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Abstract

THEORETICAL FOUNDATIONS OF MULTICORE SYSTEMS: A DYNAMICAL SYSTEMS

PERSPECTIVE

by

Paul Bogdan

Doctor of Philosophy in Electrical and Computer Engineering, Carnegie Mellon University

Professor Radu Marculescu, Chair

The proliferation of complex phenomena and the tightening competition for limited resources are

two fundamental challenges for the modeling, analysis, and optimization of dynamical processes

taking place in networked environments/architectures. Modes of collective and competitive be-

havior can be noticed across a wide array of social, biological, and technological contexts. From

urban crowds to bacterial colonies, from brain neurons to human cells and even electron-hole in-

teractions in semiconductors, dynamical phase transitions influence the macroscopic behavior of

complex networks. To address these challenges, we focus on understanding, modeling, analyzing,

and optimizing large-scale interconnected systems, such as future thousand-core Networks-on-Chip

(NoC), biologically propelled Cyber-Physical Systems (CPS) consisting of micro-robotic swarms,

or biological networks of stem cells, for performance, power, or fault-tolerance.

Enabled by recent advances in CMOS technology, the integration of tens and soon thousands

of heterogeneous processing cores communicating via the NoC paradigm brings into the discussion

the traffic modeling problem. Traffic modeling is of crucial importance for both static and dynamic

NoC design and optimization problems such as topology selection and resource allocation, mapping,

scheduling, routing or power management. The approaches proposed so far exhibit major limita-

tions. For example, many of the queueing theory based modeling and optimization approaches

proposed for NoC architectures ignore the traffic characteristics (e.g., non-stationarity, fractality).

In many situations, these models lead to buffer overflow or deadline missing situations and so poor

(non-optimal) performance levels.

In this thesis, we show how this state of affairs can be changed by embracing a statistical physics

inspired approach in order to insure accurate network traffic characterization. By using an analogy

between a thermodynamic gas and a networked multicore architecture, our model captures the

relevant traffic characteristics (e.g., fractality, non-stationarity) via a dynamical master equation.

Our approach not only leads to a more accurate estimation of performance metrics over Markovian

models, but also helps at defining new state space model for dynamical systems that can be used

for online optimization. Besides being an important contribution by itself, this radically new

approach enhances the efficiency of resource allocation in nanoscale networks and overcomes the

prior limitations of performance analysis approaches based on queuing models.

Building on statistical physics grounds, we model and analyze a biologically inspired communica-

tion protocol, namely the stochastic communication protocol. Under the stochastic communication

protocol aiming at mitigating the nanoscale challenges (e.g., particle hits, cross-talk) in multi-core
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platforms, each node in the network disseminates packets multiple times via multiple paths. Hence,

fault-tolerance is enforced at system-level by exploiting path diversity. To characterize such a dy-

namic behavior, we concentrate on estimating various performance metrics via a master equation

approach capturing communication events such as packet duplication, packet transmission, and

packet corruption. The proposed statistical physics model allows us to identify the benefits of this

protocol for future communication fabrics.

To address the power consumption issues in large scale on-chip networks, we formulate the power

and peak temperature management of heterogeneous NoC platforms as constrained finite horizon

fractal optimal control problem. We show not only that fractal characteristics can be accounted

for via fractional calculus state space models, but also that the online controller can be reduced

to a linear program and efficiently computed via parallel algorithms. Our approach not only leads

to significant power savings, but it also opens new avenues for dynamic optimization of large-scale

systems exhibiting fractal dynamics.

Based on the proposed framework for modeling, analysis, and optimization of dynamical pro-

cesses taking place on networked architectures, we formulate general guidelines for CPS design. As

a concrete CPS example, we consider the design problem of the control algorithm of a pacemaker,

which takes into account at run-time the fractal characteristics exhibited by heart rate variability.

In summary, this thesis offers a statistical physics view on using the network-paradigm in multi-

core and cyber-physical system design. The results and discussion presented herein can be further

extended to other classes of systems and applications. One research direction is represented by

modeling and optimization of bacteria propelled micro-robotic swarms. Another research direc-

tion concerns the modeling of human dynamic processes such as car traffic, which can enable road

structure optimization. Moreover, by relying on this statistical physics inspired framework, we can

define models for biological communication and heterogeneous population growth with applications

in regenerative medicine.
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Chapter 1

Introduction

Due to tremendous advances in complementary metal-oxide-semiconductor (CMOS) technol-

ogy, the computing paradigm evolved from its first incarnation (i.e., ENIAC electronic computer)

to complex Systems-on-Chip (SoCs) consisting of tens of heterogeneous cores seeking to address

both application specific (e.g., mobile phone communications, automotive, airplanes) and gen-

eral purpose high-performance computing (e.g., high energy physics, meteorology). The growing

interest and demand for tera1-scale (and soon peta2-scale computing) will soon require thousand-

core SoC platforms. Nevertheless, moving deeper into the nanoscale domain under this multicore

paradigm leads to a series of great challenges for SoC design [38]. Firstly, the increased wiring

delays move the burden from computational resources to the communication side as driving long

global interconnects increases the likelihood of synchronization errors due to unpredictable delays

and high power consumption. Secondly, increasing the number of heterogeneous cores contributes

to a higher design complexity. This has deep implications on both technological and time-to-

market costs. Consequently, in order to mitigate such problems, the SoC design methodologies

need to satisfy a few key attributes: scalability (i.e., increased system size should lead to increased

performance), re-usability (i.e., increased re-utilization of components via decentralization and de-

coupling of computation and communication), adaptability (i.e., adaptation of computing platform

to various workload and computational requirements), and reliability (i.e., fault-tolerance to both

transient and permanent hardware failures).

To tame the complexity of SoC design and provide enhanced scalability compared to traditional

point-to-point or bus-based architectures (e.g., long delays, area, power consumption), the design

of electronic systems has to embrace the Network-on-Chip (NoC) approach [17][51][69]. Under the

NoC paradigm, dedicated buses get replaced with packet based communication [50] allowing for a

much higher communication bandwidth only with a moderate area overhead [36][77][92]. Never-

theless, the network concept, which stands at the heart of many natural and biological structures,

1Tera-scale computing refers to platforms able to execute trillions (i.e., 1 trillion = 1,000,000,000,000) of operations
per second (teraflops) on trillions of bytes of data (terabytes) [39][68].

2Peta-scale computing refers to platforms able to execute quadrillion (i.e., 1 quadrillion = 1,000,000,000,000,000)
of operations per second (petaflops) on quadrillions of bytes of data (petabytes).
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has become the de facto systems design paradigm. Consequently, it has become possible to build

complex Cyber-Physical Systems (CPS) with the goal of reducing economical costs, minimizing

energy cost and improving quality-of-life. Such CPS systems refer to both wired and wireless net-

works of embedded computational devices that can monitor and control various physical processes

that occur in the environment (e.g., a power grid, transportation and communication network, or

network of medical devices).

To date, most NoC and CPS design and optimization methodologies assume either deterministic

communication [21][75] or exponentially distributed events (i.e., packet arrivals at buffers, cores,

memory) with constant mean (or arrival) rates [46][61][117]. This implies that the probability of

new event (e.g., packet arrival, packet departure) decays exponentially fast to zero. Current models

also rely on the memoryless property: the number of events appearing in disjoint time intervals

are considered to be statistically independent [87]. These assumptions have important practical

implications since Poisson traffic would require small buffers, predict small node-to-node latencies

or other optimistic estimates for quality of service metrics. However, in reality, the network traffic

is neither deterministic, nor stationary and/or memoryless.

Generally speaking, the network traffic is the result of a superposition of multiple correlated

dynamical processes coming from the interaction between the user/application, on one hand, and

the architecture/resources, on the other hand. Under such conditions, the highly nonlinear users

behavior generates a complex workload dynamics that can exhibit a systematic relationship across

multiple scales in space and time. At the same time, distributing computations over a large number

of cores, makes it impossible to predict and inform all cores and resources about the global system

state. This incomplete information about application dynamics as a function of user demands and

the availability of computational resources calls for a new optimization methodology that considers

both workload features (fractality, non-stationarity) and uncertainty in system behavior. This is

the underlying theme of this PhD work.

1.1 Multicore Systems for Embedded and Cyber-Physical Appli-

cations

So far, we briefly learned about the increasing demand for more computing capabilities without

justifying why this trend has been sustained and why it is believed to be sustained in the future.

At last, applications are the main drivers of all information technology evolution and in turn

they are subject to change, enhance in their increasing sophistication and complexity to address

the challenges of our society at large. Computing platforms evolved from the classical Turing

automata into complicated interactive Turing machines, and soon, to attain the societal needs,

will go far beyong Turing paradigm. Consequently, in what follows, we review the main challenges

for designing thousand core NoCs and then embark into the world of CPS aiming at integrating

classical computing with surrounding physical processes for overcoming the challenges of the twenty

first century.
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Figure 1.1: Schematic plot of a 3×3 mesh Networks-on-chip (NoC) architecture consisting of 9
tiles. Any NoC tile consists of a processing element (PE), input and output buffers and an on-chip
router through which the current PE communicates with the remaining PEs in the NoC.

1.1.1 Network-on-Chip Architectures

The basic NoC architecture for multi-core platforms consists of a set of interconnected tiles that

exchange packets among them. As shown in Figure 1.1, an NoC tile consists of a processing element

(PE) (e.g., general purpose or digital signal processor, graphics accelerator, embedded memory

block), input and output buffers and an on-chip router through which the inter-tile communication

is achieved. To support the inter-tile communication, each core has embedded input and output

buffers to temporarily store the incoming packets from the neighboring nodes in the network. As

shown in Figure 1.1, a packet generated at source (1,1) that needs to be delivered to destination

(2,3) via a static XY routing, is first sent from local PE to its associated router at tile (1,1); then,

at each intermediate node, a routing decision is made based on the header information (as shown

with the red dotted arrows in Figure 1.1 for the shortest source-destination path).

Using the concept of packet based communication that avoids driving long wires, NoCs allow

for a seamless integration of a large number of communicating cores; by proper design, this leads to

a high system throughput/bandwidth. Besides providing scalability, the NoCs allow to design re-

usable and reconfigurable modular structures. In other words, while the PEs, routers, interconnects

and network interfaces can all be designed and optimized in isolation, in the end they should be

interconnected to build a complex computing platform that can be further reused to run a large

and diverse set of target applications.

Despite these advantages, the NoC optimization is strongly dependent on the accuracy of traffic

models [27][28][29]. Indeed, relying solely on stationary Markovian traffic models can lead to very

optimistic estimates in terms of both buffer lengths or node-to-node latencies. As we show later

in this thesis, due to the fractal and non-stationary nature of NoC traffic that results from the

interaction between the user and application, on one hand, and architecture and the resources

of the platform, on the other hand, the NoC optimization needs to rely on very different models

compared to the queueing and Markovian models proposed so far [117]. This is particularly true
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Figure 1.2: a) A generic representation of the CPS operation from physical processes all the way
up to application workloads. Such an itinerary may consist of volcanic activity monitoring, cloud
movement, precipitation formation, air pollution, traffic conditions, and physiological processes,
followed by compressing the data measurements and communicating them to data centers for
further analysis. b) Feedback control diagram that ensures the QoS reference via statistical physics
approaches. Distributed controllers can dynamically estimate the workload and decide, based on
specific QoS metrics (e.g., latency) on prioritizing data transmission or allocating more efficiently
the communication bandwidth.

at high packet injection rates that push the network towards criticality (traffic congestion) [23][26].

1.1.2 Cyber-Physical Systems

Embedded systems research evolved to the point at which it enables tight integration of so-

phisticated sensors monitoring real world processes (e.g., heart rate, cloud movement, temperature

fluctuations, wind speed, volcanic activity, earth magnetism fluctuations) and actuators able to

control the environment. These newly envisioned systems, expected to successfully integrate com-

putation, communication and control with physical processes, are commonly referred to as cyber

physical systems (CPS) [93][94][147]. As shown in Figure 1.2.a, the CPS denotes a network of

embedded computational devices and an associated set of wired or wireless networks that can

monitor and control various physical processes that occur in the environment (e.g., a power grid,

transportation and communication network, or network of medical devices) [31].

Unlike embedded systems research, where the focus is on building computational models for

specific embedded applications, in the CPS area the goal is not only to establish a reliable com-

munication infrastructure between such computational elements, but also to include time- and

feedback-based control as intrinsic components of the programming model (see Figure 1.2.b) [30].

This goal lets us generalize the embedded-systems computational paradigm so that more-direct

interaction between the system and physical world becomes possible. For instance, vehicular net-

works describing the cars movement in a city or the swarms of bacteria used for diagnostic or

drug delivery purposes [32] are CPS examples that are distinct from classical networked embedded

systems.

Building high performance, low power, as well as safe reliable and secure CPS requires a mul-
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tidisciplinary design and optimization approach that brings together concepts, algorithms and

techniques from real-time computing, signal processing, distributed and/or self-organizing control.

The crux of these challenging problems is to rely on accurate workload models (see the x(t) variable

in Figure 1.2.b) since workload affects not only local parameters (e.g., buffer utilization, core stall

times), but also macroscopic metrics (e.g., CPS throughput, CPS response time). For instance,

we cannot decide the size and topology of a particular wireless sensor network without considering

the spatio-temporal characteristics of the communication workload that must be communicated

reliably to data centers for further analysis and decision purposes. In addition, we cannot arbitrar-

ily decide the size of the communication buffers between the sensors in a network or data center

because the loss or delay of critical information can have catastrophic effects on air, road, or rail-

road traffic. Similarly, we cannot ignore the characteristics of the workload generated by a series

of bio-implantable devices, because this can have a crucial impact on a patient’s life.

To overcome these challenges and in particular the problem of large scale, we argue for capturing

the space-time characteristics of CPS workloads via fractal-type master equations and incorporate

them into statistical physics (e.g., mean field) inspired optimization framework (see Figure 1.2.b).

This will be discussed in more details in Chapter 7.

1.2 Theoretical Foundations

Scientists are intensely preocuppied by the study of dynamic processes taking place on networked

architectures, such as chemical pathways and gene regulation in biological systems, traffic across

transportation networks like highways or flight trajectories, social networks, economic networks of

finance and stock market or off- and on-chip technological networks. Although these dynamical

processes have been considered random due to their complex and seemingly irregular behavior, they

all share common universal characteristics such as non-stationarity, non-ergodicity and fractality.

We should not simply be content with having gained an understanding of the characteristics of

dynamical processes, but envision improved designs and optimization methodologies. This thesis

relies on the fields of statistical physics and fractional calculus. It builds upon the theoretical

foundations of science (i.e., the interplay between hypothesis definition, experimentation and va-

lidity demonstration), in order to provide a comprehensive analytical framework that takes into

account the optimization of various dynamical processes on networked architecture in the presence

of fractality, non-stationarity and uncertainty.

1.2.1 Statistical Physics

A wide variety of systems within and surrounding us prove to be out-of-equilibrium: gases,

fluids, superfluids, microtubules inside the cell, electrons in semiconductors, nuclear matter in

neutron stars. Concerned with these out-of-equilibrium systems consisting of a large number of

components (e.g., particles, spins, molecules, agents), statistical physics describes the emergent

macroscopic behavior resulting from both short- and long-range microscopic interactions (of many
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degrees of freedom) [16][89][103][144].

Simply speaking, statistical physics overcomes the difficulties of classical mechanics (i.e., writing

dynamical equations of motion for individual erratically moving particle) by relying on probabilistic

tools and metrics (e.g., probability distribution function) to characterize population of agents and

how they are affected by microscopic interactions in both space and time.

Since its birth more than a century ago, when scientists were studying the erratic movement of

Brownian particles, statistical physics has found applications in a wide range of fields ranging from

engineering [13][54], to biology [113], to economics [76][139] and social sciences [113]. In spite of

many theoretical developments such as pattern formation, critical phase transitions, many particles

systems or self-organization, relevant for the current discussion will be the master equation concept

used to study the dynamics of buffer occupancy across a communication network, the spreading

of a piece of information across a certain network and the transport processes (e.g., pedestrian

movement, car traffic) evolving over dynamic networked structures. All these subjects are discussed

in more details in the next chapters.

The master equation refers to a differential equation which models, either in continuous or dis-

crete time domain, the evolution of the probability of a given system to be in one state out of a

set of many possible states. The derivation of master equation can be done using the very basic

principles of probability theory, such as the total probability theorem. Building on such mathemat-

ical concepts, a generalized master equation meant to account for Non-Markovian dynamics can be

written in the following form:

∂P (x, t)
∂t

=

t∫
t0

∞∫
−∞

K (x− y, t− τ)P (y, τ) dydτ + P (x0, t0)δ(x− x0)δ(t− t0) (1.1)

where P (x, t) is the probability of finding the system of interest in state x at time t, P (x0, t0) is

the probability that the system started its evolution at time t0 in state x0, and K (x− y, t− τ) is a

kernel function of transition probabilities that weighs in the state space and in time the transitions

from state y at an earlier time τ to the current state x at time t [110]. The generalized master

equation above has been used to model many physical phenomena such as anomalous diffusion [83],

continuous time random walks [65][107]. Assumming that our stochastic process x(t) is Markovian,

the generalized master equation degenerates into a classical Markovian equation of the form [98]:

∂P (x, t)
∂t

=

∞∫
−∞

K(x− y)P (y, t) dy + P (x0, t0)δ(x− x0)δ(t− t0) (1.2)

where K(x−y) depends only on the shifts in state space x−y and not on time shifts. Such a Marko-

vian equation has been employed by Bachelier (1900) to model price fluctuations, Smoluchowski

(1906) for modeling density fluctuations in gas kinetic theory, Chapman (1928) for modeling the

Brownian motion of grains in liquids, and Kolmogorov (1931) for his unified theory of continuous

time Markov processes.
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Throughout this thesis, we will make use of this master equations to study the network traffic

processes and extend them to multiple coupled stochastic processes to model the spreading of

branching random walks across a graph.

1.2.2 Fractional Calculus

There is good evidence that careful analyzis of dynamical processes taking place on networked

architectures, unveils that they display a rich spectrum of properties such as non-differentiability,

non-Gaussianity, power law relaxation times or time fractality, which cannot be properly described

via classical (integer order) calculus. The first “earth-shaking” moment, when dynamics ceased to

be seen through the view of analytic functions, dates back to 1872, when Weierstrass constructed

a function that was continuous, but nowhere differentiable. This mathematical artifact remained

somehow a curiosity until 1960s when Mandelbrot [102] defined the fractals as the building block of

explaining the natural geometries (e.g., coastlines, lightnings, molecular trajectories, mountain and

cloud shapes). Not long after that, Mandelbrot defined the notion of fractal time in the context

of transmission in telephone networks [20] and model the fractal behavior via fractional calculus

concepts [101].

Stemming from a scientific conversation between Marquis de L’Hôspital and Gotfried Wilhelm

Leibniz in 1695 which scrutinized the existence and meaning of a half order derivative, fractional

calculus refers to integral and derivative operators of fractional order. From a mathematical per-

spective, a fractional order derivative refers to a convolution of the considered function with a power

law memory kernel. From this perspective, the stochastic dynamics exhibiting power law (rather

than exponential) time correlations is more accurately modeled via a time fractional derivative

of the probability distribution function [161]. The mathematical definition of the fractional order

derivative is as follows:

dαx(t)
dtα

= 1
Γ(n− α)

dn

dtn

t∫
0

x(τ)

(t− τ)α−n+1dτ , n− 1 < α < n, n ∈ Z(n is integer) (1.3)

where α is the fractional order of the fractional derivative and Γ(n−α) = (n−α−1)! is the Gamma

function [128].

This continuous time definition of fractional derivative can also be written in discretized form

via the Grunwald-Letnikov formula:

dαx(t)
dtα

= limδt→0
1
δtα

[t−a]/δt∑
j=0

(−1)j
(
α
j

)
x (t− jδt) (1.4)

where δt is the time increment, [t−a]/δt represents the integer part of the ratio between the (t−a)

and δt. Eq. 1.3 (continuous) and Eq. 1.4 (discrete) capture directly the role of the power law

observed in the intervals of times between which the stochastic process changes its magnitude (i.e.,

(t−τ)α−n+1) and allows not only for a more accurate description of the time dynamics of stochastic
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process x(t), but also better optimization as will be discussed in this thesis.

Besides Mandelbrot’s fractional Brownian motion model, fractional calculus has found ap-

plications in a wide range of fields such as strange kinetics [165], viscoelasticity [99], stochas-

tic dynamics with long-time memory [161], bio-physiological processes [64][162], anomalous diffu-

sion [44][45][84][85][123], field dynamics [151], reaction-transport systems [106], control engineering

[8][119][127][2], non-extensive statistical mechanics [1] and economics [72]. In this thesis, fractional

calculus concepts are used to model fractal processes and define new optimization methodologies

for both NoC architectures and CPS systems.

1.2.3 A Glimpse into Fractals

Although self-similarity was debated and discussed by many mathematicians and physicists

between 1600s and 1960s, the concept of fractal was introduced in 1975 by Benoit Mandelbrot to

denote an object that exhibits a jagged shape or spiky behavior and some degree of repetition or

self-similarity over a wide range of scales.

Mathematically speaking, a geometric object is called fractal if it displays self-similar charac-

teristics over all scales and it is characterized by a fractional dimension:

fractal dimension =
number of self-similar pieces

magnification factor
(1.5)

To better understand what fractals (or non-Euclidean geometry) mean, we consider the side

by side comparison of four geometric objects: a straight line (see Figure 1.3.a), the Cantor set

(see Figure 1.3.b), a square (see Figure 1.3.c) and a collection of tree branches (see Figure 1.3.d).

Figure 1.3.a shows a segment of arbitrary length which can be divided into an arbitrary series of

smaller segments of equal length. This shows that this one dimensional Euclidean object displays

self-similar properties. By computing the fractal dimension via Eq. 1.5 we obtain an integer

value of 1 for any magnification factor. By following the same reasoning, we can deduce that the

fractal dimension for a square is 2 irrespective of the magnification factor. This implies that some

Euclidean objects may display self-similar structure, but are not fractal since they are characterized

by integer dimensions.

In contrast, when computing the fractal dimension of a Cantor set we obtain a fractional value

of approximately 0.6. For completeness, we consider a collection of tree branches and use the box

covering method to determine a fractional dimension of 1.8. Both these objects, not only display

self-similar features, but are also characterized by fractional dimension coefficients. In conclusion,

these geometric objects can be regarded as fractals.

In addition to these examples, there are many natural objects that display self-similar features

but characterized by different fractal dimensions. These objects represent a generalization of the

fractal concept and are called multi-fractals. Consequently, unlike fractal objects which are charac-

terized by a single fractal dimension, the multi-fractal objects are characterized by a distribution

of fractal dimensions.
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Figure 1.3: a) A segement as an example of an one-dimensional non-fractal object. b) The Cantor
set as an example of a fractal object confined to one dimension. The Cantor set is obtained by
dividing a segment in three equal parts and removing always the middle one. c) A sqaure as an
example of a non-fractal object characterized by a fractal dimension of 2. d) A branching tree object
characteristic to natural systems and characterized by a fractal dimension of 1.8. e) Mass exponent
f(q) as a function of the moment index q. f) The multi-fractal spectrum h(α) as a function of
fractal dimension α.

As a result of availability of many rich data sets about dynamical processes, the geometric

interpretation of fractals has been extended to probability theory and stochastic processes [18].

Stochastic fractals gained a lot of attention in statistical physics for modeling anomalous diffu-

sion or Levy flights [84][80], transport processes [85], growth models [15], disordered systems [45],

molecular dynamics [64], reaction limited aggregation [16], physiology [124]. The discovery that

price fluctuations are not completely random lead to a very intense investigation of the existence of

fractal behavior in econophysics [102][100]. More recently, fractals have been discovered in complex

networks [54][113] and complex systems [125][144].

From a mathematical perspective, a stochastic process is denoted as being mono-fractal if all

its moments of order q behave as Kq(t) ≈ tconst×q. As shown in Figure 1.3.e by red straight line,

the exponent of the higher order moments Kq(t) is called mass exponent f(q) = const × q and
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is linear in the order q. However, in many situations, due to the heterogeneity in the system or

the interactions between the system components and environment, this mass exponent function

f(q) turns out to behave as a nonlinear function of the moment order q (i.e., Kq(t) ≈ tf(q), where

for instance f(q) can be given by
√

(q) + q2). In this case, the stochastic process is called multi-

fractal (see the blue dotted line in Figure 1.3.e). An alternative description of fractal processes

can be obtained by computing the distribution of fractal dimensions. As shown in Figure 1.3.f,

a fractal stochastic process is characterized by a peaked (delta-function type of law) distribution.

In contrast, the multi-fractal stochastic process is characterized by a wide distribution of fractal

dimensions (see the blue dotted line in Figure 1.3.f). All these concepts are used in this thesis

to model dynamical processes taking place on a networked infrastructure and then based on these

models we define various optimization methodologies.

1.3 Thesis Overview and Research Objectives

Although promising from several points of view (e.g., design modularity, higher scalability,

increased energy efficiency per bit operation), the NoC architectures need to be able to communicate

reliably large amounts of data resulting from various applications (e.g., biological and chemical-

physics simulations, real-time 3D Internet, media mining, health monitoring and interactive medical

diagnosis, financial analysis, etc.) in order to deliver the promise of tera-scale computing. For

achieving maximum performance, a new science of network design is needed to account for the

dynamic nature of incoming applications and efficiently map them onto the available computational

resources. Towards this end, the proposed research addresses the following major objectives:

• Modeling and analysis of dynamic processes taking place on networked archi-

tectures: Because the performance of NoC architecture is highly dependent on the packet

injection rates, routing protocols and the amount of buffering resources available on-chip, we

develop a statistical physics inspired NoC traffic model able to capture the dynamic charac-

teristics (e.g., fractality, non-stationarity) of traffic patterns [23][28]. As we show in Chapter

3 and 4 (see also left hand side of Figure 1.4), this traffic model is crucial for performance

analysis (e.g., buffer occupancy, node-to-node latency) and platform optimization (e.g., buffer

sizing, packet scheduling).

• A dynamic approach to NoC fault-tolerance: Relying on the master equation con-

cept, we model the dynamic processes (packet duplication, packet probabilistic dissemination,

packet dropping) enabled by a stochastic communication protocol and estimate the hitting

time between a pair of source and destination nodes [25]. As shown in Figure 1.4, this formal-

ism can not only be used to estimate the performance of NoCs in the presence of hardware

errors, but also to define several optimization problems (e.g., find the forwarding probability

such that the hitting times of source-destination pairs and the total number of disseminated

packets are minimized).
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Figure 1.4: Research objectives in this thesis: Building on statistical physics concepts, we propose
an analytical framework for quantifying the NoC performance and fault-tolerance. To provide
accurate optimization methodologies, we propose a master equation approach to traffic modeling.
This serves as the basis for our future work on control and optimization for both NoC architectures
and CPS systems.

• Optimization of networked architectures under fractality, non-stationarity and

uncertainty: Building on our traffic model, our next step is to propose a new optimization

methodology for NoCs which takes into account the traffic characteristics and its intrinsic

uncertainty (see the right hand side of Figure 1.4). More precisely, we aim at solving a finite

horizon optimal control problem that seeks to keep the buffer utilization under a predefined

region while satisfying some performance constraints (e.g., latency) and minimizing power

consumption and/or peak temperature profile.

All in all, we embrace a statistical physics approach to characterize the dynamic processes

taking place on NoCs via a master equation. This equation characterizes the dynamic processes

in both space and time and thus allows us to compute their higher order statistics. In addition,

this methodology also offers an elegant way of formulating and solving various NoC optimization

problems (e.g., power management).

Building on our modeling framework of dynamical processes taking place on networks, we

propose a general optimization approach for cyber-physical systems. Although this formalism can

be easily particularized to classical problems such as the resource allocation under fractal workloads,

we focus our attention on pacemaker algorithms for controlling fractal heart rate processes. We

also generalize our analytical framework to capture the human dynamics through fractal structures
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(e.g., road traffic) or to model biological swarms in non-Newtonian3 liquids.

1.4 Thesis Organization

This dissertation focuses on modeling, analysis and optimization of dynamical processes taking

place on networked structures. Unlike classical queueing and linear control theory, we account

for the processes characteristics like fractal and non-stationary behavior and present novel design

methodologies and design automation tools for power and thermal management of future NoC-based

multi-cores. In the following, we provide a brief overview of our contributions.

Chapter 2 sets forth a (non-equilibrium) statistical physics description of both application and

architecture domains. More precisely, it models the set of applications running on a computational

architecture as a dynamic graph of interacting computational tasks that grows and shrinks as a

function of user preferences, operating system requirements and architectural constraints. Note

that we do not only consider the time as an intrinsic component of current and future interactive

computation, but also account for fractal behavior and uncertainty by characterizing graph nodes,

interaction edges and their computational properties via time dependent probability distribution

functions. Along the same lines, we introduce a novel time-dependent probabilistic description of

architectural components. This is motivated in part by the intrinsic process variability, manufac-

turing non-idealities and susceptibility of hardware to particle strikes which can affect the operation

either transiently or permanently.

Building on this non-equilibrium description of both application and architecture, Chapter 3

introduces a statistical physics inspired approach to network traffic modeling. More precisely, the

non-stationary and fractal behavior observed in network traffic are modelled through a generalized

master equation. In addition, we introduce the concept of fitness distribution in order to account for

the heterogeneity that can exists in network traffic patterns. We also discuss the main differences

between our approach and the existing traffic models for multi-core platform design.

Starting from this statistical physics characterization of network traffic, Chapter 4 summa-

rizes the derivation of the differential equation governing the evolution of higher order moments

associated with network traffic processes and investigates the implications of fractal behavior on

performance (e.g., buffer overflow probabilities, source-to-destination exceedance probabilities). In

addition, we investigated the critical phenomena in NoC traffic by quantifying the departure from

Markovian assumptions as a function of increased packet injection rate for synthetic traffic and

MPEG4 decoder application. For completeness, we validated our proposed NoC traffic model for

both synthetic traffic traces and benchmark applications from SPEC 2000 and SPEC 2006.

Chapter 5 summarizes our work on modeling the stochastic communication protocol as a col-

lection of branching and annihilating random walks constrained to move along the edges of the

network topology. Besides this theoretical challenge, the emphasis is on capturing all network com-

munication transactions and estimating the hitting time between a source and a destination node.

3Non-Newtonian fluids exhibit a nonlinear relationship between the shear stress and shear rate (unlike Newtonian
fluids which exhibit a linear relation).
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Later on, in Section 8.3, we discuss how this formalism can be used to model and quantify the

performance of bacteria propelled micro-robotic swarms swimming in viscous environments.

Building on fractional calculus concepts to model the network fractal behavior, Chapter 6

presents a constrained finite horizon fractal optimal control approach for both power management

and peak temperature minimization. To test the efficiency of our dynamic optimization method-

ology, we used benchmark applications from SPECweb99 and SPEC 2000. In addition, we also

discuss how the parameters of the model can be efficiently estimated and how the controller can

be synthesized at run-time from solving a linear system in a parallel fashion.

The aim of the proposed statistical physics inpired network traffic model is not only to model

and reproduce the NoC traffic traces, but also to provide intuitive insights on how to perform

better design and optimization of networked architectures. Along these lines, Chapter 7 builds on

a fractional calculus based master equation and sets forth a general dynamic optimization approach

for cyber-physical systems. As a concrete example of this formalism, we summarize our results on

designing control algorithms for regulating fractal processes with predefined deadlines.

Finally, in Chapter 8 we outline our future work on three directions: Firstly, we seek to propose

a coherent framework for modeling, analysis and optimization of biological propelled micro-robotic

swarms with medical applications. Secondly, by coupling the description of agent dynamics through

a fractal structure with a generic stochastic utility function, we formulate a new fractal dynamic

game aiming to mitigate the modeling and analysis of human dynamics (e.g., human crowds, road

traffic, financial markets). Thirdly, building on the statistical physics formalism presented in this

thesis and taking into account on one hand the heterogeneity that exists in biological populations

and the biological characteristics such as aging, we suggest how growth models for stem cells can

be developed.
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Chapter 2

A Dynamic Perspective on

Networked-based Architectures

Design

2.1 The Big and the Small: Technology Implications on NoC De-

sign Flow

One can easily and optimistically assume that we could formulate physical laws that describe

the dynamics of an entity (e.g., particle, spin, phase) in isolation with high degree of precision. In

addition, we can also picture the successful description of two such entities interacting at various

scales in space and time through the language of quantum mechanics. Nevertheless, as we go deeper

and consider more and more entities and more and more types of long-range interactions rather than

short-range interactions (which are the norm of Boltzmann-Gibbs statistical mechanics at thermal

equilibrium) we discover that our physical laws and abstraction systems become insufficient to

offer complete understanding and lack prediction capabilities. Obviously, keeping the discussion in

abstract terms, we can reduce the entire phenomena to a collection of dynamical processes taking

place on networked structures. In reality, for such phenomena there is the concept of condensed

matter physics that has implications at both nano- (we refer to information switching devices

build at nanoscale or consisting of a relatively small number of atoms) and tera- (we refer to low

energy and fast information processing architectures consisting of throusand and more computing

modules) worlds. In what follows, we review how information technology evolved and how the

current work copes with the challenges we face in designing and optimizing future information

processing systems.

The advances we witnessed over the last 60 years in electron charge based information pro-

cessing systems may soon come to an end. Not only that it is difficult to draw and follow the

device geometry at 1.4 − 5 nm that can run at 40 fs, but it becomes highly expensive in terms

of power density (e.g., at least 100 W/cm2) [168]. To overcome these technological challenges,
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Figure 2.1: a) CPU usage precentage as a function of time for a Genuine Intel (R) CPU running
at 2.0 GHz with 2GB of RAM and a Microsoft Windows XP OS. During this period the CPU
runs text editing, Matlab, web-browser and video applications. b) Variation in the CPU usage
percentage between consecutive time stamps.

the information processing switches need to cease relying on electron charge states and embrace

alternative states of representing information. Condensed matter approaches not only lead to the

discovery of such new information storage devices (e.g., ferroelectric, ferromagnetic) but also offers

hints about how a new theory of dynamical processes evolving onto a networked structure should

be constructed when the equilibrium thermodynamic assumption needs to be forgotten. In ad-

dition, the need for a solid theory of dynamical processes on networked structures is even more

needed when considering that many such nano-scale devices display a complex fractal structure in

both space (chemical bond geometry) and time (microscopic memory resulting from fluctuations

in energy barriers) [134], long-range interactions, non-homogeneous mixing to name just a few.

Capturing the time-dependence and fractal behavior as two main characteristics of the operation

of future information processing devices should not only allow accurate estimates about the device

switching time or energy consumption, but also offer reliable predictions about the device error

probability and even more so enable macroscopic architectural predictions that can prove useful at

system level design and optimization.

Besides the out-of-equilibrium signatures exhibited at nanoscale, the current and future appli-

cations and architectures will continue to exhibit almost the same type of characteristics: com-

putational and memory requests will likely be time dependent, availability of physical resources

such as computational power or physical memory will be time dependent too, and above all their
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Figure 2.2: Probability of a CPU usage increment exceeding a given threshold (blue dots) is better
fitted by a stable distribution (green line) rather than a Gaussian law (red line).

stochastic dynamics will not be completely random at all. To give a sense about the existence of

time-dependence, self-similarity and/or non-Gaussian behavior in current computing platforms, we

report in Figure 2.1 and Figure 2.2 the percentage of CPU usage as a function of time and in Figure

2.3 the physical memory availability as a function of time and more importantly user preferences

regarding the pool of running application.

The first three vertical plots in Figure 2.1.a show the percentage of CPU usage as a function

of time at three scales: hundred, thousand and tens of thousand of seconds. Overall, besides the

persistent time-dependent behavior, the precentage of CPU usage does not look neither completely

periodic nor completely random. When looking in Figure 2.1.b at the differences between percentage

of CPU usage at two consecutive time stamps, we notice that the entire dynamics displays some

kind of fractality which can come from correlations that can exists in both user behavior activities

and different application phases.

Even more so, when analyzing the empirical probability of observing a difference in percentage

of CPU usage between two consecutive time stamps to exceed a given threshold, we observe that it

is better fitted by a stable distribution (closer to Holtsmark distribution1) rather than a Gaussian

law (see Figure 2.2).

Besides these patterns observed for computational dynamics, the communication processes also

exhibit a time-dependent behavior as can be seen from Figure 2.3. More precisely, Figure 2.3.a

shows the virtual memory commited as a function of time showing that memory operations coming

from both application and operating system exhibit a pronounced time-dependent behavior. The

1Holtsmark law is a particular case of a stable distribution with shape parameter α = 1.5 and skewness parameter
β = 0. Besides the fact that it is an example of a power law, Holtsmark distribution characterizes the fluctuations in
plasma created by charged particles [84]
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Figure 2.3: a) Virtual memory commited as a function of time for a Genuine Intel (R) CPU running
at 2.0 GHz with 2GB of RAM and a Microsoft Windows XP OS. b) Available physical memory
as a function of time for a Genuine Intel (R) CPU running at 2.0 GHz with 2GB of RAM and a
Microsoft Windows XP OS.

availability of physical memory is time-dependent also (see Figure 2.3.b). This calls for new ab-

straction models of both application and architecture which should incorporate time as an essential

component (resulting from the interaction between computing platform with the outside world)

and the stochastic patterns as a way to develop accurate models enabling dynamic (self-organized)

optimization.

Consequently, in the remaining of this chapter, we summarize a few statistical physics inspired

definitions of both application and architecture domains by taking into account the dynamic nature

of various stochastic processes (associated to packet generation and link/router failures) via time-

dependent probability density functions (PDFs) as shown in Figure 2.4.

2.2 Application Modeling

Definition A statistical physics application characterization graph (SPACG) described by

App{P (vi, t) , P (eij , t) , P (λvi , t) , P (µvi , t) , P
(
comm voleij , t

)
, P (εvi , t) , P (dvi , t) |

vi ∈ VApp, eij ∈ EApp} (2.1)

is defined as a dynamic (evolving) graph, where:

• VApp is the set of vertices, i.e., each vertex vi ∈ VApp denotes a computational module of the

application referred to as a computational task;

• EApp ⊂ VApp×VApp is the set of edges, i.e., each directed arc eij ∈ EApp represents a possible
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Figure 2.4: Statistical physics description in both space and time of both application (e.g., com-
munication volume, execution time) and architecture (e.g., frequency) domains.

communication event (seen as a stochastic process);

• P (λvi , t) and P (µvi , t) are the probability distributions associated with the stochastic process

of packet generation and consumption at any vertex vi ∈ VApp;

• P
(
comm voleij , t

)
is the communication volume (see Fig. 2.4) from vertex vi ∈ VApp to

vj ∈ VApp (also regarded as a stochastic process);

• P (εvi , t) is the probability distribution of the execution/computation time at vertex vi ∈ VApp,
and

• P (dvi , t) represents the probability distribution function of the deadlines at each vertex vi ∈
VApp (as shown in Fig. 2.4).

Note that in relationship 2.1 the application is seen as a dynamic graph where nodes and edges
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appear and disappear at execution. The appearance of edges may be triggered by that fact that

a given running process on a multicore platform may instantiate a child process, access a shared

library, read/write into a memory location or communicates data and control variables with another

process. The disappearance of edges may signify that the set of running processes are terminated as

a result of computation completion, kill process operation initiated by users or operating system.

The entire dynamics of the graph structure is captured via the probabilities P (vi, t) (i.e., the

probability that node vi is active at time t) and P (eij , t) (i.e., the probability that the edges eij

exists between nodes vi and vj , respectively, at time t).

2.3 Networks-on-Chip Architecture Modeling

Future information processing devices not only at switch level, but also at core level will display a

high degree of variability and will likely need to be seen and modeled as non-equilibrium systems (see

the ITRS 2010 [142] and [159]). In future thousand core platforms, the inter-processor variability

will play a crucial role not only because it affects the information processesing performance, but

even more so it influences the overall energy consumption. Simply speaking, manufacturing and

physics imperfection cause the less efficient processors to burn more power by requiring high supply

voltages and lower threshold voltages in order to meet a certain performance level. Considering

these physics based realities, we define next a statistical physics inspired (i.e., time dependent

probabiltic framework) description of the NoC architectures.

Definition The Network-on-Chip Architecture (NoC Arch) is defined by the following tuple:

Arch{T (U,F ) ,Ω, SP , P (ri, t) , P (chij , t) , P (freqpk , t) |ri ∈ U, chij ∈ F, pk ∈ SP} (2.2)

where the components have the following meanings:

• The network topology is defined as a labelled graph T (U,F ), where the routers (ri ∈ U) and

channels (chij ∈ F ) in the network are given by the sets U and F, respectively, as follows:

• ∀chij ∈ F,w(chij) gives the channel bandwidth;

• ∀ri ∈ U, l (ri, chij) gives the buffer size (depth) of channel chij , located at router ri;

• P (ri, t) is the time dependent probability of failure of router ri as shown in Fig. 2.4;

• P (chij , t) is the time dependent probability of successful transmission of a packet routed at

ri via channel chij ;

• P (stri , t) gives the distribution of the packet service time (st) at router ri at time t;

• SP represents the set of processing elements (PEs);

• freqpk is the operating (clock) frequency of each PE pk ∈ SP ;
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• P (freqpk , t) is the probability density function of operating frequencies as shown in Fig. 2.4;

• Ω : SP ×U → {o, 1} is a function that maps a PE pk ∈ SP to a router ri ∈ U (i.e.,Ω (pk, ri) =

1).

Note that the network topology T (U,F ) does not need to be fixed; instead, it is likely that in the

future links, buffers and routers can be reconfigured to meet the application and user requirements

while minimizing energy consumption. In addition, note that the intrinsic characteristics of the

stochastic dynamics of basic information processing devices (e.g., the variability of the energy

barrier in either charge/spin-based or molecular transistor) impacts the properties of the entire

system; this is the motivation for introducing the time dependent probabilities for characterizing

the router failure, router service time, link successful transmission, and/or the core operating

frequency.

Given this time-dependent probabilistic description of the architectural components, the next

step is to formalize the communication paradigm: the routing protocol through which the data and

control packets are routed from sources to destinations.

Definition The communication paradigm

<{R (ri, chij , rsrc, rdst, ρ (t) , t) , Sw|ri, rsrc, rdst ∈ U, chij ∈ F} (2.3)

consists of the routing policy R (ri, chij , rsrc, rdst, ρ (t) , t) at router ri, for a source router rsrc and a

destination router rdst; ρ (t) denotes the utilization of channels connected to the neighboring routers

at time t, and finally, Sw specifies the packet switching techniques (i.e.,a protocol to forward a flit

through the channel chij ∈ F of router ri ∈ U towards the router rj ∈ U). Note that static routing

does not require the utilization information, while adaptive or stochastic algorithms may check the

congestion of the immediate routers and pick the ones having the smalles utilization ρ (t) at time t.

2.4 Challenges of Designing Thousand Core Network-based Ar-

chitectures

Given that the availability of limited resouces (such as those on supply and threshold voltages

due to power and reliability concerns) has shifted the focus in computing from single high complexity

processor designs to platforms consisting of thousand power efficient cores running high performance

massively parallel programs and few complex cores dedicated to high performance sequential code

parts. In addition, it is now accepted that all these cores will exchange data and instructions via

a network environment rather than a P2P or BUS approach. Although the mirage of building

such multicores starts to become a tangible reality and its applicability is fastly forseeable in cloud

computing or cyber physical systems, it also brings to the discussion many great challenges.

Within the framework of network based parallel architectures, it is not enough to size the

network links and buffers, optimize routers and network interfaces, but also find out the right
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memory hierarchy (e.g., size of memory components), grant access policies and the strategies for

maintaining memory coherency.

Related to the above mentioned issues, it is important to rely not only on accurate models of

the applications, but also on the capabilities of various heterogeneous processors such that we can

find the optimal2 number of processors on which a set of applications is mapped and scheduled to

run. In addition, it is important to be able to modify the routing protocols such that a minimum

latency transfer is achieved between pairs of distant sources and destinations while considering the

power budget and reliability issues.

Last but not least, designing and optimizing the operating system that connects the application

and architecture domains needs accurate abstraction models to decide what the internal data

structures should look like, how the partitioning, clustering, mapping, scheduling and migration of

tasks and threads should be done, and when the managing strategy of resources to achieve high

performance with minimum energy requirements should be changed.

In addition, the design and optimization of future thousand core Network-on-Chip architectures

cannot be done by isolating individual components and tweaking each to achieve some performance

level. In contrast, the future NoC design should be regarded as a global optimization approach

which relies on accurate analytical models of both spatial and time components of the design space

exploration. Towards this end, we formulate the the problem of stochastic network design as follows:

min/max O (T (U,F ),Ω, SP , P (ri, t), P (chij , t), P (stri , t), P (freqpk , t),M, S,R)

such that for a set of applications

App(P (vi, t) , P (eij , t) , P (λvi , t) , P (µvi , t) , P
(
comm voleij , t

)
, P (εvi , t) , P (dvi , t)) (2.4)

and architectural components

Arch{T (U,F ) ,Ω, SP , P (ri, t) , P (chij , t) , P (freqpk , t) |ri ∈ U, chij ∈ F, pk ∈ SP}
gζ(App,Arc,M, S,R, t) ≤ hζ , ζ = 1, ..., N are satisfied

where M represents the mapping function, S denotes the scheduling function, R is the routing

policy. The gζ functions depend on various stochastic processes characterizing both the application

(e.g., packet generation/consumption) and architecture (e.g., router service time), while hζ are

the design constraints that need to be satisfied. In other words, the goal here is to determine

a particular NoC architecture (e.g., specific topology, channel bandwidth, buffer sizes, etc.), a

mapping, scheduling and/or a routing function that satisfy the imposed design constraints which

can represent performance (e.g., bandwidth, throughput, node-to-node latencies), power/energy

consumption, and/or reliability metrics. For instance, one can consider to minimize the buffer

size l (ri, chij) of all channels chij connected to router ri ∈ U across an NoC architecture such

that, for some information about the packet generation (P (λvi , t)) and consumption (P (µvi , t)),

2Here optimal refers to the minimum number of cores that execute the code to meet the performance and deadline
constraints with minimum energy consumption. However, this definition can be relaxed or changed depending on the
chosen cost and constraint functions.
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the deadline constraints (hζ) for each task are met. In this case, the functions gζ would represent

the sum between the time it takes to process a set of tasks on which task vi ∈ VApp depends on

and the node-to-node latency between the cores on which the tasks are mapped. Note that the

role of time-dependent PDFs is to capture the existing correlations at the application level; this is

even stronger emphasized by the mapping operation, packet scheduling, routing and the generated

network traffic on some particular performance metrics like node-to-node latencies.
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Chapter 3

Multi-core Traffic Characterization

3.1 Rationale for Multi-core Traffic Monitoring

Accurate traffic modeling has profound implications, not only on performance evaluation, but

also in various optimization aspects, such as scheduling, dynamic power management, chip tem-

perature regulation, etc. Running full-blown applications requires either complete products (too

late to allow any major changes) or system-level models (too slow). At the same time, real traces

cannot be directly used in any optimization loop as they are strongly constrained by the charac-

teristics of the architecture. Consequently, relying on a more accurate traffic characterization for

NoC performance analysis and optimization is a fundamental task in network-based design.

Most current traffic models rely on exponential inter-arrival times and stationary stochastic

processes [87]. Simply speaking, under this assumption, the probability of large time intervals

between two consecutive packet arrivals is decaying exponentially to zero. The stationary assump-

tion implies that the distribution and implicitly the moments of the stochastic process are time

independent.

Nevertheless, these models cannot capture many of the traffic characteristics (e.g., time mono-

fractality1) observed via power laws of header inter-arrival times shown in Figure 3.1.a. Figure 3.1.b

shows that inter-arrival times are better fitted by a stable distribution with long tail (e.g., Levy

distribution, Cauchy distribution, Holtsmark distribution) rather than exponential or Gaussian

laws. Moreover, due to the heterogeneous traffic sources and continuous changes in the pool of

applications running on a multicore platform, at various time intervals, the traffic variation cannot

be characterized by a single fractal dimension2 (i.e., mono-fractal behavior), but rather by a series

of interwoven time scales defined by several such fractal dimensions (i.e., multi-fractal behavior).

Towards this end, since the traffic variability at multiple scales is caused by both architec-

tural (e.g., routing protocol, routing service policy, buffering resources) and application/user (e.g.,

variable packet sizes, packet injection periodicity, scheduling dependency) features, and to better

1Time mono-fractality refers to a stochastic process x(t) characterized by a single fractal dimension H and for
which all its q-th order moments satisfy a time power law of the following form Kq ≈ tqH [54][102][125][148].

2The fractal dimension quantifies how the size of a fractal object changes under the magnification operation [102].
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Figure 3.1: a) The header inter-arrival times are measured at the West input buffer of node (1,2)
on a 4 × 4 mesh NoC (see Figure 3.2) with input and output buffers of 3 and 1 slot, using XY
wormhole routing with packets consisting of 15 flits and running a multi-threaded online transaction
processing (OLTP TPC-C v3.0, IBM DB2 v8 ESE & Oracle 10g Enterprise Database Server)
application. b) Probability of inter-arrival times to exceed a given threshold does not follow an
exponential or gaussian distribution, but rather is better fitted by a stable distribution. In addition,
one can observe that there exists a change in slope of the tail distribution which is a sign that the
inter-arrival time stochastic process exhibits multiple fractal exponents.

capture the heterogeneity and non-stationarity of NoC traffic, we propose a statistical physics in-

spired model which allows us to characterize the packet arrival process via a histogram of fractal

dimensions. As we will show throughout this thesis, this does not only allow for better modeling of

network traffic traces, but also paves the way of defining new dynamic optimization methodologies.

3.2 Related Work and Major Contributions

Traffic analysis is a fundamental problem in many research domains ranging from vehicular and

transportation systems [70], to communication [95][120] and biological networks [137]. Although

many approaches have been proposed for traffic modeling (both at microscopic and macroscopic

levels [96]), many of the fundamental traffic characteristics (e.g., non-stationary, self-similarity,

etc.) still cannot be fully captured by state-of-the-art techniques [120].

Since reviewing the literature available on traffic modeling in an exhaustive manner is beyond

the scope of this thesis section, in what follows, we focus primarily on traffic models proposed for

communication networks. Most traffic models based on queueing theory [52][56][66][74][117] rely

on the assumption of having a Poisson packet arrival process (i.e., the time intervals between two

consecutive packet arrivals are assumed to be exponentially distributed) and a random service time

that is independent of the arrival process. An alternative perspective to queueing theory models

is represented by deterministic bounds obtained via network calculus concepts [11][129]. None of
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these approaches to performance evaluation of interconnection networks considers non-stationary

effects in traffic behavior3.

Moreover, as shown already by several studies, the traditional traffic models based on queueing

theory [87] cannot capture the fractal nature of traffic observed in Internet [59][120][121] or NoCs

[138][145][154]. Simply speaking, these measurement-driven studies argue that, in many instances,

the packet arrival/departure rate described by random variable x(t) is self-similar4 in nature and

just a single exponent (i.e., the Hurst parameter H) is enough to capture the traffic characteristics.

From a theoretical stand point, this implies that the moments 5 Kq(t) of the stochastic process x(t)

scale as Kq(t) =
∫∞
0 xqP (x, t)dx ∝ tqH , where P (x, t) is the probability that x(t) attains value x

at time t.

However, in this chapter, we claim that due to the heterogeneous traffic sources and continuous

changes in the pool of applications running on a multicore platform, the traffic variation cannot be

characterized by a single exponent H, but rather by a series of interwoven time scales defined by

several such exponents at various time intervals. Mathematically speaking, this implies that the

moments associated with various traffic processes (e.g., packet arrival/departure process, packet

waiting times in buffers, and so on) need to obey scaling laws of the following form Kq(t) =∫∞
0 xqP (x, t)dx ∝ tf(q) where f(q) is a nonlinear function of the moment index q. In fact, the

existence of this nonlinearity of the exponent f(q) as a function of q implies that the stochastic

process is multi-fractal.

One way to elucidate the need for a multi-fractal approach (instead of a mono-fractal one which

can be characterized by second-order statistics, like mean and variance) is to analyze the higher

order statistics of traffic processes (e.g., packet inter-arrival times). Higher order statistics (HOS)

provide us with mathematical tools (e.g., third/fourth-order moments) to detect deviations from

the Gaussian distribution and quantify the nonlinearity exhibited by various stochastic processes

[105]. For instance, due to intrinsic symmetry, the third-order central moment (i.e., E[(X−E[X])3]

of a Gaussian process is zero. By contrast, if the third order moment is not zero than the stochastic

process canot be assumed to be Gaussian distributed.

For example, the third-order moment of the packet inter-arrival times process at the North input

buffer of node located at (1, 2) in Figure 3.3 is 32.1823. We note that, as shown in Figure 3.3,

these packet inter-arrival times are obtained by running a multimedia application on a 4× 4 mesh

NoC (see Figure 3.2) with input and output buffers of size 10 slots, under wormhole XY routing

(packets consist of 5 flits). This shows that second-order statistics (which would correspond to a

3A stochastic process is called non-stationary if its mean, variance, and all higher order moments are not invariant
under arbitrary time shifts.

4Generally speaking, a stochastic process exhibits a self-similar behavior if the time series of its realization over
some time scale (e.g., microseconds, milliseconds) and its re-scaled realization via a single scale parameter over another
time scale (e.g., minutes, hours) look similar. Self-similarity was first addressed in a series of papers by Kolmogorov
[88] and later applied to study random processes in the absence of asymptotic independence [102].

5The moment index q denotes the order of the expectation operator (i.e., the q−th moment); this is a quantitative
measure of the probability distribution [87]. For instance, the second moment of a stochastic process measures
how spread a set of points are. The third central moment (i.e.,E[(X − E[X])3]) quantifies the asymmetry of the
distribution.
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Figure 3.2: Diagram of a 4× 4 mesh NoC where the symbols L, N, E, W, and S stand for the local,
north, east, west, and south router connections, and in and out suffixes represent the input and
output directions.
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Figure 3.3: Packet inter-arrival times at the North input buffer of node (1, 2) on a 4× 4 mesh NoC
(see Figure 3.2) with input and output buffers of size 10 slots, under wormhole XY routing (packets
consist of 5 flits) and running a multimedia application.

mono-fractal analysis) cannot fully capture the complexity of the network traffic. Consequently,

the present work aims at capturing such complex characteristics of traffic in a new multi-fractal

framework based on HOS concepts.

One natural question at this point is related to the possible sources for this multi-fractal behavior

of the NoC traffic. Although this is a hard question to answer, we can speculate that one source

comes from the intrinsic characteristics of the applications such as variability in input processing

(e.g., differences in context based decoding of high definition video frames) and patterns observed in

the number of the injected packets and their timing intervals. Also, based on user preferences and

other dynamical properties, certain applications get replaced by others with specific quality and

timing constraints. This can also imply changes in the source-to-destination traffic patterns. So the

traffic variability at multiple scales is caused by both architectural (e.g., routing protocol, routing

service policy, buffering resources) and application/user (e.g., variable packet sizes, packet injection

periodicity, scheduling dependency) characteristics. We propose a statistical physics inspired model

which allows us to characterize the packet arrivals in the network as a multi-fractal and non-

stationary process evolving both in space and time; this is described next.

3.3 A Statistical Physics Inspired Model for NoC Traffic

We model the packets transmission in the NoC via a random graph (RG) (see Figures 3.4 and

3.5), where the nodes and the edges represent the buffers in the NoC architecture and the packets

exchanged between these buffers, respectively [23]; also, the number of arriving and departing
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Figure 3.4: Snapshot of the NoC architecture at time t (a) and time t + δt (b). Each NoC node
consists of a processing element (PE), a router (R) and several input and output buffers corre-
sponding to the number of its neighbors. The highlighted slots of the buffers represent the buffer
occupancy at a particular time. For instance, between t and t+ δt, one packet is injected from the
PE at (2,2) to the local input buffer, one packet previously in the input buffer of the PE at (2,2)
is routed towards node (1,2) and a new packet is received at West input buffer from node (1,2).

packets represent the IN and OUT degree of each node, respectively. In this model, the traffic

in the network is represented via a dynamic RG where packets follow their source-to-destination

paths and thus changing continuously the distribution of the RG nodes characterized by a certain

IN and OUT degree. It is important to note that this RG is simply an abstraction meant to

capture the dynamics of the packets flow in the NoC rather than the real network with a physical

(fixed) topology.

To be more concrete, Figure 3.5 shows how the traffic passing through two NoC nodes can be

represented with this RG-based model. More precisely, each buffer in the NoC (namely, the L, N ,

E, W , and S labels standing for Local, North, East, West and South directions and with in and

out suffixes representing the input and output channel buffers) is represented as a node in the RG.

The numbers on the arrows connecting the RG nodes show the actual IN and OUT degree of each

node as a result of various network transactions taking place at a particular time t.
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Figure 3.5: Snapshot of two NoC nodes as a random graph (RG) at time t (a) and t + δt (b).
Each node in the RG represents a buffer in the NoC (e.g., B (2,2) L in denotes the local input
buffer between the PE and the router at (2,2) mesh coordinates). The numbers on the arrows
show the IN and OUT degree of RG nodes. As shown above, the IN and OUT degree of the
B (2,2) W in RG node is 1 and 0, respectively, at time t, and 2 and 1, respectively, at time t+ δt.
The unconnected RG nodes, having zero IN and OUT degree, correspond to buffers not included
in the communication process yet. The difference between the IN and OUT degree at a particular
time t shows the buffer occupancy.

For instance, B (2, 2) E out in Figure 3.5 denotes the East output buffer located at the mesh

location (2,2) which has an IN and OUT degree of 0 and 0, respectively, at time t, and an IN and

OUT degree of 1 and 0, respectively, at time t + δt. Obviously, the dynamics of the RG changes

over time and this is driven by the actual communication volume of packets exchanged among the

NoC nodes. In addition, one can foresee that a packet transmission from the local input buffer to

the East output buffer at node (2,2) would take a random amount of time dictated by the router

service policy, size of the previously sent packets, and the time stamp of the current transaction.

This randomly distributed waiting time can be studied via a stochastic analysis of the IN and OUT

degree of the RG nodes. In addition, note that there is an intrinsic connection between the arrival

time to an NoC buffer and the IN degree of the corresponding node in the RG. Consequently, in

what follows, we describe an analytical approach for quantifying the dynamics of nodes IN degree.
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One way to model the IN degree dynamics of a node characterized by η and θ fitness functions

is to write a rate equation determining the average number of nodes N(i, t|η, θ) having degree i by

time t:

∂N(i, t|η, θ)
∂t

=
η(t)
H(t)

(i− 1)N(i− 1, t|η, θ)− η(t)
H(t)

iN(i, t|η, θ)+

+
θ(t)
K(t)

(i+ 1)N(i+ 1, t|η, θ)− θ(t)
K(t)

iN(i, t|η, θ) (3.1)

where the first term represents the addition of one edge to a node having IN degree i − 1 and so

contributing to an increase in N(i, t|η, θ), the second term represents the addition of one edge to

one of the nodes having IN degree i which leads to a subtraction of N(i, t|η, θ), the third term

denotes a loss of one edge from a node having i+ 1 IN degree which increases the average number

of nodes N(i, t|η, θ) by one and the last term represents the corresponding loss of one node from

N(i, t|η, θ) due to an edge deletion. The function H(t) and K(t) are introduced for normalization

purposes and are given by the following relations:

H(t) =
∑

i,η(t), iη(t)N(i, t|η, θ) K(t) =
∑

i,θ(t) iθ(t)N(i, t|η, θ) (3.2)

An alternative approach is to investigate the time-dependent probability distribution of any

node in the RG, characterized by fitness functions η and θ, to have an IN degree i, P (i, t|η, θ),
defined as follows:

P (i, t+ δt|η, θ) =
η(i− 1)δt

M(t)tβ
P (i− 1, t|η, θ) +

θ(i+ 1)δt

Z(t)tβ
P (i+ 1, t|η, θ) +

+

[
1−

(
ηi

M(t)
+ θi
Z(t)

)
δt
tβ

]
P (i, t|η, θ) (3.3)

In other words, Eq. 3.3 states that the dynamics of the probability P (i, t|η, θ) of a node in the

RG, characterized by fitness functions η and θ, to have an IN degree i at time t, is proportional

to the weighted contribution of three possible outcomes: The first term on the right hand side

of Eq. 3.3 reflects the increase in the IN degree which is taking place with a time dependent

rate [ηiδt] /
[
M(t)tβ

]
, the second term models the loss in the IN degree due to congestion in the

network, while the third term stands for the “no change” state in the IN degree.

Note that, in order to account for various correlations in the arrival times (and implicitly in the

IN degree) of any RG node, we model the probability of a new arrival event as being proportional

to the previous cumulative number of arrival events weighted by a random variable η which is

meant to capture the utilization of this RG node at any point in time. Note that depending on the

HOS characteristics exhibited by the packet arrival process, the edge attachment probability can

have either a linear expression as in Eq. 3.3 or a nonlinear one such as iα.

The role of the fitness η is not only to weight the contribution of past packet arrivals, but also

to discriminate between buffers across NoC which are exercised differently by the traffic patterns

in the network.
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Figure 3.6: Empirical cumulative distribution function of the fitness values obtained from two IN
degree time series corresponding to the North input buffers of the nodes located at (1, 2) and (2, 2),
respectively, for a 4× 4 mesh NoC running an MPEG4 decoder application (see Figure 4.1) and an
average packet injection rate per node of 0.029 packets per cycle.

To better illustrate the heterogeneity among NoC buffers captured via fitness values, we report

in Figure 3.6 the empirical cumulative distribution function of the fitness associated with the IN

degree time series of North input buffers at nodes (1, 2) and (2, 2), respectively, in a 4 × 4 mesh

NoC with input and output buffers of 20 and 10 slots, respectively, employing an XY wormhole

routing protocol (7 flits per packet) and running an MPEG4 decoder application (see Figure 4.1)

and an average packet injection rate per node of 0.029 packets per cycle. One can notice not only

the difference in the slope of the two CDFs, but also the variation (heterogeneity) in the support of

fitness values (i.e., the support of the fitness η for the North input buffer at (2,2) ranges between

3.8 and 12.5 abstract units, while for the North input buffer at (1,2) ranges between 0.2 and 14.5).

Coming back to Eq. 3.3, we also introduce a parameter 0 ≤ β ≤ 1 to capture the memory

effects of the packet arrival process. More precisely, for β = 0, we obtain a dynamic equation

characterizing a short-range dependence packet arrival process. Finally, the M(t) and Z(t) are

slowly varying functions playing a normalization role and are given by the following relations:

M(t)tβ =
∑

i,η(t) iη(t)N(i, t|η, θ) Z(t)tβ =
∑

i,η(t),θ(t) iθ(t)N(i, t|η, θ) (3.4)

To ease the analysis of Eq. 3.3, we make use of the finite difference method approximations

[128] to express the two terms, (i.e., (i+ 1)P (i+ 1, t|η, θ) and (i− 1)P (i− 1, t|η, θ), respectively).
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This leads to the following continuum version of the previous master equation:

∂
[
tβP (i, t|η, θ)

]
∂t

=
[
η
M + θ

Z

]
∂2 [iP (i, t|η, θ)]

∂i2
+
[
θ
Z −

η
M

]
∂ [iP (i, t|η, θ)]

∂i
(3.5)

Note that for β = 0, Eq. 3.5 reduces to a diffusion-like equation with load dependent coefficients

[87]. A simplified version of Eq. 3.5 describing the dynamics of the probability that a stochastic

process attains value x at time t via two fractal exponents, one for the power law inter-events and

the other one for the magnitude increments in x variable, was proposed in [26]. Nevertheless, the

real-time applications exhibit a much more complex behavior due to the multi-user preferences and

interactions with system resources, hence our detailed analysis here.

In summary, we analyze the RG dynamics as a function of application characteristics (e.g.,

packet injection rate, number of already acquired packets at a particular buffer, traffic patterns)

and architecture features (e.g., routing protocol, buffering resources) which are encompassed via

fitness functions.
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Chapter 4

Implications of Traffic Fractality

4.1 Analytical Implications of the Master Equation to Multi-core

Traffic Modeling

In order to analyze the time-dependent (non-stationary) behavior of the higher order moments

associated with packet arrival processes (i.e., the IN degree of an RG node), we introduce the fol-

lowing expression of the high-order moments Kq(t|η, θ) [54][81][102] associated with the probability

distribution function P (i, t|η, θ) as follows:

Kq(t|η, θ) =
∞∑
i=0

iqP (i, t|η, θ) ≈
∞∫
0

iqP (i, t|η, θ)di (4.1)

where q represents the moment order. More precisely, by introducing the higher order moments

in Eq. 4.1, we establish a connection between the dynamic behavior of the moments and the

intrinsic parameters of the NoC traffic like the fitness function η associated with the packet arrival

process to a certain buffer in the network. This connection is essential not only because it shows

how the nonlinearity observed in the higher order moments behavior is affected by changes in the

NoC traffic traces, but also because these parameters (e.g., memory parameter β, fitness η) play

a significant role in various performance metrics (e.g., buffer overflow probability, node-to-node

latency exceedance probability) that can guide the NoC optimization.

Multiplying by iq to the left hand side and summing up between 0 and ∞ in Eq. 3.5 leads to

the following differential equation for the moments:

∂
[
tβKq(t|η, θ)

]
∂t

= −
[
η
M + θ

Z

]
q
∂ [qKq(t|η, θ)]

∂q
+

+
[(

η
M + θ

Z

)
q2 −

(
θ
Z −

η
M

)
q
]
Kq(t|η, θ) (4.2)

For β = 1, the moments Kq(t|η, θ) of distribution P (i, t|η, θ) scale as a power law form:

Kq(t) ≈ g(q)tf(q) , where g(q) and f(q) represent the weighting coefficients and the mass ex-
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Figure 4.1: MPEG4 decoder task graph [133] mapped onto a 4×4 mesh NoC architecture.

ponents, respectively, as a function of the moment order q. If the mass exponent function f(q) is

nonlinear in the moment order q, then the stochastic process, characterized by P (i, t|η, θ), is called

multi-fractal [102]. Instead, if f(q) is linear in the moment order q, then the stochastic process is

called mono-fractal.

Starting from the power law solution of Eq. 4.2, one can obtain the multi-fractal spectrum h(α)

via the Legendre transform [102]:

f(q) = α(q)− h(α) α =
∂f(q)
∂q

(4.3)

where α denotes the fractal dimension associated with the packet arrival process to a specific buffer.

Generally speaking, Eq. 4.3 shows that a multi-fractal process can be seen as a statistical ensemble

of many (individual) fractal dimensions which are intrinsically related to the deep characteristics

of application and architecture.

In summary, we propose a new analytical model that captures the multi-fractal characteristics

and the non-stationary behavior of the NoC traffic. In the next sections of this chapter, we validate

our findings and show how this formalism can be employed for NoC design and optimization.

4.2 Critical Phenomena in Multi-core Systems

To better understand the impact of multi-fractal behavior on the performance of NoCs, we first

present in Table 4.1 the deviation of the header flit inter-arrival times from an exponential distri-

bution as a function of packet injection rate in an MPEG4 decoder application. This application

was mapped on a 4×4 mesh NoC as shown in Figure 4.1, with the input and output channel buffers

of 20 and 10 slots, respectively, while employing an XY wormhole routing protocol (7 flits/packet).

During the mapping process of the MPEG4 decoder application on a 4×4 mesh NoC, we tried to

keep the highly communicating task nodes close to each other. This is the reason behind placing

the two highly utilized memory blocks (i.e., MEM2 and MEM3) on the tiles in the middle of the
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Average Packet Percentage of Exponentially Network Throughput
Injection Rate (λ) Distributed Inter-Arrival Times Throughput Increase

0.005 pkts/cycles 83% 0.083 1(base line)

0.006 pkts/cycles 66% 0.103 1.25

0.029 pkts/cycles 33% 0.465 5.60

0.032 pkts/cycles 25% 0.517 6.23

0.034 pkts/cycles 16% 0.534 6.43

0.035pkts/cycles 10% 0.54 6.51

Table 4.1: NoC performance as a function of packet injection rate for a 4× 4 mesh with input and
output buffers of 20 and 10 slots, using XY wormhole routing and running an MPEG4 decoder (see
Figure 4.1 for MPEG4 task graph details). Higher packet injection rates cause a decrease in the
percentage of exponentially distributed inter-arrival times.

NoC.

The results in Table 4.1 are obtained by averaging over tens of simulation configurations con-

sisting of 107 clock cycles each and while using various random seeds for each run. To derive the

statistical results of the second column, each header inter-arrival time corresponding to an input

buffer was tested via the Kolmogorov-Smirnov (KS) test. The KS test quantifies the minimum

distance between an empirical distribution function of some experimental samples and a postu-

lated cumulative distribution function [157]. In this setup, we perform a null hypothesis that the

empirical header inter-arrival times come from an exponential distribution. We accept the null

hypothesis at 95% significance level saying that the samples are well approximated by exponential

distribution.

As can be seen from the second column of the Table 4.1, as the average packet injection rate

per node increases from 0.005 to 0.035 packets/cycle, the percentage of header flit inter-arrival

time processes that can be fitted by an exponential distribution decreases from 83% to 10%, re-

spectively. For instance, for a 0.006 (packets/cycle) average packet injection rate per node, the

percentage of exponentially distributed header inter-arrival times is 66% (i.e., there are 32 true

Poisson processes). In other words, this shows that as the packet injection increases, the NoC

traffic deviates significantly from the Poisson assumption by having fewer exponentially distributed

packet inter-arrival times.

More importantly, one can see that for the case when only 25% of the header inter-arrival times

can be regarded as being exponentially distributed, the network throughput is more than 6 times

larger compared to the case when the exponential behavior dominates (i.e., at 0.005 packets/cycle).

This implies that, as the 4×4 mesh NoC gets closer to its criticality regime, a phase transition

phenomena takes place and so the Poisson type of distribution cannot be used anymore to estimate

performance or optimize the network! Instead, our proposed approach which considers network

traffic via multiple fractal dimensions is the way to go about performance analysis. At the same

time, a multi-fractal approach overcomes the drawbacks of mono-fractal models which require that

traffic traces need to be infinitely long.
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Figure 4.2: a) The buffer overflow probability as a function of packet injection rate for the input
buffer to a memory block of an MPEG4 decoder mapped on a 4×4 mesh NoC with finite buffers
(input and output channel buffer sizes of 20 and 10 slots, respectively) and XY routing scheme.
With higher packet injection rates, the buffer overflow probability exhibits a nonlinear behavior
which can be captured only by using a multi-fractal approach. b) The multi-fractal spectrum as
a function of the fractal dimension of the header inter-arrival times at the North input buffer at
nodes (1, 2) and (0, 1), respectively (see Figure 3.2 for the diagram of a 4× 4 mesh NoC).

4.3 Implications of NoC Traffic Multi-fractality on Buffer Sizing

In Figure 4.2.a, we show how this multiscale approach can help us estimate the performance of

a concrete NoC platform. More precisely, we analyze the buffer overflow probability for the input

buffer to a memory block (i.e., node (2, 2) in Figure 4.1.a which receives requests from the binary

alpha block (BAB), inverse discrete cosine transform (IDCT) and several RISC PEs in an MPEG4

application. Performing this kind of analysis is important since an overflow at this buffer can result

in performance degradation of the video decompression because the BAB module is in charge of

decoding the shape via context-based arithmetic decoding [133].

With higher packet injection rates, the buffer overflow probability exhibits a nonlinear behavior

which can only be accounted for by considering multiple fractal exponents. For instance, the

probability of having a queue length of 6000 bits is approximately 1000 times higher when the

average packet injection rate per node increases from 0.006 to 0.032 (see Figure 4.2.a. Note that

the solid line denotes the overflow probability under the Poisson assumption, while the dotted line

stands for the multi-fractal case.

To prove the existence of multi-fractal behavior of traffic just before congestion, Figure 4.2.b

shows the multi-fractal spectrum of the arrival times to two North input buffers of nodes at (1, 2)

and (0, 1), respectively, and for two packet injection rates (i.e., 0.029 and 0.032 packets/cycles).

As one can notice, with the increase of packet injection rate, the two time series of packet arrival
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Figure 4.3: a) Time series of packet latencies between a source node at (3, 0) and a destination
node at (2, 2) for four packet injection rates. b) Kurtosis of the packet latency as a function of the
simulation time and packet injection rate. The exhibited variation in the kurtosis trend represents
not only the presence of a non-Gaussian behavior, but also a non-stationary signature.

process at the input buffers exhibit a much broader spectrum of fractal dimensions. For instance,

for the packet arrival process at North input buffer at (0, 1) node the maximum fractal dimension

increases from 1.25 to 1.39 while the minimum fractal dimension remains almost the same. This

also shows the lack of accuracy related to the mono-fractal modeling.

4.4 Implications of Traffic Multi-fractality on Estimating the Node-

to-Node Latency

Next, we investigate the impact of operating the NoC architecture close to criticality and its

implications on packet latency estimation. More precisely, we plot in Figure 4.3.a the variation of

packet latency between the BAB module at location (3, 0) (see the mapping in Figure 4.1.a) and the

MEM3 memory block at location (2, 2) as a function of simulation time for four packet injection

rates (λ), namely 0.005, 0.029, 0.032, and 0.035 packets per cycle. As one can observe, higher

packet injection rates cause the magnitude of the packet latency to increase quite significantly (see

plots in Figure 4.3.a).

To stress the importance of higher order statistics for this type of variation, we report in Figure

4.3.b the kurtosis of the packet latency between nodes (3, 0) and (2, 2) as a function of the simulation

time, for four different packet injection rates. The kurtosis (i.e., the ratio between the fourth order

moment and the standard deviation of a probability distribution) captures the frequency of rare

events1. Note that, for each packet latency (which has a corresponding arrival time stamp at the

1A rare event in the context of node-to-node latency refers to a very large latency, sometimes few orders of
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Figure 4.4: a) Probability of packet latency between nodes (3, 0) and (2, 2) to exceed a certain
threshold for an MPEG4 decoder mapped on a 4×4 mesh NoC (see Figure 3.2) with finite buffers
(input and output buffer sizes of 20 and 10 slots, respectively), wormhole switching (7 flits per
packet), XY routing scheme and several packet injection rates. b) The multifractal spectrum as
a function of fractal dimension of the packet latencies between source at (3, 0) and destination at
(2, 2) and several packet injection rates.

destination on the x-axis of Figure 4.3.b, we compute the kurtosis as a function of simulation time

over a sliding window consisting of 500 forward and backward packet latency values. Increasing the

packet injection rate causes the kurtosis to exhibit a more spiky behavior which, again, is a sign

of non-stationary behavior. Similar non-stationary trends have also been observed for first three

moments (i.e., mean, variance, skewness). The significant (positive) deviations in Figure 4.3.b also

show that the distribution of packet latency does not follow Gaussian laws, but rather it follows a

power law instead. This also illustrates that the node-to-node latency exhibits a nonlinear behavior

which needs to be accounted for by any packet scheduling approach.

To be more concrete, in Figure 4.4.a we report the probability of the latency between the BAB

module at (3, 0) and the MEM3 memory block at (2, 2) to exceed a certain threshold for four packet

injection rates. This probability can be interpreted as the probability of missing a deadline when

scheduling since there are several computational modules waiting for packets to arrive. To better

emphasize the importance of a multi-fractal approach in NoC run-time optimization, we also plot

the packet latency Markovian exceedance probability (see dash-dot line). Quantifying accurately

this probability is important since higher delays encountered between the BAB module and the

memory block can result in poor quality decompression and identification of shapes in the video

frames.

By way of contrast, while the Markovian curve predicts a zero probability for the latency

magnitude larger, compared to the mean value. Adopting a Gaussian or Poisson type of mathematical framework to
predict such extreme events can result in poor predictions.
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between locations (3, 0) and (2, 2) to exceed 300 clock cycles, the experimental results show a

0.0002 exceedance probability for λ = 0.032 packets per cycle, a 0.0011 exceedance probability for

λ = 0.034 packets per cycle, and a 0.0055 exceedance probability for λ = 0.035 packets per cycle.

Consequently, we claim that any Markovian model based on Poisson-type of distribution can lead

to performance results that severely underestimate the probability of exceeding a certain packet

latency or the probability of missing a given deadline. Markovian approaches rely most frequently

on one or two parameters (mean and variance) for estimating the probability of a certain event.

Considering only the mean and variance implies to approximate the probability of an extreme event

by a Gaussian law which underestimates the chance of rare events [100]. An alternative to this

approach consists of increasing the significance of large events by considering higher order moments

(e.g., kurtosis).

To investigate the existence of multi-fractal behavior in packet latency time series between the

BAB module at (3, 0) and the memory block at (2, 2), we report in Figure 4.4.b their multi-fractal

spectrum as a function of the fractal dimension for several packet injection rates. From these results,

one can observe that with increasing packet injection rates, the multi-fractal spectrum does not

only shift towards right (i.e., a region corresponding to more correlated traffic), but also gains with

respect to the width of fractal dimensions (see the x-axis); this is a clear sign of the departure from

mono-fractal behavior2. When increasing the packet injection rate, the dominant fractal dimension

corresponding to the maximum value attained by the multi-fractal spectrum shifts from 1 (for

λ = 0.032), to 1.017 (for λ = 0.034) and to 1.021 (for λ = 0.035).

The existence of nonlinearity exhibited in Figure 4.4.a and the multi-fractal behavior observed

in packet latency time series shown in Figure 4.4.b imply that any real-time scheduling strategy

should not be based on a linear time theory, but instead consider nonlinear approaches (e.g.,

nonlinear feedback control strategies, stochastic optimization of higher order moments). Of note,

a similar multi-fractal behavior has been observed in [27] for the data request-reply latencies of

various SPEC-2006 applications running on CMP-based NoC architectures.

4.5 Where Does the Traffic Model Fit in the NoC Design and

Optimization Flow?

The multi-fractal nature of the NoC traffic has profound implications in various optimization

domains (e.g., packet scheduling, dynamic power management, chip temperature regulation, etc.).

The newly proposed approach (shown schematically in Figure 4.5) does not necessarily complicate

the network optimization task, but rather it motivates the need to shift the focus from linear

systems theory and control based on mean values (e.g., average buffer/link utilization, average

PE utilization, deadline miss ratio) to control and optimization approaches based on higher order

statistics (e.g., third and forth order moment statistics). Failure to do so can result in highly non-

2The shift towards right can be seen by observing the maximum value attained by the multi-fractal spectrum
which corresponds to the dominant fractal dimension of the packet latencies.
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Figure 4.5: Proposed traffic analysis methodology and its implications at application and archi-
tectural levels. Starting from the application and architecture characteristics, we build a dynamic
probabilistic model of the network traffic which can be used for solving various problems such as
topology synthesis, mapping, scheduling or routing.

optimal solutions in resource allocation and management (e.g., large buffer size, slow convergence

of the synthesized controllers for dynamic power management, etc.) or even unwanted behaviors

in the network response (e.g., sporadic and uncontrolled congestion).
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Chapter 5

Modeling and Analysis of

Fault-tolerant NoC Communication

Protocols

5.1 Biologically Inspired Communication Protocols for NoCs: Stochas-

tic Communication

So far we were concerned with dynamic processes taking place on networked architectures in

the absence of hardware failures. However, shrinking transistor dimensions, smaller interconnect

features and higher operating frequencies lead to a higher sensitivity of deep-submicron (DSM)

circuits to neutron and alpha radiation, significantly higher soft-error rates, and an increasing

number of timing violations [142]. These types of failures are impossible to characterize using

deterministic approaches and, thus, probabilistic metrics (e.g., hitting probabilities) are needed to

quantify the critical design objectives, such as fault-tolerance, performance and power. Traditional

acknowledgement/request protocols are not adequate in such an error prone environment.

To reduce the prohibitive cost of design and verification in the DSM domain and to provide a

high system-level fault-tolerance, a new communication paradigm, called stochastic communication

was proposed [57]. Under stochastic communication, data from various computational modules are

encapsulated into packets at the IP level and then it is probabilistically disseminated from sources

to destinations1. As shown in Figure 5.1, each tile keeps a list of packets (Send Buffer) that have to

be sent to the output buffers. The packets received during the last communication round and the

new packets generated by the IP are added to this buffer. However, if a packet is already stored, a

duplicate packet will not be inserted. At each intermediate node, the protocol evolves as follows: If

a packet is successfully received, it is first checked for information integrity via a cyclic redundancy

check (CRC) (see Figure 5.1). If the packet is neither corrupted, nor a duplicate, then the logic

1Note that we assume that the destination node has a local buffer capable to store the received out-of-order packets
and hardware logic to re-order them based on the information contained in the packets header.
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Figure 5.1: Stochastic communication consists of a Gossip Round executed concurrently by all
nodes. A packet received at the input ports is first CRC checked for information integrity. If the
packet is successfully received, then its TTL parameter is decreased and the packet is copied to the
Send Buffer. According to the forwarding probability (pf ) the packet is duplicated, CRC checked
(to prevent errors occurred during routing decision) and copied to the output buffers.

circuitry of the router decrements the time-to-live (TTL) parameter and probabilistically sends it

to a subset of its neighbors. Note that for simplicity reasons, we assume that the TTL value is large

enough (e.g., comparable to the order of the network diameter) to ensure that packet dissemination

does not terminate at some intermediate node along the path from source to destination.

5.2 Related Work and Major Contributions

When dealing with communication errors, one of the primary properties of a communication

protocol is the degree of fault-tolerance. Most of the times, the degree of fault-tolerance of a com-

munication protocol has been quantified through node coverage 2 metric. Traditionally, analytical

models used in computer networks or data bases to quantify the fault-tolerance of various commu-

nication protocols relied on mathematical models (e.g., rate equation, master equation) developed

in epidemics [10][49] and rumor spreading [122] theory.

Unlike epidemics and rumor spreading theory, which assume a homogeneous structure between

spreader3 and receiver individuals, we constructed a master equation quantifying the probability of

2The definition of node coverage refers to the number of nodes in the network that received at least one copy of
the disseminated message.

3In epidemics, a spreader individual denotes an agent that is infected with a virus and spreads it continuously or
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having a particular number of spreader4, ignorant5, and stifler6 nodes at a particular time t while

taking into account the network topology[24]. Although beneficial for determining the percentage

of network nodes aware of a piece of information, this approach does not offer information about

concrete performance metrics (e.g., latency) that can guide the overall NoC design process from

both architectural (e.g., determine the best communication protocol as a function of technology)

and application (e.g., find the best clustering, partitioning and mapping of an incoming application

[104]) perspectives.

Starting from these ideas, we construct an analytical approach for computing the mean hit-

ting time between any two nodes in a network that operates under the stochastic communication

protocol. In contrast to most mathematical approaches studying the gossip style protocols which

typically quantify the number of nodes aware of some piece of information, the hitting time anal-

ysis allows us to estimate how much time is needed to reach, from any given source, a particular

destination node in an arbitrary network. Consequently, evaluating the mean hitting time in a

network where communication happens stochastically is analogous to evaluating the latency in a

network where communication happens in a completely deterministic manner. This makes it clear

how important is to have available such a performance metric in order to design and evaluate a

stochastic communication protocol.

The concept of hitting time, or the first passage time as it is known in statistical physics, has

been mostly related to the problem of reaching an absorbing state (e.g., quantifying the existence

of steady-states for Rayleigh model of a gas, extinction of a population in prey-predator type of

problems [111]). The time characteristics of absorbing/extinction processes have been investigated

through the hitting time density function (i.e., the probability that the time at which a particle

reaches an absorbing state x1 is within the interval (t, t + δt), given that the particle starts at

position x0 and time t = t0).

In the context of random walks theory, the hitting time was originally developed in connec-

tion with electrical networks [43][55]. Since its inception, the theory of random walks attracted

significant attention due to its potential for solving a variety of problems in diverse application

domains such as the design of distributed computation [40][43][60], estimation of the complexity

of distributed algorithms [41], search in peer-to-peer networks [63], estimation of Web size [14].

While the evolution of a simple random walk on graphs is extensively studied in the literature, only

recently there has been some interest in the study of multiple, yet finite number of random walks

[6][48].

Nevertheless, many natural phenomena [10] and human-driven processes [15] cannot be modeled

using a single or only a finite number of random walks. Thus, in what follows, we model the

over a finite interval of time to any other individual with equal probability. Similarly, in rumor spreading processes,
a spreader refers to an agent that is aware of the rumor and chooses to spread it to all other individuals with equal
probability. Note that, in general, topological restrictions are not considered.

4The spreader represents any node that is aware of the message and decides to disseminate it.
5The ignorant defines a node that is not included in the communication area yet.
6The stifler node refers to the case in which a node aware of the message chooses to cease its dissemination (either

the link is faulty or the node is dropping the packet).
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Figure 5.2: Mean hitting time (i.e., time elapsed while propagating a packet from source (1, 1)
to destination (N,N)) comparison between SRW and BARW approaches for various mesh sizes
(2× 2, . . . , 20× 20). The results are conservative as we consider a best case scenario for SRW (i.e.,
the packet is sent to a randomly chosen neighbor in each round) and an average case scenario for
BARW (i.e., packets are forwarded with 0.25 probability).

stochastic communication process as a collection of random walks taking place on finite graphs and

investigate their evolution (dynamics) both in space and time.

To illustrate the impact of the mesh topology on the dynamics of the branching process, as well

as the nature of the epidemic style spreading, we report on a log-log scale the average hitting time

as a function of the network size (see Figure 5.2), when the initiating source and destination nodes

are located at nodes (1, 1) and (N,N), respectively, under the following two scenarios. A single

random walk (SRW) where at each location on a mesh a virus residing at the current node infects

with probability 1 a single random neighbor without considering the neighbors initial state, and an

epidemic style spreading where at each location on a mesh, the virus at the current node infects an

arbitrary subset of neighbors; this is similar to information spreading in stochastic communication.

In the context of stochastic communication, a packet can be corrupted during link transmission

or simply dropped by a faulty node; this epidemic style spreading is seen as a branching and

annihilating random walk (BARW) process [42][150].

5.3 A Branching and Annihilating Random Walks Approach to

Modeling Fault-Tolerant Communication Protocols

Next, we focus on estimating the performance (e.g., hitting time7) of stochastic communication

routing seen as a collection of dynamic processes taking place on a network in the presence of errors.

7The hitting time represents the time it takes for a packet to propagate from a source to a destination node.

44



More precisely, we model the packet probabilistic dissemination as a branching random walk, while

the reverse process, in which packets are corrupted or overwritten, as an annihilated random walk

[116]. In contrast to a single random walk where, at any given time, a message is sent randomly

only to a neighboring node [58][55][132], the stochastic communication allows for multiple random

walks starting at each node; this provides a much higher dissemination speed and robustness to

the communication protocol compared to a simple random walk. Consequently, one can say that

stochastic communication generalizes the simple random walk model, both in time and space, and

so it needs a new and more general theory to explain it.

Adopting a statistical physics approach, we model the communication events (e.g., packet

duplication, packet dropping) during a probabilistic dissemination initiated at node (i, j)S and

taking place on an N × N mesh network by associating to each node (i, j) a stochastic process

{Oij (t) |1 ≤ i, j ≤ N, t ≥ 0} which reflects the number of received copies at any time t. The packet

dissemination across the network can be described by the following interactions:

a) Packet duplication: In a short time interval δt, a node (i, j) can duplicate a packet

according to the relation:

Pr {Oij (t+ δt) = k + 1|Oij (t) = k} = λijkδt+O (δt) (5.1)

where λij is the packet duplication rate for each node (i, j), k is the number of received copies, and

O (δt) is a negligible term. The duplication process starts only if the node (i, j) received at least

one copy (i.e., k > 0), otherwise the duplication probability is zero. The packet duplication rate

λij is proportional with the packet forwarding probability of the dissemination algorithm as shown

in Figure 5.3.

b) Packet successful transmission: A packet duplicated at node (i, j) can be successfully

sent to its neighbor at (i, j − 1) (thus increasing its Oij−1) as follows:

Pr {(Oij , Oij−1) (t+ δt) = (k − 1, n+ 1) | (Oij , Oij−1) (t) = (k, n)} = αWij k
(

1− n
Bij−1

)
δt+

+O (δt) (5.2)

where αWij is the link successful transmission rate from node (i, j) to its West neighbor (i, j−1) (i.e.,

the router at (i, j) sends a copy to (i, j − 1) node and the packet is successfully received), k and n

represent the number of received copies at (i, j−1) and (i, j) nodes at time t, and Bij−1 is the size of

the buffer at (i, j−1) node. The transition probability Pr {(Oij , Oij−1) (t+ δt) | (Oij , Oij−1) (t)} in

Eq. 5.2 is strictly positive only if the sender node (i, j) has received at least one copy (i.e., k > 0).

Moreover, this probability is meant to account for all errors that occur during the link transmission

due to induced noise (e.g., ground bounce, inductive and capacitive crosstalk, IR drop, thermal

noise, etc.) which are detected by the CRC module and the buffer overflows. Indeed, excessive

packet duplication can cause buffer overflows; this is captured by the (1−Oij−1/Bij−1) term, with

Bij−1 being the buffer size at node (i, j−1). If the buffer at node Oij−1 is empty, then this term has

no effect on the transition probability. If the number of received copies Oij−1 increases, then this
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Figure 5.3: Possible events (e.g., packet duplication, packet successful transmission, buffer over-
flow, and packet corruption) between two neighboring nodes under the stochastic communication
protocol.

probability decreases. Similarly, we can describe the transmission events from (i, j) to the North

(Oi−1j), East (Oij+1), and South (Oi+1j) neighbors.

c) Packet corruption while routing: The probability that a node corrupts a (received)

packet during the routing decision, and then causes it to be discarded, is:

Pr {Oij (t+ δt) = k|Oij (t) = k + 1} = µij (k + 1) δt+O (δt) (5.3)

where µij denotes the packet corruption rate at node-level. This transition is activated with rate

µij only if the node (i, j) has already received a positive number of packets (k > 0). This accounts

for potential errors in computation at node-level. For instance, erratic bit phenomena have been

reported in [3] to occur in SRAMs due to random noise which affects the minimum voltage at

which the memory cell remains functional. This implies that packets received successfully can

be occasionally corrupted (e.g., bits in the header flit can be flipped) inside the memory cells or

during the routing decisions before actually being routed. More importantly, it is predicted that

these effects will only get worse in future DSM technologies [3][47].

d) No interaction: In case of no communication events, the corresponding transition proba-

bility is given by:

Pr {Oij (t+ δt) = k|Oij (t) = k} = 1−O (δt)− λijkδt− µijλijkδt

−
[
αNij

(
1− mi−1j

Bi−1j

)
+ αEij

(
1− mij+1

Bij+1

)
+ αWij

(
1− mij−1

Bij−1

)
+ αSij

(
1− mi+1j

Bi+1j

)]
kδt (5.4)

where mi−1j , mij−1, mij+1, and mi+1,j denote the number of received copies by the neighboring

nodes of node (i, j).

Having already characterized these individual interactions, the packet diffusion over the entire
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network can be seen now as a collection of random walks, where the occurrence probability of

any transition in an interval (t, t + δt) relies on the number of packets received at time t, at each

node. The nodes evolution (or dynamics) can be described via a master equation of a multivariate

probability distribution function:

P (o11, ..., oij , ..., oNN ; t) = Pr{O11 (t) = o11, ..., Oij (t) = oij , ..., ONN (t) = oNN | (5.5)

O11 (0) = m11, ..., Oij (0) = mij , ..., ONN (0) = mNN}

which shows that the stochastic process Oij(t) associated to node (i, j) received oij packets (Oij(t) =

oij) by time t.

The evolution of the probability distribution in Eq. 5.5 is given by the following differential

equation:

P (..., oij , ...; t)
dt

=
∑N

i,j=1{λij (oij − 1)P (..., oij − 1, ...; t) + µij (oij + 1)P (..., oij + 1, ...; t) +

+αNij (oij + 1)

(
1− oi−1j − 1

Bi−1j

)
P (..., oi−1j − 1, oij + 1, ...; t) + αEij(oij + 1)

(
1− oij+1 − 1

Bij+1

)
•

P (..., oij + 1, oij+1 − 1, ...; t) + αWij (oij + 1)

(
1− oij−1 − 1

Bij−1

)
P (...oij−1 − 1, ..., oij + 1, ...; t)

+αSij(oij + 1)

(
1− oi+1j − 1

Bi+1j

)
P (...oij + 1, ..., oi+1j − 1, ...; t)} −

∑N
i,j=1{αNij

(
1− oi−1j

Bi−1j

)
+

+λij + µij + αEij

(
1− oij+1

Bij+1

)
+ αWij

(
1− oij−1

Bij−1

)
+ αSij

(
1− oi+1j

Bi+1j

)
}oijP (..., oij , ...; t) (5.6)

with the initial condition P (o11 = 0, ..., oijS = 1, ..., oNN = 0; t = 0) = 1 which shows that the

stochastic packet dissemination was started at location (i, j)S on the mesh.

The above master equation describes the time evolution of the probability density function

(PDF) of a packet type which follows a stochastic routing process in a finite mesh network. More

precisely, each of the terms on the right hand side of Eq. 5.6 accounts for one of the above mentioned

transition probabilities (i.e., possible individual nodes actions) applied to a certain node (i, j) with

i, j = 1 ÷ N in the time interval (t, t + δt). All other possible events have probability O(δt), as

δt tends to zero, and so they are negligible. Intuitively, Eq. 5.6 gives the dynamic description of

the P (o11, o12, ..., oNN ; t) distribution, at microscopic-level, over all possible nodes configurations.

Of note, as a particular case, Eq. 5.6 can describe the evolution of M independent random walks

on a finite graph by neglecting the branching (λij) and annihilation (µij) parameters. Besides the

problem at hand, this is particularly interesting for characterizing biological processes where the

duplication and annihilation rates are much smaller compared to the time horizon of the entire

process (e.g., drug delivery via bacteria [143]).
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5.4 Performance Analysis: Hitting Probabilities and Hitting Times

The mean hitting time
〈
T(i,j)S→(i,j)D

〉
can be expressed as follows:

〈
T(i,j)S→(i,j)D

〉
=

∫ ∞
0

t

[
∂P
(
o(i,j)D = 0, t|o(i,j)S = 1, t = 0

)
∂t

]
dt ≈

∞∫
0

tP (o(i,j)D = 0, t)dt (5.7)

where we use integration by parts and the fact that P (o(i,j)D = 1, t; o(i,j)S = 1, 0) is much smaller

than the probability P (o(i,j)D = 0, t; o(i,j)S = 1, 0). Eq. 5.7 quantifies the average time needed by

the first packet to reach the destination (i, j)D from a given source node (i, j)S .

Due to node failures, a fault-tolerant computation strategy should also consider that a given set

of distributed tasks may be implemented on multiple NoC tiles by sending the data and program

instructions via a stochastic communication protocol. Consequently, one needs to estimate, in

advance, the time it takes to communicate the data and the computational requests from one

source to a set of destination nodes. Indeed, similarly to Eq. 5.7, the mean hitting time (〈Tset〉)
between a source (i, j)S and a set of destinations ∆ = {(i, j)Dk |k ≤ card(∆)} can be estimated

using the following formula:

〈Tset〉 = max(

∞∫
0

tP (o(i,j)D1
= 0, t)dt,

∞∫
0

tP (o(i,j)D2
= 0, t)dt, . . . ,

∞∫
0

tP (o(i,j)Dcard(∆)−1
= 0, t)dt,

∞∫
0

tP (o(i,j)Dcard(∆)
= 0, t)dt) (5.8)

We evaluate the proposed model by considering a stochastic communication scenario between

node (1, 1)S and node (1, 20)D on a 30×30 mesh NoC. Figure 5.4.a shows the numerical estimate of

the probability of node (1, 20)D to receive exactly 0, 1, and 3 packets under stochastic communica-

tion. For this experiment, we use a 0.15 packet injection rate, and a 0.8 link successful transmission

probability for all directions. We compare these results with those shown in Figure 5.4.b for the

probability of not receiving any packet and the probability of receiving exactly 1 and 3 packets for

the node located at (1, 20) on a 30 × 30 mesh, from source (1, 1)S obtained via simulation. Both

graphs show a similar exponential behavior of the hitting probabilities. Knowing the probability

of not receiving any packet allows us to compute also the time-dependent probability of receiving

at least 1 packet. This probability can be further used to determine upper-bounds on the mean

hitting time. For instance, as shown in Figure 5.4.a, the destination at (1, 20)D receives at least 1

packet in approximately 23 communication rounds.

Along the lines of dynamic processes evolving on networked architectures, this hitting time

analysis opens up two research directions: firstly, it enables us to estimate the performance of NoC

architectures employing various routing protocols (e.g., XY, adaptive, stochastic) in the presence

of hardware failures; secondly, it can serve as a mathematical tool for characterizing the evolution
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Figure 5.4: a) Time-dependent probabilities at destination (1, 20) to receive 0, 1, and 3 packets
from node (1, 1) on a 30× 30 mesh obtained via numerical analysis. The probability of receiving at
least 1 copy is almost 1 after 23 communication rounds. b) Time-dependent probabilities for nodes
(1, 20) to receive 0, 1, and 3 packets from node (1, 1) on a 30× 30 mesh obtained via simulation.

of a network of swarming (nano)robots that can achieve either medical or defense tasks.
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Chapter 6

Dynamic Optimization Techniques for

Networked-based Architectures

6.1 The Quest for Limiting Watts Expenditure at Nanoscale

Integrating a large number of cores that need to operate at high frequencies in order to ac-

commodate complex applications (e.g., recognition, mining, and synthesis (RMS) [164], or data-

centric computation [131]) leads to very heterogeneous workloads and higher power consumption

and temperature fluctuations within die [22]. In this context, in order to sustain the increasing

computational demands, it is essential to enhance the multicore platforms with smart power man-

agement policies, which can enable per core/tile control of power consumption while satisfying

various performance levels [97].

Smart power management policies are critically needed not only because of the bursty nature

of computational workloads, but also because systematic and random variations in process, voltage

and temperature can significantly degrade chip reliability. Such problems cannot be predicted nor

corrected at design and manufacturing stages, so it is essential to provide efficient and robust on-

line control methodologies that can minimize the impact of workload dynamic variations on power

consumption and peak temperature profiles, while satisfying the platform performance constraints.

To overcome these challenges, we formulate the problem of optimal power management for multi-

domain platforms, where communication happens via a globally asynchronous locally synchronous

(GALS) NoC architecture. As shown in Figure 6.2, the GALS NoC approach implies that the NoC

is partitioned into synchronous blocks which communicated with each other asynchronously. In

our framework, we assume that both PEs and routers can run at different supply and threshold

voltages. We denote a block running at a certain supply and threshold voltage as a voltage-

frequency island (VFI). The goal of the online controller is to determine the optimal operating

frequencies for both PEs and NoC routers that belong to separate voltage and frequency islands

(VFIs) such that the performance constraints (typically translated into queue utilization values)

are met despite the highly complex characteristics (e.g., non-stationarity, self-similarity) exhibited
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by real computational workloads. As shown in Figure 6.1, the contribution of our work is threefold:

• First, we propose a fractal-based state description of the dynamics of queues interfacing neigh-

boring VFIs (top part of Figure 6.1). For completeness, we also describe a strategy for

estimating the parameters of the fractal model (middle part of Figure 1).

• Second, we formulate the power management as a constrained finite horizon fractional optimal

control problem, which seeks to bring the utilization of the queues in the NoC platforms

at predefined reference values while minimizing the individual operating frequency of both

PEs and routers (see Figure 6.1). Note that the controller we synthesize accounts for the

high variability observed in computational workloads, as well as ensures that the operating

frequencies of both processors and routers remain within a predefined interval.

• Third, using advanced concepts like Lagrange optimization and calculus of variations, we

derive the optimality conditions that need to be satisfied by all operating frequencies across

the VFIs in order to reach the desired performance level for the entire multicore platform.

Generally speaking, feedback-based control approaches compute a set of control actions which

bring the system into a desired state with no constraints on the magnitude of the control signal.

In many situations, however, such control signals can take exceedingly high values which make

them (physically) unfeasible. In addition, the feedback control strategies have the drawback that

only a limited number of design parameters can be found from the closed-loop pole locations. An

alternative approach is to consider the problem of finite horizon optimal control1 with a predefined

reference which finds the best sequence of control actions over a fixed time interval (horizon); this

set of control actions can bring the system (characterized by an integer order differential equation)

to the desired reference at the end of the control interval.

In contrast to feedback control approaches and classical optimal control, the (finite horizon)

fractional optimal control approach investigated here allows to directly optimize a certain per-

formance function subject to fractal (i.e., fractional derivatives) state equations (i.e., for queue

utilization) and bounded control signals (i.e., operating frequencies). In other words, the proposed

fractal controller is able to provide the optimal control signals (i.e., operating frequencies), if they

exist, for a given performance level. In contrast, the classical feedback control approaches (based

on integer order derivatives) can determine operating frequencies that do not necessarily offer the

minimum power consumption.

1Note that, in control theory, the finite horizon optimal control problem, which minimizes a specific performance
index function while selecting control signals from a constrained set, is also referred as robust receding horizon control
or as robust model predictive control.
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Figure 6.1: Overview of our methodology for controlling fractal workloads in multi-core systems.
We first input the information about the application (e.g., task graphs, packet injection rates) and
architecture (e.g., topology, routing) and the set of costs and performance constraints that have to
be satisfied by the NoC platform. Building on NoC workload measurements (i.e., queue utilization,
arrival and departure processes), we build a fractal model of the queue dynamics by estimating the
fractional order of the time derivative, the utilization contribution parameter and the arrival and
departure coefficients. Next, we use this identified model to design an optimal controller, which
determines the optimal operating frequencies for the VFIs such that the performance constraints
are satisfied.

6.2 Power Management for NoC Architectures under Highly Vari-

able Workloads

We formulate the power management as an optimal control problem which takes into account

the fractal characteristics of the NoC workload. Towards this end, we consider a VFI-based NoC

architecture consisting of NPE PEs, Nr routers, and N q
j queues interfacing the router in the j-th

VFI with other routers in the neighboring VFIs (see Figure 6.2).

The goal of our nonlinear control problem is to find, for a given starting time (ti) and a final

time (tf ), the optimal assignment of operating frequencies for the PEs, routers, and queues, which

minimizes a multiobjective function consiting of the quadratic costs of queues utilization with

respect to a predefined reference, as well as, the operating frequency of each VFI (this would
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Figure 6.2: Representation of j-th and l-th neighboring VFIs where each PE is set to run, if
necessary, at its own frequency. The xj(t) variable represents the utilization of the interface queue
between the j-th and l-th VFIs. The yi(t) represent the utilization values of the interface queue
between the i-th PE and j-th VFI. Note that various colors of the tiles in the above NoC imply
that each island can run at a certain frequency.

implicitly minimize also the power consumption):

min

tf∫
ti


NPE∑
i=1

wi

(
yi(t)− yrefi (t)

)2
+ zif

2
i (t)

2
+

Nr∑
j=1

Nq
j∑

k=1

rjf
2
j (t) + qk

(
xk(t)− xrefk

)2
2

 dt (6.1)

subject to the constraints given in Eq. 6.2 through Eq. 6.6:

dαiyi(t)
dtαi

= ai(t)yi(t) + bi(t)fi(t)− ci(t)fj(t), i = 1÷NPE (6.2)

0 ≤ ymini ≤ yi(t) ≤ ymaxi ≤ 1, i = 1÷NPE (6.3)

where yi(t) and yrefi (t) for i = 1÷NPE represent the actual utilization and the utilization reference

of the queue between the i-th PE and its corresponding router, xk(t) and xrefk (t) for k = 1÷N q
j , j =

1÷Nr are the actual utilization and the reference utilization of the k-th queue between the routers

in the j-th and l-th VFIs. In Eq. 6.1, wi, zi, rj and qk are positive weighting coefficients. In

Eq. 6.2, αi is the fractional order which depends on the fractal dimension characterizing the queue

utilization process yi(t), ai represents the weight coefficient of the utilization yi(t), bi and ci reflect

the contributions of the writing frequency (fi) and the reading frequency (fj), y
min
i and ymaxi

are the admissible lower and upper bounds on the queue utilization yi(t). Of note, the optimal

controller allows the designer to set individual weighting coefficients (i.e., wi, zi, rj and qk) in Eq.

6.1 for each of the NoC components such that the major power consumption elements can have a

higher impact on the overall cost function.

The next set of constraints are meant to characterize the utilization of queues between neigh-

53



boring VFIs:

dαkxk(t)
dtαk

= ak(t)xk(t) + bk(t)fk(t)− ck(t)fl(t), k = 1÷N q
j , j = 1÷Nr (6.4)

0 ≤ xmink ≤ xk(t) ≤ xmaxk ≤ 1, k = 1÷N q
j , j = 1÷Nr (6.5)

where αk is the fractional order characterizing the queue utilization process xk(t), ak(t) represents

the contribution of utilization xk(t) to the entire queues utilization dynamics, bk(t) and ck(t)

represent coefficients of the writing frequency (fk) and the reading frequency (fl), respectively,

xmink and xmaxk are the lower and upper bounds on the utilization xk(t).

Although in current problem formulation we assumed that workload parameters (i.e., ai, bi and

ci related to the dynamical equation of the utilization yi(t); ak(t), bk(t) and ck(t) related to the

dynamical equation of the utilization xk(t)) are taking deterministic values, the proposed formalism

can also be extended to account for uncertainty coming from either the estimation procedure of

these parameters or from system non-idealities (e.g., process variations). If the stochastic nature

of the model parameters can be modeled through Gaussian type of distributions, then the problem

formulation needs to be augmented with lower and upper bounds to account for the variation

exhibited by each parameter. This represents a straight forward extenssion of present formalism

by considering that each fractal state-space equation (see Eq. 6.2 or Eq. 6.4) is replaced by two

dynamical constraints corresponding to the lower and upper bounds on the parameter. If the

parameter uncertainty of the dynamical equations (i.e., Eq. 6.2 or Eq. 6.4) exhibits non-Gaussian

characteristics, then the controller needs to be synthesized via solving a fractional Hamilton-Jacoby

type of partial differential equation described in [30].

Note that the cost function in Eq. 6.1 seeks to maintain all NoC queues at specific utilization

references (see the squared differences between yi(t) and yrefi (t) or xk(t) and xrefk (t)), while the

control inputs - the operating frequencies - are prevented from taking exceedingly large values, which

would correspond to high power consumption. In other words, the role of the optimal controller is

to select the minimum operating frequencies for which the performance constraints are satisfied.

Moreover, in order to prevent the nonlinear controller from selecting an unacceptable range of

operating frequencies, we impose the following bounding constraints:

fmini (t) ≤ fi(t) ≤ fmaxi (t), i = 1÷NPE fminj ≤ fj ≤ fmaxj , j = 1÷Nr (6.6)

where fmini and fmaxi are the lower and upper bounds on the frequency at which each PE can

run, fminj and fmaxj are the lower and upper bounds on the frequency at which each router can

run. Note that we introduce two indices i- for the PEs and j- for the routers, and implicitly two

variables (i.e., fi and fj) such that the operating frequencies of the PEs are decoupled from the

router frequencies. Hence, we avoid setting the PE to a small frequency which may affect the

computational performance requirements, or setting the router to a too high frequency when it is
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not necessary. In addition, by setting bounds on operating frequency can also help at mitigating

circuit aging and nano-scale challenges (e.g., parameter variations).

Although in the above problem formulation we consider that the queues attached to a router

and their corresponding router have the same operating frequency, the mathematical formulation

can be extended to account for distinct voltage-frequency domains for routers and buffers. Since

considering a single VFI for each router would introduce further complexity (due to a larger number

of mixed-clock queues), we limit ourselves at considering that the Nr consist of just a few VFIs and

include more constraints to reflect the fact that neighboring routers are assumed to operate at the

same frequency. Nevertheles, there is a tradeoff between the computational time required to solve

the power management problem and detrmine the optimal operating frequencies and the number

of VFIs. In the following section, we show how the optimization problem can be solved via calculus

of variations and optimal control theory concepts, derive the optimality conditions and summarize

the computational complexity of the proposed power management algorithm.

6.3 Algorithmic Perspective and Experimental Results

To solve the power optimization problem, we use concepts from the optimization theory and

construct first the Lagrangian functional, L(yi, fi, λi, xk, fj , γk,j), as follows:

L(yi, fi, λi, xk, fj , γk,j) =

tf∫
ti

{
NPE∑
i=1

[
wi
2

(
yi(t)− yrefi (t)

)2
+
zif

2
i (t)

2
+ λi(

dαiyi(t)

dtαi
−

−ai(t)yi(t)− bi(t)fi(t) + ci(t)fj(t))] +

Nr∑
j=1

[
rjf

2
j (t)

2
+

Nq
j∑

k=1

qk
2

(
xk(t)− xrefk

)2
+ (6.7)

γk,j(
dαkxk(t)
dtαk

− ak(t)xk(t)− bk(t)fk(t) + ck(t)fl(t))] }dt

where yi(t) and xk(t) denote the queue utilization variables, fi is the frequency associated with the

i-th PE, fj is the frequency associated with the j-th router, λi is the Lagrange multiplier associated

with the constraint imposed for the queue between the PE and the router, and γk,j are the Lagrange

multipliers associated with the constraints imposed on the queue between neighboring routers in

different VFIs.

For completeness, we also have to add some boundary constraints on the utilization of mixed

clock queues:

yi(t = 0) = y0i yi(t = tf ) = yrefi , i = 1÷NPE (6.8)

xk(t = 0) = x0k xk(t = tf ) = xrefk , k = 1÷N q
j , j = 1÷Nr (6.9)

These conditions are required in order to satisfy a certain performance level from the compu-
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tation standpoint.

By expanding the Lagrange function in Eq. 6.7 via the Taylor formula and considering that it

attains its minimum in the vicinity of τ = 0, i.e., ∂L/∂τ = 0 , we obtain the following relations:

∂L
∂yi

+t D
αi
tf

∂L
∂tiD

αi
t yi

= 0, ∂L
∂fi

= 0, i = 1÷NPE (6.10)

∂L
∂xk

+t D
αk
tf

∂L
∂tiD

αk
t xk

= 0, ∂L
∂fj

= 0, k = 1÷N q
j , j = 1÷Nr (6.11)

where tiD
α
t and tD

α
tf

represent the fractional derivatives of order α operating backward and forward

in time [80], respectively.

In order to solve the equations in Eq. 6.10, we discretize the interval [ti, tf ] into N intervals of

size (tf − ti)/N and use the formula in Eq. 1.4 to construct a linear system which can be solved

using either Gaussian elimination or LU decomposition. In short, the algorithm of the optimal

controller is as follows:

Algorithm for optimal control synthesis:

1. Read from the system identification module, the coefficients αi, ai, bi, ci for i = 1 ÷ NPE

characterizing the dynamics of queues between PEs and routers and αk, ak, bk, ck for k =

1÷N q
j , j = 1÷Nr describing the dynamics of queues between neighboring routers in different

VFIs;

2. For a fixed number of discrete steps N , compute the coefficients obtained after discretization

of the fractional derivatives in Eq. 6.2, Eq. 6.4 and Eq. 6.10 using the formula in Eq. 1.4

and construct a linear system, where the unknown variables are represented by the operating

frequencies (i.e., fi, fj) and Lagrange multipliers (i.e., λi and γk,j);

3. Solve the linear system in Eq. 6.10 and find the operating frequencies for each VFI in the

NoC architecture.

In terms of practical implementation, the worse-case complexity2 of the algorithm for the case,

when minimum and upper bounds on both queues utilization and operating frequency are con-

sidered, is bounded by O(N × M2) where N is the number of discretization steps and M =

2NPE + 2
∑Nr

j=1N
q
j is the sum between the number of state variables (i.e., queues utilization) and

the number of control signals (i.e., operating frequencies). However, if the minimum and maximum

bound constraints on the queues utilization and operating frequency are ignored, then the controller

algorithm reduces to a linear system in Eq. 6.10 with a linear complexity O(N +M) when solved

by (N +M)2 adders. This low complexity makes it perfectly suitable for online implementation.

To evaluate the fractal optimal control, we consider a combination of trace driven and cycle accu-

rate simulation of a VFI-based NoC architecture. From an application perspective, we consider four

2Note that here we refer to worse-case time complexity [79][141] which represents the number of discrete steps
required to solve the formulated optimization problem on a universal Turing machine [152]. The worse-case space
complexity (i.e., the number of distinct storage locations accessed by various instructions required by the optimization
algorithm), can be reduced by using hash tables and employing the multiparametric linear programming methods of
partitioning the state-input space of polyhedral regions.
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Workload Description

apache Web server application (apache HTTP server v2.0):
16K connections, worker threading model

db tpcc Online transaction processing (IBM DB2 v8 ESE):
100 warehouses, 64 clients, 450 MB buffer pool

oracle Online transaction processing (POracle 10g Enterprise
Database Server): 100 warehouses, 16 clients, 1.4 GB SGA

ocean Scientific (ocean simulation):
1026×1026 grid, 9600 relaxations, 10−7error tolerance

sparse Scientific (blocked sparse
Cholesky factorization): 4096x4096 matrix

Table 6.1: Commercial and scientific workloads used to test the constrained finite horizon fractal
optimal control approach to power and peak temperature management.

16-node multi-threaded commercial workloads (i.e., Apache HTTP server v2.0 from SPECweb99

benchmark [146], online transaction processing application consisting of TPC-C v3.0 workload on

both IBM DB2 v8 ESE and Oracle 10gExterprise Database Server, blocked sparse Cholesky fac-

torization and ocean simulation) obtained by running them on a FLEXUS based shared-memory

16-processor environment consisting of cycle accurate models of out-of-order processors and cache

hierarchy [160][163] (see also Table 6.1 for more details).

From an architectural perspective, we consider a 4×4 mesh NoC employing XY wormhole

routing scheme with mixed clock queues of 10 flit size and packets consisting of 15 flits. In this

setup, we consider that the execution of a set of applications is divided into several intervals of

20ms length. Nevertheless, the proposed control algorithm can also work with larger time intervals

while considering that the model parameters are estimated for the new time scale. For each time

interval, the system identification module estimates the fractional exponent αk in two stages: First

it computes the wavelet coefficients for log2(m) resolution scales via the discrete wavelet transform

of the queue utilizations (of size m). Second, it performs a linear regression between the resolution

scales and the variance of the wavelets coefficients. This parameter identification strategy not only

reduces the computational complexity from O(N3) order to a linear O(N), but also allows online

estimation procedure with minimum memory overhead (i.e., it does not require to store all queue

utilizations and can be performed iteratively whenever there is a change in queue occupancy). Next,

the identification module estimates from the arrival (Ak), departure (Dk) and queue utilization (Xk)

processes the parameters ak, bk, and ck by solving the following linear system:
Re [Xk (jω1)] Re [Ak (jω1)] −Re [Dk (jω1)]

0 Im [Ak (jω1)] −Im [Dk (jω1)]

. . . . . . . . .

Re [Xk (jωM )] Re [Ak (jωM )] −Re [Dk (jωM )]

0 Im [Ak (jωM )] −Im [Dk (jωM )]


 ak

bk

ck

 =


Λ (ω1)

Υ (ω1)

. . .

Λ (ωM )

Υ (ωM )

 (6.12)
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Figure 6.3: a) Utilization of the queues at tiles (0,0), (0,2), (1,1), (1,2), (2,2), (2,1), and (3,3) for a
4 × 4 mesh NoC running Apache HTTP webserver application. b) The variation of the operating
frequencies for the routers at (0,0), (0,2), (1,1), (1,2), (2,2), (2,1), and (3,3) necessary to reach the
reference values imposed on the utilization of all queues.

where the terms Λ (ω1) = ωαk1 cos(αkπ/2)Re[Xk(jω1)] and Υ (ω1) = ωαk1 sin(αkπ/2)Im[Xk(jω1)]

come from the frequency representation of Eq. 6.4. After the identification step is completed (at

run-time) in parallel with the application computations, the fractal optimal controller reads these

parameters and solves the linear system defined by Eq. 6.10 to determine the optimal operat-

ing frequencies for the PEs and routers (for the next interval of 20ms) that ensure a predefined

performance level specified in terms of queue utilization references.

Following the above procedure, we apply the optimal controller for N = 30 discrete steps and a

4×4 mesh NoC running a Apache HTTP webserver application to determine the operating frequen-

cies such that the utilization of the queues is below 0.1. The reason for bounding the maximum

utilization of the queues at a reference value of 0.1 is two fold: First, a smaller utilization of the

queues implies smaller packet waiting times in buffers and so smaller source-to-destination laten-

cies. Second, a small queue utilization also minimizes the chances of thermal hotspot buildup and

so improves chip reliability. Note also that the number of discrete steps (N) chosen for discretizing

the Eq. 6.2, 6.4 and Eq. 6.10 influences the precision of the operating frequencies. Consequently,

when less precision is needed in terms of operating frequency, we can use a smaller number of

discrete steps (e.g., 5 to 10). For demonstration purposes, we consider the case of N = 30 discrete

steps and solve the linear system describing the dynamics of 80 queues in less than 200ns. This

makes the proposed approach suitable for online power management of future multicore platforms.

Figure 6.3.a shows the utilization of a few queues at tiles (0, 0), (0, 2), (1, 1), (1, 2), (2, 2), (2, 1),

and (3, 3). We can observe that the optimal controller is able to bring the utilization these
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Figure 6.4: Comparison between the utilization of all queues in the uncontrolled case and the queue
utilization for the case of the fractal optimal controller.

tiles below the reference value of 0.1. Figure 6.3.b shows the operating frequencies of the tiles

at (0, 0), (0, 2), (1, 1), (1, 2), (2, 2), (2, 1), and (3, 3) needed to attain the imposed reference values.

Moreover, Figure 6.4 shows the utilization of the queues without and with fractal optimal con-

trol. The optimal controller is able to keep the utilization of all queues below 0.1 by adjusting the

operating frequencies of all PEs and routers.

By comparing the power consumption of the new VFI system with an NoC architecture with

all PEs and routers running at 3GHz we obtain approximately 70% power savings. Of note, if

we restrict our optimal controller to use only integer order derivatives like in the case of linear

quadratic regulator (LQR), and thus model the queue utilization processes in the NoC via integer

order differential equations, the power savings are only about 30%. This shows that in some cases

the classical LQR approach can get trapped in some local minima. However, the fractal optimal

controller allows to find the optimal solution; this enables the highest amount of power savings.

For completeness, we also apply the optimal controller to a 4×4 mesh NoC running a matrix

Cholesky factorization type of application with the goal of keeping the utilization of all queues

under 0.4 utilization. The reason for constraining the utilization of all queues to be below 0.4 is to

minimize the chances of thermal hotspots while allowing a prescribed performance level in terms

of network throughput. Note that, by imposing at most 0.4 queue utilization for this experimental

setup, the impact on average packet latency is less than 4%.

As we can see from Figure 6.5.a the utilization of the queues at tiles (1, 1), (1, 3), (2, 0), (2, 2),

and (3, 3), respectively, are brought under 0.4 at predefined reference values. Figure 6.5.b shows

the operating frequencies at tiles (0, 0), (1, 1), (1, 3), (2, 2), (2, 3), and (3, 3) needed for reaching the
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Figure 6.5: a) Utilization of the queues at tiles (1,1), (1,3), (2,0), (2,2), and (3,3), respectively, for
a 4 × 4 mesh NoC running the Cholesky matrix factorization. b) The operating frequencies for
tiles at (0,0), (1,1), (1,3), (2,2), (2,3) and (1,3) necessary for all queues in the network to meet the
imposed constraints.

Figure 6.6: Comparison in terms of queue utilization between uncontrolled and the control case.
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predefined utilization reference values.

To better emphasize the role of control, Figure 6.6 shows the utilization of all queues in the

network for two cases: when no control is used (red dotted line) and when the proposed optimal

controller is applied (blue solid line). We can observe that although in some cases the queue utiliza-

tion increases, the peaks exceeding 0.4 are minimized by carefully assigning operating frequencies

for all PEs and routers. In addition by solving the linear system in Eq. 6.10 for 30 discrete steps

and comparing the power values with those of a homogeneous NoC with PEs and routers running

at 3GHz, we observe that the proposed approach leads to 40% power savings for Cholesky matrix

factorization. By applying the proposed algorithm and comparing with NoC architectures running

at 3GHz lead to 50% and 20% power savings for ocean simulation and online transaction processing

application, respectively.

So far, we investigated how we can use concepts from optimal control and fractional calculus to

minimize dynamic power consumption. Next, we will consider both dynamic and static power con-

sumption and peak temperature as explicit terms in the cost function of the dynamic optimization

problem.

6.4 Power and Peak Temperature Optimization of NoCs

To account for thermal effects, in this section, we formulate the total power and thermal opti-

mization as a constrained finite horizon fractal optimal control problem which takes into account

• i) the fractal characteristics of the NoC workload and

• ii) the nonlinearity dependency between the chip temperature and operating frequency.

We consider an M ×N mesh VFI-based NoC architecture consisting of PEs, routers and interface

queues (see, in Figure 6.7, the North, East, West, South and Local queues interfacing the router

at (i, j) location on the mesh with the routers at (i + 1, j), (i, j + 1), (i, j − 1), (i − 1, j) and the

local PE, respectively).

The goal of our nonlinear controller is to find, for a given starting time (ti) and a final time (tf ),

the right (best) assignment of supply voltage and operating frequencies for the PEs, routers and

queues which minimizes the total power consumption, peak temperature profile and the quadratic

difference between the actual queues utilization and a predefined reference:

min

tf∫
ti

M,N∑
i,j=1

[
qij
2

(
yij(t)− yrefij (t)

)2
+
rij,PEf

2
ij,PE(t)

2
+ P dynij,PE(t) + P statij,PE(t) + PTij,PE(t)+

+
rijf

2
ij(t)
2 + P dynij,r (t) + P statij,r (t) + PTij,r(t)+ (6.13)

+
4∑

k=0

(
wij,k,q(

qkij
2

(
xkij(t)− x

k,ref
ij

)2
+ P dynij,k,q(t) + P statij,k,q(t) + PTij,k,q(t)

)
]dt
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Figure 6.7: a) Representation of an M × N mesh NoC where the color of each tile shows that it
belongs to a certain VFI. b) Representation of tile at (i, j) location on the mesh containing a PE
which can run at a certain supply voltage and frequency, a router and five queues connecting it
with the neighboring tiles.

such that the following contraints are satisfied:

dα
PE
ij yij(t)

dtα
PE
ij

= aPEij (t)yij(t) + bPEij (t)fij,PE(t)− cPEij (t)fij(t), i = 1÷M , j = 1÷N (6.14)

0 ≤ yminij ≤ yij(t) ≤ ymaxij ≤ 1, i = 1÷M , j = 1÷N (6.15)

where yij(t) and yrefij (for i = 1÷M and j = 1÷N) represent the actual and reference utilization

for the queue between the PE and its corresponding router at location (i, j) on the mesh, αPEij is

the fractional order which depends on the fractal dimension characterizing the utilization process

yij(t), a
PE
ij (t) represents the contribution of the utilization yij(t), b

PE
ij (t) and cPEij (t) reflect the

contributions of the writing frequency (fij,PE) and the reading frequency (fij), y
min
ij and ymaxij are

the admissible lower and upper bounds on the queue utilization yij(t),

dα
0
ijx0ij(t)

dtα
0
ij

= a0ij(t)x
0
ij(t) + b0ij(t)fij(t)− c0ij(t)fij,PE(t), i = 1÷M , j = 1÷N (6.16)

0 ≤ x0,minij ≤ x0ij(t) ≤ x
0,max
ij ≤ 1, i = 1÷M , j = 1÷N (6.17)
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dα
1
ijx1ij(t)

dtα
1
ij

= a1ij(t)x
1
ij(t) + b1ij(t)fi+1j(t)− c1ij(t)fij,PE(t), i = 1÷M , j = 1÷N (6.18)

0 ≤ x1,minij ≤ x1ij(t) ≤ x
1,max
ij ≤ 1, i = 1÷M , j = 1÷N (6.19)

dα
2
ijx2ij(t)

dtα
2
ij

= a2ij(t)x
2
ij(t) + b2ij(t)fi−1j(t)− c2ij(t)fij,PE(t), i = 1÷M , j = 1÷N (6.20)

0 ≤ x2,minij ≤ x2ij(t) ≤ x
2,max
ij ≤ 1, i = 1÷M , j = 1÷N (6.21)

dα
3
ijx3ij(t)

dtα
3
ij

= a3ij(t)x
3
ij(t) + b3ij(t)fij+1(t)− c3ij(t)fij,PE(t), i = 1÷M , j = 1÷N (6.22)

0 ≤ x3,minij ≤ x3ij(t) ≤ x
3,max
ij ≤ 1, i = 1÷M , j = 1÷N (6.23)

dα
4
ijx4ij(t)

dtα
4
ij

= a4ij(t)x
4
ij(t) + b4ij(t)fij−1(t)− c4ij(t)fij,PE(t), i = 1÷M , j = 1÷N (6.24)

0 ≤ x4,minij ≤ x4ij(t) ≤ x
4,max
ij ≤ 1, i = 1÷M , j = 1÷N (6.25)

where xkij(t) and xk,refij (t) (for i = 1 ÷M , j = 1 ÷N and k = 0 ÷ 4) are the actual and reference

utilization for the queue between the router at the (i, j) location and the local PE for k = 0, the

router at (i + 1, j) location for k = 1, the router at (i − 1, j) location for k = 2, the router at

(i, j + 1) location for k = 3, and the router at (i, j − 1) location for k = 4, respectively. The αkij for

k = 0÷ 4 are the fractional order characterizing the utilization process xkij(t); a
k
ij(t) for k = 0÷ 4

denote the contribution of utilization xkij(t), b
k
ij(t) and ckij(t) for k = 0÷4 represent the contribution

coefficients of the writing frequency (fij for k = 0, fi+1j for k = 1, fi−1j for k = 2, fij+1 for k = 3,

fij−1 for k = 4) and the reading frequency (fij), x
min
ij and xmaxij are the lower and upper bounds

on the queue utilization xkij(t).

Note that the wij,k,q parameter in Eq. 6.13 is used to select based on topological information

only the directional queues actually connected to the router (i.e., for tile at (i, j) = (1, 1) location

for q = 0, 1, 3, for tile at (i, j) = (2, 1) location location for q = 0, 1, 2, 3, and for tile in the middle

of the for q = 0, 1, 2, 3, 4).
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The dynamic power consumption terms introduced in Eq. 6.13 (for each PE, each router and

each queue) are defined as follows:

P dynij,PE = CPEL V 2
ij,PEfij,PESwij,PE

P dynij,r = CrLV
2
ijfijSwij,r (6.26)

P dynij,k,q = CqLV
2
ijfijSwij,k,q

where CPEL , CrL and CqL are the load capacitances of the PE, router and queues at (i, j) location,

Vij,PE and Vij are the supply voltages of the PE and router at (i, j) location, fij,PE and fij are the

operating frequencies of the PE and router at (i, j) location, Swij,PE , Swij,r and Swij,k,q are the

switching activities of the PE, the router and the queues at (i, j) location.

The static power consumption terms introduced in Eq. 6.13 are defined as follows:

P statij,PE = (1 +mij,PE)Kij,PE(kBTij,PE)2Vij,PEe
−V thij,PE/Sij,PE/q2e

P statij,r = (1 +mij,r)Kij,r(kBTij,r)
2Vije

−V thij /Sij,r/q2e (6.27)

P statij,k,q = (1 +mij,k,q)Kij,k,q(kBTij,k,q)
2Vije

−V thij /Sij,k,q/q2e

where mij,PE , mij,r and mij,k,q are the leakage current dissipation parameter (dependent on the

maximum depletion layer capacitance of the semiconductor under the oxide and the oxide capaci-

tance) of the PE, router and queues at (i, j) location, kB is the Boltzmann constant, Kij,PE , Kij,r

and Kij,k,q are the device transconductance [9] of the PE, router and queues at (i, j) location, Tij,PE ,

Tij,r and Tij,k,q are chip temperatures of the PE, router and queues at (i, j) location, Sij,PE , Sij,r

and Sij,k,q are the subthreshold swing parameters of the PE, router and queues at (i, j) location,

and qe is the electon charge.

Although we consider in Eq. 6.27 the static power consumption as a function of the supply

and threshold voltages, to simplify the mathematical derivations of the optimal controller we use

the alpha-power law model in [135] and express all the threshold voltage dependencies in the cost

function and constraints in terms of the supply voltage and operating frequency of both PEs and

routers. In addition, instead of using the relationship between the threshold voltage and the circuit

temperature, in what follows, we determine the dependency between the peak temperature of NoC

components and the operating frequency. Nevertheless, the current power and thermal management

formulation can be extended for time dependent temperature profiles.

The peak temperature (PT) terms introduced in Eq. 6.13 are defined by the following relations:

PTij,PE = Bij,PEf
εij,PE
ij,PE

PTij,r = Bij,rf
εij,r
ij (6.28)

PTij,k,q = Bij,k,qf
εij,k,q
ij
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Figure 6.8: Peak temperature displays a power law dependency (with exponent ε = 0.7997) on the
operating frequency for Intel E8500 dual core processor confirming the scaling law in Eq. 6.28.

where Bij,PE , Bij,r and Bij,k,q are the proportionality constants between the peak temperature

and operating frequency of the PE, router and queues at (i, j) location, εij,PE , εij,r and εij,k,q are

the power law exponents of the dependency between peak temperature profile and the operating

frequency of the PE, router and queues at (i, j) location.

To validate the non-linear relationship between the peak temperature profile PTij,PE and the

operating frequency fij,PE in Eq. 6.28 we measure the temperature profile of an Intel quad-core

i7 920 (see Figure 6.8) as a function of several operating frequencies. By using the least-square

method, we observe that the empirical temperatures are better fittind by a power law PT ≈ f0.79.
Note that, one can relax the nonlinear relationship between temperature and frequency and consider

a linear dependence, thus obtaining an upper bound on temperature profile.

To avoid the situation in which the optimal controller selects an unattainable control signal (ei-

ther very small or very large frequency), the optimization problem is augmented with the contraints

on the operating frequency for both PEs and routers:

V min
ij,PE(t) ≤ Vij,PE(t) ≤ V max

ij,PE(t)

V min
ij (t) ≤ Vij(t) ≤ V max

ij (t), i = 1÷M , j = 1÷N

fminij,PE(t) ≤ fij,PE(t) ≤ fmaxij,PE(t)

fminij (t) ≤ fij(t) ≤ fmaxij (t), i = 1÷M , j = 1÷N (6.29)

Consequently, V min
ij,PE and V max

ij,PE are the time-dependent lower and upper bounds on the supply

voltage of the PE at (i, j) location; fminij,PE and fmaxij,PE are the time-dependent lower and upper bounds
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on the operating frequency of the PE at (i, j) location; V min
ij and V max

ij are the lower and upper

bounds on the router supply voltage at (i, j) location on the mesh; fminij and fmaxij are the lower and

upper bounds on the router operating frequency at (i, j) location on the mesh. Besides capturing

the application dependent performance constraints, the role of considering these time-dependent

lower and upper bounds on both supply voltage and operating frequency is to account for circuit

aging (e.g., negative bias temperature instability, time dielectric breakdown, gate oxide integrity,

hot carrier injection, electromigration) and system non-idealities (e.g., parameter variations [114],

short channel effect [156]).

In order to solve the above optimization problem we use concepts from calculus of variations

[7][158] and optimization theory by constructing first the Lagrangian functional as follows:

L(yij , Vij,PE , fij,PE , λij,PE , βij,PE , ηij,PE , Vij , fij , x
k
ij , γij,k,q) =

tf∫
ti

M,N∑
i,j=1

[
qij
2

(
yij(t)− yrefij (t)

)2
+

+
rij,PEf

2
ij,PE(t)
2 + CPEL V 2

ij,PEfij,PESwij,PE +Bij,PEf
εij,PE
ij,PE + CrLV

2
ijfijSwij,r+

+
(1 +mij,PE)Kij,PE(kBTij,PE)2

q2e
Vij,PEe

−
Vij,PE−(Gij,PEfij,PEVij,PE)

1
δij,PE )

Sij,PE +Bij,rf
εij,r
ij +

+λij,PE(
dα

PE
ij yij(t)

dtα
PE
ij

− aPEij (t)yij(t)− bPEij (t)fij,PE(t) + cPEij (t)fij(t))+ (6.30)

+
rijf

2
ij(t)
2 +

(1 +mij,r)Kij,r(kBTij,r)
2

q2e
Vije

−
Vij−(GijfijVij)

1
δij )

Sij,r +
4∑

k=0

[wij,k,q(
qkij
2

(
xkij(t)− x

k,ref
ij

)2
+

+CqLV
2
ijfijSwij,k,q +

(1 +mij,k,q)Kij,k,q(kBTij,k,q)
2

q2e
Vije

−
Vij−(GijfijVij)

1
δij,q )

Sij,k,q +Bij,k,qf
εij,k,q
ij +

γij,k,q(
dα

k
ijxkij(t)

dtα
k
ij

− akij(t)xkij(t) + bkij(t)fij,neig(t) + ckij(t)fij(t))]]dt

where yij and xij,k,q denote the queue utilization variables, Vij , Vij,PE , fij , and fij,PE are the supply

voltage and frequency associated with the router and PE at (i, j) location, λij,PE , βij,PE and ηij,PE

are the Lagrange multipliers associated with the contraints imposed for the queue utilization and the

operating frequency of the PE at (i, j) location, δij,PE , δij,r and δij,q are the technology dependent

parameters of the PE, router and queues at (i, j) location, εij,PE , εij,r and εij,k,q are the power law

exponents of the dependency between peak temperature and the operating frequency of the PE,

queue and j-th router at (i, j) location, and γij,k,q are the Lagrange multipliers associated with the

contraints imposed on the utilization of the queues between neighboring routers in different VFIs.

In addition to the technological contraints such as the operating fequency which is bounded

between a minimum and maximum frequency, we also have some boundary contraints for the
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utilization of the mixed clock queues as follows:

yij(ti) = y0ij yij(tf ) = yrefij i = 1÷M , j = 1÷N

xkij(ti) = xk,0ij xkij(tf ) = xk,refij , k = 0, 1, 2, 3, 4 (6.31)

which are required by the necessity of satisfying certain computational performance levels by the

end of the control interval [ti, tf ]. Note that, in Eq. 6.31, y0ij and yrefij represent the initial and

final reference utilization values for the queue between the PE and the router at (i, j) location, xk,0ij
and xk,refij denote the initial and final reference utilization values for the queues associated with the

router at (i, j) location.

Following the calculus of variations methodology, we assume that the queue utilization func-

tionals satisfy the following relations:

yij(t) = yoptimij (t) + τφij(t)

xkij(t) = xk,optimij (t) + τϕij(t) (6.32)

where yoptimij (t) and xk,optimij (t) are queue utilizations at which the Lagrange function in Eq. 6.30

attains its minimum, τ is an infinitesimal perturbation factor, φij(t) and ϕij(t) are variational

functions vanishing at time tf , i.e., φij(tf ) = ϕij(tf ) = 0.

By expanding the Lagrange functional via the Taylor formula and considering that it attains its

extremum (minimum) in the vecinity of τ = 0, i.e., ∂L/∂τ = 0, we obtain the following relations:

∂L
∂yij

+t D
αPEij
tf

∂L

∂tiD
αPEij
t yij

= 0, ∂L
∂fij,PE

= 0, ∂L
∂Vij,PE

= 0,

∂L
∂λij,PE

= 0, i = 1÷M,

∂L
∂xkij

+t D
αkij
tf

∂L

∂tiD
αkij
t xkij

= 0, ∂L
∂Vij

= 0, ∂L
∂fij

= 0, (6.33)

∂L
∂γij,k,q

= 0, j = 1÷N, k = 0÷ 4

Since Eq. 6.33 are of Euler-Lagrange type of equations and need to be satisfied for all functions

φij(t) and ϕij(t) , it implies that the optimal queue utilizations are given by the following relations:

rij

(
yij − yrefij

)
+ aPEij λij,PE −t D

αPEij
tf

λij,PE = 0 (6.34)
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fij,PE{1.55εij,PE−2Bij,PEεij,PE(εij,PE − 1) + rij,PE +
zij,PEuij,PE
2.4025δij,PE

[0.4
uij,PE
δij,PE

− 1
δij,PESij,PE

+ 1
Sij,PE

+ 1
δij,PE

− 1− uij,PE ]}+ Vij,PE{2CPEL Swij,PE +
zij,PEuij,PE
2.4025δij,PE

[−1.24
uij,PE
δ3ij,PE

−

−0.31
uij,PE
δ2ij,PE

+ 3.41
uij,PE
δij,PE

− 1.55
δij,PESij,PE

+ 7.75
δij,PE

− 3.1
Sij,PE

− 0.93uij,PE − 4.65]}+

+
zij,PEuij,PE
2.4025δij,PE

[
1.24uij,PE
δ2ij,PE

− 2.48uij,PE
δij,PE

− 3.1
δij,PESij,PE

− 3.1
δij,PE

+ 6.2
Sij,PE

+ 0.31uij,PE + 1.55]−

−CPEL Swij,PE + 1.55εij,PE−1εij,PE(2− εij,PE)Bij,PE + λij,PEbij,PE − c0ijγij,0,q = 0 (6.35)

Vij,PE

zij,PE


2

Sij,PE
−

2uij,PE
δij,PE

− uij,PE − 6

5Sij,PE
+

0.4u2ij,PE
δ2ij,PE

+ 3.1CPEL Swij,PE

+

+fij,PE

zij,PE
uij,PEδij,PE

2uij,PE −
1

Sij,PE
+ 1

7.69δij,PE
− 0.13
Sij,PE

+ 0.13

− 0.13

+ CPEL Swij,PE

−
−3.1CPEL Swij,PE + zij,PE

[
uij,PE
δij,PE

(
0.6− 2

δij,PE

)
− 0.2
S2
ij,PE

+ 0.2uij,PE + 1

]
= 0 (6.36)

dα
PE
ij yij(t)

dtα
PE
ij

= aPEij (t)yij(t) + bPEij (t)fij,PE(t)− cPEij (t)fij(t) (6.37)

qkij

(
xkij − x

k,ref
ij

)
+ akijγij,k,q −t D

αkij
tf
γij,k,q = 0 (6.38)

dα
k
ijxkij(t)

dtα
k
ij

− akij(t)xkij(t) + bkij(t)fij,neig(t) + ckij(t)fij(t) = 0 (6.39)

fij

{
rij +Arij +Aqij

}
+ Vij

{
2CrLSwij,r +

zij,ruij,r
2.4025δij

F rij +
4∑

k=0

wij,k,qzij,k,quij,k,q
2.4025δij

F qij

}
+

+Qrij +Qqij +Qij − CrLSwij,r −
4∑

k=0

2wij,k,qC
q
LSwij,k,q + wi−1j,1,qb

1
i−1jγi−1j,1,q+ (6.40)

+wi+1j,2,qb
2
i+1jγi+1j,2,q + wij−1,3,qb

3
ij−1γij−1,3,q + wij+1,4,qb

4
ij+1γij+1,4,q + wij,0,qb

0
ijγij,0,q

−
4∑

k=0

wij,k,qc
k
ijγij,k,q − cPEij λij,PE = 0
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Vij

{
W r
ij +

4∑
k=0

wij,k,qW
q
ij,k

}
+ fij

{
Xr
ij +

4∑
k=0

[
wij,k,qzij,k,qX

q
ij,k + CqLSwij,k,q

]}
−3.1CrLSwij,r −

4∑
k=0

3.1wij,k,qC
q
LSwij,k,q + zij,r

[
uij,r
δij

(
0.6− 2

δij

)
− 0.2
S2
ij,r

+ 0.2uij,r + 1

]
(6.41)

+
4∑

k=0

wij,k,qzij,k,q

[
uij,k,q
δij

(
0.6− 2

δij

)
− 0.2
S2
ij,k,q

+ 0.2uij,k,q + 1

]
= 0

where we used the following Taylor (expanssion) approximations:

e−V
th
ij,PE/Sij,PE ≈ 1−

(
Vij,PE − (Kij,PEVij,PEfij,PE)

1
δij,PE

)
5Sij,PE

(6.42)

e−V
th
ij /Sij,r ≈ 1−

(
Vij − (Kij,rVijfij)

1
δij

)
5Sij,r

(6.43)

f2ij,PE ≈ 3.1fij,PE − 2.4025 for fij,PE ∈ [0.1GHz, 4GHz] (6.44)

f2ij ≈ 3.1fij − 2.4025 for fij ∈ [0.1GHz, 4GHz] (6.45)

f
εij,PE−1
ij,PE ≈ 1.55εij,PE−2 (εij,PE − 1) fij,PE + 1.55εij,PE−1 (2− εij,PE)

for fij,PE ∈ [0.1GHz, 4GHz] , εij,PE ∈ [1.1, 2.5] (6.46)

f
εij−1
ij ≈ 1.55εij−2 (εij − 1) fij + 1.55εij−1 (2− εij)

for fij ∈ [0.1GHz, 4GHz] , εij ∈ [1.1, 2.5] (6.47)

V 2
ij,PE ≈ 2Vij,PE − 1 for Vij,PE ∈ [0.4V, 1.4V ] (6.48)

V 2
ij ≈ 2Vij − 1 for Vij ∈ [0.4V, 1.4V ] (6.49)

fij,PEVij,PE ≈ 1.55Vij,PE + fij,PE − 1.55 (6.50)

fij,PEVij ≈ 1.55Vij + fij − 1.55 (6.51)

and the parameters zij,PE , uij,PE , zij,r, uij,r, zij,k,q, uij,k,q, A
r
ij , A

q
ij , Z

k,q
ij , F rij , F

q
ij , Q

r
ij , Q

q
ij , Qij ,

W r
ij , W

q
ij,k, X

r
ij and Xq

ij,k are given by the following relations:

zij,PE =
(1 +mij,PE)Kij,PEk

2
BT

2
ij,PE

q2e
(6.52)

uij,PE =
(1.55 ∗Gij,PE)(1/δij,PE)

Sij,PE
(6.53)

zij,r =
(1 +mij,r)Kij,rk

2
BT

2
ij,r

q2e
(6.54)
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uij,r =
(1.55 ∗Gij,r)(1/δij,r)

Sij,r
(6.55)

zij,k,q =
(1 +mij,k,q)Kij,k,qk

2
BT

2
ij,k,q

q2e
(6.56)

uij,k,q =
(1.55 ∗Gij,k,q)(1/δij,q)

Sij,k,q
(6.57)

Arij =
1.55εij,rBij,rεij,r (εij,r − 1)

2.4025
+

zij,ruij,r
2.4025δij

(
0.4

uij,r
δij
− 1

δijSij,r
+

1

δij
+

1

Sij,r
− 0.2uij,r − 1

)
(6.58)

Aqij =
4∑

k=0

wij,k,q
2.4025

Zk,qij +
zij,k,quij,k,q

δij

 1

Sij,k,q
−

0.4uij,k,q −
1

Sij,k,q + 1

δij
(0.2uij,k,q + 1)


 (6.59)

Zk,qij = 1.55εij,k,qBij,k,qεij,k,q(εij,k,q − 1) (6.60)

F rij =

7.75− 1.55

Sij,r
− 1.24uij,r

δ2ij
− 0.31

uij,r
δij

+ 3.41uij,r

δij
− 4.65− 0.93uij,r − 1

Sij,r
(6.61)

F qij =
3.41uij,k,q

δij
− 1.24

uij,k,q
δ3ij

− 0.31
uij,k,q
δ2ij

+ 7.75
δij
− 1.55
δijSij,k,q

− 3.1
Sij,k,q

− 4.65− 0.93uij,k,q(6.62)

Qrij =
zij,ruij,r
2.4025δij

[
1.24uij,r
δ2ij

− 3.1
δij
− 2.48uij,r

δij
− 3.1
δijSij,r

+ 6.2
Sij,r

+ 0.31uij,r + 1.55

]
(6.63)

Qqij =
wij,k,qzij,k,quij,k,q

2.4025δij


1.24uij,k,q

δij
− 2.48uij,k,q −

3.1

Sij,k,q
− 3.1

δij
+

6.2

Sij,k,q
+ 0.31uij,k,q + 1.55

(6.64)

Qij =
1.55εij,rεij,r (2− εij,r)Bij,r

1.55 +
4∑

k=0

1.55εij,k,qwij,k,qεij,k,q (2− εij,k,q)Bij,k,q
1.55 (6.65)
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W r
ij = zij,r


2

Sij,r
− 2uij,r

δij
− uij,r

δ2ij
− uij,r − 6

5Sij,r
+

0.4u2ij,r
δ2ij

+ 3.1CrLSwij,r (6.66)

W q
ij,k = zij,k,q


2

Sij,k,q
−

2uij,k,q
δij

−
uij,k,q
δ2ij

− uij,k,q − 6

5Sij,k,q
+

0.4u2ij,k,q
δ2ij

+ 3.1CqLSwij,k,q (6.67)

Xr
ij = zij,r

uij,rδij

2uij,r −
1

Sij,r
+ 1

7.69δij
− 0.13
Sij,r

+ 0.13

− 0.13

+ CrLSwij,r (6.68)

Xq
ij,k =

uij,k,q
δij

2uij,k,q −
1

Sij,k,q
+ 1

7.69δij
− 0.13
Sij,k,q

+ 0.13

− 0.13 (6.69)

Note that more details about the derivations of these equations and the meaning of all the param-

eters introduced above can be found in [35].

In order to determine the optimal supply voltage and frequency (implicitly threshold voltage)

values for which the queue utilization references are followed, we divide the time domain [ti, tf ] into

N = [tf − ti]/∆t equal domains, where ∆t is the discretization interval. Under this discretization

strategy and using the Grunwald-Letnikov formula from Eq. 1.4 for expressing the fractional

differentiation, the optimal values are determined by solving a linear system made of the relations

in Eq. 6.34, Eq. 6.35, Eq. 6.36, Eq. 6.37, Eq. 6.38 and Eq. 6.39.

6.5 Experimental results

To evaluate the impact of the fractal optimal control approach to power and temperature

management, we consider a combination of trace driven and cycle accurate simulation of a VFI-

based NoC architecture. From an application perspective, we consider five 16-node multithreaded

commercial workloads (see Table 6.1) obtained by running them on a FLEXUS based shared-

memory 16-processor environment consisting of cycle accurate models of out-of-order processors

and cache hierachy [160]. More precisely, we evaluate the performance of the control strategy for

an Apache HTTP server v2.0 from SPECweb99 benchmark [146]. The online transaction processing

applications consist of TPC-C v3.0 workload on both IBM DB2 v8 ESE and Oracle 10gExterprise

Database Server. The scientific applications consist of an ocean simulation and a blocked sparse

Cholesky factorization.
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Figure 6.9: Distribution of the identified parameters corresponding to the fractional order deriva-
tives characterizing the queue utilization dynamics (see Eq. 6.14) for a 4× 4 mesh NoC employing
XY wormhole routing with input queue sizes of 15 flits and running a 16 node multithreaded web
server (apache HTTP server v2.0) application. There is a slight variation in the distribution of
fractional orders of the derivative as a function of the interval of the running application. This
justifies the need for dynamically identifying the parameters of the model and then solving the
same optimization problem with different coefficients as a function of the application phases for
better power managment.

From an architecture perspective, we consider a 4 × 4 mesh NoC employing XY and adaptive

wormhole routing schemes and two configurations: a) mixed clock queues of 15 and 30 flits in

size and packets consisting of 10 and 25 flits, respectively. The execution of each application is

divided into several intervals (e.g., these intervals can be 1µs long). For an interval of 10µs, the

system idenfication module is called to estimate from the arrival, departure and queue utilization

processes the parameters that fit best in the least square sense the first 10µs of the last 11µs.

After the identification step is completed in parallel with the application computations, the fractal

optimal controller reads the estimated parameters and solves the optimization problem defined

by Eq. 6.34, Eq. 6.35, Eq. 6.36, Eq. 6.37, Eq. 6.38 and Eq. 6.39 to determine the operating

frequencies and supply voltages that ensure a predefined performance level specified in terms of

queue utilization references.

In order to validate our dynamic optimization procedure in the presence of fractal characteristics,

we consider a 4 × 4 mesh NoC employing XY wormhole routing with input queue sizes of 15 flits

and running a 16 node multithreaded web server (apache HTTP server v2.0) application. We

first call the parameter identification procedure which estimates both the fractional orders of the
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Figure 6.10: a) Probability of the inter-events times between successive changes in queue utilization
at north input queue of the node at (0, 1) to exceed a given threshold cannot be approximated by
an exponential distribution. These inter-event times were obtained for a 4×4 mesh NoC empoying
XY wormhole routing with input queue sizes of 15 flits and running a 16 node multithreaded web
server (apache HTTP server v2.0) application. b) Detrended fluctuation analysis of the inter-event
times between successive changes in queue utilization at north input queue of the node at (0, 1)
reveals a scaling expinent of 0.87 and confirms the exitence of long-range dependence and fractal
behavior in the dynamics of the queue utilization process.

derivatives and the queue utilization, writing and reading coefficients characterizing the queue

utilization process of each queue. Figure 6.9 shows the distribution of the identified parameters of

the fractional order derivatives characterzing the dynamics of the queue utilization process across

all queues in a 4 × 4 mesh NoC. One can note that the fractional orders are concentrated around

0.38 and 0.82, respectively. Moreover, there is a slight variation in the distribution of fractional

orders as a function of the application phase.

To further investigate the need for adopting a fractal characterization, and thus, a fractional

order derivative model, we have also investigated the behavior of the probability of the inter-event

times between consecutive changes in the queue utilization at the north input queue for the node at

(0, 1) to exceed a given threshold. From Figure 6.10.a, we can notice that this probability cannot

be fitted by an exponential distribution.

For completeness, we have also performed the detrended fluctuation analysis of the inter-event

times series between successive changes in the queue utilization. Detrended fluctuation analysis

is a method used to quantify the fractal behavior in non-stationary stochastic processes [124] by

estimating the scaling exponent a of the fluctuation analysis functional F (n) as a function of the

interval length n, i.e., F (n) ≈ nα. If the estimated scaling exponent α is larger than 0.5, then the

stochastic process is considered to posses fractal characteristics.
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Figure 6.11: a) Detrended fluctuation analysis of the inter-event times between successive changes
in queue utilization at east input queue of the node at (1, 3) reveals a scaling expinent of 0.85
and confirms the exitence of fractal behavior in the dynamics of the queue utilization process. b)
Computed queue utilization for six queues at tiles (0, 0) and (2, 1) and a finite control horizon
of 1000 cycles. The controllers determines the opearting supply voltages and frequencies for each
router in the network such that the queues of the nodes at (1, 1), (1, 2), (2, 1) and (2, 2) reach a queue
utilization reference value of 0.1 and the queues of the remaining nodes reach a 0.07 reference value.
The proposed optimal controller is able to stabilize the queues at (0, 0) and (2, 1) at a reference
value of 0.07 and 0.1, respectively.

Figure 6.10.b and Figure 6.11.a show the fluctuation analysis F (n) as a function of the interval

length n for the inter-event times between consecutive changes in the queue utilization at the north

input queue for the node at (0, 1) and the east input queue for the node at (1, 3), respectively.

Both graphs exhibit scaling exponents larger than 0.5 confirming the existence of fractal behavior

in the queue utilization processes, and thus justifying the need for adopting a fractional calculus

approach to the description of the queue dynamics as shown in Eq. 6.14 through Eq. 6.24.

By estimating the parameters of the model via least square method and solving the linear

system in Eq. 6.34, Eq. 6.35, Eq. 6.36, Eq. 6.37, Eq. 6.38 and Eq. 6.39 for 20 discrete steps we

obtain the operating supply voltage and frequency of each tile necessary to reach the predefined

reference values for queue utilization.

As shown in [37], decreasing the minimum supply voltage is one of the most efficient technique to

ensure lower energy consumption in high-performance multicore microprocessors. Consequently, we

constrain the optimal controller to choose supply voltages between 0.6V and 1.4V and frequencies

between 0.1GHz and 3GHz, respectively. Regarding the queue utilization references, we constrain

the utilizations of the queues at nodes (1, 1), (1, 2), (2, 1), and (2, 2) to be brought to a 0.1 reference

value and the queues in the remaining nodes to attain a 0.07 reference value.

Figure 6.11.b shows the computed queue utilization of the input queues at tiles (0,0) and (2,1),
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Figure 6.12: a) The variation of operating frequencies for the routers at (0, 0), (1, 1), (1, 2), (2, 1),
(2, 2) and (3, 3) necessary to reach the reference values imposed on queues utilization b) The
necessary supply voltage for the routers at (0, 0), (1, 1), (1, 2), (2, 1), (2, 2) and (3, 3) to meet the
imposed queue utilization references.

respectively. We can observe that the optimal controller is able to bring the utilization of the

queues in tiles (0,0) and (2,1) at the reference value of 0.07 and 0.1, respectively. Figure 6.12.a

and Figure 6.12.b show the operating frequencies and supply voltages of the nodes at (0, 0), (1, 1),

(1, 2), (2, 2), and (3, 3) needed to attain the imposed reference values. By comparing the power

consumption of the new VFI system with an NoC architecture with all PEs and routers running

at 3GHz and 1V , we obtain approximately 60% power savings.

In this chapter, we have addressed the problem of power and thermal management in VFI-

based NoC architectures where computational workloads are highly complex and exhibit fractal

characteristics. To overcome the limitations of short-range memory models used in classical lin-

ear system theory, we have proposed a new modeling approach based on the dynamics of queue

utilization via fractional differential equations. This fractal model is used to formulate an optimal

control problem, which determines the necessary operating frequencies and supply voltages so that

the NoC queues reach their target reference values. Nevertheless, the fractal dynamic optimization

introduced in this chapter can easily be extended to other performance metrics (e.g., clock cycles

per instruction, stall times, source-to-destination latency).
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Chapter 7

Modeling, Analysis and Optimization

of Cyber-Physical Systems

Cyber-physical systems (CPS) represent the information technology quest of the 21-st cen-

tury for a better, cleaner, safer life which integrates computation, communication, and control

with physical processes. Physical processes are predominantly non-stationary and require time-

dependent models for modeling and understanding their behavior. In contrast, in most current

computing platforms, their workloads and design methodologies lack proper models for the time

component and mostly assume stationary (i.e., time independent) behavior. Consequently, in this

chapter, we use empirical data to identify the main characteristics (e.g., self-similarity, nonstation-

arity) of the communication workload of real CPS. Starting from the complex characteristics of

CPS workloads, we present a novel statistical physics inspired model which is used to define a new

optimal control problem that not only accounts for the observed self-similarity and nonstationarity

properties of the CPS workload, but also allows for accurate predictions on CPS dynamical trajec-

tories during the optimization process. This opens new venues for CPS design and optimization

for real life applications. As a concrete example, we discuss the application of this theory to the

control algorithm of a pacemaker.

7.1 State of The Art in CPS Design and Optimization

There is an increasing concern for bringing computation and communication together in order

to design efficient CPS [112][130][149]. These systems consist of networks of embedded compu-

tation and communication devices, as well as sensors, which are used to monitor and measure

various physical processes taking place on electrical power grids, transportation and traffic roads,

communication and financial networks, medical devices, smart buildings. Hence, CPS need to be

dependable, safe, reliable, efficient, real-time, yet secure [93][130][147].

We expect that future CPS will help us define new communication and interaction protocols that

will provide better control over physical processes. For instance, several research efforts focusing on
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how cell phone technology can be used to harness social tracking and knowledge fusion are now well

under way [90][108][109]. The principles of community sensing through privately held sensors (e.g.,

GPS devices, embedded cell phones) are eloquently described in [90], together with several privacy

issues. Such community sensing networks can be adequately used for road traffic monitoring. A

more concrete incarnation of CPS for traffic optimization is presented in [109], which describes how

smart-phones could be employed to sense the environment and transmit information about it to

various traffic decision centers. Besides sensing infrastructure, a congestion control protocol has

been proposed in [4] which reduces communication traffic based on the importance of collected data

and desired estimation error.

From a different perspective, it is crucial to design highly reliable and powerful defense systems

that are fault-tolerant to both natural disasters and terrorist attacks. The analysis of CPS features

can optimize the design of power grids and oil/gas transportation pipes [130]. Last but not least,

CPS have the goal not only to help us design and build environmentally friendly and energy efficient

(smart) buildings [86], but also to cater for the changing needs of contemporary society at a time

when we are increasingly concerned about dwindling natural resources.

Building such CPS requires a new science of characterizing and controlling dynamic processes

across heterogeneous networks of sensors and computational devices. This science needs to bridge

the gap between real-time computing and signal processing techniques with distributed and/or self-

organizing control of heterogeneous wireless sensor networks and embedded systems. Nevertheless,

such a new science cannot rely solely on reductionism and linear control paradigms that represent

the norm nowadays.

Figure 7.1 summarizes these challenges and puts forth a statistical physics vision to CPS design.

To solve many of the challenges we face today, CPS have to sense and measure various physical

processes like heart rate, weather changes, etc. (see the bottom of the pyramid). These measure-

ments are further digitized and communicated to various decision centers as varying workloads

which represent the Achille’s heel for CPS design (middle part of pyramid in Figure 7.1). This is

because the accurate characterization of workload properties (e.g., self-similarity, nonstationarity)

remains a big challenge for CPS optimization and end users satisfaction (top of pyramid).

Given all these challenges, we argue that several recurrent CPS design problems can be solved

in an elegant manner if we resort to statistical physics concepts. Indeed, as shown in Figure

7.1, statistical physics approaches can help by allowing us to describe the CPS workload and its

intermediate states (e.g., queue occupancy, node-to-node latency) via fractal-type master equations.

Consequently, taking into consideration the space and time features of the CPS workloads via such

master equations allows us to formulate various optimization problems such as resource allocation,

task mapping and scheduling (top of the pyramid in Figure 7.1). By carefully allocating the buffers

size and the bandwidth between sensors and data centers, we can also accelerate the decision-making

process and prevent data loss or delay which could otherwise cause life-threatening situations or

increase economical costs. These issues are discussed next.
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Figure 7.1: CPS pyramid: The pyramid foundation summarizes the large set of physical processes
of interest to the CPS community. Insights about physical processes gained through sensing, infor-
mation fusion and aggregation lead to complex heterogeneous CPS workload. Accurate modeling of
workloads enables the design of optimal CPS architectures that may improve our life. Similarly, to
statistical physics which has been successful in explaining nature, the CPS workloads are modeled
via master equations which later are used in defining various optimization problems of interest to
the end users.

7.2 Incorporating Time as Essential Component in Future Com-

puting Platforms

For decades, the science of systems design has tacitly assumed that workloads can be modeled

via linear time invariant equations. We argue that this situation has to change and the major

developments in statistical physics (e.g., master equation, path integrals, renormalization group

theory) developed specifically for processes characterized by strong fluctuations, pseudo-periodicity,

and long range memory, should become essential tools for designing future CPS. More precisely, we

propose a new formalism that allows not only to estimate the correlation structure observed in CPS

traffic traces (which is mainly the core of statistics and estimation theory), but also incorporate

such characteristics into some dynamical state equations describing the overall system behavior.

In order to discuss the mathematical underpinnings of CPS workload modeling, let us first

define some important parameters. As shown in Figure 1.2.a, various types of sensors monitor

diverse physical processes (e.g., volcanic activity, heart rate, car density, CCN concentration), then
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aggregate/fuse the measured data into packets and communicate this information as a workload

to specialized data centers for further analysis. For instance, a bio-implantable system-on-chip can

monitor the heart rate by constructing a time series based on its electrical activity. Using this

physiological information, the bio-implantable device can analyze the behavior exhibited by the

fluctuations in the R-R intervals and decide to provide more or less electrical stimuli to the heart.

Similarly, airplanes in flight can sense the movement of clouds or collect pollution measures (e.g.,

CO2, CCN concentration) and communicate it to data centers for weather prediction and climate

change analysis.

Obviously, CPS data get sent over the shared communication infrastructure (e.g., wireless net-

works, internet), so the CPS workloads typically consist of a mix of many types of data. Let us

denote by variable x(t) the stochastic process characterizing the CPS workloads (e.g., communi-

cation volume, packet delays, etc.). Starting from the CPS characteristics (e.g., self-similarity,

nonstationarity), the master equation1 [80][166] describing the dynamics of the stochastic process

x(t) can be written as follows:

P (x, t|α) = P (x0, t0) +

t∫
t0

∞∫
0

w (x− y, t− τ)P (y, τ |α) dydτ (7.1)

where P (x, t|α) denotes the conditional probability of finding the system at time t in a particular

state x (e.g., x can represent the level of buffer occupancy, the communication volume between

two nodes, the time it takes until a computation request is completed, etc.) for a given fractal

dimension α , P (x0, t0) is the initial condition, and w(x−y, t−τ) is the kernel probability capturing

the dependency of the evolution of probability P (x, t|α) on the memory of the stochastic process

x(t).

For instance, the atmospheric measurements made during flights can be aggregated with road

traffic information from cars into heterogeneous workloads and then sent via satellite or intermediate

nodes to data centers for further processing. In this case, the stochastic process x(t) denotes the

amount of information communicated at a specific time. The aggregation process which implies

changes in both magnitude and timing patterns of x(t) is captured via the probability w(x−y, t−τ).

Note that this distribution depends on the inter-event times (i.e., the difference between two

consecutive time stamps when the process x(t) takes different values). For power law distributed

inter-event times, the kernel takes the following form w(x − y, t − τ) = ν(x − y)(t − τ)α−1/Γ(α),

where ν(x−y) denotes the state transition probabilities and Γ(α) is the Gamma function [128]. Of

note, the worst case analysis can be retrieved from this formulation by computing the probabilities

of rare events (e.g., obtaining the maximum of a random variable) via high-order moments analysis.

Due to the inherent multi-fractal nature of many physical processes, the CPS stochastic pro-

cesses x(t) can also exhibit a complex self-similar behavior which can be captured via a distribution

1The master equation is used in statistical physics to characterize through a dynamical equation the evolution of
the probability distribution P (x, t) over a set of states.
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function b(α)2 of scaling exponents. By multiplying with b(α) both sides of Eq. 7.1 and integrating

over the set of fractal dimensions, we can get the following relation for the probability P (x, t) of

reaching state x at time t:

P (x, t) = P (x0, t0) +

αmax∫
αmin

t∫
t0

(t− τ)α−1

Γ(α)

∞∫
0

ν (x− y)P (y, τ |α) dydτ (7.2)

Using the definition of fractional order operator of integration and derivation [82][118][136], we

can show that:

αmax∫
αmin

b (α)
∂P (x, t)

∂tα
=

∞∫
0

ν (x− y)P (y, t) dy (7.3)

Next, we assume that the transition probabilities ν(x− y) can be described as shown in Figure

7.2 and, thus, the right hand side of Eq. 7.3 takes the following form:

∞∫
0

ν (x− y)P (y, t) dy = a1f1 (x− 1)P (x− 1, t) + a2f2 (x+ 1)P (x+ 1, t)−

− (a1f1 (x) + a2f2 (x))P (x, t) +
∞∫
0

γ (x− y)
h(y, t)

P (y, t)dy (7.4)

where a1f1(x− 1) and a2f2(x+ 1) are the transition probabilities from states (x− 1) and (x+ 1)

to state x (the bottom transitions in Figure 7.2), a1f1(x) + a2f2(x) represents the probability of

remaining in the same state x, and γ(x−y)/h(y, t) denotes the memory kernel reflecting the intrinsic

multiplicative noise that may affect the evaluation of transition probabilities [53]. In a hypothetical

situation when the stochastic evolution of the stochastic process x(t) is perfectly characterized, the

multiplicative noise (i.e., γ(x− y)/h(y, t)) becomes zero.

According to Eq. 7.3 and Eq. 7.4, and using the finite difference method [128], the generalized

master equation 7.1 characterizing the evolution of the CPS workload x(t) can be expressed as

follows:

αmax∫
αmin

b (α)
∂P (x, t)

∂tα
=

∂2

∂t2
[(a1f1 (x) + a2f2 (x))P (x, t)]−

− ∂
∂t

[(a1f1 (x)− a2f2 (x))P (x, t)] +

∞∫
0

γ (x− y)

h(y, t)
P (y, t)dy (7.5)

To capture the multi-fractal features of the stochastic process x(t), the first term in Eq. 7.5

2The multifractal spectrum b(α) can be estimated either as a histogram of fractal dimensions where each fractal
dimension is obtained via box-counting algorithm [155] or by the method of moment estimation via the Legendre
formula [102].
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Figure 7.2: Graphical representation of transition probabilities assumed to govern the evolution
of the stochastic process x(t). In the absence of uncertainty, the transition probability from state
(x− y, t′) can be neglected and the noise coefficient γ(x− y) = 0.

represents the dynamics of CPS workload as a weighted sum of fractional derivatives. Note that

a fractional derivative implies that the underlying inter-event times (t − τ) associated with the

stochastic process x(t) are power law rather than being exponentially distributed. For exponential

inter-event times, the first term reduces to the classical first order time derivative of P (x, t) with

respect to time. The second and third term capture the magnitude of fluctuations in the stochastic

process x(t). Finally, the last term models the multiplicative noise that comes from system inter-

action with the environment. One can note that if b(α) = δ(α− 1) and γ(x) = 0, Eq. 7.5 reduces

to the normal diffusion equation for the evolution of P (x, t) [12].

From a practical standpoint, the existence of multi-fractal behavior requires, as will become

clearer in the next section, new control strategies based on non-linear state equations. To better

emphasize this aspect, one can obtain from Eq. 7.5 a Langevin-like dynamical equation character-

izing the state of stochastic process with multiplicative noise:

αmax∫
αmin

b (α)
∂x (t)

∂tα
= f(x, t) + h(x, t)η(t) (7.6)

where f(x, t) is given by the following relation:

f(x, t) = a2f2(x)− a1f1(x)−
∞∫
0

∂ [(a1f1 (x) + a2f2 (x))P (x, t)]

∂x
dx (7.7)

Note that for the particular case of b(α) = δ(α−1) (i.e., no fractal behavior in time), the linear

state space dependence f(x, t) = a(t)x(t) and h(x, t) = 0 (zero noise source), so Eq. 7.6 reduces

to a classical linear control state equation. Equation 7.6 is used in the next section to define the

general problem of optimal control for CPS.
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7.3 Dynamic Optimization Methodologies for Cyber-Physical Sys-

tems

The successful description of CPS workloads via the new formalism we propose should allow for

better optimization and control methodologies. From an engineering perspective, the overarching

goal of CPS design is to minimize some specific cost function (e.g., power consumption, fuel con-

sumption, etc.) subject to various resource limitations, performance, and reliability constraints.

As shown in Figure 7.3, due to the intrinsic continuous interaction of CPS with physical environ-

ment, the main tasks of computation, communication and control cannot be modeled, analyzed,

and optimized in isolation, but instead several uncertainty and noise sources need to be considered

as well. Thus, we formulate the new problem of CPS design (which is also presented in Figure 7.3)

as a general (stochastic) optimization problem:

minu(t)

∫
x∈X

tfinal∫
tinitial

c(x(t), u(t), d(t), t)p(x(t)|u(t))dtdx

such that umin ≤ u(t) ≤ umax, k = 1÷N , xi(0) = x0i , i = 1÷M (7.8)
αmaxi∫
αmini

b (α)
∂xi (t)

∂tαi
= f(xi, x, t) + g(u, t) + h(xi, t)ηi(t)

where c(x(t), u(t), d(t), t) represents the cost objective as a function of the states of the system

xi ∈ Ξ, i = 1÷M , the input control signals uk ∈ Ψ, k = 1÷N , and the reference/ demands signals

dj ∈ Λ, j = 1 ÷ L, p(x(t)|u(t)) the conditional probability of finding the CPS in state x(t), given

the control scenario u(t); umin and umax are the lower and upper bounds on the control signals

uk ∈ Ψ, k = 1÷N αi and b(αi) are the fractional order derivatives and the distribution of fractal

dimensions characterizing the dynamics of xi ∈ Ξ, i = 1÷M , f(xi(t), d(t), t) is the generic function

describing the evolution of system states xi ∈ Ξ, i = 1 ÷M , g(u(t), t) represents the dependency

between the control signals uk ∈ Ψ, k = 1 ÷ N and the stochastic process xi ∈ Ξ, i = 1 ÷M of

interest, h(xi(t), t) is the multiplicative noise amplitude that depends on the actual state of the

system, and η(t) is the noise coming from a fluctuating environment (e.g., white noise).

To give some intuition about the sources of this noise, we can, for instance, imagine that

under the impact of some disruptive news, a patient whose heart is controlled via a pacemaker

experiences a ventricular arrhythmia which results in less blood pumped through the arteries.

These changes in the blood flow can only be modeled as some multiplicative noise [167]. Moreover,

this arrhythmia indirectly affects not only the heart rate, but also the workload communicated

between the pacemaker and the decision center. Similar cases in which the multiplicative noise can

affect the CPS workload directly or indirectly can be found in mobile communication channels due

to air turbulence, reflection, refraction or multi-path effects (multiplicative interference) [5][91], in

optical channels due to amplitude vector rotation [153].

82



Figure 7.3: Main challenges of CPS design: Resource allocation and network design to accurately
sense a set of physical processes within a noisy environment, task mapping and computation schedul-
ing to determine the optimal control strategies that allow satisfying the performance constraints.

7.4 A Dynamic Optimization Case Study: Fractal Optimal Con-

trol for Bioimplantable Devices

Up to this point, the discussion has focussed on formulating the CPS design and optimization

problems at large. Now let us examine how these concepts can be used for better future CPS-based

health care systems. Besides engineering requirements (e.g., high degree of adaptiveness, autonomy,

efficiency, functionality, reliability, safety, and usability), the health care CPS need to maximize the

patients quality-of-life, while minimizing the intrinsic costs related to patient hospitalization. For

instance, given that cardiac diseases are the number one killer around the globe, it is necessary to

have accurate bioimplantable devices capable of monitoring heart rate, communicate with medical

experts/devices and actuate in real time when heart is misbehaving.

In many respects, there is an urgent need for health care CPS. On the same time, the health

care CPS development is stalled due to the lack of a coherent theory that comprehends, conjoins,

and coordinates the cyber and physical resources in a unique, efficient and robust approach. One

such CPS challenge example is represented by the artificial pacemaker3 consisting of both analog

components (i.e., sense amplifiers to monitor information about the heart rate activity and pacing

output circuitry) and digital components (i.e., microprocessors and memory blocks for actuating

pacing events) [78].

Starting from these overarching ideas, our contribution is three fold [34]: First, we propose a

more accurate modeling of the heart rate dynamics via fractional differential equations. Second,

we formulate the rate adaptive pacing problem as a model predictive control approach seeking to

solve iteratively a constrained finite horizon optimal control with fractal state equations. Third, we

compare and contrast various control approaches for pacemakers and give a sense of the hardware

implementation complexity of such a fractal controller. Although, in this work, we constructed a

3An artificial pacemaker senses the heartbeats and triggers electrical impulses to the heart in order to regulate
the heart rhythm.
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Figure 7.4: A short electrocardiogram showing the heart activity of three beats and the P -wave
(atrial depolarization), QRS complex (ventricles depolarization) and T -wave (ventricles repolariza-
tion). The R − R interval is the time interval between two consecutive heart beats represented in
the electrocardiogram by two consecutive R-waves. The variability observed in the R−R intervals
is essential for medical diagnosis.

fractal state space model representation for the R−R intervals, the formalism can be used for other

physiological processes as well.

To better illustrate the importance of controlling the R−R intervals, Figure 7.4 shows a short

electrocardiogram of the heart activity. The R−R interval is defined as the interval of time between

two consecutive heart beats and it is a significant metric for deciding whether a person is suffering

from a cardiac disease.

The importance of fractal behavior observed in heart rate variability has been ignored by state-

of-the-art pacing algorithms. In this section, we build a new theory based on the experimental

observations that heart rate processes display a fractal behavior and model it via fractional dif-

ferential equation. This represents a major departure from the traditional modeling approaches

used in control (dynamic) optimization field. The newly proposed fractional calculus description of

heart rate processes is encapsulated into an optimal control framework which seeks to determine a

certain pacing frequency such that the R−R intervals remain within a predefined set of reference

values. In other words, our approach tries to bring the magnitude of R − R intervals to a given

reference value from either very large or very small values which are signs of heart (i.e., bradycardia

or tachycardia) diseases. For exemplification purposes, we consider the optimal control problem

with two different cost functions; however, the proposed formalism can be easily extended to other

cost functions and control signals (e.g., magnitude of the pacing voltage applied to either atria or

ventricles).

Next, we introduce a finite horizon fractal optimal control approach to heart rate regulation

problem. More precisely, given an initial time ti and a final time tf , the goal of the optimal controller

is to find the optimal control signal, i.e., the frequency of the pacing events, which minimizes the

quadratic cost of observing deviations in either the magnitude of R − R intervals or heart rate

activity from a predefined reference value, as well as the magnitude of pacing frequency, as shown
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below [34]:

minf

tf∫
ti

{
w

2

(
y(t)− yref (t)

)2
+
z

2
f2(t)

}
dt (7.9)

subject to the following constraints:

dαy(t)
dtα

= a(t)y(t) + b(t)f(t) (7.10)

0 < ymin ≤ y(t) ≤ ymax < 1 (7.11)

y(ti) = y0 y(tf ) = y1) (7.12)

fmin ≤ f(t) ≤ fmax (7.13)

where y(t) represents the heart rate activity seen as a state variable, yref (t) denotes the reference

values that need to be achieved in terms of heart rate activity, f(t) is the pacing frequency, w

and z are the weighting coefficients for the quadratic error and magnitude of the control signal,

respectively, in the cost function, α is the exponent of the fractional order derivative characterizing

the dynamics of the heart rate activity y(t), a(t) and b(t) are weighting coefficients for the heart

activity and pacing frequency, ymin and ymax are the minimum and maximum bounds on heart

rate activity y(t), y(ti) is the initial condition, y(tf ) is the final condition, fmin and fmax are the

minimum and maximum allowed bounds on pacing frequency f(t).

By focussing on the squared difference between the actual and the reference value in Eq. 7.9,

the optimal controller tries to minimize the chances of either positive or negative deviations from

the predefined reference. In other words, the cost functional in Eq. 7.9 penalizes for any deviations

from the reference value and large magnitudes in the control signal.

The use of the integral of squared difference between the actual and the reference heart rate

is also attractive because of two reasons: First, it simplifies to linear equations when evaluating

the optimality conditions. Second, the integral of squared error is in general robust to parameter

variations. Note that unlike other general formulations of optimal control, in this setup we have to

deal with very specific initial and final values summarized in Eq. 7.11. Consequently, the role of

the controller is to determine the right pacing frequency which drives the system from one initial

state (labelled as life-threatening) to a final state (labelled as safe).

Note also that in both Eq. 7.11 and Eq. 7.13, we impose minimum and maximum bounds

on both the accepted R − R intervals and the delivered pacingfrequencies. These bounds are

necessary to be imposed because they prevent the optimal control algorithm from driving the heart

muscle system at excessive pacing rates.

To solve the above optimal control problem, we use concepts from the optimization theory and
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construct first the Lagrangian functional, L(y, f, λ, β1, ξ1, β2, ξ2), as follows:

L(y, f, λ, β1, ξ1, β2, ξ2) =

tf∫
ti

{
w

2

(
y(t)− yref (t)

)2
+
z

2
f2(t) + β1

(
f − fmin − ξ1

)}
dt+

+

tf∫
ti

{
β2 (fmax − f − ξ2)− λ

[
dαy(t)

dtα
− a(t)y(t)− b(t)f(t)

]}
dt (7.14)

where λ, β1,and β2 are the Lagrange multipliers associated with the dynamical state equation for

y(t) and the constraints imposed on the control variable f , ξ1 and ξ2 are the slack variables needed

to transform the inequality bounds into equality constraints on the control variable f .

By expanding the Lagrange function in Eq. 7.14 via the Taylor formula and considering that

it attains its minimum in the vicinity of τ = 0, i.e., ∂L/∂τ = 0, we obtain the following relations:

∂L
∂y

+t D
α
tf

∂L
∂tiD

α
t y

= 0, ∂L
∂f

= 0, ∂L
∂λ

= 0, ∂L
∂β1

= 0, ∂L
∂β2

= 0 (7.15)

where tiD
α
t and tD

α
tf

represent the fractional derivatives operating backward and forward in time,

respectively.

In order to solve the relations in Eq. 7.15, we discretize the interval [ti, tf ] into N intervals of

size (tf − ti)/∆t and use the formula in Eq. 1.4 to construct a linear system as follows:

k∑
i=0

(−1)i

∆tα
(α
i
)
y ((k − i) ∆t)− a(k∆t)y(k∆t) +

b(k∆t)2

z(k∆t)
λ(k∆t)+

b(k∆t)β1(k∆t)
z(k∆t)

− b(k∆t)β2(k∆t)
z(k∆t)

= 0 k = 1÷N (7.16)

N−k∑
i=0

(−1)i

∆tα
(α
i
)
λ ((k + i) ∆t)− w(k∆t)

[
y(k∆t)− yref (k∆t)

]
− a(k∆t)λ(k∆t)+

+
λ(N∆t) (tf − ti − k∆t)−α

Γ (1− α)
= 0 k = N − 1÷ 0 (7.17)

β2 (k∆t)− β1 (k∆t)
z (k∆t)

− b (k∆t)
z (k∆t)

λ (k∆t)− ξ1 (k∆t) = fmin, k = 1÷N (7.18)

β2 (k∆t)− β1 (k∆t)
z (k∆t)

− b (k∆t)
z (k∆t)

λ (k∆t) + ξ2 (k∆t) = fmax, k = 1÷N (7.19)

In summary, the constrained finite horizon fractal optimal control defined in Eq. 7.9 through

Eq. 7.13 reduces to solving a linear system in Eq. 7.16, Eq. 7.17, Eq. 7.18, and Eq. 7.19.

An important aspect of optimal control approaches is to rely on accurate models of the dy-

namical system or state variables of interest to the designer. Consequently, in what follows, we

first estimate the parameters corresponding to a non-fractal and a fractal model and analyze the

goodness-of-fit of each approach. More precisely, we perform a hypothesis testing problem by in-

vestigating whether the observed data can be modeled via a specific model. In this context, the
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Heart Classical (non-fractal) model Fractal model
rate

time a b P-value Test α a b P-value Test
series statistic statistic

ID

1 0.9665 0.0267 0 61.127 0.6226 0.1613 -0.1284 1 0.2754

2 0.979 0.0193 0 30.031 0.7762 0.0355 -0.0326 1 0.2564

3 0.9513 0.0403 0 120.880 0.707 0.1255 -0.1038 0.51 0.3182

4 0.9525 0.0409 0 73.945 0.7258 0.1105 -0.0951 1 0.2544

5 0.9663 0.0286 0 88.339 0.699 0.0643 -0.0546 1 0.2714

Table 7.1: Comparison between a non-fractal model (1-step ARMA) and a fractal model (see Eq.
7.10 in terms of the estimated parameters and the goodness-of-fit obtained for five time series of
heart rate activity. The R-R interval time series are obtained for healthy individuals [126]. Except
the time series with ID 3, all other hear rate activity series can be modeled through a fractional
order differential equation of the type presented in Eq. 7.10. This is justified by the estimated
p-values and test statistics.

goodness-of-fit measures (via the P-value4) the discrepancy between the real measurements and the

model predictions. Next, we provide a complete numerical analysis of the proposed fractal optimal

control problem.

To make the discussion more concrete, we consider two types of models: First, we model the

heart rate through a first order differential equation, estimate the corresponding parameters (i.e., a

and b) and compute the goodness-of-fit between the actual measurements and the obtained model.

Second, we assume that over a finite time interval the heart rate can be modeled through a fractional

order differential equation of the type presented in Eq. 7.10, estimate the parameters α, a, and b

and report its goodness-of-fit.

Table 7.1 summarizes the estimated parameters and the goodness-of-fit results for both the

non-fractal and fractal models proposed to model the heart rate dynamics of healthy individuals.

To discriminate in terms of accuracy between the two models, we use the goodness-of-fit described

in [18] at 0.05 statistical significance level. This implies that we perform a null hypothesis testing

against each model and if the P -value computed for the considered model is below 0.05 level, then

with 95% confidence we reject the model as a good fit for the data. Note that this statistical

approach proves to be a more robust way of validating models than relying on mean square method

[18]. By comparing the P -values in the fourth and ninth columns, we can draw the following

conclusions:

• The modeling approach of heat rate processes via a fractional differential equation (as shown

in Eq. 7.10) cannot be rejected. The model is superior to the one based on first order

derivative for all five heart rate times in both P -values and test statistics.

4The P -value is a goodness-of-fit metric. A small P-value (below the significance value) allows us to reject the
null hypothesis (e.g., the data follows a certain distribution or can be modeled via an ARMA type with specific
parameters).
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Figure 7.5: Comparison between the measured R−R intervals of an individual suffering from atrial
fibrillation and the minimum and maximum bounds on the R-R intervals for a healthy individual
at rest. One can clearly observe that the R − R intervals have the tendency of exhibiting small
magnitudes. For instance, the first 100 beats exhibit on average R−R intervals of 0.55 seconds with
a standard deviation of 0.14 seconds. This can lead to palpitations and so fainting and dizziness.

• The modeling of heart rate dynamics via a first order derivative type of model is strongly

rejected by the observed null P -values and high test statistic results.

To illustrate the performance and efficiency of the proposed optimal controller for regulating

the pacing frequency of an artificial pacemaker, we consider the heart rate of an individual suffering

from atrial fibrillation (see Figure 7.5). To better emphasize the abnormal behavior in the length

of R − R intervals, we also plot the minimum (black solid line, corresponding to 0.667 seconds)

and maximum (blue dotted line, corresponding to 1 second) bounds for a normal heart rhythm.

In addition, we assume that the measured heart rate comes from an CPS infrastructure where the

normalized pacing frequency was set to 1 for a fixed interval of time of 56 seconds corresponding

to 100 recorded beats. Both the natural and artificial pacing led to an elevated average heart rate

of 108 beats per minute. The elevated heart rate is frequently experienced as heart palpitations

and can cause fainting and dizziness leading to major injuries. Thus, the role of an adaptive CPS

pacemaker is to regulate the pacing frequency in conjuction with the natural pacing coming from

the brain in order to keep the heart rate between 60 and 90 beats per minute.

The first step in the analysis is to check which of the two modeling approaches (i.e., the

nonfractal one represented by a first order differential equation and the fractal one given by a

single fractional order differential equation) is more suitable to be used for capturing the heart

rate characteristics exhibited for over 390 heart beats or an interval of time of 235.36 seconds. By

relying on the goodness-of-fit algorithm presented in [18], the P-value and test statistics for the

integer first order differential equation based model are 0.0018 and 0.3845, respectively. Since we
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Figure 7.6: Applying the fractal optimal controller, the R − R interval is increased from 0.19 to
0.80 (corresponding to a healthy heart rate of 75 beats per minute) in a finite control horizon
of 0.1 seconds. b) Control signal - pacing frequency - necessary to be following by the optimal
controller module of the pacemaker to increase the R−R intervals and reduce the heart rate from
approximately 100 to 75 beats per minute

performed the null hypothesis testing at 0.05 significance value, based on small P -value of 0.0018

we can reject the integer order differential equation as a good model. In contrast, by applying

the same goodness-of-fit algorithm, the P -value and the test statistic for a fractional single order

differential equation type of model are 0.8471 and 0.2949, respectively. This shows that for this

interval of time, the heart rate and implicitly the R − R intervals can be better modeled via a

fractional order differential equation.

Once the parameter identification and goodness-of-fit analysis is completed (and able to validate

or invalidate one type of model), the role of the optimal controller in Eq. 7.15 through Eq. 7.16 is

to determine the optimal pacing frequency for which the R−R intervals can be increased from the

observed 0.20 seconds to 0.80 seconds corresponding to a normal heart rate of 75 beats per minute.

Figure 7.6.a shows the impact of considering various discretization steps (i.e., N = 30, 40, 100,

500, and 1000 discretization steps) on the R−R intervals for a finite control horizon of 0.1 second.

Note that the controller was constrained to find the control signal such that the R − R intervals

are between 0.6 and 1 and the pacing frequency between 0.5 and 1. The w and z coefficients in the

performance index function shown in Eq. 7.15 were set to 0.1.

Comparison between a non-fractal modeL and a fractal model (see Eq. 7.16) in terms of the

estimated parameters and the goodness-of-fit obtained for five time series of heart rate activity.

The R − R interval time series are obtained for individuals experiencing atrial fibrillation [126].

All the above time series can be modeled through a fractional order differential equation as in Eq.

7.16. This is justified by the estimated p-values and test statistics.

One can clearly see that even for small number of discretization steps, the optimal controller is
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able to bring the R − R interval from 0.20 to 0.80 seconds for the predefined control horizon. In

addition, Figure 7.6.b shows the control signal (pacing frequency) needed to be followed in parallel

with the natural pacing coming from the brain to achieve a 0.8 R−R interval or a heart rate of 75

beats per minute. For completeness, the final frequency as a function of the considered number of

discretization steps is as follows: 0.8745 for 1000 steps, 0.8732 for 500 steps, 0.8689 for 100 steps,

0.8658 for 40 steps and 0.8647 for 30 steps. Consequently, the loss in accuracy of computing the

normalized pacing frequency from fewer discretization steps is approximately 1.1%.
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Chapter 8

Conclusion and Future Research

Directions

8.1 Major Contributions of this Dissertation

With the goal of transforming the increasing number of information switching devices into ex-

ponentially increasing performance, computing platforms ceased to rely on single highly complex

microprocessors and embraced the quest for desiging thousand core NoC-based architectures. Nev-

ertheless, this is not easily achievable mainly because of several challenges at both application and

architectural level. In this thesis, we set forth a statistical physics inspired framework for modeling,

analyzis and optimization of NoC communication architectures and proposed several dynamic opti-

mization methodologies to reduce the overall power consumption and thermal effects on multi-core

systems. Subsequently, we summarize our main contributions:

• Time-dependent and fractal characteristics are two main characteristics that appear in both

application and architecture domains. Consequently, in Chapter 2, we proposed a time-

dependent probabilistic description of graphs that appear as a result of running a single or

a collection of applications on a computing architecture (i.e., the graph edges not only in-

cludes dependencies between different application tasks but also communication transactions

between processors and memories). Building on such a mathematical formalism, in Chap-

ter 3, we constructed a statistical physics description of the network traffic dynamics via a

master equation. Our novel mathematical framework, not only captures the non-stationarity

and fractal characteristics observed in synthetic and real world traffic traces, but also enables

accurate dynamic predictions of various performance metrics at both corse- (e.g., network

throughput, average packet latency) and fine-level of granularity (e.g., buffer overflow proba-

bility, source-to-destination latency exceedance probability, packet waiting time distributions

in network buffers, etc). In addition, our approach can be used to guide the design space

exploration and solve challenging problems such as network buffer allocation1. Extensive

1Such an approach starts from the master equation description of the traffic dynamics through each buffer and
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experimental results on both synthetic traffic and benchmark applications demonstrate the

accuracy and efficiency of the proposed mathematical framework.

• Shrinking transistor sizes, scaling down supply voltages, and increasing clock frequencies lead

to a higher sensitivity of nano-circuits to particle strikes, as well as to an increase in the

number of timing violation. In order to overcome the negative impact of these factors on

NoC reliability, we draw inspiration from virus and/or rumor spreading theory and design

the communication among processors as a probabilistic gossiping process. While theories

on robustness and coverage (e.g., number of nodes aware of some piece of information) of

such virus like communication protocols are ample and sound, there are very few viable

approaches to quantifying concrete network performance metrics (e.g., latency), which can

guide NoC design and optimization. We proposed a unified mathematical framework for

describing such a fault-tolerant communication protocol in both space and time as a collection

of branching and annihilating random walks. At the heart of the analytical model lies a

master equation describing the state (i.e., number of received messages) of each node in the

network and three transition events: packet duplications corresponding to the birth of new

random walkers into the network, packet transmissions between neighboring nodes, and packet

corruption representing annihilated random walks. Relying on the master equation and its

solution, which represents the probability of finding the network in a certain configuration,

we were able to derive mathematical expressions for the mean hitting time necessary for

a packet to reach a certain destination node from a predefined source. Unlike traditional

computer science approaches, which assume the system is in a stationary state and do not

take into consideration the time component, our approach enables the definition of dynamic

optimization algorithms for future multi-cores, where time plays a fundamental role which

cannot be disregarded.

• Besides performance improvement, the fractal nature of NoC traffic has profound effects on

dynamic optimization problems such as dynamic power management in voltage/frequency

island (VFI) designs or chip temperature regulation. Hence, we developed a fast and efficient

algorithm which seeks to determine the optimal supply voltages and operating frequencies of

an VFI-based NoC such that the total power consumption and the peak temperature are min-

imized while satisfying predefined levels of performance (e.g., source-to-destination latency,

throughput). Unlike current dynamic voltage and frequency scaling algorithms which ignore

the model fitting or parameter identification process, we proposed a linear time parameter

identification algorithm for the fractal modeling approach we introduced. We also demon-

strated that significant power savings can be achieved under fractal workloads, which cannot

be possible by employing the classical optimal control theory.

• CPS integrates computation, communication, and control with physical processes. Physical

seeks to minimize the buffer overflow probability while the source-to-destination latencies are kept under certain
bounds.
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processes are predominantly non-stationary and require time dependent models for modeling

and understanding their behavior. However, most current computing platforms lack proper

models for the time component and mostly assume stationary (i.e., time independent) be-

havior. Unlike traditional approaches, this research starts from the main characteristics (e.g.,

self-similarity, nonstationarity) of the communication workload of real CPS and builds a the-

oretical foundation for CPS design and optimization by combining concepts from statistical

physics, optimal control and fractional calculus theory. By accurately modeling CPS dynam-

ics through fractional dynamical equations, we were able to formulate a unique framework

for CPS design (e.g., resource allocation under fractal demand). Relying on low complexity

mathematical techniques, we have demonstrated that fractal optimal controllers can achieve

a more stable response and faster convergence time over classical feedback and/or optimal

control approaches. Our current work investigates both analytical and numerical techniques

to improve the effectiveness of the fractal optimal controller in the CPS context, particularly

in the face of increased degree of uncertainty and global computation, communication, and/or

energy constraints.

8.2 Beyond Silicon: Future Research Directions

Modeling and analysis of dynamic transport phenomena is a fundamental issue in many research

area ranging from transportation systems [70], to communication [120] and biological networks [137].

Consequently, there are several directions in which our research can prove to be very useful.

On one hand, the proposed traffic model implies new (fractal-based) control strategies [102]

for dynamic optimization of NoCs which can overcome the limitations of classical queueing and

system theory. More precisely, starting from Eq. 4.2, we can model the evolution of buffer uti-

lization via fractal derivatives [102][115] and determine more accurate estimates about the waiting

times of packets in the network buffers. This can be used for determining analytical estimates of

the probability distribution function of the source-to-destination latencies and so, it can help to

formulate dynamic mapping and scheduling algorithms that can be implemented at OS or network

level. Also, relying on the concept of fitness distribution one can define hierarchical optimal (traffic

aware) routing algorithms that minimize the source-to-destination latency and buffer utilization.

This remains as future work.

As will be discussed in Section 8.3, the performance analysis framework developed for stochastic

communication problem can be applied to solve diagnostic and drug delivery problems [143]. More

precisely, the drug delivery problem needs to quantify the dynamics of multiple random walkers

and their biological interactions. Consequently, the concept of hitting time probability can be used

to estimate the success of targeted drug delivery.

Another research direction is represented by developing efficient and lightweight control algo-

rithms (of fractal workloads) for cyber-physical systems. Besides the digital aspect presented in

this thesis, it would be worth investigating analog implementation solutions of various optimal
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Figure 8.1: Dense network of micro-robotic swarms swim in hard to access regions of the body. The
micro-robots dynamics is modeled as a collective behavior of multiple interacting random walks in
a 3D graph tessellation of space. Each graph node has associated a binary random variable (σ)
denoting whether or not it is occupied by one micro-robot. For detection and health monitoring
purposes the goal is to find the time-dependent coverage of the swarm. The goal of the drug delivery
problem is to find the probability for the nodes in the disease area (see Figure 8.1.b) to be occupied
by micro-robots.

control algorithms such as constrained finite horizon performance tracking, minimum time horizon

with performance tracking and constrained control signals or minimum time horizon while power

expenditure is maintained within some bounds.

Building on our approach to modeling and analyzing dynamical processes taking place on net-

works, it is possible to model and optimize various network infrastructures such as roads while

taking into account human dynamics [33]. This problem will be briefly discussed in Section 8.4.

8.3 Modeling, Analysis and Optimization of Bacteria-propelled

Micro-robotic Swarms with Applications in Medicine

One of the main challenges of modern medicine is the detection of silent progression and migra-

tion of various diseases through the human body. For instance, cancer is one of the leading causes

of death because in most situations tumors appear and develop undetected by many of the current

screening tests or the immune system. Nevertheless, a large body of research in the analysis of

tumor angiogenesis suggests that tumors silent progression is most of the time accompanied by

an increased demand of nutrients and oxygen [67]. Most of the time these events are not easily

detected by the immune system and the cancer cells can corrupt the neighboring and remote organs

up to the point where surgery cannot help with a cure.

94



Figure 8.2: Hitting times for all micro-robots to reach their destinations shown for three interaction
distances:5 µm (5 hops) (a), 10 µm (10 hops) (b), and 15 µm (15 hops) (c). Distribution of
hitting times is better approximated by means of the generalized extreme value, Fisk or Student’s
t-distribution rather than by means of Gaussian law when interactions are considered.

Despite these challenges, we can rely on bacteria motility [19] to engineer micro-robotic swarms

capable of monitoring, detection and targeted drug delivery within the human body. However,

while fabrication of single micro-robots is well underway, the mathematical characterization of the

collective dynamics of swarms [62][98][140] of such micro-robots represents a major challenge from

the perspective of modeling, analyzing and designing such dense swarms of bacteria for targeted

diagnostic and drug delivery.

Building on our work, we plan to propose a mathematical model for capturing the dynamics

of a large number (or teams) of self-driven micro-robots (i.e., bacteria propelled capsules) able to

swim and access small regions of the human body; this voyage takes place in a non-invasive manner

due to micro-robots dimensions [143]. Such engineered micro-robots can perform massively parallel

and distributed tasks such as diagnostic or drug delivery. Given the affinity of chemotactic bacteria

(e.g., Serratia Marcescens) to high oxygen consumption around tumors, the micro-robots can sense

and swim through the interstitial spaces towards affected regions. Figure 8.1 shows micro-robotic

swarms swimming in the spinal cord and sensing the environment for detecting potential cancer

risks.

In order to characterize the dynamics of micro-robotic swarms, we map the movement of multiple

micro-robots swarming within a confined 3D region to the problem of tracking the trajectories of

multiple simultaneous random walks which can interact at various points in space and time [32].

Towards this end, we first tessellate the 3D space into a graph as shown in Figure 8.1.a. Then,

we study the dynamics of multiple random walks contained within a certain region via a master

equation which finds the probability P (σ1, . . . , σM ; t) of having multiple random walkers at certain

locations on the 3D lattice. As shown in Figure 8.1.a, the binary random variable σj indicates

whether or not there exists a micro-robot at location j (i.e., σj = 1 if the micro-robot is present

and σj = 0 if it′s not).

For detection and monitoring purposes, our focus is on finding the coverage and frequency of

visiting certain nodes in the 3Ds space by at least one random walker.
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In contrast, solving the drug delivery problem requires finding the probability of having a critical

number of micro-robots within a specific area (see the highlighted region in Figure 8.1.b).

Note that classical diffusion theory cannot be applied to such a scenario since various hydro-

dynamical and chemical interactions are crucially affecting the dynamics of such multiple random

walks. This statistical physics approach is meant to capture the collective and competitive behavior

of particles and predict the evolution of the swarm as a function of the density of walkers and the

strength of their interactions [32]. In short, our mathematical formalism should be able to explain

the departure from Gaussian laws towards heavy tail distributions we observe in Figure 8.2 as a

function of swarm density and interaction distances. The accurate modeling of trajectories and

distances travelled by micro-robotic swarms is of crucial importance for solving the diagnostic and

drug delivery problems.

8.4 A Statistical Physics Perspective on Human Dynamics Mod-

eling

Human centric processes refer to a web of interactions that can exist between humans via

a networked infrastructure such as internet, roads, airports, etc. From communication (letters,

telegrams, phone calls, emails, text messages, video chats) to mobility/transportation (travel dis-

tances, travel times, train passengers, car traffic density), all such human centric processes have

been regarded as being random in nature and so hard to understand, model and optimize.

Nevertheless, with the advent of information technology and availability of huge amount of data

about human dynamics, it has been proven that human centric processes (e.g., crowds, car traffic,

social networks) exhibit complex, but predictable spatio-temporal patterns. Although beneficial

from an optimistic point of view regarding their optimization, the existence of these patterns

posses new challenges for both tasks: modeling and optimization of networked infrastructures. For

instance, the problem of traffic optimization (e.g., determining the number of directional lanes per

road segment, building, opening or closing road arteries as a function of traffic demands) is very

complex. On one hand, the complexity is due to fractal characteristics of human behavior (changing

preferences for alternative traveling routes, bursts in visiting certain locations). On the other hand,

the road structure is not a random set of road segments, but instead a fractal one resulting from

an evolutionary optimization (e.g., the necessity to move faster goods between strategic locations).

Given the importance of these complex spatio-temporal patterns of human centric processes,

we introduce a new dynamic game meant to capture two essential aspects of both human dynamics

and real/virtual networked infrastructure [33].

The first principle is that the cost that is driving the behavior of one agent is not evolving

randomly in time, but instead its fractal time is encapsulated via a fractional derivative. The role

of the fractional derivative is to weigh each event by the power law of inter-event times. In addition

to more accurately model the timing behavior, we also assume that the cost value for each agent

can be perturbed by either a multiplicative or an additive noise term. This is motivated by the
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fact that some agents are very responsive to changes in the environment while others react more

slowly being more circumspect to a change.

The second principle is related to modeling the movement of agents through a fractal structure.

To be more concrete, in the case of car traffic problem, we construct a master equation which

captures the fractal characteristics of space and time through different fractional derivatives.

These two principle allow us to build a statistical physics self-consistent description of a dy-

namical game which can be used to model and optimize either the dynamics of agents or the fractal

structure itself. The proposed game theoretic formulation not only accounts for the empirically

observed scaling laws and patterns in human dynamics, but also opens a new research direction in

the field of evolutionary and mean field game theory helping to predict emergent crowd behavior.

8.5 A Non-Equilibrium Approach to Biological Communication

and Processing Theory

There is an exponential growing interest in system and synthetic biology not only for under-

standing the biological processes and organisms, but also for designing communication strategies

with cells or group of cells and for performing the so called unconventional computing. Not only

that these efforts will transform the face of medicine we know, but to be successful they need

a solid theory for representing communication and computation events, or in short for modeling

information processing in the biology world.

With the goal of building such a information processing theory (or maybe the biological infor-

mation theory), we foresee a non-equilibrium approach describing the interactions happening at

various levels (e.g., atom, molecule, compound) through master equations. From this point on-

wards, we can define, similarly to classical information theory, metrics and derive both channel and

network capacity information processing bounds. In addition, we can determine which ways are

good alternatives to talk to real world biological systems. This envisioned mesoscopic information

theory, as I intend to call it, remains a very attractive research direction to pursue. One clear

benefit that I foresee is in treating severe diseases such as cancer, age macula degeneration and

retinal vein occlusions.
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