 4 -hydroxybenzoate ($17 \mathrm{~g}, 0.112$ $\mathrm{mol}), \mathrm{PPh}_{3}(27.9 \mathrm{~g}, 0.106 \mathrm{~mol}), \mathrm{DIAD}(21.5 \mathrm{~g}, 0.106 \mathrm{~mol})$, THF (200 ml), then aqueous 4M $\mathrm{NaOH}(100 \mathrm{ml}), \mathrm{EtOH}$ $(300 \mathrm{ml})$. The experimental procedure was as described in the synthesis of compound 4 , giving the title compound as white plates.

Yield:
19.7 g (76\%)

Melting Point:
1H NMR (400 MHz , DMSO-D6):
$0.79(9 \mathrm{H}, \mathrm{s}), 0.88\left(3 \mathrm{H}, \mathrm{d}, \mathrm{J}_{H-H}=6.4 \mathrm{~Hz}\right), 0.94-1.03(1 \mathrm{H}, \mathrm{m} \mathrm{Hz}), 1.17-1.24$ $(1 \mathrm{H}, \mathrm{m}), 1.42-1.54(1 \mathrm{H}, \mathrm{M}), 1.58-1.68(2 \mathrm{H}, \mathrm{m}), 3.96\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=6.4 \mathrm{~Hz}\right)$, $6.90\left(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{H-H}=2.1 \mathrm{~Hz}, \mathrm{~J}_{H-H}=2.8 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right), 7.80\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}\right.$ $\left.=2.1 \mathrm{~Hz}, \mathrm{~J}_{H-H}=2.8 \mathrm{~Hz}, \mathrm{~J}_{H-H}=8.9 \mathrm{~Hz}\right)$

MS M/Z (ESI+):
$287.1609\left(\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaO}_{3}\right.$, calcd. for $\left.\mathrm{C}_{16} \mathrm{H}_{24} \mathrm{NaO}_{3}: 287.1618, \mathrm{M}+\mathrm{Na}\right)$, $265.1787\left(\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3}\right.$, calcd. for $\left.\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{3}: 265.1798, \mathrm{M}+\mathrm{H}\right)$

FT-IR (v max, cm-1): $\quad 503,553,632,650,693,763,771,827,844,889,943,968,997,1012$, 1053, 1109, 1128, 1166, 1201, 1251, 1296, 1321, 1363, 1390, 1429, 1473, 1514, 1579, 1604, 1674, 2868, 2895, 2953

4-(4-Ethylcyclohexyl)phenyl 4-((2,4,4-trimethylpentyl)oxy)benzoate (10)

Compound 4 ($400 \mathrm{mg}, 1.6 \mathrm{mmol}$), compound 6 ($391 \mathrm{mg}, 1.92 \mathrm{mmol}$), EDAC ($367 \mathrm{mg}, 1.92 \mathrm{mmol}$), DMAP (10 $\mathrm{mg}, 82 \mu \mathrm{~mol})$ were dissolved into dry DCM $(4 \mathrm{ml})$ in an oven dried vial, and the resulting solution stirred for 16 h . The crude material was purified by flash chromatography with DCM as the eluent and recrystallised from ethanol/THF (10:1) to give the title compound as white needles.

Yield:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
0.47 g (67\%)
$0.81-1.42(22 \mathrm{H}, \mathrm{m}), 1.77-1.87(4 \mathrm{H}, \mathrm{m}), 1.89-2.01(1 \mathrm{H}, \mathrm{m}), 2.41(1 \mathrm{H}, \mathrm{tt}$, $\left.J_{H-H}=3.1 \mathrm{~Hz}, J_{H-H}=12.4 \mathrm{~Hz}\right), 3.66\left(1 \mathrm{H}, \mathrm{dd}, J_{H-H}=7.3 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right)$, $3.77\left(1 \mathrm{H}, \mathrm{dd}, J_{H-H}=5.8 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right), 6.87\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}\right.$ $\left.=2.4 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right), 7.02\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=\right.$ $8.5 \mathrm{~Hz}), 7.17\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=8.5 \mathrm{~Hz}\right), 8.06(2 \mathrm{H}$, ddd, $\left.J_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right)$
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100.5 MHz, CDCl 3): 11.53, 19.93, 29.50, 29.85, 29.95, 33.12, 34.37, 39.03, 44.07, 47.28, 74.34, 114.23, 121.36, 121.65, 127.70, 132.19, 145.21, 148.94, 163.51, 165.12

MS M/Z (ESI+):

FT-IR (v max, cm^{-1}):
$516,542,605,630,659,690,763,802,844,877,939,968,1004,1074$, $1105,1166,1201,1257,1317,1446,1465,1510,1604,1720,2848,2870$, 2891, 2918, 2953.

Assay (RP-HPLC): 99.3\%

4-(4-Propylcyclohexyl)phenyl 4-((2,4,4-trimethylpentyl)oxy)benzoate (11)

Quantities used: 4 ($400 \mathrm{mg}, 1.6 \mathrm{mmol}$), compound 7 ($418 \mathrm{mg}, 1.92 \mathrm{mmol}$), EDAC ($367 \mathrm{mg}, 1.92 \mathrm{mmol}$), DMAP $(10 \mathrm{mg}, 82 \mu \mathrm{~mol}), \mathrm{DCM}(4 \mathrm{ml})$. The experimental procedure was as described in the synthesis of compound 10. The crude material was purified by flash chromatography with DCM as the eluent and recrystallised from ethanol/THF (17:1) to give the title compound as white needles.

Yield:
$0.38 \mathrm{~g}(52 \%)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$:
$0.82\left(3 \mathrm{H}, \mathrm{t}, \mathrm{J}_{\mathrm{H}-\mathrm{H}}=7.0 \mathrm{~Hz}\right), 0.86(9 \mathrm{H}, \mathrm{s}), 0.89-1.41(12 \mathrm{H}, \mathrm{m}), 1.75-1.87$ $(4 \mathrm{H}, \mathrm{m}), 1.89-2.01(1 \mathrm{H}, \mathrm{m}), 2.40\left(1 \mathrm{H}, \mathrm{tt}, J_{H-H}=3.4 \mathrm{~Hz}, J_{H-H}=12.2 \mathrm{~Hz}\right), 3.65$ $\left(1 \mathrm{H}, \mathrm{dd}, J_{H-H}=7.3 \mathrm{~Hz}, J_{H-H}=9.2 \mathrm{~Hz}\right), 3.77\left(1 \mathrm{H}, \mathrm{dd}, J_{H-H}=5.8 \mathrm{~Hz}, J_{H H H}=8.9\right.$ $\mathrm{Hz}), 6.87\left(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.8 \mathrm{~Hz}, \mathrm{~J}_{H-H}=8.9 \mathrm{~Hz}\right), 7.03(2 \mathrm{H}, \mathrm{ddd}$, $\left.J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right), 7.16\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}\right.$ $\left.=2.4 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right), 8.05\left(2 \mathrm{H}\right.$, ddd, $J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.8 \mathrm{~Hz}, J_{H-H}=$ 8.9 Hz)
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.40,19.92,20.01,29.50,29.85,30.96,33.51,34.38,36.96,39.68,44.06$, $47.28,74.34,114.22,121.36,121.65,127.69,132.19,145.21,148.93$, 163.51, 165.11

MS M/Z (ESI+):
$489.2758\left(\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{KO}_{3}\right.$, calcd. for $\left.\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{KO}_{3}: 489.2766, \mathrm{M}+\mathrm{K}\right)$ $473.3020\left(\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{NaO}_{3}\right.$, cacld. for $\left.\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{NaO}_{3}: 473.3026, \mathrm{M}+\mathrm{Na}\right)$

FT-IR (v max, cm^{-1}): $\quad 513,536,605,632,661,692,763,800,842,875,970,1012,1026,7076$, $1165,1205,1251,1313,1363,1446,1467,1510,1602,1720,2848,2891$, 2954.

Assay (RP-HPLC): 99.9\%

4-(4-Butylcyclohexyl)phenyl 4-((2,4,4-trimethylpentyl)oxy)benzoate (12)

Quantities used: 4 ($400 \mathrm{mg}, 1.6 \mathrm{mmol}$), compound $8(445 \mathrm{mg}, 1.92 \mathrm{mmol})$, EDAC ($367 \mathrm{mg}, 1.92 \mathrm{mmol}$), DMAP $(10 \mathrm{mg}, 82 \mu \mathrm{~mol}), \mathrm{DCM}(4 \mathrm{ml})$. The experimental procedure was as described in the synthesis of compound 10. The crude material was purified by flash chromatography with DCM as the eluent and recrystallised from ethanol/THF (15:1) to give the title compound as white needles.

Yield:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$0.26 \mathrm{~g}(35 \%)$
$0.80-1.42(26 \mathrm{H}, \mathrm{m}), 1.76-1.88(4 \mathrm{H}, \mathrm{m}), 1.90-2.00(1 \mathrm{H}, \mathrm{m}), 2.41(1 \mathrm{H}, \mathrm{tt}$, $\left.J_{H-H}=3.4 \mathrm{~Hz}, J_{H-H}=12.4 \mathrm{~Hz}\right), 3.66\left(1 \mathrm{H}, \mathrm{dd}, J_{H-H}=7.3 \mathrm{~Hz}, J_{H-H}=9.2 \mathrm{~Hz}\right)$, $3.77\left(1 \mathrm{H}, \mathrm{dd}, J_{H-H}=6.1 \mathrm{~Hz}, J_{H-H}=9.2 \mathrm{~Hz}\right), 6.88\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}\right.$ $\left.=3.1 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right), 7.03\left(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.8 \mathrm{~Hz}, J_{H-H}=\right.$ $8.5 \mathrm{~Hz}), 7.18\left(2 \mathrm{H}\right.$, ddd, $\left.J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.8 \mathrm{~Hz}, J_{H-H}=8.5 \mathrm{~Hz}\right), 8.05(2 \mathrm{H}$, ddd, $\left.J_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}=3.1 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right)$
${ }^{13}{ }^{1}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 14.16,19.93,23.00,29.22,29.51,29.86,30.97,33.56,34.40,37.08,37.24$, $44.07,47.29,74.35,114.23,121.36,121.65,127.70,132.19,145.23$, 148.94, 163.51, 165.12

MS M/Z (ESI+): $\quad 487.3168\left(\mathrm{C}_{3} 1 \mathrm{H}_{44} \mathrm{NaO}_{3}\right.$, cacld. for $\left.\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{NaO}_{3}: 487.6792, \mathrm{M}+\mathrm{Na}\right)$ $465.3353\left(\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{3}\right.$, cacld. for $\left.\mathrm{C}_{31} \mathrm{H}_{45} \mathrm{O}_{3}: 465.6975, \mathrm{M}+\mathrm{H}\right)$

FT-IR (v max, cm^{-1}): $\quad 511,538,607,632,661,692,763,800,846,877,975,1016,1066,1165$, $1195,1253,1317,1361,1465,1510,1602,1724,2852,2918,2954$.

Assay (RP-HPLC): 99.9\%

4-(4-Pentylcyclohexyl)phenyl 4-((2,4,4-trimethylpentyl)oxy)benzoate (13)

Quantities used: 4 ($400 \mathrm{mg}, 1.6 \mathrm{mmol}$), compound 9 ($472 \mathrm{mg}, 1.92 \mathrm{mmol}$), EDAC ($367 \mathrm{mg}, 1.92 \mathrm{mmol}$), DMAP $(10 \mathrm{mg}, 82 \mu \mathrm{~mol}), \mathrm{DCM}(4 \mathrm{ml})$. The experimental procedure was as described in the synthesis of compound 10. The crude material was purified by flash chromatography with DCM as the eluent and recrystallised from ethanol/THF (15:1) to give the title compound as white needles.

Yield:
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$0.66 \mathrm{~g}(87 \%)$
$0.80-1.42(28 \mathrm{H}, \mathrm{m}), 1.75-1.87(4 \mathrm{H}, \mathrm{m}), 1.89-2.00(1 \mathrm{H}, \mathrm{m}), 2.40(1 \mathrm{H}, \mathrm{tt}$, $\left.J_{H-H}=3.0 \mathrm{~Hz}, J_{H-H}=12.1 \mathrm{~Hz}\right), 3.65\left(1 \mathrm{H}, \mathrm{dd}, J_{H-H}=7.3 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right)$, 3.75 ($1 \mathrm{H}, \mathrm{dd}, J_{H-H}=6.1 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}$), $6.87\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}\right.$ $\left.=2.8 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right), 7.02\left(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}=2.8 \mathrm{~Hz}, J_{H-H}=\right.$ $8.5 \mathrm{~Hz}), 7.18\left(2 \mathrm{H}\right.$, ddd, $\left.J_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}=2.8 \mathrm{~Hz}, J_{H-H}=8.5 \mathrm{~Hz}\right), 8.06(2 \mathrm{H}$, ddd, $\left.J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.8 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right)$
${ }^{13}{ }^{1}\left\{{ }^{\prime} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 14.12, 19.92, 22.70, 26.63, 29.50, 29.86, 30.96, 32.19, 33.56, 34.40, 37.26, $37.35,44.07,47.29,74.34,114.23,121.36,121.65,127.69,132.19,145.21$, 148.94, 163.51, 165.10

MS M/Z (ESI+): $\quad 501.3320\left(\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{NaO}_{3}\right.$, cacld. for $\left.\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{NaO}_{3}: 501.3339, \mathrm{M}+\mathrm{Na}\right)$ $479.3515\left(\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{O}_{3}\right.$, cacld. for $\left.\mathrm{C}_{32} \mathrm{H}_{47} \mathrm{O}_{3}: 479.7245, \mathrm{M}+\mathrm{H}\right)$

FT-IR (v max, cm^{-1}): $\quad 538,607,632,692,763,800,846,877,1016,1066,1165,1195,1253$, 1317, 1361, 1465, 1510, 1602, 1724, 2852, 2954.

Assay (RP-HPLC): 99.9\%

4-(4-Ethylcyclohexyl)phenyl 4-((3,5,5-trimethylhexyl)oxy)benzoate (14)
Quantities used: 5 ($200 \mathrm{mg}, 0.77 \mathrm{mmol}$), compound 6 ($160 \mathrm{mg}, 0.77 \mathrm{mmol}$), EDAC ($170 \mathrm{mg}, 0.92 \mathrm{mmol}$), DMAP $(10 \mathrm{mg}, 82 \mu \mathrm{~mol})$, $\mathrm{DCM}(4 \mathrm{ml})$. The experimental procedure was as described in the synthesis of compound 10. The crude material was purified by flash chromatography with DCM as the eluent and recrystallised from ethanol/THF (15:1) to give the title compound as white needles.

Yield: $\quad 300 \mathrm{mg}(87 \%)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\quad 0.90(9 \mathrm{H}, \mathrm{s}), 0.99\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{H-H}=6.7 \mathrm{~Hz}\right), 1.31-1.01(5 \mathrm{H}, \mathrm{m}), 1.54-1.38$ $(2 \mathrm{H}, \mathrm{m}), 1.66\left(1 \mathrm{H}\right.$, quint, $\left.J_{H-H}=6.4 \mathrm{~Hz}\right), 1.94-1.71(6 \mathrm{H}, \mathrm{m}), 2.48\left(1 \mathrm{H}, \mathrm{tt}, \mathrm{J}_{H-H}\right.$ $\left.=3.1 \mathrm{~Hz}, \mathrm{~J}_{H-H}=12.2 \mathrm{~Hz}\right), 4.05\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J}_{H-H}=6.4 \mathrm{~Hz}\right), 6.96\left(2 \mathrm{H}, \mathrm{ddd}, \mathrm{J}_{H-H}=2.1\right.$ $\left.H z, J_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right), 7.09\left(2 \mathrm{H}\right.$, ddd, $\mathrm{J}_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}=2.4 \mathrm{~Hz}$, $\left.J_{H-H}=8.5 \mathrm{~Hz}\right), 7.23\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=8.5 \mathrm{~Hz}\right)$, $8.12\left(2 \mathrm{H}\right.$, ddd, $\left.J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=8.9 \mathrm{~Hz}\right)$
${ }^{13} C\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \quad 11.53,22.76,26.08,29.92,29.95,31.13,33.12,34.36,38.25,39.02,44.07$, $51.02,66.52,114.20,121.35,121.67,127.70,132.20,145.22,148.93$, 163.38, 165.13

MS M/Z (ESI+):
$473.3019\left(\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{NaO}_{3}\right.$, calcd. for $\left.\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{NaO}_{3}: 473.3026, \mathrm{M}+\mathrm{Na}\right)$ $451.3183\left(\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{O}_{3}\right.$, cacld. for $\left.\mathrm{C}_{30} \mathrm{H}_{43} \mathrm{O}_{3}: 451.6705, \mathrm{M}+\mathrm{H}\right)$

FT-IR (v max, cm¹): $\quad 501,540,601,655,763,972,1072,1165,1257,1465,1512,1581,1604$, 1728, 2846, 2908, 2954

Assay (RP-HPLC): 98.6\%

4-(4-Propylcyclohexyl)phenyl 4-((3,5,5-trimethylhexyl)oxy)benzoate (15)

Quantities used: 5 ($200 \mathrm{mg}, 0.77 \mathrm{mmol}$), compound 7 ($160 \mathrm{mg}, 0.77 \mathrm{mmol}$), EDAC ($170 \mathrm{mg}, 0.92 \mathrm{mmol}$), DMAP $(10 \mathrm{mg}, 82 \mu \mathrm{~mol})$, $\mathrm{DCM}(4 \mathrm{ml})$. The experimental procedure was as described in the synthesis of compound 10. The crude material was purified by flash chromatography with DCM as the eluent and recrystallised from ethanol/THF (15:1) to give the title compound as white needles.

Yield: $\quad 320 \mathrm{mg}(89 \%)$

$$
\begin{array}{ll}
\left.{ }^{1} \mathrm{H} \text { NMR (} 400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): & 0.93-0.85(12 \mathrm{H}, \mathrm{~m}), 0.99\left(2 \mathrm{H}, \mathrm{~d}, J_{H-H}=6.6 \mathrm{~Hz}\right), 1.54-1.02(5 \mathrm{H}, \mathrm{~m}), 1.93- \\
& 1.60(7 \mathrm{H}, \mathrm{~m}), 2.47\left(1 \mathrm{H}, \mathrm{tt}, J_{H-H}=3.3 \mathrm{~Hz}, J_{H H}=12.1 \mathrm{~Hz}\right), 4.05\left(2 \mathrm{H}, \mathrm{t}, J_{H-H}=\right. \\
& 6.6 \mathrm{~Hz} \mathrm{~Hz}), 6.95\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}=2.8 \mathrm{~Hz}, J_{H-H}=8.8 \mathrm{~Hz}\right), 7.09 \\
& \left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=8.5 \mathrm{~Hz}\right), 7.23\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=\right. \\
& \left.1.8 \mathrm{~Hz}, J_{H H H}=2.4 \mathrm{~Hz}, J_{H-H}=8.5 \mathrm{~Hz}\right), 8.12\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}=2.8\right. \\
& \left.\mathrm{Hz}, J_{H-H}=8.8 \mathrm{~Hz}\right) .
\end{array}
$$

${ }^{13}$ C $\{1 \mathrm{H}\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $14.40,20.01,22.76,26.08,29.92,31.13,33.52,34.39,36.96,38.25,39.68$, $44.07,51.02,66.52,114.19,121.36,121.68,127.70,132.20,145.23$, 148.93, 163.38, 165.12

MS M/Z (ESI+):
$465.3379\left(\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{3}\right.$, cacld. for $\left.\mathrm{C}_{30} \mathrm{H}_{45} \mathrm{O}_{3}: 465.3363, \mathrm{M}+\mathrm{H}\right)$
FT-IR (v max, cm¹): $\quad 540,609,655,686,763,848,972,1010,1072,1165,1195,1257,1465$, 1512, 1581, 1604, 1720, 2846, 2916

Assay (RP-HPLC): 99.7\%

4-(4-Buttylcyclohexyl)phenyl 4-((3,5,5-trimethylhexyl)oxy)benzoate (16)

Quantities used: 5 ($200 \mathrm{mg}, 0.77 \mathrm{mmol}$), compound 8 ($170 \mathrm{mg}, 0.77 \mathrm{mmol}$), EDAC ($170 \mathrm{mg}, 0.92 \mathrm{mmol}$), DMAP ($10 \mathrm{mg}, 82 \mu \mathrm{~mol}$), DCM (4 ml). The experimental procedure was as described in the synthesis of compound 10. The crude material was purified by flash chromatography with DCM as the eluent and recrystallised from ethanol/THF (14:1) to give the title compound as white needles.

Yield:
310 mg (84\%)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$0.99\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}_{H-H}=6.6 \mathrm{~Hz}\right), 0.89(12 \mathrm{H}, \mathrm{s}), 1.11\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}_{H-H}=5.5\right), 1.14(1 \mathrm{H}$, d, $\left.J_{H-H}=5.9 \mathrm{~Hz}\right), 1.32-1.20(8 \mathrm{H}, \mathrm{m}), 1.54-1.37(3 \mathrm{H}, \mathrm{m}), 1.65(1 \mathrm{H}$, quint, $\left.J_{H-H}=6.6 \mathrm{~Hz}\right), 1.93-1.70(6 \mathrm{H}, \mathrm{m}), 2.52-2.42\left(1 \mathrm{H}, \mathrm{tt}, J_{H-H}=2.9 \mathrm{~Hz}, J_{H-H}=\right.$ $12.2 \mathrm{~Hz}), 4.05\left(2 \mathrm{H}, \mathrm{t}, J_{H-H}=6.6 \mathrm{~Hz}\right), 6.96\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.4\right.$ $\left.\mathrm{Hz}, J_{H-H}=8.8 \mathrm{~Hz}\right), 7.09\left(2 \mathrm{H}\right.$, ddd, $\left.J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=8.5 \mathrm{~Hz}\right)$, $7.23\left(2 \mathrm{H}, \mathrm{ddd} J_{H-H}=2.1 \mathrm{~Hz}, J_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=8.8 \mathrm{~Hz}\right), 8.12\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}\right.$ $=2.1 \mathrm{~Hz}, \mathrm{~J}_{H-H}=2.4 \mathrm{~Hz}, \mathrm{~J}_{H-H}=8.8 \mathrm{~Hz}$).
${ }^{13}{ }^{[}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 14.16, 22.76, 23.00, 26.08, 29.22, 29.92, 31.13, 33.56, 34.40, 37.08, 37.24, $38.25,44.07,51.02,66.52,114.20,121.36,121.67,127.70,132.20,145.23$, 148.93, 163.38, 165.12

MS M/Z (ESI+): $\quad 479.2757\left(\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{3}\right.$, cacld. for $\left.\mathrm{C}_{30} \mathrm{H}_{47} \mathrm{O}_{3}: 479.7245, \mathrm{M}+\mathrm{H}\right)$
FT-IR (v max, cm^{-1}): $\quad 501,540,663,686,763,810,848,871,1010,1072,1165,1195,1257$, 1465, 1512, 1604, 1720, 2846, 2916

Assay (RP-HPLC): 98.1\%

4-(4-Pentylcyclohexyl)phenyl 4-((3,5,5-trimethylhexyl)oxy)benzoate (17)

Quantities used: 5 ($400 \mathrm{mg}, 1.6 \mathrm{mmol}$), compound 9 ($377 \mathrm{mg}, 1.6 \mathrm{mmol}$), EDAC ($367 \mathrm{mg}, 1.92 \mathrm{mmol}$), DMAP (10 $\mathrm{mg}, 82 \mu \mathrm{~mol})$, $\mathrm{DCM}(4 \mathrm{ml})$. The experimental procedure was as described in the synthesis of compound 10 . The crude material was purified by flash chromatography with DCM as the eluent and recrystallised from ethanol/THF (15:1) to give the title compound as white needles.

Yield: $\quad 0.55 \mathrm{~g}(70 \%)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$):
$0.77-1.90(35 \mathrm{H}, \mathrm{m}), 2.41\left(1 \mathrm{H}, \mathrm{tt}, J_{H-H}=3.1 \mathrm{~Hz}, \mathrm{~J}_{H-H}=12.2 \mathrm{~Hz}\right), 3.98(2 \mathrm{H}, \mathrm{t}$, $\left.J_{H-H}=7.0 \mathrm{~Hz}\right), 6.89\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}=2.6 \mathrm{~Hz}, J_{H-H}=9.2 \mathrm{~Hz}\right)$, $7.03\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=2.1 \mathrm{~Hz}, \mathrm{~J}_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=8.8 \mathrm{~Hz}\right), 7.17\left(2 \mathrm{H}\right.$, ddd J_{H-H} $\left.=2.1 \mathrm{~Hz}, J_{H-H}=2.4 \mathrm{~Hz}, J_{H-H}=8.8 \mathrm{~Hz}\right), 8.06\left(2 \mathrm{H}, \mathrm{ddd}, J_{H-H}=1.8 \mathrm{~Hz}, J_{H-H}=\right.$ $2.6 \mathrm{~Hz}, \mathrm{~J}_{\mathrm{H}-\boldsymbol{H}}=9.2 \mathrm{~Hz}$).
${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(100.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): ~ 14.12,22.70,22.76,26.07,26.63,29.91,31.12,32.19,33.55,34.39,37.25$, $37.35,38.25,44.06,51.01,66.51,114.19,121.35,121.67,127.68,132.19$, 145.21, 148.93, 163.38, 165.10

MS M/Z (ESI+):
$515.3480\left(\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{NaO}_{3}\right.$, calcd. for $\left.\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{NaO}_{3}: 515.3496, \mathrm{M}+\mathrm{Na}\right)$, $493.3657\left(\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{O}_{3}\right.$, calcd. for $\left.\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{O}_{3}: 493.3676, \mathrm{M}+\mathrm{H}\right)$

FT-IR (v max, cm^{-1}): $\quad 501,663,686,763,810,848,1010,1072,1165,1195,1257,1465,1512$, 1604, 1720, 2846, 2916

Assay (RP-HPLC): 99.9\%

2. Supplimental Figures

2.1. Supplemental SAXS Data

Figure SI-1: The nematic phase of compound 13 as studied by SAXS. (a-g), evolution of the small-angle scattering peak for a magnetically aligned sample of 13 as a function of the indicated reduced temperartures, and (h) plot of integrated diffraction intensity for the small angle peak as a function of the angle x for compound 13 at three different reduced temperatures.

2.2. Supplemental Single Crystal X-ray Diffraction Data

Figure SI-2: Thermal elipsoid model (50% probability level) of the structure of (a) compound 10 and (b) compound 14 obtained by X-ray diffraction on single crystals grown from neat ethanol with a thermal gradient. For 10 the angle between the plane of the two phenyl rings is $58.76(9)^{\circ}$, and for 14 it is $58.18(2)^{\circ}$. For 10 the plane of the major form of the bulky end group (mean of 25 atoms) is at an angle of $84.59(6)^{\circ}$ from the plane of the mesogenic unit (mean of 46 atoms) while for 14 the end group (mean of 28 atoms) is at an angle of $80.96(6)^{\circ}$ from the plane of the mesogenic unit (mean of 46 atoms).
2.3.

Supplemental Mixture Data

Figure SI-3: Transiton temperatures $\left({ }^{\circ} \mathrm{C}\right)$ of binary mixtures of $\mathbf{1 7}$ with bis decylterephthalaniline (TBDA)

2.2. Supplemental XRD data

2.2.1. Structure 10

Table 1 Crystal data and structure refinement for 10.

Identification code	jwg1609
Empirical formula	$\mathrm{C}_{29} \mathrm{H}_{40} \mathrm{O}_{3}$
Formula weight	436.61
Temperature/K	$109.9(2)$

Crystal system monoclinic

Space group $\quad \mathrm{P} 2_{1} / \mathrm{c}$
a/Å
16.7608(8)
b/Å 5.5364(2)
c/Å 28.2495(12)
a/ ${ }^{\circ} \quad 90$
$\beta 1^{\circ} \quad 106.554(5)$
$\mathrm{y}^{\circ} \quad 90$
Volume/Å ${ }^{3} \quad 2512.7(2)$
Z
$\rho_{\text {calgg }} / \mathrm{cm}^{3} \quad 1.154$
$\mu / \mathrm{mm}^{-1} \quad 0.564$
F(000) 952.0
Crystal size $/ \mathrm{mm}^{3} \quad 0.251 \times 0.075 \times 0.046$
Radiation $\quad \operatorname{CuKa}(\lambda=1.54184)$
2θ range for data collection $/{ }^{\circ} 7.242$ to 142.068

Index ranges	$-15 \leq \mathrm{h} \leq 20,-6 \leq \mathrm{k} \leq 5,-34 \leq \mathrm{l} \leq 34$
Reflections collected	10843
Independent reflections	$4772\left[\mathrm{R}_{\text {int }}=0.0504, \mathrm{R}_{\text {sigma }}=0.0493\right]$
Data/restraints/parameters	$4772 / 0 / 306$
Goodness-of-fit on F^{2}	1.056
Final R indexes [l>=2 $\sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0743, \mathrm{wR}_{2}=0.1900$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0951, \mathrm{wR}_{2}=0.2121$
Largest diff. peak/hole /e $\AA^{-3} 0.35 /-0.37$	

Table 2 Bond Lengths for 10.

Atom Atom Length/Å			Atom Atom Length/Å		
01	C12	1.413(2)	C16	C21	1.387(3)
01	C15	1.366(3)	C17	C18	1.380(3)
02	C15	1.203(3)	C18	C19	1.384(3)
C1	C2	1.512(4)	C19	C20	1.390(3)
C2	C3	1.520(3)	C19	03	1.359(4)
C3	C4	1.519(3)	C19	O3A	1.425(12)
C3	C8	1.527(3)	C20	C21	1.388(3)
C4	C5	1.532(3)	C25	C26	$1.511(4)$
C5	C6	1.532(3)	C25	C27	$1.521(4)$
C6	C7	1.535(3)	C25	C28	1.528(3)
C6	C9	1.515(3)	C25	C24	1.553(4)
C7	C8	1.521 (3)	C25	C24A	1.572(10)
C9	C10	1.386(3)	C29	C23	1.541 (4)
C9	C14	1.395(3)	C29	C23A	1.522(10)

C10	C11	$1.396(3)$		O3 C22	$1.440(4)$
C11	C12	$1.378(3)$		C22 C23	$1.516(4)$
C12	C13	$1.374(3)$		C23 C24	$1.538(4)$
C13	C14	$1.384(3)$		O3A C22A	$1.430(14)$
C15	C16	$1.476(3)$		C22A C23A 1.527(12)	
C16	C17	$1.396(3)$		C23A C24A 1.499(15)	

Table 3 Bond Angles for 10.

Atom Atom Atom Angle/ ${ }^{\circ}$				Atom Atom Atom Angle ${ }^{\circ}$			
C15	01	C12	117.82(18)	C17	C18	C19	120.6(2)
C1	C2	C3	115.0(2)	C18	C19	C20	119.9(2)
C2	C3	C8	112.70(19)	C18	C19	O3A	133.8(4)
C4	C3	C2	111.4(2)	C20	C19	O3A	106.3(4)
C4	C3	C8	109.83(19)	03	C19	C18	112.2(2)
C3	C4	C5	112.7(2)	03	C19	C20	128.0(2)
C6	C5	C4	111.39(19)	C21	C20	C19	119.3(2)
C5	C6	C7	109.71(18)	C16	C21	C20	121.2(2)
C9	C6	C5	112.47(18)	C26	C25	C27	108.2(2)
C9	C6	C7	112.76(19)	C26	C25	C28	110.3(2)
C8	C7	C6	111.9(2)	C26	C25	C24	114.5(2)
C7	C8	C3	112.21(19)	C26	C25	C24A	85.9(4)
C10	C9	C6	120.3(2)	C27	C25	C28	109.3(2)
C10	C9	C14	118.0(2)	C27	C25	C24	101.7(2)
C14	C9	C6	121.6(2)	C27	C25	C24A	131.0(5)
C9	C10	C11	121.5(2)	C28	C25	C24	112.4(2)
C12	C11	C10	118.4(2)	C28	C25	C24A	108.8(4)
C11	C12	01	116.7(2)	C19	03	C22	116.3(2)
C13	C12	01	121.4(2)	03	C22	C23	107.9(3)

```
C13 C12 C11 121.8(2)
C12 C13 C14 119.0(2)
C13 C14 C9 121.3(2)
O1 C15 C16 111.1(2)
O2 C15 O1 123.1(2)
O2 C15 C16 125.8(2)
C17 C16 C15 122.2(2)
C21 C16 C15 119.0(2)
C21 C16 C17 118.8(2)
C18 C17 C16 120.2(2)
```


Table 4 Torsion Angles for 10.

C5 C6 C9 C10-107.7(2)
C20 C19 O3 C22 -1.3(4)

C5 C6 C9 C1471.3(3)	C20	C19	O3A	C22A	-179.1(7)
C6 C7 C8 C3 -56.3(3)	C21	C16	C17	C18	-0.3(3)
C6 C9 C10C11-179.0(2)	C26	C25	C24	C23	57.4(3)
C6 C9 C14C13178.8(2)	C26	C25	C24A	C23A	-161.4(8)
C7 C6 C9 C10127.6(2)	C27	C25	C24	C23	173.8(2)
C7 C6 C9 C14-53.4(3)	C27	C25		C23A	-50.7(10)
C8 C3 C4 C5 -54.6(3)	C28	C25	C24	C23	-69.5(3)
C9 C6 C7 C8 -178.44(18)	C28	C25	C24A	C23A	88.5(8)
C9 $\mathrm{C} 10 \mathrm{C} 11 \mathrm{C} 120.4(3)$	C29	C23	C24	C25	-162.0(2)
C10C9 C14C13-2.2(3)	C29	C23A	C24A	C25	167.2(6)
C10C11C12O1-178.60(19)	03	C19	C20	C21	-179.9(3)
C10C11-12C13-2.6(3)	03	C22	C23	C29	-69.9(3)
C11C12C13C14 2.4(3)	03	C22	C23	C24	53.1(4)
C1201 C1502-3.1(3)	C22	C23	C24	C25	74.0(3)
C1201 C15C16 176.91(18)	03A	C19	C20	C21	179.6(6)
C12C13C14C9 0.0(3)	O3A	C22A	C23A	C29	69.6(11)
C14C9 C10C11 1.9(3)	03A	C22A	C23A	C24A	-58.2(12)
C1501 C12C11-114.8(2)	C22A	C23A	C24A	C25	-65.3(12)

2.2.2. Structure 14

Table 1 Crystal data and structure refinement for 14.

Identification code	jwg1608
Empirical formula	$\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{3}$
Formula weight	450.63
Temperature/K	110.05(10)
Crystal system	monoclinic
Space group	P2/ $/ \mathrm{n}$
a/Å	16.3302(6)
b/Å	5.5649(2)
ClÅ	29.6423(9)
$\mathrm{a} /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	104.367(3)
V^{10}	90
Volumelå ${ }^{3}$	2609.53(16)
Z	4

$\rho_{\text {calcg }} / \mathrm{cm}^{3}$	1.147
μ / mm^{-1}	0.557
$F(000)$	984.0
Crystal size/mm ${ }^{3}$	$0.433 \times 0.088 \times 0.038$
Radiation	CuKa ($\lambda=1.54184$)
2Θ range for data collection/	9.54 to 134.106
Index ranges	$-19 \leq h \leq 14,-6 \leq k \leq 6,-26 \leq 1 \leq 35$
Reflections collected	9357
Independent reflections	$4663\left[\mathrm{R}_{\text {int }}=0.0319, \mathrm{R}_{\text {sigma }}=0.0346\right]$
Data/restraints/parameters	4663/2/348
Goodness-of-fit on F^{2}	1.087
Final R indexes [l>=2 ${ }^{(l)}$)]	$\mathrm{R}_{1}=0.0683, w \mathrm{R}_{2}=0.1701$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0807, \mathrm{wR}_{2}=0.1793$
Largest diff. peak/hole / e \AA^{-3}	0.26/-0.38

Table 2 Bond Lengths for 14

Atom Atom Length $/ \AA$ Atom Atom Length $/ \AA$ Å

C1	C2	1.522(4)	C17	C18	1.394(3)
C2	C3	1.532(3)	C18	C19	1.384(3)
C3	C4	1.517(3)	C19	C 20	1.390(4)
C3	C8	1.529(3)	C19	03	1.370(3)
C4	C5	1.525(3)	C20	C21	1.374(4)
C5	C6	1.533(3)	C22	C23	1.539(8)
C6	C7	1.530(3)	C22	03	1.457(5)
C6	C9	1.510(3)	C22A	C23A	1.523(18)
C7	C8	1.524(3)	C22A	03	1.439(9)
C9	C10	1.390(3)	C23	C24	1.536(6)
C9	C14	1.397(3)	C23A	C24A	1.505(13)

C10	C11	1.387(3)	C24	C25	1.534(5)
C11	C12	1.377(3)	C24	C30	1.544(5)
C12	C13	1.374(3)	C24A	C25A	1.534(13)
C12	01	1.414(3)	C24A		1.535(14)
C13	C14	1.389(3)	C25	C26	1.572(5)
C15	C16	1.479(3)	C25A		1.602(9)
C15	01	1.362(3)	C26	C27	1.520(4)
C15	02	1.200(3)	C26	C28	1.517(4)
C16	C17	1.383(3)	C26	C29	1.516(5)
C16	C21	1.399(3)			

Table 3 Bond Angles for 14.

Atom Atom Atom Angle ${ }^{\circ}$				Atom Atom Atom Angle $/{ }^{\circ}$			
C1	C2	C3	114.6(2)	C18	C19	C20	120.0(2)
C4	C3	C2	110.73(19)	03	C19	C18	124.5(2)
C4	C3	C8	109.77(19)	03	C19	C20	115.5(2)
C8	C3	C2	112.98(18)	C21	C20	C19	120.0(2)
C3	C4	C5	113.2(2)	C20	C21	C16	120.9(2)
C4	C5	C6	111.45(19)		C22	C23	110.9(5)
C7	C6	C5	109.53(19)	03	C22A	C23A	92.9(9)
C9	C6	C5	112.21(18)	C24	C23	C22	116.8(4)
C9	C6	C7	113.32(19)	C24A	C23A	C22A	101.6(7)
C8	C7	C6	111.8(2)	C23	C24	C30	107.1(4)
C7	C8	C3	112.02(18)	C25	C24	C23	110.1(4)
C10	C9	C6	120.6(2)	C25	C24	C30	111.1(3)
C10	C9	C14	117.8(2)	C23A	C24A	C25A	114.4(10)
C14	C9	C6	121.6(2)	C23A	C24A	C30A	110.7(9)
C11	C10	C9	121.8(2)	C25A	C24A	C30A	109.2(7)

C12	C11	C10	118.4(2)	C24	C25	C26	119.8(3)
C11	C12	01	117.5(2)	C24A	C25A	C26	105.1(7)
C13	C12	C11	121.9(2)	C27	C26	C25	106.5(3)
C13	C12	01	120.5(2)	C27	C26	C25A	123.8(4)
C12	C13	C14	119.0(2)	C28	C26	C25	103.9(2)
C13	C14	C9	121.1(2)	C28	C26	C25A	119.2(5)
01	C15	C16	112.21(19)	C28	C26	C27	109.2(3)
02	C15	C16	124.5(2)	C29	C26	C25	120.7(3)
02	C15	01	123.3(2)	C29	C26	C25A	83.1(4)
C17	C16	C15	123.3(2)	C29	C26	C27	109.1(3)
C17	C16	C21	118.6(2)	C29	C26	C28	107.1(3)
C21	C16	C15	118.1(2)	C15	01	C12	116.67(17)
C16	C17	C18	120.9(2)	C19	03	C22	117.4(4)
C19	C18	C17	119.6(2)	C19	03	C22A	119.6(9)

Table 4 Torsion Angles for 14.

A	B	C		Angle ${ }^{\circ}$	A	B	C	D	Angle ${ }^{\circ}$
C1	C2	C3	C4	176.1(2)	C17	C18	C19	03	-179.9(2)
C1	C2	C3	C8	-60.3(3)	C18	C19	C20	C21	0.2(4)
C2	C3	C4	C5	179.4(2)	C18	C19	03	C22	5.5(4)
C2	C3	C8	C7	-178.4(2)	C18	C19	03	C22A	-9.8(12)
C3	C4	C5	C6	-55.5(3)	C19	C20	C21	C16	$-0.3(4)$
C4	C3	C8	C7	-54.2(3)	C20	C19	03	C22	-174.2(3)
C4	C5	C6	C7	54.9(3)	C20	C19	03	C22A	170.5(12)
C4	C5	C6	C9	-178.4(2)	C21	C16	C17	C18	$-0.4(3)$
C5	C6	C7	C8	-56.0(3)	C22	C23	C24	C25	76.4(5)
C5	C6	C9		106.8(2)	C22	C23	C24	C30	-162.7(4)
C5	C6		C14	-72.5(3)	C22A	C23A	C2	C25A	-161.4(13)

C6 C7 C8 C3 56.8(3)	C22A C23A C24A C30A 74.8(14)				
C6 C9 C10C11178.6(2)	C23		03	C19	173.5(3)
C6 C9 C14C13-178.8(2)	C23	C24	C25	C26	-159.0(3)
C7 C6 C9 C10-128.5(2)	C23A	C22A		C19	-154.7(7)
C7 C6 C9 C1452.2(3)	C23A	C24A	C25A	C26	87.4(10)
C8 C3 C4 C5 54.0(3)	C24	C25	C26	C27	63.5(4)
C9 C6 C7 C8 177.90(19)	C24	C25	C26	C28	178.8(3)
C9 C10C11C12 0.0(3)	C24	C25	C26	C 29	-61.3(4)
C10C9 C14C13 1.9(3)	C24A	C25A	C26	C27	-58.9(9)
C10C11 C12C13 2.3(3)	C24A	C25A		C28	87.0(8)
C10C11C12O1 178.68(19)	C24A	C25A	C26	C29	-167.3(8)
C11C12C13C14-2.5(3)	C30	C24	C25	C26	82.5(5)
C11C12O1 C15114.6(2)	C30A	C24A	C25A	C26	-147.9(8)
C12C13C14C9 0.3(3)	01	C12	C13	C14	-178.71(19)
C13C12O1 C15-69.0(3)	01	C15	C16	C17	8.2(3)
C14C9 C10C11-2.1(3)	01	C15	C16	C21	-171.7(2)
C15C16C17C18 179.7(2)	02	C15	C16	C17	-171.6(2)
C15C16 C21 C20-179.7(2)	02	C15	C16	C21	8.5(4)
C16C1501 C12-178.46(18)	02	C15	01	C12	1.3(3)
C16C17 C18C19 0.3(3)	03	C19	C20	C21	180.0(2)
C17C16 C21 C20 0.4(4)	03	C22	C23	C24	72.3(5)
C17C18C19C20-0.2(3)	03	C22A	C23A	C24A	-179.4(11)

1. Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
2. CrysAlisPro, Oxford Diffraction Ltd. Version 1.171.34.41
3. Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm within CrysAlisPro software, Oxford Diffraction Ltd. Version 1.171.34.40
4. "Olex2" crystallography software, J. Appl. Cryst., 2009, 42, 339-341.
5. SUPERFLIP - a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions,
L. Palatinus \& G. J. Chapuis, J. Appl. Cryst. 2007, 40, 786-790.
6. SHELXT - Integrated space-group and crystal-structure determination G. M. Sheldrick, Acta Cryst. 2015, A71, 3-8
7. "SHELXL-97" - program for the Refinement of Crystal Structures. G.M. Sheldrick, Acta Cryst. 2008, A64, 112-122.
