
CONFIGURATION MODELING AND DIAGNOSIS IN DATA CENTERS

A Dissertation
Submitted to

the Temple University Graduate Board

In Partial Fulfillment
of the Requirements for the Degree of

DOCTOR OF PHILOSOPHY

by
Sanjeev Sondur

August 2020

Examining committee members:

Prof. Krishna Kant, Dissertation Advisory Chair, Computer and Information Sciences,
Temple University
Dr Slobodan Vucetic, Computer and Information Sciences, Temple University
Dr Xubin He, Computer and Information Sciences, Temple University
Dr Justin Shi, Computer and Information Sciences, Temple University
Dr Kenny Gross, San Diego Physical Sciences Research Center, Oracle USA

Copyright c© 2020 by Sanjeev Sondur
All rights reserved

ABSTRACT

The behavior of all cyber-systems in a data center or an enterprise system largely depends

on their configuration which describes the resource allocations to achieve the desired goal

under certain constraints. Poorly configured systems become a bottleneck for satisfying

the desired goal and add to unnecessary overheads such as under-utilization, loss of func-

tionality, poor performance, economic burden, energy consumption, etc. Ill-effects related

to system misconfiguration are well documented with quantifiable metrics showing their

impact on the economy, security incidents, service recovery time, loss of confidence, so-

cial impact, etc. However, configuration modeling and diagnosis of data center systems is

challenging because of the complexities of subsystem interactions and the many (known

and unknown) parameters that influence the behavior of the system. Further, a configura-

tion is not a static object - but a dynamically evolving entity that requires changes (either

automatically or manually) to address the evolving state of the system. We believe that a

well-defined approach for configuration modeling is important as it paves a path to keep

the systems functioning properly in spite of the dynamic changes to configurations.

Proper configuration of large systems is difficult because interdependencies between

various configuration parameters and their impact on performance or other attributes of the

system are generally poorly understood. Consequently, properly configuring a system or a

subsystem/device within it is largely dependent on expert knowledge developed over time.

In this work, we attempt to formalize some approaches to configuration management,

particularly in the area of network devices and Cloud/Edge storage solutions. In particular,

iii

we address the following aspects in this study: (i) impact of resource allocation on the

energy-performance trade-off, with a network topology as an example, (ii) prediction of

performance of a complex IT system such as Cloud Storage Gateway (CSG) or an Edge

Storage Infrastructure (ESI) under given conditions, (iii) development of a data-driven

method to efficiently configure (allocate resources) a CSG/ESI to satisfy required QoS

levels (e.g. performance) under given conditions (e.g. minimal costs), and (iv) a model to

express configuration health as a quantifiable metric.

With increasing stress on data center networks and correspondingly increasing en-

ergy consumption, we propose a method to simultaneously configure routing and energy

management related parameters to ensure that the network can both avoid congestion and

maximize opportunities for putting network ports in lower power mode.

We also study the problem of choosing hardware and resource settings to minimize

cost and achieve a given level of performance. Because of the complexity of the problem,

we explored machine learning (ML) based techniques. For concreteness, we studied the

problem in the context of configuring a Cloud Storage Gateway (CSG) that involves pa-

rameters such as core speed and number of CPU cores, memory size and bandwidth, IO

size and bandwidth, storage data and metadata cache size, etc. It turns out that it is very

difficult to obtain a reliable ML model for this, and instead our approach is to use a model

for the opposite problem (predicting optimal cost or performance for a given configura-

tion) along with meta-heuristic such as genetic algorithm or simulated annealing. We show

that an intelligent grouping of configuration parameters based on expected relationships

between parameters and relative importance of the groups substantially outperforms the

standard meta-heuristic based exploration of the state space.

Our work in the configuration space revealed a dominant void. We noticed the ab-

sence of common vocabulary or quantifiable metric to clearly and unambiguously express

the quality of the configuration. In our diagnosis work, we designed a model to define

a simple, reproducible, and verifiable metric that allows users to express the quality of

iv

device configuration as a health score. Our configuration diagnosis model expresses the

strength (or weakness) of a configuration as a Health Index, a vector of dimensions like

performance, availability, and security. This health index will help users/administrators to

identify the weak configuration objects and take remedial actions to rectify the configura-

tions.

Our work on Configuration Modeling and Diagnosis addresses an important topic in

this vast chaotic space. Using industry-driven problems and empirical data, we bring in

some meaning to this complex problem. Though our research and experiments involved

specific devices (network topology, Cloud Gateway, Edge Storage, network routers, etc.)

- we show that the proposed solution is generic and can be adequately applied to other

domains. We hope that this work will encourage other communities to explore new con-

figuration challenges in a rapidly changing IT landscape.

v

Dedicated to my family and my guru.

i

ACKNOWLEDGEMENTS

I am grateful to my committee for their guidance and support during this program. I dis-

tinctly remember the conversation in 2014 about ”1+1 ‰ 2“ with Dr.Shi. It took me the

next few years to understand the true meaning behind the discussion (in context to com-

puter science). His initial guidance encouraged me to enroll in this program. I found

Dr.Kant as a mentor, teacher, and advisor - who had the tough job of chipping out the

rough edges of industry arguments to bring out the academic (thinker) in me. Under his

guidance, I can see myself come a long way from the days of SDDs (misspelled acronym:

solid state devices) to SSDs (Single Shot Multi-Box Detector) and solidify my foundation

in any fronts. For his patience and efforts, I hope that I will evolve to be worthy of calling

myself his student. Dr.Slobodan enlightened me into the world of machine language and

the simple concept of looking at data before anything else. I had several impromptu dis-

cussions with him with each discussion stirring my eagerness to learn more. On reading

several of Dr.He’s papers, it confirmed the complexity of the problem, and small piece of

puzzle I’m trying to address in the vast configuration space.

After a long internal search, I found Dr.Gross at Oracle, and he has encouraged me

by substantiating my work by relating it to the real world problems. Girisha Shankar

from Cisco (India) has been my silent behind-the-scenes cheerleader, supplementing my

thoughts with brain-storming discussions and help me bridge the academic and indus-

trial worlds. Dr.Charles Wang encouraged me to pick a research topic related to industry

problems. Under his guidance, my first survey paper on Software Defined Network for

ii

Beginners1 was well received on ResearchGate. Dr.Bo Ji gave me an appreciation into

algorithms and I remember enthusiastically dashing into his office claiming that I could

solve the set-coverage problem! I had a lot of cooperation and guidance from Dr.Zheng,

Dr.Korsh and other faculty members and colleagues.

I had wonderful discussions, stimulating arguments and help from former lab mem-

bers: Dr.Anis Alazzawe, Dr.Mrs.Madhurima Ray. Dr.Dusan Ramljak, Dr.Ibrahim El-

Shekeil, and Dr. Amitangshu Pal. I wish godspeed to my fellow lab members - Joyanta

Biswas, Ms.Tanaya Roy, and Ms.Pavana Pradeep. Their lively atmosphere cheered me to

handle the program one-day-at-a-time and make steady progress.

Finally, I am grateful for my family for their patience, cold days and long nights of

sacrifice, encouragement, and support to help fulfill my life’s long-pending ambition.

1 [See Sondur (2014)]

iii

TABLE OF CONTENTS

ABSTRACT iii

ACKNOWLEDGEMENTS ii

LIST OF TABLES viii

LIST OF FIGURES ix

1 INTRODUCTION 1

1.1 Contributions . 3

1.2 Outline . 5

2 CONFIGURING DATA CENTER NETWORK FOR ENERGY EFFICIENT
OPERATION 7

2.1 Introduction . 7

2.2 Related Work . 9

2.3 Energy Management Techniques . 10

2.3.1 Energy Management Basics . 10

2.3.2 Energy Management in Network Links 12

2.4 Enhanced Energy Model Framework . 15

2.4.1 Implementation of Traffic Consolidation 17

2.5 Simulation Results . 19

2.5.1 Experimental Setup . 19

2.5.2 Experimental Results and Discussions 20

iv

2.6 Conclusion . 25

3 AUTOMATED CONFIGURATION OF CLOUD STORAGE GATEWAYS 27

3.1 Introduction . 27

3.1.1 Motivation and Challenges . 29

3.2 Current State of the Art . 30

3.3 Cloud Storage Gateway (CSG) . 32

3.3.1 Brief Overview of Object Store 33

3.3.2 Characterizing the Behavior of a CSG 35

3.3.3 Complexities in Configuration Control 37

3.4 Configuration Problem Formulation . 39

3.4.1 Research Questions . 41

3.5 Solution Approach . 42

3.5.1 Feature Vector . 43

3.5.2 Research Hypothesis . 44

3.5.3 Classification Problem . 45

3.6 Implementation Details . 45

3.6.1 Test Environment . 45

3.6.2 Workload Execution . 46

3.6.3 Metrics Collected . 47

3.6.4 Data pre-processing and Classification 48

3.7 Predicting Performance of a Configuration 50

3.8 Evaluation Results . 50

3.8.1 Influence of Chosen Feature Sets on Performance 50

3.8.2 Confusion Matrix . 51

3.8.3 Boundaries of Performance Prediction 53

v

3.8.4 Comparing on Prediction Accuracy 53

3.9 Conclusion . 54

4 EFFICIENT CONFIGURATION OF COMPLEX CYBER-SYSTEMS 55

4.1 Introduction . 55

4.2 State of Current Art . 58

4.3 Configuration Management of Edge Storage (ESI) 60

4.3.1 Overview of Edge Storage Infrastructure 60

4.3.2 Data Flow in an ESI . 61

4.3.3 Importance of Meta-Data . 62

4.3.4 Configuration Modeling for ESI 62

4.4 Solution Design . 65

4.4.1 Modified Genetic Algorithm (mGA) 67

4.4.2 Modified Simulated Annealing (mSA) 68

4.5 Evaluation Results . 71

4.5.1 Implementation Details . 71

4.5.2 Hyper-parameters of the Stochastic Process 72

4.5.3 Extracting Feature Importance 73

4.5.4 Recommending a Configuration using mGA 74

4.5.5 Recommending a Configuration using mSA 77

4.5.6 Pareto “like” Boundary . 79

4.5.7 Comparing execution time . 80

4.6 Conclusion . 81

5 A CONFIGURATION HEALTH SCORING SYSTEM AND ITS APPLICA-
TION TO NETWORK DEVICES 82

5.1 Introduction . 82

5.2 Current State of Art and Challenges . 83

vi

5.3 Formulating a Configuration Health Index 85

5.4 Estimating the Health Index from a Configuration 87

5.4.1 Configuration Files and Objects 88

5.4.2 Object Representation . 91

5.4.3 Quantifying the attributes . 92

5.5 CHeSS Framework . 92

5.5.1 Configuration File and its Canonical Form 93

5.5.2 Ontologies, OpenConfig and CHeSS 94

5.5.3 Learning Model . 96

5.5.4 Enhancing the Reliability Of Weights 97

5.5.5 Visual Representation of Health Index (HI) 99

5.6 Evaluation Results . 100

5.6.1 Implementation Details . 101

5.6.2 Scalability of the Framework . 102

5.6.3 Applicability and Feasibility of Framework 103

5.7 Conclusion . 103

6 CONCLUSION 105

6.1 Opportunities and Future Work . 107

BIBLIOGRAPHY 109

vii

LIST OF TABLES

2.1 Simulation Configuration (parameters used in experiment) 22

3.1 Subset of Feature Vector Supporting the Problem. 43

3.2 Sample Workload Type and Applications. 47

3.3 Test Termination Condition based on Data Volume and Accuracy. 48

3.4 Sample Classification of Design Variables. 49

4.1 Sample Classification of Design Variables. 63

4.2 Grouping Design Variables . 70

4.3 Very Fast Simulated Annealing Functions 72

5.1 Health Index of Sample Configuration Files. 102

viii

LIST OF FIGURES

2.1 Network Energy as part of Data Center Energy Consumed 8

2.2 Device Reactive Voltage Management under Busy/Idle States 11

2.3 TRS packet transmit model over-laid with inter-device communication . . 14

2.4 A Fat-tree Network and NS3 Energy Model 15

2.5 Enhanced NS-3 Energy Management State Models 16

2.6 Power Consumption and Average Delay Compared to Baseline at 25%
Utilization . 20

2.7 Power Consumption and Average Delay Increase % in TOS and TRS . . 20

2.8 Power Saving and Increase in Average Delay under TRS (with and without
switch backplane power management) 23

2.9 Comparison of power saving and average delay with LC and GC working
together under TRS power management 23

2.10 Effect of upgrading the size of fat tree(k) on power saving and on average
delay . 24

3.1 Cloud Storage Gateway Architecture. 27

3.2 Object Storage Infrastructure . 34

3.3 Cloud Storage Gateway - Test Environment. 46

3.4 Sample of Data Collected. 49

3.5 Accuracy of Various Predictions . 52

3.6 Sample Confusion Matrix (performance prediction) 52

ix

4.1 Workflow/ Data Path in Edge Storage Infrastructure. 61

4.2 Design of Algorithms. 65

4.3 Illustration of Research Questions. 66

4.4 PCA and Feature Importance. 73

4.5 gGA and mGA (PCA+Grouping) Test Results (Iterations and Cost) 75

4.6 Comparing gSA Test Results (Iterations and Cost) with/without Design
Attr. Grouping . 78

4.7 Comparing mSA Test Results (Iterations and Cost) with/without Design
Attr. Grouping . 79

4.8 Pareto-like Boundary and Execution Times 80

5.1 A Framework to express the Health Index of a Configuration File 86

5.2 Sample Configuration File with Associated attributes and weights 88

5.3 CHeSS Framework with Knowledge Repository and Learning Model . . 93

5.4 Parsing the Hierarchical Object and Assigning Weights (P,S,A) 95

5.5 Learning wi from Samples and Clustering for a Given COi 98

5.6 3D representation of HI of Sample Configuration File 99

5.7 Sample of a Complex Hierarchical Object COi. 102

x

CHAPTER 1

INTRODUCTION

In an ever-expanding digital world, the behavior of an IT unit/device (i.e a storage unit,

a compute server, a network device, an enterprise system, etc.) is of significant impor-

tance for multiple reasons, such as security, energy efficiency, user experience, reliability,

economical operation, etc. Device behavior has an important influence on different user

communities: (i) system administrators for efficient operation and ease of use, (ii) end-

users for better experience, (iii) operators for economical reasons, and so on. However,

behavior is an abstract word, that can take a different meaning depending on the context or

user-community. For example, it could refer to high performance or least energy consump-

tion or highly secure and so-forth. Further, behavior can be an attribute on the local device

or globally across the full system (end-to-end service or a full topology). The behavior

of an IT device or a system largely depends on its configuration, generally represented as

an ASCII file (txt, json, xml, etc.) or stored in a repository (local or central). Configu-

rations define resource allocation, transaction processing, security controls, etc. A good

knowledge and understanding of the device configuration is important for the efficient op-

eration of the device and the system as a whole. Negative effects of poor or misconfigured

system are well documented as: unavailability [Newman (2017)], financial burden [El-

liot (2017)], security breach [Chirgwin (2017)], etc. Yet, configuration modeling is rarely

1

studied, though it impacts every part of the operation (and our daily life).

The concept of configuration modeling is itself subject to scrutiny, because of the com-

plexities of subsystem interactions and the many ways in which performance metrics can

be defined [Eckart et al. (2009)]. It is very difficult to characterize the influence of many

tune-able parameters, that are set by the vendor or the administrator. These dependencies

and complex behavior make analytical modeling difficult. Besides, most device configu-

rations have to work under given constraints, such as costs, or power cap, etc. Throwing

additional resources or allocating extra capability (compute, storage, bandwidth, etc.) will

not overcome the system bottleneck or satisfy the required constraints.

After a device or a system is configured properly and resource allocated optimally,

communicating the quality of the configuration is very difficult. Often, the configuration

of the device or the system is communicated in ambiguous terms between user groups for

various reasons (engineering design, troubleshooting, etc.). Expressing the device config-

uration using common vocabulary and with quantifiable metrics is essential to eliminate

ambiguity and to help users communicate their needs. Our extensive analysis and litera-

ture search on this subject uncovered a huge gap and a need to design a quantifying metric

that can help to express the configuration in easily understandable terms.

Our research focuses on configuration modeling and diagnosis in data centers and to

understand the relationship between the configuration parameters and device behavior, to

recommend an optimal configuration for the desired behavior. Since configurations are

the key to a device, our work looks at designing a metric to quantify the configuration

health of a device. We believe that a focused approach to configuration modeling will help

in efficient allocation of resources and deriving desired behavior under given conditions.

A metric to express the health of the configuration (both locally to a device and globally

at the system level) could help users communicate in unambiguous terms and proactively

resolve any potential issues.

The vast space of Configuration Modeling and Diagnosis in Data Centers (or in an

2

enterprise system) is far-reaching to be explored in a limited time. Our work focused on

a subset of problems on network and storage domains, that have a compelling need in

the industry. With a focus on the above challenges and having worked with real-world

industry data set, we present our work and findings and highlight the contributions below.

1.1 Contributions

Building on the well-established concept of power saving c-states in CPU cores, our first

work focuses on re-configuring and resource allocation of the data center networks under

low utilization to save energy. The problem addressed allocating ‘restricted’ resources

(devices, paths, bandwidth, energy) and analyzing the performance vs. energy trade-

off. Using our enhancements [Sondur et al. (2017)] to a well-accepted NS-3 network

simulation tool, we modeled the network device energy and performance trade-off and

studied the various parameters that influence device behavior under energy constraints.

Our simulation-based study [Ray et al. (2018)] revealed that with suitable controls and

resource configuration, energy conservation over 40% is possible under low utilization

(below 25%).

To address the complex configuration problem, our work comprises configuration stud-

ies in emerging technologies like Cloud Storage Gateway (CSG) [Prahlad et al. (2012)].

This technology combines the power of the Edge Computing with the Cloud and involves

characterizing (i) the local behavior of the system plus (ii) the multiple domains involved

in the system (unpredictable network plus storage and compute). Edge Storage Infras-

tructure (ESI) is architecturally close to CSG, with constraints defined by the deployment

nature of the Edge Controller. In addition to imposing stringent QoS needs of the new gen-

eration of edge applications, ESI is deployed in constraint conditions that place limits on

power consumption, cooling needs, size, etc. Predicting the performance (i.e. throughput)

of CSG/ESI under a given configuration is challenging because of the difficulties involved

3

in describing the system. The various unknown interactions between different layers (net-

work, storage cache, etc.) make modeling the multiple subsystems of CSG/ESI difficult.

In the absence of a well-known model to characterize such a complex system, we used a

data-driven model from a commercial CSG system executing industry given workloads.

With this empirical data, we applied a machine learning model augmented with domain

knowledge to predict the performance under given configuration and workload conditions

[Sondur and Kant (2019)].

The converse of the above discussion is very hard since it involves an abstract ques-

tion. “Is it possible to recommend a configuration (resource allocation) to satisfy a given

condition?”. This inevitably needs providing an adequate set of parameters (i.e. CPU,

memory, bandwidth, disk area, etc.) that satisfy the user requirements (e.g. performance,

heat dissipation, power limit, etc.). On this front, our research work includes recommend-

ing a configuration for a CSG/ESI to satisfy a given workload/ performance demand under

given constraints. That is, given two parameters (workload, performance), our work was

directed towards suggesting an optimal configuration (server, resource, etc.) that satisfies

given constraints (cost, size, power, cooling). Our work addresses the main operational

challenges of a data center for optimal utilization of resources, wherein ill-advised config-

urations are the main cause for several predicaments such as loss of brand name, customer

experience, excessive operational costs, poor utilization, security issues, etc.

Our proposal for recommending an optimal configuration is based on meta-heuristics

based stochastic optimization enriched with problem specific domain knowledge. Our

approach involves adding domain knowledge to a meta-heuristic stochastic process such

as Genetic Algorithm (GA) and Simulated Annealing (SA), and we show that such an

approach provides much smoother evolution of the objective function and thus can be

terminated much earlier than an uninformed GA or SA [Sondur et al. (2020)].

Having worked on the configuration issues on the above research, it was evident that

there is no common vocabulary to express the quality of the device configuration. Describ-

4

ing a configuration in abstract terms as good, secure, reliable causes ambiguity among

the user population and further complicates the diagnosis process. System designers and

administrators need an ’a priori’ qualitative metric to express the health of the device con-

figuration. Our work proposed such a health index targeting multiple metrics including

performance, security, and availability. We designed a generic framework to compute

such a health index and specialized them for network devices such as routers and switches

[Sondur et al. (2020)].

Our dissertation outlines the above work alongside current state of art, challenges in-

volved, a proposed solution with empirical data, results, and conclusions. Though the

solution presented is specific to a device or system (network router, Cloud Storage Gate-

way, Edge Storage), the proposed approach is generic and the methods are broad enough

to be applicable to other domains for configuration or behavior prediction and system diag-

nosis. We discuss the adaption of the generic approach to other domains at the conclusion

of this dissertation.

1.2 Outline

The outline of this document is as follows. Chapter 2 studies the configuration problem

with respect to resource allocation and performance-energy trade-off for energy efficient

operation of data center networks. Using two different configuration approaches, this work

shows that the correct allocation of bandwidth, device energy controls can save energy con-

sumption up to 40% under low utilization conditions (traffic less than 25%). Our work on

Cloud Storage Gateway (CSG) configuration and performance prediction alongside a ma-

chine learning based prediction model is explained in chapter 3. Based on extensive testing

with real world customer workloads, we show that it is possible to achieve excellent pre-

diction accuracy (about 97%) while ensuring that the model does not suffer from under-fit

or over-fit. In chapter 4, we study the challenges involved in recommending an optimal

5

configuration for an Edge Storage Infrastructure (ESI), which is architecturally similar

to CSG. Using empirical data from earlier work, we present two stochastic optimization

approaches enriched with relevant domain knowledge to improve the quality of the so-

lution. In the first case, we enhance Genetic Algorithm (GA) with principal component

analysis to recommend near-optimal configurations for a CSG/ESI system. The modified

Genetic Algorithm (mGA) computes a set of solutions (population of chromosomes) that

satisfy user given performance/ workload under given constraints. In the second case, we

present a modified Simulated Annealing Algorithm (mSA) by grouping domain attributes

for faster convergence of a solution. We show that our modified algorithms converge faster

compared to an uninformed generic algorithm. Section 5 presents CHeSS, a framework to

quantify the health index of a configuration, using network router as a specific example.

CHeSS expresses the device configuration as a quantify-able metric enabling the users

to communicate the quality of a configuration in unambiguous terms. We conclude the

work done in section 6 showing the general applicability of the above solutions to other

domains.

6

CHAPTER 2

CONFIGURING DATA CENTER NETWORK FOR
ENERGY EFFICIENT OPERATION

2.1 Introduction

With increasing stress on data center networks and correspondingly increasing energy con-

sumption, we propose a method to simultaneously configure routing and energy manage-

ment related parameters to ensure that the network can both avoid congestion and maxi-

mize opportunities for putting network ports in lower power mode. We explored the prob-

lem of efficient resource allocation (i.e. routing, energy management, etc.) for network

nodes in data center networks with a goal to save energy. In this chapter, we addressed

allocating “restricted” resources (devices, paths, bandwidth, etc.) and analyzing the per-

formance vs. energy trade-off. A common idiom is: Nothing comes for free, meaning

that to achieve a goal (e.g. conserve energy) another “related entity” has to be sacrificed

or traded-off (e.g. performance). Using network device as an example, we study such a

trade-off between performance and energy consumption. The generic concepts presented

here are applicable to other domains like storage, or CPUs etc. We start by presenting the

basic concepts of energy management in an electronic device and apply it to a network

router as an example to demonstrate our work.

7

Energy consumption in large data centers continues to rise and is becoming a substan-

tial part of their operational costs [Connor (2015); Bertoldi et al. (2017)]. Traditionally, the

CPU has been the dominant power consumer in a server, and hence collectively in the data

center. However, the CPU speed and energy efficiency has improved quite rapidly in last

few decades – faster than networking and much faster than storage. Yet, data movement

needs continue to go up rapidly. As a result the energy consumption of data movement

relative to computation has risen rapidly and requires increasing attention in terms of en-

ergy efficiency at all levels from on-chip wires to on-chip interconnects to data center

networks. In fact, in high performance computing (HPC) data centers, the energy con-

sumption of the data center network can rival with that of the CPUs, and techniques to

manage energy without adverse impact on performance become crucial [Murugan et al.

(2012)].

FIGURE 2.1: Network Energy as part of Data
Center Energy Consumed

The US Dept. of Energy reported that

in 2016 data centers consumed 2% of the

electricity generated in the USA and an

average mid-size data center consuming

about 360MW of electric power [Sondur

et al. (2018)]. The latest energy consump-

tion report [Masanet et al. (2020)] illus-

trates that it is really hard to pin down the

network component numbers, because of

the difficulty in associating the energy to relative components executing the workload.

For example, it is becoming more difficult to separate entities such as a TCP packet pro-

cessing or virus check. Should the related power consumption at the endpoint be part of

the network or compute energy? Are IDS/IPS and DMZ virus checkers part of the net-

work or not? If network only means NICs and switches/routers, then it will be very low

and largely independent of data rates, and will even go down further if servers become fast

8

enough to do the soft switch/router functionality. Considering the dynamic nature of these

entities and workloads, we can associate about 5 to 10% of the above data (Fig. 2.1) to net-

work hardware. This work relates to conserving the network energy under low utilization

conditions, there by saving energy costs related to network devices.

2.2 Related Work

The existing work on energy modeling in NS3 is quite limited. Hu [Wu et al. (2011)]

presented the first framework for incorporating the energy model in NS3. Their study

computes topology specific energy consumption via a framework shown in Fig. 2.4(b).

It does not link the network device to the energy model for capturing the work done by

the device, i.e. the actual work of packet transmission. But per packet transmission en-

ergy is not realistic for synchronous links. Mostowfi [Mostowfi et al. (2015)] presented

a study of LPI enabled devices with Fast Wake-Deep Sleep states. This study requires

simulation of device energy directly linked to the device packet transmission states. Our

design presents an enhanced framework that links the modeling framework directly to

the network device(s) to capture real metrics related to packet transmission. Tapparello

[Tapparello et al. (2014)] used the same model from Hu to design an energy harvesting

framework. Our model is built over these basic frameworks while enhancing the energy

metrics captured and granularity of data collected. We believe that these granular data and

enhanced energy metrics will be of interest for future research studies and aid in under-

standing the underlying mechanism of device energy consumption. Our enhancement can

incorporate models for multi-state power management of communication links presented

by Kant [Kant (2011)]. Kant showed energy management through link speed control, link

width control or link power state control.

Any transition in and out of a sleep mode involves delay, which affects network per-

formance. It is crucial to represent this aspect in the simulation model, but has not been

9

typically addressed by the high level energy models. We do so via this enhanced energy

model that keeps track of energy consumption, latency and average queue length for every

transition.

2.3 Energy Management Techniques

2.3.1 Energy Management Basics

Energy consumption of electronic devices can be reduced either by doing idle or static

power management or active power management. In idle power management, we take ad-

vantage of low power sleep mode to reduce the idle power. By active power management,

we run a device slower than its maximum voltage and frequency (DVFS), but it hurts per-

formance (because of lower frequency). Energy consumption of electronic devices can be

reduced by taking advantage of idle periods and/or low device utilization. When a device

is idle, it still consumes “idle power” resulting from leakage current in the transistors.

The idle power can be reduced by placing the device in a sleep mode (low power mode),

and the corresponding techniques are known as static power management. If the device is

operating at a low utilization level, it is often possible to run it slower and still keep the uti-

lization below the desired threshold. The slower speed may allow for operation at a lower

voltage and thus saves energy. This is known as dynamic (or active) power management

and the best known example of this is the DVFS (dynamic voltage frequency switching),

whereby the frequency of operation and voltage can be changed suitably.

Let V denote the Source-Drain voltage and IL denote the leakage current. Then the

idle power consumption Pidle “ V ˆ IL. Suppose that the device operates at frequency f

and the effective circuit capacitance is C. Then the dynamic (or active) power is given as:

Pdynamic “ 1{2ˆCˆV 2ˆf ˆU where U denotes the utilization level of the device. The

total power is then simply Pidle`Pdynamic. It is seen that to the extent the voltage can also

be reduced along with frequency reduction, it reduces both idle and dynamic power. A

10

FIGURE 2.2: Device Reactive Voltage Management under Busy/Idle States

device could have multiple sleep states with different amounts of power consumption, the

trade-off being between the power consumed and the latency of entering/exiting the sleep

mode. The device can also have multiple active power states, each defined by a suitable

frequency-voltage combination. The latency of state change could vary widely depending

on the type of device.

Fig.2.2 illustrates the above concept with a simple diagram. Let’s assume that the

device is operating at full power (hence full voltage Vpfullq till time period t1 in busy state

doing some active work. After period t1, there is no further work for an unknown duration

(till the next work arrives t4). We take advantage of the non-busy period to reduce the

device voltage and conserve power. At the end of busy period, the device would wait for a

predefined period called run-way time (t1 to t2), and if no further work arrives within this

period, the device is put to a low-voltage state Vplowq. The transition from busy to idle state

is not instantaneous, but takes some predetermined time duration t2 to t3. This transition

period is a constant and depends on the internal device electronics. Energy is conserved

when the device is under low power state, and the duration is referred as sleep time (t3

to t4). Longer the sleep time (i.e. long interval between two consecutive units of work)

higher the saved energy. However, when the first unit of work arrives, the device has to

wake up from idle state to full power state. This period is referred as wake up time and

11

shown as t4 to t5, and this wake-up latency adds to the delay in work done. Note the delay

in figure referring to the late start of the work. Latency measured as the delay introduced

by the state-transition is experienced only by the first request that wakes up the device.

Latency itself is not important, its impact on performance is. The performance impact on

the work vs. the energy saved due to state-transition is an important trade-off, that needs

to be carefully analyzed using the right metrics. We studied this reactive power control

management in the network devices.

2.3.2 Energy Management in Network Links

We apply the above concept and discuss the power consumption characteristics of net-

work links. The current high speed networking, irrespective of its ultimate personality

(e.g., PCI-E, Ethernet, IBA, FC, etc.) is based on serial links with differential switching

technology with multiple “lanes” used to increase the bandwidth. Such links are typically

synchronous and continuously transmit some symbols. This characteristic both increases

the contribution of network to energy consumption and offers better opportunities for en-

ergy management as the network technology increases in speed. The main reason for this

is that the data center network links carry very little traffic most of the time, and high

bandwidth is required only sporadically. For example, the power consumption of a 10

Gb/sec Ethernet can be anywhere between 2-10 times the power consumption of 1 Gb/sec

Ethernet, depending on the number of ports and the technology used [Sohan et al. (2010)].

Also, the power consumption goes up with the number of ports whether they are used or

not. Thus a network speed upgrade will usually result in increased energy consumption

even though the average network traffic carried is unlikely to increase much. Thus, the in-

creased energy consumption makes network energy management crucial. Fortunately, the

decreased average utilization level also makes it easier to exploit the network low power

modes.

The basic serial link PHY supports two sleep states (low power), called L0s and L1,

12

respectively which can be used for idle power management. The L0s power state is uni-

directional, in that the transmitter for each direction of the link can independently decide

to go into sleep mode when it has nothing to transmit, whereas the receiver side remains

active. The L1 power state involves a handshake between transmitter and receiver, and

thus allows both of them to go into sleep state when there is nothing to transmit. The L1

state can reduce the idle power quite substantially because it stops the transmission of syn-

chronization frames as well. However, the downside is that it requires re-synchronization

and hence substantial delay. The L0s and L1 are supported by PCI-E and L0s could poten-

tially be supported for any link at the PHY level in hardware since it does not affect link

synchronization. IEEE has defined standards towards managing network devices [IEEE

802.3ba, 802.3bj, 802.3az et al] to achieve energy efficiency. The Low Power Idle (LPI)

[EEE (2016)] is defined in 802.3az for the Energy Efficient Ethernet (EEE) initiative. LPI

can be thought of as an improved and link level version of L1. In my research work im-

plementation, We developed code to support essentially L0s and LPI like mechanisms,

which can be customized further as needed. There are new emerging energy manage-

ment standards for 40 & 100 Gb/s Ethernet links such as 802.3bj [Mostowfi et al. (2016)]

(deep sleep mode) and 802.3bm (shallow sleep with fast wakeup). Our implementation

can accommodate these standards by suitable change to parameters.

The IEEE standard 802.3az-2010 [Christensen et al. (2010)] defines the LPI mecha-

nism as opposed to the continuous IDLE signal, in order to stop the transmission when

there is no actual data to send and resume quickly upon arrival of new packets. LPI sends

periodic refresh signal to maintain the synchronization, while consuming only about 10%

of the active power. Wake up from LPI takes a significant exit latency, since the transmitter

needs to wake up the receiver, before transmitting anything. The two relevant parameters

in this regard are sleep time (Ts) and wake-up time (Tw). For a 10 Gb/s link, with 1500

bytes packet size Ts and Tw will be 2.88 µs and 4.48 µs respectively. This amounts to

transmission time of several packets and thus the mechanism is useful when the traffic

13

FIGURE 2.3: TRS packet transmit model over-laid with inter-device communication

shows significant gaps between packet bursts. So, LPI can be useful only at very low

utilization levels. For our research, we designed the above system to support the energy

management techniques at fine to medium time granularity. For most of the applications,

the energy management should not affect application behavior. However if there are some

extremely latency sensitive applications present, then those should be isolated and the en-

ergy management can not be used for them.

As for the DVFS, most links have the capability to operate at a set of predetermined

speeds, however, this capability is normally designed for configuration, rather than dy-

namic change. Thus the change is rather slow. Ethernet supports auto speed negotiation

to drop down a link to lower standard speeds, but even a rapid speed change mechanism –

known as RPS (Rapid PHY Selection) is too slow. Thus DVFS is not useful for outside-

the-box links, but could useful for others such as core interconnect.

The TOS model is hardware driven and allows the transmitter to sleep independently

when the gap between the traffic is small. The basic approach is to transition to L0s if

the idle period exceeds some specified amount called “runway”[Kant (2011)]. The exit

happens on arrival of the next packet. For simplicity, a fixed runway duration is used,

although utilization dependent runway could be easily implemented [Kant (2011)]. The

TRS model is software driven, birectional and it is an implemetation of LPI. In TRS, the

transmitter sends sleep packet to the neighboring receiver before going to sleep. Both the

14

(a) An illustration of fat-tree network (b) Existing NS3 energy model

FIGURE 2.4: A Fat-tree Network and NS3 Energy Model

transmiter and receiver have to come to an agreement before the transmitter can move to

sleep mode. So it has extra overhead. As the transmitter wakes up, it has to send wake

up packet to neighboring receiver before sending any traffic intended for it, as shown in

Fig. 2.3. So, it has a higher exit latency. Thus TRS uses larger runway to ensure the

transmitter and receiver can only move into the sleep mode when the gap between traffic

is large.

2.4 Enhanced Energy Model Framework

Existing network simulators are not designed to study the granular effects of energy con-

sumption and workload performance or would be easy to extend. We found that none of

them to be workable as the power models used and power management techniques imple-

mented are very rudimentary and inadequate. We choose to extend NS3 [NS3doc (2015)]

network simulator because of its flexible design and widespread familiarity in the commu-

nity.

Since, NS3 has little to offer in terms of energy management; it merely defines some

parameters on energy consumption. To remove this deficiency, we enhanced and imple-

mented an energy model for NS3 based on currently available network device energy man-

agement features in both inside-the-box fabrics (e.g., PCI-E) and outside-the-box fabrics

(e.g., Ethernet). we extended NS3 in four directions with respect to energy management:

15

(a) individual port level power management; (b) node fabric or backplane power man-

agement; (c) traffic consolidation performed at port (link) level; and (d) global controller

that helps to consolidate traffic further. The first two opportunistically use sleep modes

to save power, whereas the last two attempt to enhance the opportunities for sleep. The

sleep modes in CPU cores are referred as c-states, the higher the c-state number the deeper

the sleep mode. That is, state C6 saves more power but with a higher wake-up penalty

compared to C4 state.

An idle port may go into sleep mode (with or without informing its neighbors) and

wake up in a reactive manner upon new traffic arrival Fig. 2.5(a). Furthermore, the back-

plane of a switch could consume a significant amount of energy, but it is not realistic to

put it in sleep mode unless all ports attached to it are sleeping. We assume that the CPU

of the backplane can go to a relatively deep sleep mode, such as C6 or higher, along with

memory in self-refresh mode. The exit latency in this case could be in 100µs range, which

could cause significant delay to the incoming packet of a flow arriving at a switch/router,

when the backplane is asleep. To reduce the impact of exit latency from sleep mode, we

use a timer (called runway) both at port level and at the backplane level. Whenever a port

goes idle, it waits for its respective runway time and thereafter moves to sleep mode. Like-

wise, a switch with all sleeping ports initiates its runway timer, and moves to sleep as the

timer expires Fig. 2.5(b). However, it is crucial to ensure that no packet will be lost.

(a) Device Link State Model (b) Back-plane State Model

FIGURE 2.5: Enhanced NS-3 Energy Management State Models

Another major tasks is to select the time constants properly which conforms to the

device state (L0 vs L1 or C6 vs C7). The runway is a parameter of the algorithm and can be

16

set to a fixed value or adjusted dynamically based on the device utilization. Additionally,

the transition into and out of sleep state takes some time. Usually the entry delay is small,

but the exit delay is larger and directly contributes to the delay of packets that arrive when

the device is in sleep mode. For simplicity, we bundle both of them under a single delay

that is charged on exit. It is reasonable to assume that the power consumption during entry

to and exit from sleep mode is the same as idle power. In addition to the reactive exit

used here, it is possible to implement more sophisticated proactive exit, that predicts the

arrival time of the next packet and attempts to exit sleep mode before the actual arrival.

This could reduce the impact of exit latency; however, it is unlikely to work very well for

individual ports. For backplane, it may be possible to use more sophisticated mechanism

- such extension can be added easily.

As a configuration control technique, we changed the routing logic to have the traffic

consolidated over the fewest number of ports (links) i.e. port level traffic consolidation;

whereas the backplane power management is done opportunistically depending on net-

work utilization. Thus, by limiting the number of heavily utilized ports, we can use the

sleep modes more aggressively for moderate to low utilized ports. In our routing scheme,

all the nodes choose the highest utilized outgoing link among all available links (outgoing

links connect to immediate neighbors) towards the destination, to forward an incoming

packet. We have coined this as local consolidation (LC), since the nodes consolidate the

traffic, solely based on local information. The nodes (switch or router) play the primary

role in local consolidation mechanism.

2.4.1 Implementation of Traffic Consolidation

Additionally, we have implemented a global controller (GC) (somewhat like SDN con-

troller). The GC has monitoring capability, that regularly exchanges information with

both the end points (hosts) and nodes (switch or routers) . In return, GC can provide hints

to the nodes (local consolidation) for better traffic consolidation. It can also pass hints

17

to the end point controller for energy efficient flow placement. Since the GC has global

visibility, one possible type of hint is the network segments that may be congested. This

capability can be exploited to ease traffic bottlenecks during flow placement or traffic con-

solidation. This coordinated approach helps us to save even more energy without raising

network delay significantly as shown in Figs. 2.9(a) and 2.9(b).

The basic NS3 routing provides ECMP (Equal Cost Multi Path) where the routing

table generates all possible minimal cost paths for every source and destination pair. To

forward a packet to the next hop, a node selects one out of these paths according to the uni-

form random distribution. In our implementation, we derive the ECMP routing table from

NS3 only once at the beginning of our extended routing mechanism. Then we selectively

choose subset of the available paths to make better routing decisions.

NS3 has its own notion of flow, which is used to track the packets exchanged by the

nodes and to compute the flow level statistics. NS3 defines a flow as a 5-tuple which

includes upper layer protocol, source IP & port, and destination IP & port. In our imple-

mentation, we generate an explicit ID for each flow, which is carried by every packet of

the flow. This allows us to divide the packet stream between a source- destination pair

into multiple flows, each suitably tagged by the flow id. Such a mechanism is crucial for

implementing local consolidation (Section 2.4). The packets with the same flow id are

forwarded in one outgoing net device, and this information is stored in an extended rout-

ing table. Alongside the packet routing information (source, destination, next-hop), this

extended routing table also stores the flow id. In contrast with the default NS3 routing

table, the routing entry is dynamic in nature and is modified upon flow start/end. When

the first packet of a flow comes to any node and finds no entry for that flow in the extended

routing table, it picks one path from the default routing table and stores it in the extended

table. When the flow ends (we have a notion of last packet attribute to identify this), the

flow entry is removed. If any incoming packets of a corresponding flow finds its entry,

then it simply follows the path that has been set by the first packet of that flow.

18

To consolidate the traffic, we always focus on the subset of available net devices (links).

If any flow can reach its destination by reusing certain highly-utilized outgoing net device,

then we put a extended routing table entry for that corresponding net device and flow id.

We also define the required bandwidth attribute for the first packets of each flow, which

we use to implement better admission control policy. We consolidate the flows to any

outgoing net device up to certain utilization threshold. If the required bandwidth of the

new incoming flows exceeds the threshold, it is forwarded to another outgoing net device.

If no net device has the available bandwidth, then the flow is dropped.

2.5 Simulation Results

We illustrate the energy model and effect of configuration (e.g. TOS vs. TRS, work-

load, traffic consolidation, etc.) by presenting some results for a fat-tree based data center

network.

2.5.1 Experimental Setup

We choose the fat-tree topology here because of its near universal implementation in com-

mercial data centers. Our fat-tree consists of 16 nodes (k “ 4) as shown in Fig. 2.4(a) with

bandwidth of the links in ratio 1:2:4 i.e. edge bandwidth : aggregate bandwidth : core

bandwidth. We use the traffic consolidation threshold of 90% of the total link bandwidth.

The parameters used in experiments are listed at Table 2.1.

The performance illustration in this paper uses analytically generated traffic for flex-

ibility in emulating various traffic characteristics. The flow duration follows the Pareto

distribution with shape equal to 3.5 and mean of 36 ms, ranging from 22ms to 375ms. The

bandwidth of each flow follows the uniform distribution with mean 100 Mbps and with

a range of 50 Mbps to 150Mbps. To support various levels of traffic burstiness, we im-

plement two state Markov Modulated Renewal Process (MMRP) as traffic model. In this

model, the two states have different flow generation rates based on the given burstiness

19

(a) Power Consumption Comparison (b) Increase in Average Delay

FIGURE 2.6: Power Consumption and Average Delay Compared to Baseline at 25% Uti-
lization

(a) Power Consumption Comparison (b) Increase in Average Delay

FIGURE 2.7: Power Consumption and Average Delay Increase % in TOS and TRS

and average rate parameters. The residence time distribution in each state is exponential

and is calibrated using the average residence time in each state.

2.5.2 Experimental Results and Discussions

We use four different power saving techniques;

(a) No power management at all,

(b) Transmit only sleep, henceforth called TOS for each port, which is basically a hard-

ware based L0s implementation, i.e., the transmitter sleeps whenever it has no pack-

ets to transmit without any receiver coordination. Link synchronization is main-

tained.

(c) Transmit-Receive sleep, henceforth called TRS for each port, which is essentially

20

an implementation of LPI mechanism and allows the transmitter and receiver to

coordinate their sleep, and

(d) Additional switch backplane power saving mechanism with port based TOS and

TRS discussed earlier.

We conducted experiments to compare the power-performance characteristics under

different situations. First, we compare local consolidation (LC) against the NS3 default

ECMP routing, mentioned in section 2.4.1. We then compare TOS and TRS under local

consolidation (LC). We also examine the impact of backplane power savings, and the effect

of burstiness of the traffic. In all cases, we also examine the change in delay faced by the

flows compared to their respected baseline. We show the results for network utilization

levels of 5%, 10%, 25% and 40% respectively. Very high utilizations are not interesting

because they would not offer much opportunity to save energy. Finally, we compare the

power-performance characteristic of TRS mechanism with LC only and with LC together

with the GC. While most of the simulations were run with k “ 4, we also show how the

savings and delays vary with higher k.

Fig. 2.6 compares the power consumption and increase in delay (as percentage of the

baseline i.e. with no power saving) under both NS3 default routing and LC. It is found that

in all the cases the power consumption with LC is no more than that for the NS3 routing

mechanism. Since the TOS mechanism works at a fine time granularity, its power con-

sumption is almost identical under both LC and ECMP. With TRS, at 25% utilization, LC

consumes about 77% power and increases the delay by 39%, whereas NS3 default routing

consumes approximately 94% power and increases the delay by 100%. TRS has a high

exit latency and this delay is due to premature exit from the deep sleep state which hap-

pens more frequently with ECMP than with consolidation. This same result was obtained

in a large number of other cases that we tested, but not reported here. This establishes the

superiority of LC, and we use it in all further experiments shown here.

21

Table 2.1: Simulation Configuration (parameters used in experiment)
Active Power 4.95W
Idle State Power 4.95W (Sync Link)
TOS Sleep State Power 1.98W
TOS Sleep to Active Penalty 0.1µs
TOS Runway 5µs
TRS Sleep State Power 0.495W
TRS Sleep to Active Penalty 73.6µs
TRS Runway 150µs
Backplane Active Power 20W
Backplane Sleep Power 4W
Backplane Sleep to Active Penalty 200µs
Backplane Runway 500µs

Fig. 2.7 compares TOS and TRS mechanisms at 10% and 40% utilization. The cases

shown are both without and with backplane (NBP and BP) power management. Without

the BP power management in place, TOS performs slightly better than TRS in terms of

power saving. However at 10% utilization TRS incur more delay due to premature exit

from sleep as compared to TOS. Furthermore, with the BP power management the scenario

changes in favor of TRS. With TRS and BP power management, it saves 2-5% more power

and reduces the delay compared to TOS. Because of the large latency associated with BP

low power exit, the flows experience a significant additional network delay with TOS. The

cost becomes more for lower utilization and also for the TOS as compared to a network

using TRS under a moderate utilization. This is due to the fact that TRS uses a larger

runway to go to sleep mode, and thus the BP also goes into sleep mode when the gaps

are really wide, which is very rare under moderate to high utilization. Hence the average

latency impact is less with TRS in 40% compared to 10%. Overall, the TRS delay is

140-200% lower than delay in TOS with BP power management.

Based on this result, we henceforth only investigate TRS. TRS is also more relevant

for Ethernet, since TOS capability may not be exposed.

Fig. 2.8 shows the power savings and additional delay with LC under TRS with and

22

(a) Average Power Saving (b) Increase in Average Delay

FIGURE 2.8: Power Saving and Increase in Average Delay under TRS (with and without
switch backplane power management)

(a) Average Power Saving with LC and GC work-
ing together under TRS power management

(b) Change in delay when LC with GC work to-
gether under TRS

FIGURE 2.9: Comparison of power saving and average delay with LC and GC working
together under TRS power management

without BP power management. We save nearly 22-34% power with only TRS and NBP

and incur delay due to exit latency in the range 10% to 300%. It is seen that with BP

power management, we have 14%-17% more power savings compared to without BP at

the cost of further increasing the delay. We show the results for 5%, 10%, 25% and 40%

utilization. Lower utilization provides more power savings along with higher delay. With

BP power management, the overall power savings fall in the range 36-51%, whereas the

delay can increase very substantially to up to 10-460%. It is also interesting to notice

that both 25% and 40% utilization under BP and NBP reveal same type of power saving

behavior with the 25% having more delay than 40%. This delay is due to TRS exit latency

and not the delay due to consolidation. It may be possible to reduce this delay with a more

intelligent BP power management mechanism, but this is beyond the scope of this paper.

23

(a) Power saving w.r.t size of fat tree(k) (b) Average delay w.r.t size of fat tree(k)

FIGURE 2.10: Effect of upgrading the size of fat tree(k) on power saving and on average
delay

Next, Figs. 2.9(a) and 2.9(b) show the experiment conducted in presence of GC. We

have done both port-level (TRS) and backplane (BP) power management here. We com-

pare the performance vs power characteristics of TRS with BP under local consolidation

(LC) both in the presence and absence of global controller (GC). We have used the same

four utilization levels here. GC provides the hints to the LCs for energy efficient flow

placement and routing, which can be seen from the curve Fig. 2.9(a). Without GC it saves

around 51% power at 10% utilization and 36% at 40% utilization. Whereas, with the GC

added, we save nearly 16% and 6% more power at 10% and 40% utilization respectively.

Higher the utilization, less will be scope for power savings. Under low utilization, GC

also helps to reduce the delay by helping LC do better consolidation and avoid prema-

ture wakeup. However, under moderate to high utilization a better consolidation by GC

means higher queuing delay which can be seen from the Fig. 2.9(b) where beyond 20%

(approximately) utilization level GC has experienced more delay.

Finally, Figs. 2.10(a) and 2.10(b) show the scalability of the mechanism as a func-

tion of k, which controls the network size. Unfortunately, the simulation time increases

rapidly with k, and so we only go up to k “ 8, which corresponds to 128 racks. A fat-

tree requires more bandwidth at higher levels as k increases, and for the purposes of this

study we simply scale up the bandwidth proportional to k{2 at higher levels. This is some-

what unrealistic in reality since Ethernet links provide only certain speeds (e.g., 10, 40 &

24

100Gb/s); however, a systematic scaling allows for observing trends that would be masked

otherwise.

Fig. 2.10(b) shows power savings delays for load consolidation (LC) mechanism as

compared with simple TRS power saving with NS3’s ECMP mechanism. This is done

for utilization levels of 5%, 10%, 25% and 40%. It is seen that the higher k provides

additional power savings and also a delay reduction except at high utilizations.

There are two main reasons for delay reduction here: (a) the higher link speed for the

higher level links, (b) avoidance of premature link wakeup due to traffic consolidation.

A larger k provides more options for the traffic (k{2 links) and there is greater chance to

consolidate traffic on 1 or 2 links which allows others to sleep. In contrast, in ECMP all

k{2 may carry some traffic. The faster links at higher levels also tend to create larger gaps.

However, as the utilization increase, these advantages diminish.

2.6 Conclusion

Using our enhancements to the popular NS3 network simulation tool, we presented the

effect of configuring various parameters on the behavior of a data center network. We be-

lieve that this work substantially enhances NS3 in an area where it is currently very weak,

i.e. network energy management. Although we have only implemented some basic energy

management capabilities, they provide a launching pad for more sophisticated capabilities

such as multiple sleep states and more sophisticated algorithms for deciding when to enter

or exit a sleep state. Although our energy models have mechanisms such as those found in

PCI-E and the standardized LPI mechanism for Ethernet, it is possible to extend these to

other networks such as Infiniband and even optical networks. We have also implemented

LC, GC and some simple coordination mechanisms between LC and GC. In future we

would like to examine more sophisticated coordination mechanisms between them. An-

other possible extension would be to develop mechanisms for dynamically deciding when

25

to move workloads (e.g. storage chunks) or redirect the requests (to other active copies)

to alleviate congestion during high traffic episodes and to enable traffic consolidation (and

hence network energy savings) during low traffic periods. We have released our imple-

mentation on a public research site (ResearchGate & github) to encourage new areas of

research.

26

CHAPTER 3

AUTOMATED CONFIGURATION OF CLOUD STORAGE
GATEWAYS

3.1 Introduction

A Cloud Storage Gateway 1 is an emerging concept in Cloud Storage Solutions; wherein

the application is installed on-premise (or in close proximity to the data) and translates

cloud storage object-store APIs such as SOAP or REST to the block I/O-based storage

protocols such as SCSI, Fibre Channel, NFS or SMB.

FIGURE 3.1: Cloud Storage Gateway Architecture.

Cloud Storage Gateway (CSG) concept was pioneered by Google [Prahlad et al. (2010)],

and subsequently offered by many leading industry vendors as a Cloud Storage solution.

As shown in Fig. 3.1, CSG appliance connects the client applications running locally to

1 Recently the industry has substituted the word ”gateway” with the word ”controller” to emphasize the
idea that their gateway products do more than just serve as a bridge

27

an object store hosted in a remote cloud data center. Although the remote storage could

be block based, it is almost universally object based due to many advantages of the cloud

model. The advantage of CSG is that while the user data resides on the cloud storage

devices, it makes the accesses appear locally going to a SCSI device.

Customers deploy CSG to expand storage capabilities of their local computing infras-

tructure. For example, a large video animation customer like Disney could work with

hundreds of graphics files of size 1GB or more, a financial company may store a large

number of fiscal records in medium size files (say 1-10MB text files). The locally running

business workloads would typically persist or retrieve a large amount of such data through

the CSG. Since a single CSG may be used by many different business applications with

different persist/retrieve patterns, a proper configuration of CSG is a very challenging

problem.

Data center operators have a huge amount of operational data collected over time that

can be exploited to understand the system configuration parameters and their influence on

the operational behavior. We keep the discussion focused by studying the configuration

challenges as pertaining to the customer side CSG system (i.e. on premise), and not the

backend data center hosted cloud object store system in Fig. 3.1. We use a commercially

available CSG available from a prominent market vendor. The main goals of our study are

as follows:

• Design experiments to collect performance and configuration data for a large number

of configurations of this CSG.

• Explore the use of suitable machine learning techniques to build models for solving

the forward problem (predicting performance for given configuration parameters),

and reverse problem (predicting certain configuration parameters based on target

performance).

• Explore how the domain knowledge can be exploited to reduce the configuration

28

space and enhance the accuracy of the predictions.

The key contribution of our work is to demonstrate that we can build robust models

for relating user settable system and hardware parameters to the performance of cloud

storage gateway and thereby debugging the configurations. Even in cases where such

automated analysis fails to provide the optimal result, it is expected to yield configurations

that are close to optimal and thus can be tuned further with far less effort and time than

the prevalent manual approaches whose success entirely depends on the experience of the

administrators. To the best of our knowledge, the prior work has predominantly considered

performance as a function of workload parameters rather than the user tunable system

parameters.

3.1.1 Motivation and Challenges

Proper configuration management of complex cyber-systems is a very challenging prob-

lem in the real-world, and yet very much under-appreciated in the research community.

Misconfigurations in large enterprises often account for up to 80% of the malfunctions

and attack vulnerabilities, and routinely consume days of engineer’s time to diagnose and

fix [Xu and Zhou (2015)]. Configuration management of data center storage systems can

be particularly complex and labor intensive task [Klimovic et al. (2018)], and CSG is no

exception. In addition, CSG configurations combine the complexities inherent in storage

system configuration, storage cache configuration, unpredictable network traffic and the

complexities of back-end cloud systems. Similar to other cyber-systems, CSG has many

configuration parameters or ”knobs” with little clarity on how to set them or what precise

impact they have on the output end.

While working with the commercial vendor of a CSG product, we noticed that the

most common problems were related to customer complaints about poor performance or

I/O time-out errors. We invariably found that on further investigation that most of these

complaints were a result of poor understanding of the workload (i.e. request streams) and

29

the configuration parameters of the CSG. The main source of difficulties in configura-

tion management are the numerous parameters with complex inter-dependencies that are

mostly unknown or poorly understood with respect to their impact on the overall perfor-

mance, availability or user experience [Yin et al. (2011)].

This prompted our research into understanding the relationship between various pa-

rameters in the Cloud Storage Gateway environment. For example, there are few uncon-

trollable variables such as eviction rate, cloud storage response, internet throughput, etc.

and some parameters under the user control such as: workload, hardware characteristics,

storage cache configuration, etc.

When the number of parameters that we wish to vary is small and known a priori, one

could study their impact on performance via direct measurement, simulation modeling or

even analytic (e.g., queuing) modeling. However, the configuration management problem

is quite different from this in that we have a large number of parameters with intricate

inter-dependencies between their settings and general lack of understanding of their rel-

ative importance from the output perspective. It is well known that the storage system

performance depends on the workload characteristics, deployed optimizations, and their

specific configuration [Klimovic et al. (2018)]. Configurations also ”are often difficult and

knowledge-intensive to develop, brittle to various environment and systems changes, and

limited in capacity to deal with non-steady-state phenomena [Tesauro et al. (2005)].”

Cloud storage gateway (CSG) is a relatively new paradigm in cloud storage solutions,

and effective methods for its configuration management is largely unexplored.

3.2 Current State of the Art

Klimovic and Costa [Costa and Ripeanu (2010); Klimovic et al. (2018)] support our com-

plexity problem involved in analysing the workload data streams and a wide choice of con-

figuration space to be explored in a cloud storage system. In designing Selecta, Klimovic

30

address the storage configuration for Data Analytics workload using TPC traces on the

block storage devices on data center side, while our work studies the object storage gate-

way configuration on the customer side using corporate workloads. Costa [Costa and

Ripeanu (2010)] state that configuring a storage system for desired deduplication perfor-

mance is extremely complex and difficult to characterize. Rao [Rao et al. (2009)] show

that a traditional control theoretic framework is inadequate to capture the complexities of

resource allocation for VMs. Ofer [Ofer et al. (2018)] use deep learning techniques in

object storage systems to recommend the best strategy for cache eviction and refreshing

data. Their study is the closest that relates to our work both in terms of application of

machine learning and working with cloud based object storage systems. While their study

applies deep learning to cache eviction/refresh techniques in object store, we explore the

configuration management of object store based CSG.

Hsu designed Inside-Out [Hsu et al. (2016)] to predict performance in a distributed

storage system. They study low-level system metrics (e.g., CPU usage, RAM usage

and network I/O) as a proxy for measuring high-level performance. Cao [Cao et al.

(2018)] evaluated few popular black box auto-tuning techniques for storage using macro-

workloads generated by Filebench. Their comparative study supports our research in that

optimal configurations depend by hardware, software, and workloads and that no one tech-

nique is superior to all others.

Almseidin [Almseidin et al. (2017)] use empirical methods to evaluate best-fit algo-

rithms for their intrusion detection system. Authors in [Esposito et al. (2016)] apply fuzzy

logic and game theory for storage service selection. They choose the optimal storage ser-

vice to satisfy the constraints of price, QoS, etc. Ularu [Ularu et al. (2013)] use decision

trees to configure an application and highlight the use of decision trees on solving a con-

figuration problem because of the wide solution space to be explored.

31

3.3 Cloud Storage Gateway (CSG)

Unlike the cloud storage services which they complement, CSGs use standard network

protocols that integrate with existing applications and can also serve as an intermedi-

ary to multiple cloud storage providers. Increasingly, CSGs also provide many sophis-

ticated services such as backup and recovery, caching, compression, encryption, storage

de-duplication and provisioning. A CSG will typically serve multiple clients using a set

of local storage devices (possibly a RAID but not necessarily) that is seen by the clients as

a local block storage. All clients assigned to this local storage share the storage, although

there might be some internal fine-grain storage allocation policies that are not revealed to

the client. Each client will be allocated space for its data, metadata, and log files. The

CSG can be viewed as two I/O layers (see Fig. 3.1): (i) front-end for local user I/O and (ii)

the back-end for cloud storage I/O operations. At a minimum, the CSG will provide the

ability of intelligently partitioning the space into data, metadata, and log files, and a suit-

able caching mechanism for each so that data transfers from the backend can be properly

handled.

A CSG should bridge the IO gap between the on-premise SCSI based disk operations

(high IO rate, low latency, almost zero errors) and the backend Cloud object storage sys-

tem (low IO rate, high latency, retry on timeouts/errors). The server capabilities, resource

allocation, and configuration of the Edge Controller becomes an important factor that de-

fines the latency/performance experienced by the users. The complexities involved in the

Cloud-based object-store workload patterns are different from the traditional local block

IO workloads. We will examine (i) these complex factors and their effect on the behavior

of CSG, (ii) performance/ latency experienced by the user workloads, and (iii) the Cloud

upload conditions (or failures). Beyond delivering user performance, Edge Controllers

have to satisfy constraints such as cost/ space/ cooling, etc. We can quickly infer the

challenges in ’right-sizing’ the server, allocation of resource(s) and satisfying the user/

32

application demands.

3.3.1 Brief Overview of Object Store

In object store, data is represented as an ”object”, which refers to a piece of data described

(and pointed to) by the appropriate metadata. The metadata resides separately in a meta-

data server (MDS). The objects are stored on ”object storage devices” (OSDs) that natively

manage the mapping of the objects to the underlying device structure such as sectors or

blocks. The metadata server together with the OSDs also implements access control to the

objects so that it is not possible to directly access an object from OSDs. Instead, a query to

the metadata server generates a capability that must be presented to the OSD for access to

the data. A single metadata server typically serves multiple OSDs. To access an object, an

application first contacts the metadata server, and then directly accesses the relevant OSD

to retrieve the data using the capability provided by the metadata server. This makes the

object store model quite scalable since accesses to multiple OSDs can proceed in parallel.

This structure is shown in Fig. 3.2[Flash Memory Submit (2018)].

An object could represent any type of entity including entire file, fragment of a file, a

contiguous set of database rows, a directory, etc. Object size is often limited, so that a very

large file may have to be split into multiple objects. Most common types of data stored

in the object store are unstructured data (but rich with metadata) such as images, audio,

and video clips. Objects are typically identified with 64 bit Object ID and grouped within

partitions with 64 bit partition ID. This gives each object a unique 128 bit namespace

[Flash Memory Submit (2018)].

Rich metadata and flexibility of objects enable the user to find data based upon regular

expressions or search in large data-sets on metadata properties. This allows users to treat

the Cloud as a large database of objects. As the size of the Cloud grows, so does the ability

to find data based on required object-properties (e.g Films created before 1980).

Metadata processing is essential to suitably access an object and small sized metadata

33

makes it easier to cache. Thus, dedicating adequate compute resources to process metadata

is crucial for good storage retrieval performance.

FIGURE 3.2: Object Storage Infrastructure

In traditional block file systems, block allocation and data transfer are very expensive.

In block IO file systems API structure forces users to make more frequent API access

(open, write, seek, close). OSDs grants (or denies) access to individual objects and fetch

(or write) the objects using high level API calls that encapsulates low level details. Hiding

more functionality in OSD APIs allow users to make less calls, thereby allow high level

API optimization to get higher data throughput and performance. High level OSD API

schematic allow for user access, authentication and object namespace control.

Because of these advantages, Object storage forms an ideal platform for data storage

on the Cloud. Every object can be accessed directly with a unique ID and direct http/REST

API, making data access faster. For these reasons, all commercial vendors of CSG devices

use Object store as a Cloud Storage platform.

34

Security and Metadata

Security and metadata management in CSG system is a complex task. File access by

a legacy application over SCSI should be translated to a OSD object operation. This

involves translating the low level SCSI APIs such as file open/close and data write, to high

level OSD APIs including metadata operations. Further, file attributes such as permissions,

directory structure, etc. have to be transferred to OSD operations like Object ID, object

path, metadata attributes. These metadata overheads involve considerable space and time,

and consume both CPU and memory resources. Faster CPU speeds can translate the file-

attribute (permission, sub-directory, name) to object metadata (ownership, object path,

Object ID) faster. Thus, size of metadata operations and allocated resource (CPU speeds,

metadata space) play an important factor in determining the user experience in an CSG

system. All Object Storage Service (OSS) operations have to consult metadata for relevant

information about the object. Caching metadata can improve performance and potentially

avoid consulting the Cloud based OSD frequently. In this sense, resource allocation for

metadata becomes an important factor in space available to pre-fetch metadata. Better user

experience and higher performance depend on both data and metadata operations. Hence,

compute (CPU) and storage (space) resource allocation to both data and metadata play an

important part in determining the performance experienced by the users of an CSG system.

3.3.2 Characterizing the Behavior of a CSG

The performance and behavior of a CSG depends on the hardware platform architecture h

(CPU, memory, storage, network, local I/O rate, etc.), workload characteristics k (incom-

ing request rate/distribution, data writes/sec, data reads/sec, metadata reads/sec, metadata

size, etc.) and application goals p. Application goal is predominately expressed as I/O

performance (MBytes per sec). Generally, the application goals are achieved by : (a)

most reads are satisfied locally (which is essential to match the higher I/O inject rate to

35

the slower back-end rate), and (b) maintain and batch writes locally so as to make the

writeback more efficient. These functions along with the management of meta-data files,

rotating log files, garbage collection etc. are normal storage system attributes that affect

the behavior of CSG. Furthermore, workload characteristics such as burstiness are also im-

portant. Workload and performance may be specified either directly in terms of resource

requirements, or in more abstract terms such as priority, latency, or resource combination

(e.g., a “small” vs. “medium” vs. “large” configuration). In any case, these are ultimately

translated to individual system parameters, either explicitly or via policies.

CSG combines the complexities inherent in a storage system, storage cache allocation2,

IO demands and the unpredictable nature of back end Cloud systems [Tanimura and Koie

(2015)]. It is often very difficult to pinpoint how a change in system configuration can

affect the overall performance of the system. Even the concept of performance itself can

be subject to scrutiny when considering the complexities of subsystem interactions and the

many ways in which performance metrics can be defined [Eckart et al. (2009)]. Similar

to other cyber-systems, CSG too has many configuration parameters or ”knobs” with little

clarity on how to set them or what precise impact they have on the output end.

It is easy to see that if the workload characteristics k, system configuration h and CSG

configuration r are not matched, the end users would likely experience undesired perfor-

mance p which is usually defined as the read and write rates supported with certain maxi-

mum latency and without any I/O timeouts. Read/write operations beyond the acceptable

range or complete rejection is considered I/O failure. As workloads change over time (i.e.

as ith workload ki deviates from initial assumed pattern ki), the initial user-defined con-

figuration ri may no longer support the demands of new workload(s) and cause undesired

end-user experiences.

A major issue in properly configuring the CSG is that the vendors invariably do not

2 In the rest of this work, cache refers to “storage data cache”, and this cache has nothing to do with
processor cache.

36

reveal most of the internal details, and instead expose a limited set of administrator con-

trollable configuration parameters to tune the system. Often, these administrator control-

lable parameters are not even the actual configuration parameters, but merely some sizing

controls or decision variables that affect multiple internal parameters. In other words, the

knobs visible to the enterprise are rather fuzzy with little knowledge of what exactly they

do. Of course, this is partly done to simplify the job of the administrator; a vendor willing

to expose all raw knobs would invariably make them unusable. Thus the phenomenon of

fuzzy knobs with little visibility is an essential characteristic of real systems and cannot be

wished away! It alone precludes simple analytic models for characterizing performance

of a component like CSG or fine-tuning it for very specific workload or hardware. With

absence of any quantifiable, well-defined correlation or closed loop representation, con-

figuration management is more an art than science.

3.3.3 Complexities in Configuration Control

Generally, as the size of the local storage (henceforth referred to as ”storage cache”) in-

creases, we expect the CSG throughput to increase because more I/O can be handled lo-

cally. The benefit is entirely dependent on how well the caching mechanism keeps and

prefetches ”hot” data. Since the overall space available for caching is shared by multi-

ple clients, there is interaction across clients. For example, giving more space for some

clients hurts others, and the net effect is very complex to predict. This caching mechanism

is hidden by the vendor and not controllable by the end-user, adding to the complexity

of the configuration control. These comments apply to both data and metadata but with

different effects. The metadata needs to be consulted for every I/O regardless of whether

the corresponding data is in the storage cache or not. Depending on the workload and the

granularity of access, metadata caching becomes more dominant than data caching. At

the same time, metadata is generally much smaller than data, and thus it is much easier

to provide generous amounts of storage for metadata. We explore the storage cache vs.

37

metadata size in our research through varied workload and configurations studies. The log

size should have no influence on performance except that writebacks of the log would take

up some backend I/O bandwidth. This initial description paves the way for understanding

the complexity of configuring the CSG system.

Incorrect configurations could result in significant competition between the following

three activities:

1. Eviction of modified pages requiring writeback to the backend object storage which

is likely to experience high latency, limited I/O bandwidth due to network issues, and

perhaps a significant write amplification due to the need to write the entire object.

2. Cache misses from client requests thereby requiring reading of backend object stor-

age, which experiences similar issues as writebacks (e.g., significant read amplifica-

tion and latency due to transfer of entire objects, for which the CSG need to make

adequate room).

3. Local read/writes performed by the clients which are expected to be much more

frequent and expect a low latency.

Note that the cache eviction is not complete until the write confirmation is received

from the cloud storage, and the data must be kept in the storage cache until then. Conse-

quently, a more aggressive eviction would only result in fewer entries in the storage cache

to handle new data requests that must be fetched from the cloud. The CSG may also need

to retry the entire object operation if unsuccessful. In addition to the whole object trans-

fers on the backend, the transfer normally uses HTTP which adds considerable overhead.

The varying size of the object could interfere with the SLA guaranteed to the user about

upload/inject rates. We quantify SLAs based on local SCSI update traffic generated by

the client, and any SLA violation is seen by the client as I/O timeout or errors. Note that

increasing the storage cache size does not solve the writeback problem; in fact, it could

38

even make it worse.

3.4 Configuration Problem Formulation

The CSG system in Fig. 3.1 serves as a ’storage cache’ to buffer the incoming user request

and match it with the cloud storage uploads (or downloads). User requests come over a

SCSI bus at a high arrival rate λin (high throughput, high bandwidth, low latency) and the

backend cloud storage presents a low eviction rate system λc (high latency / low bandwidth

/ higher error retries). Resource allocation for the storage cache needs to match the kn

incoming request streams and the service rates. We model CSG Controller of Fig. 3.1 as a

queuing system. The incoming request stream k can be represented as:

k “ f1par, rs, rmq (3.1)

where: k the request stream is a function of: ar the request arrival rate, rs the size of the

request, and rm the metadata size. These request streams are characterized by the real

world customer workloads as given in Table 3.2. Each of these requests consumes hard-

ware and storage cache resource for servicing. Note in Fig. 3.1 that all n request streams

share the same resource of CSG controller. There is no known functional relationship to

analyze the queue behavior, and the controller has no user controllable factors to allocate

resources per request stream. The relationship between the input stream, requested re-

source, queue and the storage cache is unknown. This leads us to conclude that there is no

clear optimization or queuing technique that can model the serviceability of the incoming

streams. For example, if the cache size is small and the eviction rate to backend cloud stor-

age is high, then the system should be able to handle high requests. The converse means

the requests will be dropped.

To add to this complex analysis, the CSG runs on a hardware platform characterized

by core speed, number of cores, memory capacity, disk I/O capacity and network I/O

throughput. Here, network I/O throughput represents the measurable I/O throughput to

39

upload an object from the client system to the cloud storage. The hardware characteristics

of the CSG platform is represented as:

h “ f2pcs, nc,me,mbw, di, thq (3.2)

where h the hardware characteristics is a function of: cs core speed, nc number of cores,

me memory capacity, mbw memory bandwidth, di disk I/O rate and th I/O throughput

measured between the on-premise CSG and cloud object store. For example, one disk

partition dj on three independent disks has a better I/O rate compared to three individual

partitions on one SCSI disk. Similarly a network card capacity of 10 Gbps would have

better eviction rate than a network card capacity of 1 Gbps. Another evident characteristic

is the performance boost from using a SSD versus a HDD disk. Again modeling the

complex interactions between these different limited parameters and their relative effect

on the CSG storage cache performance is unknown.

The disk cache is split into three distinct partitions: data storage buffer db, metadata

md and log space ls. (Section 3.3.3 & Fig. 3.1). These are bound by the total resource

disk space available dsmax, such that:

dsmax ě db`md` ls (3.3)

Each of these parameters db,md, ls coupled with the request stream k influences the be-

havior of the system as explained earlier.

Finally, if the configuration r of the CSG is optimized on a given hardware h, the input

stream/ workload k will experience a performance or service rate of p. We denote this

performance as:
p “ f3ph, k, rq (3.4)

denoting that the performance (or service rate) p depends on hardware characteristics h,

service rate (or workload) k and CSG configuration r. Note that Eq. 3.1, Eq. 3.2 and

Eq. 3.4 is a multidimensional vector. Changing any one of the above parameters will

affect the performance output p.

40

3.4.1 Research Questions

We define our research problem using a specific example relating to configuration chal-

lenge faced by a system administrator. Suggest a CSG configuration that satisfies the

required performance p (10MBps), given a specific hardware architecture h (2 x 1.2GBps

cores, 64GB RAM, 1GBps NIC card, 0.25GBps network speed) and a workload w (5

concurrent users, 10 files, avg 5GB size, upload time: 24hrs). In general, we define the

following:

1. P “ tp1, p2, ¨ ¨ ¨ pnu: performance constraints for each of the n applications, pre-

dominantly defined by expected I/O rate, e.g.: 100MBps min for both I/O write and

reads.

2. K “ tk1, k2, ¨ ¨ ¨ knu: workload characteristics for each of the n applications. We

used real-world workload patterns observed from end customers of a commercial

industry vendor (See Table 3.2), predominantly defined by average file size, number

of files, users, sub-directory hierarchy etc.

3. H “ th1, h2, ¨ ¨ ¨hmu: m hardware characteristics, i.e. the machines running the

CSG application, e.g.: core speeds, memory, local storage disk characteristics, net-

work I/O bandwidth, etc.

4. R “ tr1, r2, ¨ ¨ ¨ rlu: l cloud gateway configurations each specified in terms of system

configurations e.g.: 100GB storage cache, 25GB log space, 50GB metadata space,

10 concurrent threads etc.

We can now ask two key questions:

Q.1 What should be the storage cache configuration to satisfy the ’k’ request streams.

Q.2 What is the recommended configuration that satisfies the user required “perfor-

mance” for given workload (i.e. give the right allocation of resources: nc, cs,mc,mbw, ¨ ¨ ¨)

41

for a given tk, pu.

We are interested in a mechanism that draws a relationship between the workload char-

acteristics K, system architecture H , configuration R, performance P and can answer the

following.

1. Verify Configuration - given the system architecture, workload characteristics, and

CSG configuration, determine if the performance constraints are met with a high

probability.
rHnew, Knew, Rnews ñ Pnew is satisfied (3.5)

In most cases, only a few parameters are new; however, because of the dependencies

and nonlinear interactions, it may or may not be possible to exploit the unchanged

parameters. This represents Q.2 of our discussion.

2. Configure - given the system architecture, workload characteristics, application goals

and performance constraint, propose a configuration Rnew that satisfies all the con-

straints. That is, given Hnew, Knew, and Pnew find Rnew.

rHnew, Knew, Pnews ñ Rnew (3.6)

This problem is the reverse of the first problem and is substantially harder. As in the

last problem, only a few parameters may be new but it may or may not be possible

to exploit the unchanged parameters.

3. Predict - Based on a time series of performance data for a given configuration, with

changing workload, predict if the current configuration is likely to fail.

rHold, RoldsandrKi, Pis, i “ 1, 2, ...nñ Failure (3.7)

3.5 Solution Approach

As stated earlier, the complexity of the relationships between the user settable CSG pa-

rameters and the performance precludes a modeling or simulation based characterization.

42

Therefore, we turn to machine learning based methods to learn various relationships along

with our domain knowledge into the functioning of the CSG. Machine learning (ML) is, of

course, no panacea; it often requires a significant amount of training data and the learned

model may be ”over-fitted”, and thus may be unable to accurately predict behavior when

the inputs (workload or configuration parameter values) are sufficiently different from

those for the training data. We will address this aspect carefully in our analysis.

3.5.1 Feature Vector

The feature vector used to support our research is built from the above equations Eq.(3.1,

3.2, and 3.3) and represented as below. We have included throughput (a.k.a performance in

bytes/sec) in the feature vector. As explained earlier in section 3.4, our work defines QoS

and SLA in terms of latency. Any latency exceeding the limit is experienced as I/O time-

out. We do not explicitly include latency in the feature vector since a configuration that

leads to time-outs will be rejected right away and is not relevant for performance analysis.

We discuss some tests that violated SLA and unacceptable latency in Section 3.6.3; these

were attributed to wrong configuration choice for specific workload constraints. Learning

configurations that cause time-outs (and thereby avoid them) is a reasonable goal, but much

harder and beyond the scope of this work. Therefore, all our tests used in the analysis are

for valid SLA conditions.

ar request arrival rate rs size of the request
rm request metadata size cs core speed
nc number of cores me memory capacity
mbw memory bus bandwidth di disk I/O rate
th network I/O throughput db data buffer
md metadata ls log size
p system performance (measured as throughput)

Table 3.1: Subset of Feature Vector Supporting the Problem.

There are many parameters relevant to CSG operation that could potentially affect the

performance; however, it is neither possible, nor practical to consider them all. There is

43

no escape from applying the domain knowledge to consider only those parameters that are

likely to be controllable or relevant. One such example is the ubiquitous use of NFS for

users to mount the remote storage device (but still within the local data center boundaries).

NFS has many mount options (rsize, wsize, etc.) that can be chosen for individual mounts.

However, these parameters are invariably set at default values and unlikely to be changed.

Similarly, although the storage interconnect speeds (PCI bus speed, SATA/SAS interface

speed, etc.) are potentially important, their selection happens at a much more basic level

(i.e., when deploying the storage device/system) rather than for performance optimization.

Therefore, consideration of these aspects is beyond the scope of this work. We will present

the effect of choosing the right design variables (a.k.a feature set) on the accuracy of

performance prediction in results section.

3.5.2 Research Hypothesis

We use statistical machine learning, classification, and optimization mechanism to learn

these relationships. Our prediction model is expressed as a function of the above feature

vector. Let ~x “ tx1, x2, . . . xku denote the vector configuration parameter values. Let

φp~xq denote the hypothesized functional relationship to be learned and γp~xq is the true

observed output for given values of the input ~x.

We now have the basics to answer our research question Q.1 and Q.2 by using the

above features and to accurately design our hypothesis φpxq and output γ.

For a given workload, a service rate ki, a set of constraints on hardware hi and CSG

configuration ri, we predict the maximum performance pi by the following hypothesis (i

represents ith variation).

Hypothesis:

φpar, rs, rm, cs, nc,mc,mbw, di, db,mdq

Output: γpq “ p (3.8)

Similarly, rearranging the features, and re-writing the hypothesis, we predict the re-

44

quired configuration h, r required to achieve a given performance p for a given workload

(service rate) k.

Hypothesis:

φpcs, nc,mc,mbw, di, db,mdq

Output: γpq “ par, rs, rm, pq (3.9)

3.5.3 Classification Problem

In Eq.3.8, we compute a single parameter p (performance) for a given set of constraints,

and in Eq.3.9, we compute multiple parameters nc, cs,mc,mbw, db, ¨ ¨ ¨ (cores, core speed,

memory, ¨ ¨ ¨). Eq.3.8 is called single label classification [Sorower (2010)]. Comput-

ing a single label/parameter is relatively easier than computing multiple inter-related la-

bels/parameters. For our end results, we predict performance, storage cache size etc. as

multiple classes (e.g. performance = {class 1, class 2, . . .} or storage cache size = { class

1, class 2, . . . }). We will quantify this during our discussion on workload design and

results in Section [3.6.2 & 3.8].

3.6 Implementation Details

We implemented the algorithms in Python using scikit-learn [Pedregosa et al. (2011)] li-

brary for Machine Learning components such as Principal Component Analysis (PCA),

Classifiers, ML metrics (e.g. accuracy, precision etc.), Feature Importance etc. For ma-

chine learning metrics, PCA, feature importance, etc. we refer readers to available mate-

rials (see Almseidin et al. [Almseidin et al. (2017)]).

3.6.1 Test Environment

Our test environment (Fig. 3.3) is comprised of (i) Dell PowerEdge R320 with 4 cores @

1.8GHz, 16GiB memory, 3 ATA Disks- each of 500GB and one 1GB Ethernet interface

(ii) Dell PowerEdge R730xd with 8 cores @ 2.1GHz, 32GiB memory, one SCSI disk of

45

5495GB and one 1GB Ethernet interface. Both servers have Ubuntu 14.04 with required

tools and connected to local network. We used different hardware configurations to study

the influence of cores, core speeds, disk, and memory configurations. On each of these

servers, we partitioned the disk for several storage cache configurations. The server is

connected to the HDD volumes on a remote cloud object store service, as NFS mounts.

We used C++ and Python scripting tools for executing the workload and collecting metrics.

FIGURE 3.3: Cloud Storage Gateway - Test Environment.

Once the test scripts were ready, the evaluation setup for each experiment involved

partitioning the disks for various configurations, allocate storage cache/ metadata size (see

Table 3.4), connecting the newly configured server to data center object store and running

the workloads and of course collecting the metrics.

3.6.2 Workload Execution

In absence of publicly available CSG data patterns or workload streams or trace dumps,

we used a set of vendor provided workload patterns (shown in Table 3.2), that are reflective

of real-world CSG user population. Meta-data shown in the table refer to attributes that

influence both the meta-data operations and the performance. These are shown in the

meta-data column as ownership (O), sub-directory depth (F=Flat,D=Deep), and object-

permission (P). These workloads are equivalent to studies from Yi [Yi et al. (2015)], Varma

[Varma (2008)], and YCSB [Cooper et al. (2010)]. Since CSG is responsible for buffering

and uploading the data generated locally by edge applications, the workload characteristics

are dominated by write requests of varying size (given in Table 3.2). The workload in

46

Request
Id

Object Operations,
(# users, objects, object size)

Meta-
Data

Sample Applications.
[Varma (2008); Yi et al. (2015)]

W1 25 x 10,000 x 4 KB (none) Health Monitors
W2 25 x 10,000 x 4 KB O,D,F,P Health Monitors
W3 25 x 10,000 x 256 KB (none) MRI/ CT Scans/ Traffic Images
W4 25 x 10,000 x 256 KB O,D,F,P MRI/ CT Scans/ Traffic Images
W5 5 x 10,000 x 1 MB (none) DICOM Visible Light
W6 5 x 10,000 x 1 MB O,D,F,P DICOM Visible Light
W7 5 x 1,000 x 10 MB (none) Mammography/ Street View(1 min.)
W8 5 x 1,000 x 10 MB O,D,F,P Mammography/ Street View(1 min.)
W9 2 x 200 x 1 GB (none) Pathology
W10 2 x 200 x 1 GB O,D,F,P Pathology

Table 3.2: Sample Workload Type and Applications.

the table represents daily activities in the environment being monitored (e.g., a hospital,

road traffic, manufacturing plant, etc.) which often have daily, weekly, and even seasonal

patterns. The system design would generally be based on the traffic on a typical but busy

day, and that’s what we consider as our representative workload. It is certainly possible to

occasionally encounter workloads that are substantially different in nature from the norm,

and the performance or configuration prediction for those could deviate significantly from

reality.

For example, workload patterns for a smart-health monitoring system is character-

ized as “W1” defined by image size of 4KB, about 10,000 images/24 hrs, with associated

meta-data on date, ownership, location etc. Another workload pattern for health-care (e.g.

Pathology) is characterized as “W5” with image size 1GB, about 200 images/24hrs, with

meta-data about patient ID, hospital ID, etc.

3.6.3 Metrics Collected

We executed workloads on different servers and various configurations, and collected met-

rics on execution time, meta-data time (e.g. to create sub-directories, open and close files

etc.), throughput in bit/sec. Alongside the workloads we captured the configuration in-

formation about the server (e.g. cores, core speed, memory, disk capacity etc.) and CSG

47

Raw Data Set
(% of total)

Train Data
(67% of total)

Test Data
(33% of total)

Prediction Ac-
curacy

247 (25%) 160 87 88.9%
594 (50%) 321 174 93.1%
792 (75%) 514 278 94.2%
991 (100%) 664 347 95.4%

Table 3.3: Test Termination Condition based on Data Volume and Accuracy.

cache configurations (i.e. storage cache area, meta-data, log size). We captured the avail-

able network throughput independent of the CSG, using a special RESTAPI tool set. We

attempted a few workloads that would result in I/O timeouts to study the boundary condi-

tions. Since the performance or throughput metrics at boundary conditions were meaning-

less (i.e. zero throughput or IO timeouts), we discounted these metrics from our labeled

data-set. We ran all the workloads on both servers for different combination of storage

cache/metadata size configurations. The different instances were tested both for the ho-

mogeneous case (all workloads identical) and the heterogeneous case (workloads with

different file sizes and read/write ratios). To collect a wide range of samples (test-data),

we ran over 100 combinations of workload and configurations, executed about 990 of test

cases, i.e., approximately 9 to 10 different configurations per workload type. During the

course of our experiments and data collection, we persisted over 8 million objects and

populated over 5.5TB of cloud object store.

A sample of the data collected is shown in Fig. 3.4, with horizontal axis showing

various server types and workload executed, and the vertical axis showing the performance

classification of various observed throughput metric (across these tests). We terminated the

test after getting satisfying prediction accuracy based on the volume of data collected (see

Table 3.3).

3.6.4 Data pre-processing and Classification

For each experiment, we created the ’sample’ using workload, configuration, compute

servers characteristics, observed performance into the feature vectors as {2 cores, 1.2 GHz

48

FIGURE 3.4: Sample of Data Collected.
Design Variables No. of

Classes
Example of Buckets or Enumeration

Core Speed (GHz) 5 1.2, 1.8, 2.4 ¨ ¨ ¨
Memory Capacity (GB) 5 16, 32, 64 ¨ ¨ ¨
Storage data cache size
(GB)

7 25, 50, 100, 200, 500, 1000, ą 1000

Metadata size (GB) 5 25, 50, 100, 200 & 500
Observed Performance 10 Uniform distribution

(100Kbps to 350Mbps)

Table 3.4: Sample Classification of Design Variables.

speed, 16GB RAM, 100GB cache, 50GB metadata, 347Mbps network I/O, 108Mbps per-

formance etc.}. We classified the discrete numbers into buckets to give us meaningful

insight into the behavior of the gateway servers and configuration. For observed metrics,

a discrete throughput data of 488175 bits/s and 21392622 bits/s was classified into bucket

sets as throughput class 1 or throughput class 4. Similarly a configuration of storage

cache or meta-data size of 450GB and 200GB was classified as class 5, 4 and so on. Via

such discretization, we classified the data into buckets as shown in Table 3.4. In terms of

machine learning, this bucketization means that the regression problem is transformed into

a classification problem..

49

3.7 Predicting Performance of a Configuration

There are well proven algorithms in the field of machine learning and their applicability

is specific to the data characteristics and domain [Sorower (2010)]. Further, the efficiency

and accuracy metrics of the algorithms depend on both the problem domain and asso-

ciated parameters like learning rate, regularization parameter, etc. We explored a wide

range of ML algorithms to find the best fit for our problem domain. We found that De-

cision Trees fitted the relationship between the performance and configuration parameters

with higher accuracy. Using statistical machine learning methods, Decision Trees tries to

infer a split of the training data based on the values of the available features to produce

a good generalization. The algorithm can handle both binary or multi-class classification

problems. The leaf nodes can refer to either of the K classes concerned. It is basically an

approximation function working on a multi-dimensional Cartesian space using piece-wise

continuous functions. Decision trees have been used in other storage metrics predictions

such as [Wang et al. (2004)] where authors exploit the trees for response time prediction

of a single disk across different workload parameters.

3.8 Evaluation Results

We present the evaluation results individually for research question about predicting per-

formance (Q.1). We will present the solution design and results on research questions Q.2

in chapter 4.

3.8.1 Influence of Chosen Feature Sets on Performance

As stated earlier, including the configuration parameters (or feature set) without a proper

consideration of their relevance not only makes the model more complex but also inter-

feres with the accuracy of the model. We demonstrate this in the following by study-

ing the performance p as a function of configuration parameters (k, h, r). Fig. 3.5(a)

50

shows the prediction accuracy results for various choice of attributes. In Fig. 3.5(a),

Feature Set 3 includes high level attributes {k, h, r} (Eq.3.4) and Feature Set 4 includes

additional attribute by expanding the resource {k, h, ds,md}. Performance prediction

accuracy using these two limited feature-set is about 93%. Feature Set 10 comprise

of {cs, nc,mc, bw, di, ar, rs,ms, ds,md}, this results in a higher prediction accuracy of

97%. We verified the results by expanding the feature set with additional attributes.

A blind inclusion of more attributes is labelled as Feature Set 13, which includes ad-

ditional attributes of network bandwidth (nw) and logfile size (ls). These additional at-

tributes add undesired noise in the data and results in poorer predication accuracy (down

to 91%). Based on our extensive experience and domain knowldge with Edge Storage,

we know that this noise is the result of adding unpredictable network bandwidth (nw) and

logfile size (ls), both of which do not contribute to the CSG performance. These results

reinforce our earlier comments regarding the selection parameters in Eq. 3.2 and Eq. 3.1.

There is no auto-solution for improving efficiency of ML algorithms, as they depend on

the application domain, careful selection of attributes (feature set), and hyper-parameters

like regularization parameters, learning rate, etc [Sorower (2010)]. Therefore, we tried

several types of models and ultimately settled on Decision Tree (DT) for Q.1, as it consis-

tently performed the best (see Fig.3.5(b)). Building a performance prediction model for

Q.1 based on Decision Trees yielded an accuracy around 97% for various test-train data

combinations (k-fold validation, k=5). An extensive analysis of the model ensured that it

does not suffer from under-fit or over-fit.

3.8.2 Confusion Matrix

Another measure for validating our solution efficiency is the confusion matrix. The con-

fusion matrix is a visual representation of statistical accuracy and error of the algorithm.

The confusion matrix from one of the test executions in our k-fold validation is shown in

Fig.3.6. It gives the metrics with normalized numbers (true positive, false positive, false

51

(a) Perf. prediction accuracy w.r.t feature set. (b) Perf. prediction accuracy w.r.t ML predictors.

FIGURE 3.5: Accuracy of Various Predictions

negative etc.) for each performance class. While reading the confusion matrix, the diag-

onal element cij for i=j should be closer to 1, indicating true values of label (y-axis) i

closely match predicted values (x-axis). Incorrect predictions for label classpiq is shown

in cells cij , for i ‰ j. The figure shows at high accuracy rate in many performance classes,

and some mis-classifications are shown for i ‰ j. Naturally, getting a better efficiency on

prediction requires more samples/training data set.

FIGURE 3.6: Sample Confusion Matrix (performance prediction)

52

3.8.3 Boundaries of Performance Prediction

Prediction accuracy in ML models is largely limited by the diversity of the sample data.

ML models are better in finding the answers through interpolation than extrapolation. That

is, ML accuracy suffers when the prediction questions are outside the boundaries of the

data that the model is trained on. Hence, it is necessary to attach a “certainty factor” along-

side the predicted results. Data metrics collected during the experiments are influenced by

the hidden factors inside the OSD devices of a data center (box D in Fig. 3.1). One such

example is disk rebuilding stress in the storage racks, wherein the RAID based disks have

to be reconstructed due to corruption or multiple disk failures. The delays caused by fail-

ures and recovery (e.g., rebuilding RAIDs) can impact the performance of the backend

OSD systems adversely [Sondur and Gross (2020)] and add to additional IO latency. This

will eventually show up as an abnormally low upload performance metric in the CSG. The

anomaly caused by such incidents (though rare) has to be filtered and excluded from the

data-set and prediction model.

The range of data (workload, server, configuration etc.) considered in our experiments

are large and diverse as shown in Fig 3.4. It covers a large range of data-set commonly

observed in an Edge scenario. Abnormality on the edge side caused by anomalies (given

above) are not under user control and care should be taken to filter these extreme points.

We believe that the prediction applies to normal operations, not to perturbations by unex-

pected/abnormal IO events.

3.8.4 Comparing on Prediction Accuracy

As stated earlier, we are not aware of other public studies on characterizing the relationship

between configuration parameters and performance of CSG or other systems, and thus a

direct comparison against prior results is not possible directly. However, we compare our

results against results from similar techniques used in a different storage context (e.g.,

53

performance vs. workload parameters). In particular, the study by Wang [Wang et al.

(2004)] using their CART-based models show a relative error between 17% and 38% for

response time prediction. Using Inside-Out [Hsu et al. (2016)], Hsu reports a performance

prediction error around 9%.

3.9 Conclusion

In this chapter, we present a methodology for the configuration and performance prediction

of cloud storage gateway (CSG), which is an emerging system of crucial importance in

providing scalable access to remote storage. Because of the large number of configuration

parameters and inter-dependencies among them, modeling the influence of configuration

parameters on the performance is a challenging problem. We show that machine learning

techniques suitably aided by the use of domain knowledge can provide robust models

which can be used for predicting performance from the configuration parameters.

We show that the performance prediction Decision Tree model with the right choice of

design variables can provide performance prediction accuracies in the range of 5% with-

out requiring large amounts of data. One future extension is to update the configuration

incrementally based on the performance data using control theoretic means. Commer-

cial vendors may provide similar gateway solution using a VM-image hosted at their data

center. In future work, we will focus on designing of the algorithms and extrapolation

studies to recommend a near-optimal configuration for user given workload and perfor-

mance. Lessons learned from this research can be expanded to the auto-tuning of the

hosted gateway solution and back end cloud based object store configurations.

54

CHAPTER 4

EFFICIENT CONFIGURATION OF COMPLEX
CYBER-SYSTEMS

4.1 Introduction

The behavior of all cyber-systems in a data center or an enterprise system largely depends

on their configuration which describe the resource allocation to achieve the desired goal

under given constraints. The ill-effects of misconfiguration (or poor resource allocation)

has been widely articulated as unavailability [Newman (2017)], financial burden [Elliot

(2017)], security breach [Chirgwin (2017)], etc. However, configuration settings cannot

be classified as simply “correct” or “incorrect”; instead, the overall behavior of a device

and that of the entire system depends on their setting and interactions between them. In

particular, the interactions between various parameter settings and their nonlinear and of-

ten nonmonotonic impact on performance rules out simple approaches, such as setting up a

convex optimization problem with explicit objective function and constraints, and solving

using traditional techniques such as hill climbing. Instead, we exploit machine learning

and meta-heuristics that exploits the domain knowledge concerning the problem at hand

to determine good configuration settings that satisfy the given objectives. It is also worth

noting here that while traditional optimization methods provide a single solution to the

55

problem, multiple solutions are often necessary in practice so that the administrator can

choose from them based on considerations that are difficult to formalize.

While the methods explored in this chapter are general and can be applied to almost any

configuration problem, the domain knowledge is necessarily problem specific and is often

crucial in obtaining sensible solutions. Therefore, we ground the analysis in this chapter by

considering the problem of configuring a local storage system backed up by a large remote

storage system. The prime example of this is a Cloud Storage Gateway (CSG) [Prahlad

et al. (2012)] that couples an amount of locally available storage in a data center with a

large but remote Cloud storage to create the impression of essentially unlimited storage.

Doing so requires a proper setting of many configuration parameters of the local system

as discussed later. Similar situations arise in many other storage contexts such as Network

Attached Storage (NAS), Containers (VM image, Dockers), Cloudlets [Satyanarayanan

(2017)], Data Storage Service for Edge and Fog [Monga et al. (2019)], etc. In particular,

an Edge storage has to contend with many constraints (e.g., space, power, cooling, etc.) in

addition to the strict QoS requirements, and thus forms an ideal context for studying the

configuration of Cloud backed local storage.

We used a commercial CSG product for conducting our experiments and collecting

the data for our configuration study. The details of the experimental data collection and its

analysis are presented in chapter 3 [Sondur and Kant (2019)]. This work showed that while

it is possible to build an accurate statistical machine learning model (SML) for the prob-

lem of predicting performance for a given configuration (hereafter referred as the ”forward

problem”), it is very difficult to achieve acceptable accuracy from such a model for predict-

ing configuration for a given performance/cost level (hereafter referred as the ”backward

problem”). Furthermore, any such model will realistically apply to the configuration of

only a small set of parameters. Thus the approach that we explore in this chapter is to

use the forward model as an oracle that is intended to be used sparingly along with meta-

heuristics to determine multiple ”good” configurations. Our observational study [Sondur

56

et al. (2019)] from the experiments gave us insight to apply relevant domain knowledge to

solve the “backward problem.” The meta-heuristics is guided by the domain knowledge

so that it does not make entirely random choices and thus can converge substantially faster

and yield better results than an unguided meta-heuristics.

In chapter 3, we showed that predicting performance of a complex cyber-system such

as a CSG is a challenging task because of complex interaction of a large number of param-

eters. However, it is possible to use machine learning techniques along with the domain

knowledge to learn these relationships well enough to generate accurate performance pre-

dictions for given configuration settings. Unfortunately, the backwards problem of recom-

mending suitable configuration for given performance or cost targets remains unsolved,

since the typical machine learning techniques are unable to achieve good accuracy and in

any case a direct machine learning model would be specific to a particular combination of

configuration parameters. This chapter presents an efficient methodology to address the

configuration question using an Edge storage system as an example. To the best of our

knowledge, prior-art has addressed issues relating to resource provisioning and resource

management, while we address the configuration problem as finding (or recommending)

the required compute plus storage resource to satisfy a given condition (workload, per-

formance, size, energy, etc.). We also exploit the domain knowledge into meta-heuristics

algorithm to reduce the (configuration) search space and converge at the required solution.

In designing an approach to find a suitable configuration for a cyber-system, CyberCon,

we use problem specific domain knowledge to enhance stochastic processes in order to

converge at a solution (i.e. configuration state). In CyberCon, we explore both Genetic

Algorithm (GA) and Simulated Annealing (SA) based meta-heuristics, and find that SA

is generally substantially faster than GA, and can be improved further by using specific

annealing functions.

The results from our modified Genetic Algorithm (mGA) and modified Simulated An-

nealing (mSA) algorithms show that they reach the maximum fitness (i.e. required con-

57

figuration) about 22 to 30% faster than the generic versions of the algorithm, henceforth

denoted as gGA (Generic Genetic Algorithm) and gSA (Generic Simulated Annealing)

respectively.

4.2 State of Current Art

In a recent survey, Zhang [Zhang and Xu (2020)] categories various techniques in resource

management in Cloud and Edge computing as latency optimization, shorter task comple-

tion time, container placement, data replication, and Edge caching strategies. Wang [Wang

et al. (2017)] presents a survey on the impact of Edge caching capacity, delay, and energy

efficiency on system performance in a mobile Edge servers. Meta-heuristics based work

has been proposed to solve Cloud resource provisioning problems by allocating applica-

tions among the virtual machines to satisfy user QoS [Kumar et al. (2020)]. In CHOPPER

[Gill et al. (2018)], authors present a resource scheduling and provisioning scheme based

on QoS metrics (execution time, execution cost, energy consumption, and waiting time).

Task offloading, workload scheduling, application placement, and migration schemes used

in Cloud/ Edge Computing largely pertain to network and computational resource alloca-

tion. This flexibility is not available for ESIs as they have to fulfill the workload request

“locally and immediately”. Our work focuses on choosing a set of configuration parame-

ters that satisfy user workload/performance demands under given constraints.

Klimovic and Costa [Klimovic et al. (2018); Costa and Ripeanu (2010)] confirm our

observations regarding the difficulty of proper configuration in Cloud storage systems. In

designing Selecta, Klimovic address the storage configuration for data analytics workload

using TPC traces on block storage devices inside data centers, while our work studies the

Object-store based ESI configuration on the Edge side using vendor provided workloads.

Costa [Costa and Ripeanu (2010)] state that configuring a storage system for desired dedu-

plication performance is extremely complex and difficult to characterize. Rao [Rao et al.

58

(2009)] show that a traditional control theoretic framework is inadequate to capture the

complexities of resource allocation for VMs. Ofer [Ofer et al. (2018)] study comes close

to our work, but their study applies deep learning to object cache eviction/refresh tech-

niques in Object-store, rather than setting configuration parameters.

For the prediction of performance vs. workload parameters of a storage system, Wang

[Wang et al. (2004)] used a Classification Regression Trees (CART)-based model and

showed a relative error between 17% and 38% for response time prediction. Hsu designed

Inside-Out [Hsu et al. (2016)] to predict performance in a distributed storage system by

studying low-level system metrics (e.g., CPU usage, RAM usage and network I/O) as a

proxy for measuring high-level performance. Compared to Inside-Out performance pre-

diction accuracy of 91%, our pSML model achieves an accuracy above 95%. Cao [Cao

et al. (2018)] evaluated few popular black box auto-tuning techniques for storage using

Filebench. Both Hsu and Cao comparative study also shows that optimal configurations

depend on hardware, software, and workloads and that no one technique is superior to

all others. Ularu [Ularu et al. (2013)] use Decision Trees to configure an application and

highlight the use of Decision Trees for solving the configuration problem because of the

wide solution space to be explored.

In ElfStore, Monga [Monga et al. (2019)] study a resilient Storage service for Edge/Fog

computing using similar workload with IO Block size (1 to 10MB) and show the impor-

tance of meta-data operations. Their metadata operations have latency around 120ms, and

data operations have read/write latency of 1.4 to 6.5sec. Their work does not advance

into finding a suitable configuration or resource allocation for satisfying a QoS. Cachier

[Drolia et al. (2017)] is a caching model designed to minimize latency between the Edge

and the Cloud. Cachier finds that an increase in the storage cache size need not lower

the latency, but in fact it increases latency after a certain threshold. They show that stor-

age cache size is an effective “tuning” knob used to minimize the latency of requests in

image recognition applications (both supporting our work). Their research does not in-

59

clude configuring the Edge resources needed for such work. Similar to our work, authors

in [Satyanarayanan (2017)] show that managing dispersed Cloudlet infrastructure is very

challenging because of the many unknowns pertaining to the software mechanisms and

controls. The survey by Sitton [Sittón-Candanedo et al. (2019)] shows that the need for

real time response and very low latency in the Edge is challenged by constraints such as

limited storage, interconnected protocols, network latency, high power consumption, etc.

4.3 Configuration Management of Edge Storage (ESI)

Given the importance of exploiting the domain knowledge in addressing the configuration

management problem, it is important to understand some architectural details of the cloud

storage gateway (CSG) that we experimented with and analyzed extensively for this work

in the context of edge computing (henceforth, referred as Edge Storage).

4.3.1 Overview of Edge Storage Infrastructure

Edge Storage Infrastructure (ESI) shown in Fig. 4.1. It provides a local storage buffer to

bridge the gap between the high throughput demands of the latency sensitive edge appli-

cations and the low/unpredictable network connectivity to the Cloud. ESI connects the

edge-applications to an Object-store on the Cloud because of the inherent advantages for

Object-store in the Cloud model. Edge client applications operate using small blocks of

data (of 4KB or 16KB size) at SCSI speeds, shown as (A) in Fig. 4.1. On the Cloud side,

marked as (D), ESI has to interface with Cloud Object-store over an unpredictable network

(C) (low throughput, high latency) with varied object sizes that are largely dependent on

the applications. In addition, ESI should address reliable communication such as IO block

acknowledgements or retry an error-ed IO block on the SCSI side and acknowledge or re-

fetching the entire object on the Cloud side. To address this imbalance, ESI has to satisfy

key requirements such as (i) protocol translation from/to SCSI to/from http/REST based

services, (ii) map 4KB/16KB block IO requests to Object-store APIs for objects of varied

60

FIGURE 4.1: Workflow/ Data Path in Edge Storage Infrastructure.

size (or vis-versa), (iii) satisfy high throughput/low latency edge-client request over a low

throughput/high latency connection to the Object-store Cloud service, (iv) manage stor-

age overheads like security, meta-data management, reliability, rotating log file, garbage

collection, etc.

4.3.2 Data Flow in an ESI

For a read operation, depending on the state of local storage data cache, ESI can either ser-

vice the data locally or fetch the data from the Cloud Storage. ESI can achieve high read

performance by pre-fetching data and associated metadata, but at the cost of occupying

storage data-cache space. A write request from the edge application has to be persisted

successfully to the Cloud Storage, first by persisting it locally on the storage data cache,

and then transferring it successfully over to the Cloud. Both such read and write opera-

tions to the Cloud are limited by the amount of cache space (data cache plus meta-data

area) and the unpredictable network bandwidth, and overhead operations such as garbage

collection, cache-eviction, meta-data operations, etc. However, the edge clients are trans-

parent to these internal-details and view the ESI as a virtual extension of the Cloud. This

virtualization is shown as the “logical data path” in Fig. 4.1.

61

4.3.3 Importance of Meta-Data

Although the Cloud storage could be block based, it is almost universally object based due

to many advantages of Object Storage in the Cloud model [Gracia-Tinedo et al. (2017)].

In an Object-store system, every object is associated with corresponding metadata that is

maintained by a metadata server. When an object is initially requested by ESI, this meta-

data also must be brought in from the Cloud. It is generally desirable to keep the metadata

longer than the data so that if the object is evicted and then re-requested, the ESI can

avoid small IOs associated with metadata accesses. However, a proper balance must be

maintained between the space allocated to the data and metadata for optimal performance.

Thus, both the workload access pattern and metadata management determine the perfor-

mance experienced by the user. As part of our study in ESI configuration recommendation

and resource allocation, we will explore the space allocated for data cache and metadata

cache.

4.3.4 Configuration Modeling for ESI

ESI performance is defined as the throughput experienced by the edge-clients, and is gen-

erally expressed as MB/s [Oracle (2010)]. ESI architecture involves the complexities in-

herent in storage systems, storage data cache allocation, satisfying IO demands, and un-

predictable network bandwidth [Tanimura and Koie (2015)]. Mathematical modeling of

the behavior of an ESI is difficult because of the complex inter-dependencies between the

numerous parameters and the poor understanding of these relationship and their impact on

the overall performance.

ESI consumes computational resources for protocol translation, client authentication

and capability based storage access management, meta-data operations, workload inter-

faces (block IO, Object-store APIs), etc. Thus, platform parameters such as core speed,

number of cores, memory size, and memory bandwidth all become crucial. Satisfying

62

Attribute No. of
Classes

Example of Buckets or
Enumeration

Core Speed (GHz) 5 1.2, 1.8, 2.4 ¨ ¨ ¨
Memory Capacity (GB) 5 16, 32, 64 ¨ ¨ ¨
Storage data cache size (GB) 7 25, 50, 100, 200, 500,

1000, ą 1000

Metadata size (GB) 5 25, 50, 100, 200 & 500
Observed Performance 10 Uniform distribution

(100Kbps,350Mbps)

Table 4.1: Sample Classification of Design Variables.

latency sensitive edge-client IO request needs data buffering, intelligent cache operations,

etc. that demand cache resources (both storage and memory). The limited storage re-

source in an ESI has to be efficiently partitioned for storage data-cache, meta-data, and

other operational overheads (e.g. swap space, log files). Unpredictable network connec-

tivity to the back-end Cloud raises additional challenges in cache eviction, refresh vs.

prefetch, efficient bundling of object requests, exploiting workload patterns, etc. The

inter-dependencies and complex behavior of these parameters (e.g. CPU, memory, stor-

age cache-space, etc.) make accurate and tractable analytic modeling of performance very

difficult.

The throughput (p) experienced by the edge-clients depends largely on the workload

(k), ESI hardware (h) and the resources (r) allocated to the compute and storage layers of

ESI. An improper choice of these parameters will result in a poor experience by the end

user such as IO timeouts (rejected requests) or poor throughput (low performance) or large

unacceptable latency. To address the difficulty in the detailed analytic characterization

of the above parameters, we formulate the above parameters as a classification problem.

Although, in theory, most parameters can take a large range of values, practical limitations,

and sensitivity considerations usually confine the feasible values to a small set of discrete

values. Table 4.1 provides an illustrative example in this regard.

Let nc denote the number of cores, cs the core speed, mc the memory size, bw the

memory bandwidth, and di the disk IO rate. Also denote ar as the request arrival rate, rs

63

the request size, and ms the metadata size. We then propose the following functions to

represent the classification of hardware h and workload k:

h “ f1pnc, cs,mc, bw, diq (4.1)

k “ f2par, rs,msq (4.2)

Note that in postulating these functions, we have included only a subset of the parameters

that could potentially be relevant. This again is based on domain knowledge, since simply

throwing in arbitrary platform parameters may actually dilute the model and lead to worse

results, as presented in section 3.8.1. In particular, we did not include in h other architec-

tural details such as size/speed of L1, L2, L3 caches, since practically the choice would be

limited to certain models of hardware platform from a given vendor. Also, while some pa-

rameters (e.g., the DRAM speed) could be selectable (with in an appropriate range), their

level of influence does not warrant their consideration. This aspect necessarily involves

the use of domain knowledge. Simply throwing in as many parameters into the model as

possible can be self-defeating both in terms of data requirements for training the model

and in diluting the model with weak dependencies that are difficult to characterize.

In addition to the hardware and workload characteristics, the performance achieved by

a workload class also depends on the storage resources allocated to it. In particular, the

total space r allocated to a workload class is simply the summation of storage data-cache

size db, meta-data size md, and log size ls. (Obviously, r should be less than the total

space available). Since the log size ls does not play a significant role in performance, we

will ignore it here.

We can now express throughput p in terms of workload class w, ESI hardware class h

and resource allocation class r as:

p “ f3ph, k, rq (4.3)

Research Questions: The forward and backward problems introduced earlier could

now be concretely defined as follows:

64

FIGURE 4.2: Design of Algorithms.

RQ.1 Predict the performance p under given workload k, hardware h and resource alloca-

tion r.

RQ.2 Recommend an optimal configuration Ψ, i.e. hardware h and resource allocation r

to satisfy the given workload k & performance p and user defined constraints.

4.4 Solution Design

The complex relationship between various user settable parameters (compute capacity,

storage resource etc.) and vendor provided latent parameters (cache eviction rate, data re-

placement logic, meta-data operations, etc.) makes analytic models intractable. Therefore,

we used machine learning techniques to learn the various relationships that influence the

outcome (performance). We provide detailed analysis for RQ.1 and the proposed solution

in the chapter 3. The performance prediction model in section 3.7 is used as an oracle

to solve the configuration question in RQ.2. We explain the solution design using the

illustration in Fig. 4.2. Given a set of design variables, the oracle can predict the perfor-

mance based on the machine learning model explained in section 3.7. The oracle is trained

on the empirical data collected from various experiments. Additional domain knowledge

through Principal Component Analysis (PCA) and cost function is provided as support-

ing functions to the algorithms. We explain the two stochastic processes, the methods to

generate design variables, and embedding the domain knowledge approach below. The

hyper-parameters of the algorithms are explained in section 4.5.2.

65

FIGURE 4.3: Illustration of Research Questions.

Predicting a satisfying configuration parameters for RQ.2, based on user workload

and target performance is difficult since it involves determining a large set of complex

inter-dependent variables that satisfy the given condition. Research question RQ.2 can be

explained using the Fig. 4.3, and raising a question on “which combination of machine h

and resource r would give satisfy the user criteria p, given the workload k?”.

Besides, there could be more than one solution that satisfy the required condition.

That is, there could be various combinations of hardware (CPU, memory, etc) and resource

(storage data-cache size, meta-data size) that satisfy the user given workload/ performance

under given constraints (e.g. minimum heat dissipation, size).

Our solution (i.e selected configurations state Ψ) should satisfy the user given condition

(i.e. performance puser) at a minimum cost possible. We define a constraint function as:

p ě puser (4.4)

where p is the expected performance from configuration Ψ. The objective to find such a

configuration Ψ at a minimum cost.

minpcostpΨqq (4.5)

The objective can be expressed as the deployment cost, power consumption, cooling re-

quirements, etc. The cost function is represented as the normalized cost of a configuration

Ψ based on the design variables. For example, kth configuration Ψk for some choice of

hardware hi and resource rj , is represented as Ψk “ tcsi, nci, bwi, ¨ ¨ ¨ dbj,mdj, ..u and

has a cost costpΨkq. Data for cost function can be derived from vendor specification for

66

hardware server and allocated resources (disk capacity). We approached the above ques-

tion RQ.1 and RQ.2 in two phases: (i) a statistical machine learning (p-SML) model to

predict the behavior (e.g. performance) of the system, and (ii) a stochastic process guided

by the domain knowledge to recommend a suitable configuration that satisfies given goals

and constraints for user given workload/performance.

4.4.1 Modified Genetic Algorithm (mGA)

For brevity, we refer readers to available literature on GA [Ferentinos et al. (2002); Kerr

and Mullen (2019); Rashid et al. (2013)] and highlight our modified Genetic Algorithm ap-

proach. The generic pseudocode [Rashid et al. (2013)] for GA is presented in Algorithm 1.

The principles of GA is based on evolutionary biology with the goal of optimizing a user

given fitness function. The GA allows a population of inputs (line 1) to evolve over time

(line 3) to maximize this fitness function (line 4). Stop condition is represented as number

of epochs or iterations. The fitness corresponds to how well an individual performs; i.e.

inputs with the highest fitness are desired. GA uses a fitness function to choose the best

candidates to generate the next breed of population. The best candidates generate the next

generation of children by random mutation and cross-over. Each element, or gene, of ev-

ery chromosome is mutated with a probability defined by the mutation rate (line 5). The

design variables in Eq.4.1 and Eq.4.2 form the genes in the chromosome in GA. Efficiency

of the algorithm can be perceived in multiple ways, for example as the quality of the output

chromosomes (defined by the fitness function) or how fast the optimal solution is obtained

(defined by number of epochs to reach the solution).

Our modified Genetic Algorithm (mGA) aims at narrowing down the large search

space and output multiple satisfying solutions which can then be filtered for the user de-

fined objective. GA algorithm defines the design variables (Eq.4.1 & Eq.4.2) as a pop-

ulation, that is evaluated for fitness and then undergo random cross-over and mutated to

derive at a new state. Each population is represented by a chromosome that maps to a

67

Algorithm 1: Generic pseudocode of a Genetic Algorithm [Rashid et al. (2013)]
1 initialize the population;
2 evaluate population;
3 while (!stopCondition) do
4 select the best-fit individuals for reproduction;
5 breed new individuals through crossover and mutation operations (*);
6 evaluate the individual fitness of new individuals;
7 replace least-fit population with new individuals;

design state, (i.e. a set of design variables). Our solution uses the performance prediction

model from RQ.1 as the fitness function to determine if the current state (i.e. chromo-

some) satisfies the user required performance (Eq.4.4). p-SML performance prediction

oracle is consulted to predict the performance of each chromosome (configuration state or

design variable).

Adding Domain Knowledge to mGA: To achieve higher efficiency, a good solution

would result in a smaller number of calls to such an oracle. Instead of default random

mutation in GA (at line 5), our approach aims to intelligently mutate the chromosome

population to jump to the new state in a controlled manner. We used additional insight from

principal component analysis (PCA) objects derived from the p-SML model to control the

gene mutation probability (marked as (*) in line 5 in Algorithm 1). We explain the metrics

from PCA objects, probability factors, selection of principle design variables based on

features importance in evaluation section 4.5.4. Our mGA solution with an “informed“

approach can converge to the required configuration Ψ at least 22% faster than the baseline

GA.

4.4.2 Modified Simulated Annealing (mSA)

SA can be used to approximate the global minimum for a function with many variables.

We defer to available literature for detailed discussions on SA [Ben-Ameur (2004); Ingber

(1989); Zhao et al. (1996)]. The pseudocode [Ferentinos et al. (2002)] for SA as given

in Algorithm 2. In SA, a state refers to a set of design variables and a neighboring state

68

refers to a set of values “relatively” closer to current design variables. In SA, energy

is represented as the cost function that has to be minimized [Ben-Ameur (2004)]. An

acceptable “state” is a solution to the problem that is being solved.

Algorithm 2: Pseudocode for Simulated Annealing [Ferentinos et al. (2002)]
1 initialize(temperature T, random starting point);
2 while (coolIteration ď maxIterations) do
3 coolIteration = coolIteration + 1;
4 select a new point from the neighborhood (*) ;
5 compute currentCost(at this point);
6 δ = currentCost - previousCost;
7 if δ ď 0 then
8 accept neighbor;
9 else

10 accept with probability exp(-δ/T) ;
11 T = β * T (*) ;

The SA method has been widely used since the cost function can be easy to put into

practice [Ferentinos et al. (2002)]. Similar to GA, our SA algorithm uses design variables

from Eq.4.1 and Eq.4.2 to represent the state. The entropy of the system is defined as the

cost of the current state (i.e cost of the configuration costpΨq). The SA steps in Algo-

rithm 2 can be summarized as: (i) we first start with an initial annealing temperature (T0)

and a random design state (line 1), (ii) we search for the next state depending on annealing

temperature Tk and a random distribution (line 4), (iii) we compute the difference in en-

tropy (δ) between the current state and past state (line 5,6), and probabilistically accepting

the current state depending on Boltzmann probability factor (line 7¨ ¨ ¨ 10). The annealing

scheme is defined as the temperature gradient (line 11). The algorithm stops after reaching

a cooling temperature (line 2).

Our solution is based on very fast simulated annealing (VFSA) presented by Xu [Xu

et al. (2018)], that enhances both the annealing temperature (line 11) and the perturbation

model (line 4). Zhao [Zhao et al. (1996)], Ingber [Ingber (1989)], Lee [Lee (2015)] and

others have discussed VFSA in detail and show the advantages over standard SA. To speed

69

Group Design Attribute Pairs
Group G1 Number of Cores, Memory capacity
Group G2 Core speed, Memory bandwidth
Independently varied Storage Data Cache, Disk IO rate

Table 4.2: Grouping Design Variables

up the convergence rate of SA, VFSA uses Cauchy distribution function [Lee (2015); Zhao

et al. (1996)] as the perturbation. This perturbation model is able to realize a narrower

search as the iterative solution approaches an optimum solution, which accelerates the

convergence speed [Xu et al. (2018)]. Our modifications to SA is shown as (*) at line 4 &

line 10 in Algorithm 2. We discuss the supporting functions of SA & mSA in Table 4.3

using the following notations: k is the current iteration, n is the number of design variables,

T0 is the initial annealing temperature, α is the damping coefficient (0 ă α ă 1), µ is a

uniform random variable between 0 and 1, pBj ´ Ajq is the range of jth design variable

(0 ď j ď n´1q, Ψi is the configuration (design variables) at ith state, ci is the configuration

cost at ith state, pi is the predicted performance of configuration Ψi at ith state, and puser

is user given performance.

mSA uses the same annealing scheme and Cauchy distribution perturbation model

from SA (Table. 4.3, entity Tk & ζ). For acceptance probability ρ, mSA makes a slight

modification to accommodate the case where the next solution has the same performance

but lower cost. If the acceptance probability for the current state is 1, a new random state is

chosen (to avoid getting stuck in local minima) else a state in the neighborhood is chosen.

Adding Domain Knowledge to mSA: We incorporate domain knowledge in the algo-

rithm by dividing the design variables into groups based on their level of interdependen-

cies. That is, the design variables within a group show strong interdependence and thus

should be set collectively, where the settings across groups can be done independently. In

theory, such grouping can be done purely using clustering techniques, but this would re-

quire a large amount of data and may still result in some unexpected groups. However, by

applying the domain knowledge, the grouping can be either done entirely manually, or by

70

coercing the clustering algorithm to prefer certain groupings over others. For example, in

the context of a computer system, it is well understood that a faster CPU should be paired

with a faster DRAM, else the CPU will simply stall waiting for the memory. A faster

disk is also important, but much less so, since the IOs involve a context switch whereas a

memory access does not. Similarly, more CPU cores doing independent work will likely

need more memory, and for workloads involving remote IO, both network and IO speeds

must increase in tandem. Grouping of configuration variables based on insights avoids

exploration of states that are unlikely to useful and thus is expected to both speed up the

convergence and lead to better solutions within a given number of iterations.

Note that the entropy in a given state si is calculated as the cost of the configuration

in state si, i.e cost(Ψi). In the generic SA algorithm, acceptance of a solution is defined

by Boltzmann probability factor (line 7¨ ¨ ¨ 9), and represented as a (negative) exponential

function of the entropy change δ. Since the negative exponential function tends to zero

very rapidly as the entropy increases, it explores only a very small neighborhood in the

vicinity of the current solution. We thus choose a function with a longer tail, and found that

the square function works quite well, i.e., better than cubic or linear function (Table. 4.3,

entity δ). The evaluation results from the changes to the entities in generic SA and mSA

is discussed in Fig. 4.6 and Fig. 4.7.

4.5 Evaluation Results

4.5.1 Implementation Details

Details of the experiments is given in the previous chapter (section 3.6). We implemented

the algorithms in Python using scikit-learn [Pedregosa et al. (2011)] library for Machine

Learning components such as Principal Component Analysis, Classifiers, ML metrics

(e.g. accuracy, precision, etc.), Feature Importance etc. For stochastic algorithms, we

used NSGA-II [Deb et al. (2002)] Genetic Algorithm from Platypus library [D (2019)].

71

Entity Generic SA Modified SA (mSA)
Annealing temp Tk T0 ˚ expp´αp1´ kq

1{nq

Entropy change δ exppci ´ ci´1q pci ´ ci´1q
2

Acceptance Prob. ρ
1, if pi ě puser
´pδq
Tk

,otherwise

1, if pi ě puser &
ci ď cprev

´δ
Tk
,otherwise

Perturbation Model
ζj

Tkpµ´ 0.5q
”´

1` 1
Tk

¯|2µ´1|
´ 1

ı

pBj ´Ajq

Select neighbor
(state si`1)

#

random new statepq, if ρ “ 1

ζj , otherwise

Design Variables Individually varied Varied as a group
Valuation Results Fig 4.6 Fig 4.7

Table 4.3: Very Fast Simulated Annealing Functions

NSGA-II algorithm (discussed by Deb et al. in [Deb et al. (2002)]) gives the flexibility

to define fitness function, define objectives and constraints, variable bounds, chromosome

construction, crossover and mutation, solution-set, etc. Simulated Annealing with sup-

porting functions for neighborhood search, annealing scheme, Cauchy distribution, etc.

was implemented in Python.

4.5.2 Hyper-parameters of the Stochastic Process

In a stochastic process like GA or SA, there is no way of knowing a priori which hyper-

parameters will secure an optimal solution search [Kerr and Mullen (2019)]. For example,

hyper-parameters like the size of the initial population, size of fit candidates, mutation

probability, etc. describe a GA, and initial annealing temperature T0, and damping coeffi-

cient α describe a SA process. For GA & mGA, we set the initial population of 110 with

the tournament selector to choose the top 8 “fit candidates” for next generation mutation.

For SA & mSA, our initial annealing temperature T0 is set at 500 and damping coefficient

α at 0.23. To enable meaningful comparison of different algorithms, we choose to count

the number of calls to performance prediction oracle, and as explained earlier a good so-

lution would result in a smaller number of calls to such an oracle. The count of calls to the

oracle by different algorithms is shown as normalized iterations (y-axis) in the results.

72

In this section, we discuss experimental results for both the forward and backward pre-

diction problems discussed earlier. For the latter, we present the two independent results

based on the two domain knowledge enhanced meta-heuristics processes. mGA and mSA

are compared with their respective baseline algorithms, i.e generic GA and standard SA.

Results for Simulated Annealing in section 4.5.5 are further divided based on enhance-

ments shown in Table 4.3. In the results diagrams below, we present a subset (of 10 results)

from the different test cases executed. Finally, we discuss the execution times observed

from these experiments in section 4.5.7.

4.5.3 Extracting Feature Importance

FIGURE 4.4: PCA and Feature Importance.

Principal Component Analysis (PCA) is a dimensionality reduction technique that

projects the data from its original p-dimensional space to a smaller k-dimensional sub-

space. PCA maximizes the variance accounted by the first k components and thereby

attempts to include those components that have the most influence on the output. The

k-dimensional subspace considered by PCA involves components that are linear combina-

tions of the original variables; therefore, we still need to identify the most relevant original

variables. In PCA terminology, the contribution of each variable to each principal com-

73

ponent is described by Loadings [Legendre and Legendre (2012)], which can be easily

extracted. Large loadings (positive or negative) indicate that a particular variable has a

strong relationship with a particular principal component. The sign of a loading indicates

whether a variable and a principal component are positively or negatively correlated.

Feature ablation is a technique for calculating feature importance (FI) that works for

all machine learning models. A feature with a high importance has a greater impact on

the target variable. We compared both FI from the DT model and PCA & Loadings from

the PCA objects to gain confidence in ranking the predominant attributes that contribute

to ESI performance. The scree plot of PCA and FI for our data-set is given in Fig. 4.4.

In the figure, the left sub-graph shows PCA values for different orthogonal components

(C1¨ ¨ ¨C6) on x-axis, and the right sub-graph shows FI values for the design variables (on

x-axis). Based on the above metrics, PCA & FI provided a reasonable metric to understand

the variance of a parameter and its relative contribution towards the performance. Instead

of randomly mutating the set of genes to generate a new population set (i.e. new configu-

ration state), we focused on a deterministic way to control the cross-over and the mutation

process. We used the above metric from PCA and FI to probabilistically mutate the genes

in the modified (PCA+GA) mGA approach and generate a ’controlled’ new state. The

results of our mGA solution is given below.

Next, we discuss the solution for the backward problem (BP), relate to finding the near-

optimal configuration Ψ that satisfies a given workload/performance criteria (Eq. 4.4) at

minimal possible cost (Eq. 4.5). We compare the functions against baseline and validate

how quickly an algorithm converges at such a required configuration state.

4.5.4 Recommending a Configuration using mGA

The design variables (CPU, memory, IO bandwidth, etc.) plus the workload properties (file

size, meta-data, no. of files, etc.) forms the chromosome in the gene pool that represents

a population. Note that during mutation, we do not vary the workload variables (ar,rs,rm)

74

as these are user given properties for predicting the required configuration. The fitness

function (FF) defined by the Decision Tree from section 3.8.1 selects a sub-set of the pop-

ulation (design variables) that satisfy the user defined performance. To ensure efficiency,

this performance predicting oracle has to be consulted sparingly for rapid convergence.

In gGA, the design variables (i.e. gene pool) are randomly mutated to get to a new

state (i.e. new population set). The population set is continuously evaluated for fitness

and the best fit population is selected as a suitable solution (i.e. population with predicted

performance equal to user defined performance). An uncontrolled mutation may result in

design variables being randomly selected from a wide range and this may result in finding

a suitable solution after a considerable time (measured as the number of calls to oracle).

Our goal is to enhance the gGA algorithm to intelligently mutate the gene pool such that

the desired solution (i.e. fitness function) is reached faster (i.e. less number of iterations).

(a) Algorithm Convergence (Iterations and Cost) (b) Difference in Iterations

FIGURE 4.5: gGA and mGA (PCA+Grouping) Test Results (Iterations and Cost)

We extracted additional data from ML objects, PCA model, and feature importance

(FI) as explained in section 4.5.3. A high FI metric relates to a high relevance of the vari-

able towards the output. For example, Fig 4.4 shows that data-cache value of 0.506 has

the highest relevance to the final ESI performance. We used this data relevance to proba-

bilistically mutate different genes. Using data from Fig. 4.4, gene representing data-cache

undergo mutation with 0.506 probability, and the gene representing core speed undergo

mutation with 0.108 probability and so on. This disciplined mutation allows the mGA

75

process to move to a new state (i.e new population set) in a controlled fashion. Design

variables with lesser influence tend to settle down quickly and the influencing variable

(data cache, memory bandwidth) span ’within a limited’ range searching for a satisfying

solution (i.e. user desired performance). This intelligent control of gene-mutation results

in reaching the solution-set faster (i.e less number of iterations).

Genetic algorithms results in a ’multiple solution-sets’ that satisfy the fitness function,

which can be further refined or filtered for desired results. In our approach, the solution set

should satisfy the user given constraints (Eq.4.4), normally at a minimum cost (Eq.4.5).

In our implementation, we keep track of the number of iterations required to “find” a

satisfying configuration such a minimal cost. The algorithm “records” the number of

calls to the oracle needed to obtain the most satisfying configuration state (chromosome

in solution set) at a “minimum” possible cost and time. Fig. 4.5(a) shows the normalized

values of such convergence (iterations) for both mGA and gGA algorithms for various test

cases (T1¨ ¨ ¨T10) along with the cost function for the solution (Ψ). This figure show a sub-

set of 10 test cases (x-axis) from large number test cases we executed. For example, test

case T1 is a query to suggest an optimal configuration for: Workload W5, class: Medium

with small meta-data, Perf class:1 (i.e. Large Workload: 10,000 files of 1 MB size, 5 users,

Required Perf.: 150MBps). The mGA based approach converges to a solution after 225

iterations with a solution: 2 cores x 3.2GHz, 16 GB Mem, 3.2GB Mem bus, DiskIO = 10K

IOPS, Normalized Cost = 0.4875. The same query to a gGA takes about 333 iterations to

find a minimum cost solution. The test cases T1...T10 in the Fig. 4.5(a) refers to the first

ten dots in Fig. 4.5(b), each dot representing a test case pair (difference between generic

GA vs modified GA).

The test scenarios are sequential test cases starting with workload W5 to W10, with

perf class P1 to P10. Let ”i” represent ’any’ random dot (test case) and ”i+1” refers to the

adjacent dot (test case) in the figure. For example, test case Ti refers to workload W6 perf

class P2, next test case Ti`1 is for the same workload W6 and next perf class P3., and so

76

on till we reach last test case Tn for workload W10, perf class P10. There will be some

test cases with ’no solution found’ referring that no configuration satisfies a desired perf.

class Pj for workload kl, e.g It is not possible to achieve a perf class P7 for workload W6.

Fig. 4.5(a) shows the test cases executed on the x-axis and the normalized number of

iterations and costs on the y-axis. (The normalization is wrt 500, which is the maximum

number of iterations.) The lines for the costs refer to the minimal cost of solution (Eq.4.5)

obtained by both mGA and gGA. As seen in Fig. 4.5(a), with a controlled gene mutation

in mGA algorithm, the design variables find the satisfying fitness function (performance)

faster at the same minimum cost in less number of iterations. The cost of the configuration

from mGA algorithm matches the minimal cost obtained in the gGA algorithm.

Fig. 4.5(b) shows a more comprehensive comparison between gGA and mGA. The

metric on y-axis is [#iterations(gGA) - #iterations(mGA)]/500, and the x-axis is simply

the 400 cases that were run with different parameters. Note that the dots above the x-axis

(positive values) show that mGA performs better than gGA, whereas negative values show

the opposite. It is clear that mGA outpaces gGA in almost 90% of the cases. Please note

that because of the inherent randomness in the state space search in GA and SA, there

is no expectation that any technique will perform better all the time. Furthermore, in the

cases where mGA performs better than gGA, it takes 22% fewer iterations than gGA on

the average.

4.5.5 Recommending a Configuration using mSA

Similar to GA, the design variables (CPU, memory, IO bandwidth, etc.) and the workload

(file size, meta-data, etc.) formed the “state” of the system in SA. Obviously, the workload

variables (ar,rs,rm) are not changed. Initially, we start with a random design variables to

represent a configuration state Ψ, and consult the DT from section 3.8.1 to verify if the

current configuration state satisfies the user defined performance (Eq. 4.4), and the cost of

configuration state is computed.

77

In our mSA approach, we have two variations of choosing the design variables either

by domain based grouping or individual perturbation (Table. 4.2) and two variations of an-

nealing functions (Table. 4.3). We use gSA as a baseline, and present the effect of grouping

design variables in Fig. 4.6. We used the same test cases T1¨ ¨ ¨T10 shown in GA above,

and similarly the y-axis represents the normalized iterations (calls to oracle) required to

reach the minimum cost satisfying configuration (Ψ). Fig. 4.6(a) shows that a solution with

grouping design variables discovers the satisfying configuration faster than a standard ap-

proach. The minimal cost of the discovered configuration validates that grouping design

variable algorithm (in most cases) matches (or better) the minimal cost compared to gGA

(without design variable grouping). In Fig. 4.6(b), we show more comprehensive results,

with each dot referring a test case with different parameter. The figure clearly shows that

mSA with grouping outperforms the gSA in about 90% of the test cases. Each dot on the

positive side refers to the case where the mSA algorithm reaches the solution faster than

gSA.

(a) Generic SA Convergence (b) Difference in Iterations (Generic SA)

FIGURE 4.6: Comparing gSA Test Results (Iterations and Cost) with/without Design Attr.
Grouping

We now focus on mSA algorithm with modifications as explained in section 4.4.2.

While the baseline gSA computes the delta entropy δ based on exponential function, mSA

algorithm computes the same entropy as a quadratic function. Again, mSA is compared

based on two criteria, (i) with individual perturbation of each design variable, and (ii) per-

turbation of design variables as groups (Table.4.2). The evaluation results of mSA is shown

78

in Fig. 4.7 for same test cases T1¨ ¨ ¨T10 and y-axis shows iterations as a normalized met-

ric. In each of these test cases, mSA with grouping of the design variables performs better

compared to non-grouping, and reaches the desired configuration faster (see Fig. 4.7(a)),

and simultaneously matching or outperforming the minimal cost function.

Similar to GA and SA cases, we summarize the results from several other tests in

Fig. 4.7(a), with each dot representing a test case on the x-axis and the normalized dif-

ference in #iterations on the y-axis. As seen from the figure, mSA outperforms gSA in

90% of the cases. For test cases where mSA performs better than gSA, it takes 32% fewer

iterations than gSA on the average, i.e. on an average, mSA reaches the required solution

about 32% faster than gSA.

(a) Modified SA Convergence (b) Difference in #Iterations (mSA)

FIGURE 4.7: Comparing mSA Test Results (Iterations and Cost) with/without Design
Attr. Grouping

4.5.6 Pareto “like” Boundary

Our interest in this work is to satisfy a user constraint on given performance, rather than

trying to solve for two objectives (i.e. a maximum performance and minimal cost). A de-

sign is considered Pareto optimal [Chinchuluun and Pardalos (2007)] if there does not exist

any other design which improves the value of any of its objective criteria without deterio-

rating at least one other criterion. Using similar concept, we present a Pareto “like” bound-

ary to show that the end results satisfy constraints (Eq. 4.4) and the objective (Eq. 4.5).

79

(a) SA Pareto-like Boundary (b) Execution Time

FIGURE 4.8: Pareto-like Boundary and Execution Times

Pareto “like” boundary from one of our test cases is shown in Fig. 4.8(a), with per-

formance class on the x-axis and cost on the y-axis. Each point in the graph refers to a

configuration point from the mSA algorithm. Our optimal point is shown as “x” in the

figure, with A,B,C,D showing other possible solution “areas”. Any point towards A would

refer to the required performance (or higher), but at higher costs - hence not a desired

solution. Any points towards C or D is undesired since it refers to lesser than desired

performance. If the algorithm found any points in B (other than x), it would be desirable

since it refers to both satisfying performance and lesser costs. However, a rightful solution

like mSA would find the most optimal solution at point x, and no points in B area.

4.5.7 Comparing execution time

We executed all the algorithms for several test cases and captured the execution time. All

metrics were captured under identical conditions, i.e. the tests running on the same server

with minimal overhead from unwanted OS processes. The average execution time per test

case is shown in Fig. 4.8(b). The data shows that mSA is about 10% faster than SA, and

mGA is considerably slow. Similar findings is reported by Keer [Kerr and Mullen (2019)]

and Ferentinos [Ferentinos et al. (2002)], who found that for each iteration of genetic

algorithm is considerably more expensive than simulated annealing.

80

4.6 Conclusion

In this chapter, we present CyberCon, an efficient goal oriented methodology to rec-

ommend an optimal configuration for a complex cyber-system. Though our proposal is

generic enough to be applicable for other domains, we demonstrate our technique using an

ESI, which is of crucial importance in efficiently supporting Edge services in the highly

resource constrained environment. Assessing the impact of various parameters on an Edge

computing system is very complex because of the unknown influence of the parameters or

their complex inter-dependencies. We proposed a meta-heuristics based approach aided

by domain knowledge (in this case Genetic Algorithm and Simulated Annealing) and ma-

chine learning techniques (Decision Tree). We have shown that the proposed approach can

robustly identify suitable values of configuration parameters that satisfy the target perfor-

mance and deployment constraints. In designing our CyberCon methodology, we embed

problem specific domain knowledge to quickly reduce the search space. Such an approach

can intelligently jump to a new design state by exploiting the domain knowledge regard-

ing the behavior of performance as a function of various parameters (e.g., monotonicity or

unimodal behavior). The results show that the approach yields results closer to the optimal

value about 22 to 30% faster than the standard uninformed algorithms.

81

CHAPTER 5

A CONFIGURATION HEALTH SCORING SYSTEM AND
ITS APPLICATION TO NETWORK DEVICES

5.1 Introduction

It is well recognized that inconsistent changes to configuration parameters and IT produc-

tion environments are the predominant causes of system outages or performance problems

[Barroso et al. (2013); Yin et al. (2011)]. Past studies have indicated that up to 80% of

down-times of mission-critical applications are caused by mistakes, miscommunications

or misunderstanding related to configuration changes [Connolly (2014)] and up to 85% of

performance incidents can be traced to such changes [Cappelli (2015)].

An inappropriate setting of the configuration parameters of a module not only affects

that module but also others as well because of the complex dependencies. Furthermore,

configuration parameters usually cannot be classified into simple “correct” or “incorrect”

categories; instead, the overall behavior of a module and that of the entire system depends

on their setting and interactions with settings of other parameters. It is clear that with a

large number of components and increasingly complex computing infrastructures, assess-

ing the health of the system becomes extremely difficult. Thus the focus of this chapter is

to see how a health index for a system can be defined and related to the configuration pa-

82

rameters. Although much of our discussion is generic, we will primarily focus on network

devices and evaluate our approach using data from some commercial routers.

5.2 Current State of Art and Challenges

As stated earlier, CVSS concept is closest to our HI proposal. CVSS attempts to assign

severity scores to security vulnerabilities, which allows the security experts to prioritize

development and application of suitable security patches and workarounds. Human inter-

vention is a critical part of CVSS process since CVSS relies on human assigned scores or

weights to express the severity of the problem. A domain expert examines the discovered

problem and assigns weights for different CVSS parameters. Overtime, CVSS results in a

large repository of vulnerabilities scored appropriately to aid end users in identifying and

fixing vulnerable components. CVSS repository can be further used to refine the accu-

racy of the scores, classify vulnerabilities and predict exploits and situational awareness

[Bozorgi et al. (2010); Edkrantz and Said (2015)].

Many scholarly articles [Yin et al. (2011); Xu and Zhou (2015)] address novel methods

in localizing, trouble-shooting and detecting configuration problems. There is also rich

literature on misconfiguration detection [Herodotou and et.al (2014)]. Most of the related

works address configuration problems after any ill-effect are detected. Metrics like CVSS

[Ross et al. (2017)] measure the security vulnerability of the device or system, but do

not address the configuration itself. Cao [Cao et al. (2017)] has empirically expressed the

vastness of the configuration space to be explored, using NFS configuration as an example.

The network device configurations exhibit similar complexity.

Benson [Benson et al. (2009)] only concerns routing. It assigns a complexity score

to a configuration file based on the number of lines in the file and a description of the

functionality based on interviews of administrators. Our approach attempts to automate

the process by a more fine-grain consideration of the impact or importance of the config-

83

uration. Their work on router configuration ’complexity’ is the closest to our work, and

the authors present a ’qualitative’ metric that is limited to analysing the routing and ac-

cess rules of network devices. Similar to CHeSS, they use human inputs to evaluate the

metric based the contents of a static configuration file. Their work captures the difficulty

of adding new functionality such as interfaces, updating existing functionality etc. Our

work computes the HI attributes for web-services, network devices, applications, storage

clusters, etc. Benson’s work is specific to routing and does not address the configuration

issue in general.

Ontology related work has been used to translate multi-vendor configurations into a

common format. With a restricted goal, Ngoupé [Ngoupé et al. (2015)] used ontologies

to design a generic model to express the configuration of a Cisco router. Ontologies have

been used [Martinez et al. (2015)] to extract the semantics of a device configurations.

Wong [Wong et al. (2005)] attempted to express Cisco and Nokia configurations with an

ontological mapping. These ontology related works highlight our concern and the need to

translate multi-vendor configurations into a common canonical format.

Recently, OpenConfig [OpenConfig working group (2016)], a forum supported by

many networking industry vendors, has come up with a set of vendor-neutral data mod-

els for configuration of parameters that are supported natively on networking platforms.

OpenConfig uses YANG, a Data Modeling Language for the Network Configuration Pro-

tocol (NETCONF), defined in RFC 6020. Though each vendor is likely to have their own

device models for the parameters, and they support OpenConfig model by providing an

appropriate function to translate the device specific configuration model to neutral Open-

Config data model and vice-versa. For CHeSS, OpenConfig provides a readily available

solution and a well-accepted canonical data model for representing network device con-

figurations. An industry forum like OpenConfig lays the foundation for other domains

to represent a vendor neutral configuration model, although currently there is no effort to

extend it to other entities.

84

There is no existing metric or methodology to elicit Health Index (HI) in the field of

computer networking. Often, the relationship between two or more interrelated configu-

rations needs to be explored. One restriction is the limitation of the manufacturer’s docu-

mentation spelling out every combination and the effects therein. Most of this knowledge

is human intensive, and varies widely with human skill and experience levels.

Network Management Systems (NMS) [Cisco Systems, Inc (2019)] housed in Network

Operation Centers (NOC) are used for configuring and monitoring the nodes in a managed

network. However, they focus on tracking the operational state of the network nodes

following the occurrence of network events rather than quantify the health of configuration

parameters. Our approach focuses on apriori analysis of the configuration and provides a

framework to compute the HI of a device configuration.

5.3 Formulating a Configuration Health Index

Configurations are generally represented as a name-value tuple [p,v] with dependencies

across parameters (and hence their values), but the dependencies are rarely expressed ex-

plicitly. These dependencies may be implied by the naming convention or semantics of

the parameter, or explained in documents intended for administrators or subject matter

experts, and very difficult to deduce automatically. In this chapter, we introduce a novel

concept called CHeSS: a ”Configuration Health Scoring System” that discovers, measures

and quantifies the Health Index of a device. CHeSS can quantify the health of the device

configuration (usually specified through a configuration file) to aid the administrators, en-

gineers or decision makers (collectively referred to as users) to understand the strength

or weakness of the configuration and take necessary actions. The goal of our research is

to define a framework to quantify the ”health-index” of a device based on the configured

values of various parameters. With additional work, HI can be extended to relate to the

ground truth and build capabilities to flag potential execution-time anomalies.

85

CHeSS was inspired by the well-known Common Vulnerability Scoring System or

CVSS [Forum of Incident Response and Security Teams (2017)], which is a free and

open industry standard for assessing the severity of security vulnerabilities. CHeSS takes

a fundamentally different approach than CVSS, and is not merely a multi-dimensional

extension of the CVSS concept. The key difference is that, at its root, CHeSS is not driven

by reported real or potential anomalies in the behavior of the device, but rather by a model

of the configuration parameters and how they affect the health attributes. This makes

the scope of CHeSS very broad (i.e., semi-automatically relating configuration settings to

health scores) and yet specific to help users to evaluate the impact of the configuration.

FIGURE 5.1: A Framework to express the Health Index of a Configuration File

The Health Index (HI) metric of the configuration file is expressed as a vector of im-

pacted attributes such as: security (S), availability (A), manageability (M), performance

(P), and functionality (F). That is,

~HI “ tS,A,M, P, F, ¨ ¨ ¨ u (5.1)

The computation of HI requires analysis of various configuration parameters on the

different attributes. CHeSS framework shown in Fig. 5.1 takes the configuration file as

input, converts it to a canonical form, analyses the configuration parameters and quantifies

the HI metric. The elements of ~HI metric are the key representation of the device behavior

under the given configurations. A framework such as CHeSS can be applied to any IT asset

including computer servers, VM images, storage, switches, etc.; however, in this chapter

we focus largely on network devices.

86

Each attribute above can be regarded as a vector of suitable measures. For example, the

performance measures of interest will typically include one or more measures of through-

put, latency, and loss. For example, in the networking context, we may be interested in

bytes/sec and packets/sec (throughput measure), send and receive latencies, and packet

drop fraction. Given the precise meaning of these measures, it is most meaningful to char-

acterize them first and then suitably define what we want to call as an overall performance

metric. This added granularity allows users to peel-back to more specific issue(s) if any

problem is observed (e.g., poor security can be peeled back to weak encryption).

Using practical production level configuration files, we explain our design, computa-

tion principles and compute the health index HI. We show that our approach allows users

to confidently express the behavior of the device as a metric (HI). With CHeSS, we lay a

foundation that can be extended to encompass other attributes such as energy consumption.

We validate our approach by applying the domain knowledge and verify its applicability

from domain experts in the industry. In the past, there has been considerable interest in

the industry in developing such a metric; however, we have not found any prior art in this

area to give a comparative analysis.

HI can be used in a large data center or an enterprise to filter or group devices for user

defined criteria. For example, administrators can use HI to query configurations with secu-

rity below acceptable threshold. Network designers can identify the weakest performance

link in the path using HI. HI can potentially be used in isolating boundaries (e.g. Virtual

Machines, Containers or other sandboxes) and to investigate if these boundaries are being

breached. In this chapter, we discuss a range of application and feasibility of HI.

5.4 Estimating the Health Index from a Configuration

This chapter provides a quantitative framework to analyse the configuration of a network

device and predict its dynamic behaviour. We try to bring some explainability and simplic-

87

ity to the vast configuration space explained earlier. We present our framework ’CHeSS’

in general terms, and explain its applicability by exploring the HI and configuration of a

network router.

FIGURE 5.2: Sample Configuration File with Associated attributes and weights

5.4.1 Configuration Files and Objects

In the following we discuss this formulation with a running example where the HI consists

of three attributes, namely performance P , security S and availability A. We also key

our discussion to Fig. 5.2 that shows the fragment of configuration file for a Cisco router.

The left side circled numbers in Fig. 5.2 are statements from a sample configuration file,

and the right side weights indicate whether the configuration statement contribute to the

particular attribute. In the following discussions and depending on the context, i represents

the ith statement, or ith object, or ith weight, etc.

Obviously, the HI vector consists of three elements, i.e., ~HI “ tP, S,Au in our exam-

ple. We regard a properly canonicalized configuration file as a sequence of Configuration

Objects, with ith configuration object (denoted COi) represented as a (name, value) pair;

i.e., COi “ tpi, viu. Each configuration object can contribute to one or more attributes

of the device. For example, a configuration statement ”passwd myEncrYptedPaSSw0rd

encrypted” could contribute to functionality, security and performance. While this con-

figuration statement could make the device secure, it also adds to performance penalty as

88

the transaction has to undergo a encryption/ decryption task. Thus, we need to assign the

relative contribution of a configuration object on each attribute. That is, for configuration

object COi, we can define a weight vector ~Wi “ rwi1, ..., wiks where k is the number of

attributes (e.g., k “ 3 in our example of performance, security and availability). Each

weight wij can be thought of as the correlation coefficient between the jth attribute and

the ith configuration object.

wij is constrained by an upper bound (in our example, `2) and a lower bound (a

small weight ε ą 0), and a mid-point (say 1) to denote default behavior. That is, wij P

rε,`2´εswherewij “ 1 means that the attribute j is not impacted byCOi, and increasing

magnitude of wij represents increasing positive correlation. Configuration objects that

are not explicitly defined would take the manufacturer defined internal default value and

result in a default weight wij “ 1. A configuration object i that results in the maximum

possible value of the attribute j would take the maximum weight, i.e for some kth object,

COk “ tpk, vku, wkj “ 2 ´ ε. The weights are scaled version of the attribute value, and

the scaling function is dependent on the configuration object.

In general, any measure wij would depend not only on the configuration of the relevant

entity but also on the overall environment that it operates in. Thus, for example, the

actual and maximum throughput of two web-servers that identically configured, but part

of different cyber infrastructures, could be different. In other words, both the default

performance and the maximum performance could be different. Since the HI concerns

only the configuration of the device in question, we would like to keep such differences

out of HI estimation. That is, regardless of the actual performance in our web-server

example, we will assign wij “ 1 to default performance and wij “ 2´ ε to the maximum

performance.

There could be a large number of configurable objects for a given device, and the exact

number depends on the manufacturer. To ease administration tasks, maintainability and

ease of configuration, manufacturers provide an implicit default value that could result

89

in an optimal operation. Administrators generally provide explicit values for a limited

set of configuration objects (say about 10 to 20%), with remaining objects taking default

manufacturer values. Hence, only the administrator modified objects contribute to the

weight ~Wi and the remaining non-defined objects take the manufacturer provided default

value (i.e. wij “ 1). The computed ~HI would be relative to the ’bare-bones (i.e. out of

the box) configuration comprising of the default values, and represent either the strength

or weakness of the configuration.

The key challenge is to estimate values of wij’s, and given the complexity, it would

necessarily be based, at least partly, on manual input provided by knowledgeable admin-

istrators. A manual input is to be expected for a qualitative scoring system, just as it is

in CVSS. However, a significant challenge is to minimize the manual input, and yet en-

able a consistent and accurate assignment of the weights. We discuss some avenues for

this later but largely as topics for further exploration on the subject. This necessarily re-

quires associating each attribute with a suitable set of concrete measures, as discussed in

section 5.1.

A sample of weights of the configuration objects is shown on the right side of Fig. 5.2.

The circled markers on the left indicate the configuration objects (or statements). Each

row is a vector ~wi representing the contribution of a single configuration object COi,

and each column represents an element in the attribute vector ~HIi (a vector with element

corresponding to different attributes).

Using the above notations, we define a framework for computing the health index of

a configuration file. Applying in-depth systems knowledge and domain expertise from

network administrators and manufacturers, we study the HI of a network router (i.e. con-

figuration file of a router).

90

5.4.2 Object Representation

This is the first attempt to define the health index of a configuration file. We used and

applied publicly available manufacturer’s specification, network domain knowledge and

system administration expertise. Keeping a flexible design, we ensured that our approach

can be refined to include any newly acquired knowledge. At a later date, if needed, the HI

attributes can be expanded into other factors (e.g. risk factor, energy consumption, etc).

We start with the following preconditions:

1. Each configuration statement is considered an individual, independent object COi.

2. Each configuration object COi contributes to one or more attribute in ~HI . The

contribution of a configuration object COi on the attributes is bound by a lower and

upper limit, as explained earlier.

3. An objectCOi may have a hierarchy of k additional sub-statement or sub-configurations

(COi “ COi1 ¨ ¨ ¨COik). The sub-statements and hierarchy of values of COi should

be recursively considered to derive the final HI of the parent object COi.

The first case treats each configuration statement (e.g. ip prefix-list ¨ ¨ ¨ ; line 5 in

Fig. 5.2) as an independent object. We address inter-dependency between config. objects

as follows. If one or more statements (i.e COi & COj) contribute the same attribute (e.g.

security), then the weights (say: wi, wj) given to each statement are relative to each other

(e.g: security weight of: COi = 1.3; COj = 0.7). Such relative weights will positively

compensate if COi and COj add the overall attribute or negatively compensate to bring

down the effective weights. The system is designed to gain knowledge from several such

examples (explained in section 5.5.3). For the last case, if multiple sub-statements of a

configuration file define a configuration object, then we compute the contribution of indi-

vidual sub-statement and roll up the computed values hierarchically to the parent object.

91

For line 1 in Fig. 5.2, spanning-tree object definition is defined by a total of four sub-

statements (lines 1, 2, 3, 4); we assign the weights individually to each sub-statement and

roll up the final value to the parent object. The hierarchical representation ’spanning-tree’

statement(s) of the sample configuration file in Fig. 5.2 is shown as a canonical tree struc-

ture in Fig. 5.4. The parent node spanning tree object COi has several layers of child

sub-objects below it. Each path from the root node to the leaf node represents a unique

statement in the configuration file. The final weight of the object COi is the rolled up

weights from its immediate child sub-objects and so on. An example of a complex hierar-

chical object from one of our production configuration file is shown in Fig. 5.7.

5.4.3 Quantifying the attributes

We have established that each top-level configuration object COi has an associated weight

~wi representing the object’s contribution to the attributes ~HIi. The overall metric (or

quality of each attribute in HI) is represented as the geometric mean of the all the weights

~wi of its child objects COi. The HI of the root object (i.e. entire configuration file) for

attribute j is given as (for all attributes j):

HIj “
n

d

´

n
ź

i“1

pwijq
¯

(5.2)

This equation is recursively applied to each object and sub-object (if it includes a

hierarchy), and the final computed value is applied to the root. The attribute values of the

root node defines that of the configuration file (and in turn the network device).

5.5 CHeSS Framework

The design methodology and the framework used to compute the HI is illustrated in

Fig. 5.3. The configuration file is transformed into a canonical format in step (1) and

presented to the CHeSS framework. CHeSS computes the HI based on the data in its

92

FIGURE 5.3: CHeSS Framework with Knowledge Repository and Learning Model

repository (box 6) or inputs from the experts (shown as 2). The computed HI (step 4) is

fed back to the CHeSS framework through feedback (step 5) and stored in its repository

for later re-use. It also serves as an input to experts for ratification (step 3).

5.5.1 Configuration File and its Canonical Form

A configuration file is manufacturer and device (model, version) specific and may be rep-

resented in various formats, such as json, xml, text or binary file. The contents of the

configuration file are the configuration statements, typically expressed as parameter-value

pairs. A configuration file would contain several configuration statements, which indi-

vidually and collectively impact the overall HI of the device. In a typical deployment,

many of the configurations remain set to their default values. This default configuration

helps the users to deploy the network fast and also ensures baseline performance, security

and availability. Thus, only a subset of configurations need to be customised to deploy-

ment topology. This smaller subset of configurations require manual input from human

experts for weight assignment, thus reducing the burden and dependency on human-input

for entire set of configurations.

Administrators do not handle all the configuration objects, and only modify a sub-set

of the objects that are related to their tasks. A configuration statement may contribute to

one of the metrics with a gain (positive effect) but negatively contribute to another metric

(penalty). The configuration parameters (or rather the objects represented by the param-

93

eters) are often hierarchical with sub-configurations up to arbitrary depth. Some of the

complications related to configuration files include configuration statements spread over

multiple lines, not explicitly configuring default values, using vendor specific parameter

names or specification syntax, etc. Sometimes configuration files may be incomplete, have

errors, such as specification of nonexistent parameters. In such cases, configuration files

are deemed invalid. Furthermore, configuration files are volatile and continue to evolve. It

is even possible that the administrator makes some changes to the resource configuration

manually but this change is not reflected in the configuration file.

In order to keep our mechanisms general, we assume that the original configuration file

is converted to a canonical form that removes these idiosyncrasies. This canonical form

has the following properties: (a) all parameter names and values are specified in a standard

way, (b) each configuration statement is contained in exactly one line, and (c) the entries

in the file correctly represent the real configuration.

5.5.2 Ontologies, OpenConfig and CHeSS

Clearly, translating the original vendor file into a canonical file is nontrivial, as it would

require a clear schema definition of each vendor file and a mechanism to translate it to the

canonical form. As stated earlier, OpenConfig [OpenConfig working group (2016)] pro-

vides an attractive solution for the networking domain and can be used directly by CHeSS.

Shaikh et al. [Shaikh et al. (2016)] use OpenConfig model in their work on vendor neu-

tral SDN network representations for transport. Though, at present, OpenConfig models

represent only a subset of the device models, the industry consortium is actively working

to represent most of the device models most effectively. For resources other than network,

the application of OpenConfig will require significant extensions to the YANG language

and is outside the scope of this chapter.

Device specific configuration file is first translated to a canonical model that represents

all the configuration objects. In our example of a canonical model, each path from the root

94

FIGURE 5.4: Parsing the Hierarchical Object and Assigning Weights (P,S,A)

node to the leaf node represents a unique statement in the configuration file. Configuration

statements {1 ¨ ¨ ¨ 4} of Fig. 5.2 are transformed to a tree structure shown in Fig. 5.4, with

configuration object COi spanning-tree as the root, and all the sub-objects as its children.

Each unique path from root to leaf node represents a configuration statement. The hierar-

chical configuration statements (if any) are represented as additional paths and sub-layers.

An example of weights wij for the sample hierarchical statement COi = spanning-tree,

along with its child objects and unique paths is shown in Fig. 5.4.

If a given top-level COi, contains any hierarchical sub-objects (as shown in Fig. 5.4),

the weights of all the sub-objects are recursively computed to derive the ~HI of the topmost

object COi as given in section 5.4.2. In this example, the parent spanning-tree node ~wi is

recursively computed from the values in its child nodes (and so on).

It is possible that during translation to a canonical model, CHeSS may encounter some

configuration objects that lack a canonical representation. Such limitations can be over-

come by consulting a human for a relevant canonical model. Human-in-the-loop (HIL)

machine learning approach [Zhang et al. (2019)] can be used alongside ontology represen-

tation to translate the device configuration file to a canonical format. HIL can be designed

to parse a file based on machine learning approach and probabilistically consult a human

95

operator to learn new formats, parameters, and parsing logic.

5.5.3 Learning Model

As mentioned earlier, the assignment of weights wij’s is both challenging and crucial for

proper interpretation of health index. We assume that these weights are assigned by do-

main experts, who validate the name/value pair of each COi and quantify its contribution

to the health index. This is shown as step (2) of CHeSS framework in Fig. 5.3. To reduce

the dependency on human assigned weights, we propose a two step approach: (i) a transfer

function to map the observed operational data (a.k.a oper-data) measured to the device HI

and (ii) to probabilistically consult human experts to learn new weights (explained in next

section).

For the first approach, we propose to identify a set of operational parameters that best

describe the health index identified for the device. These operational parameters can be

measured in Network Operation Centers (NOC) and quantitatively assigned to the devices.

For example, oper-data like CPU occupancy and throughput can describe the performance

HI. Similarly, security HI parameters can be described by number of security incidents

and availability HI parameters can use observed metrics like number of system failures,

duration of service unavailability, MTBF (Mean Time Between Failures) etc. For each

such operational parameter, we calculate the HI estimates based on the assigned weights

of configuration attribute. The measured value is then compared against this estimate and

the difference is fed back to calculation of HI with readjusted weights.

For example, observed oper-data Ψi on a device di in an environment ξk may indicate

four security incidents, 620MBps performance throughput and 99.99% availability. This

oper-data is transformed to ~HI and represented as:

~HI = {P,A,S} = {1.3, 1.2, 1.9}

Note that ~HI is relative to default value of +1, with increasing numbers denoting the

96

strength and decreasing numbers showing weakness.

Over time, as HI is computed for various configuration files, CHeSS builds up a large

repository of various COi and relative weights ~Wi. This knowledge repository is shown

as (box 6) in Fig. 5.3. For any objects COi missing in the repository, CHeSS consults the

human expert (box 2) to manually assign the relative weight ~wi for the newly encountered

object. After computing HI, the feedback loop (step 5) feeds the CHeSS repository with

more data for future consultation.

This learned data (learned from human experts or transfer function) is stored in a

knowledge repository shown as box 6 in the figure. As the collection of configuration

objects (COi) increases, the CHeSS framework can auto-assign the weights (~wi) from its

knowledge repository. As knowledge grows, the delta error (step 5) between human as-

signed values (step 3) and auto-generated values (step 4) should diminish. We can adapt

an unsupervised learning model wherein clustering can be used to improve the reliability

of the weights. One such approach is outlined in the following section.

5.5.4 Enhancing the Reliability Of Weights

Learning the relative weights of different objects reliably requires a large number of con-

figuration files. This is difficult to do manually; furthermore, only a small number of

configuration files may be available within an organization for specific type and model

of device. To address this, we propose collecting configuration files for a larger set of

parameter combinations from domain experts and populate the knowledge repository. As-

suming this is feasible, CHeSS framework can, over time, learn weights of each COi and

its relative contribution to the HI with greater confidence. As the data points increase, we

can build additional intelligence to learn the dependencies between objects, identify any

anomalies, etc.

However, there are many difficult challenges in such an endeavor. First, in spite of the

harmonization of the configuration file syntax through the canonical representation, the

97

differences between devices from different vendors or those with different models could

still pose challenges in estimating weights. Second, there may be relationships between the

weights of different objects, but the perception of these relationships across domain experts

could vary. Third, assigning definitive values to the weights can itself be challenging,

particularly for attributes such as security, and the expert opinions on the quantification

and its fuzziness may vary. These limitations exist whenever a human input is solicited,

as opinions may differ. Benson [Benson et al. (2009)] has addressed this hurdle through

’operator-interviews’ and using 1000s of device configurations available in enterprise data

centers.

FIGURE 5.5: Learning wi from Samples and Clustering for a Given COi

One simple approach for sanity check of the weights provided by the experts is to use

clustering methods and corresponding outlier detection (Fig.5.5). Clustering algorithms

can be used to group the weights wi’s of a COi for further analysis.

As the collection of configuration objects (COi) increases, the CHeSS framework can

train a neural netN to learn the relative weights. The details of neural netN is out of scope

of this chapter, though we envisage that a regression based machine learning model can

address this easily. While processing a new COi for a new configuration file, the CHeSS

framework can auto-assign the weight (wi) from the neural net N based on the knowledge

98

FIGURE 5.6: 3D representation of HI of Sample Configuration File

repository. The framework can consult a human expert (step 2) to learn about new weights

wk for a newly encountered configuration object COk. As knowledge repository grows,

CHeSS tries to consult the human expert sparingly and attempts to decrease the error be-

tween human assigned values and auto-generated values. This interaction between human

and machine learning approach can enhance the accuracy of prediction and enable two

way learning. In such cases, HIL will help human experts learn about new deployment

models (or new configuration types).

5.5.5 Visual Representation of Health Index (HI)

We calculate the metric ~HI in Eq. 5.2 of the topmost layer: the root object. As said earlier,

this final value defines the overall HI of the configuration file. The configuration health

index can now be represented as a point in a n attribute space; with each axis representing

a device characteristics. The visual representation of the computed HI values for a sample

file is shown in Fig. 5.6. Visually, this HI indicates that it is marginal on performance,

99

nominal on availability and security. HI of our sample configuration file is represented as:

HI = {P,A,S} = {+1.665, +1.594, +1.518}

On closer inspection of this sample configuration file, domain experts (the system ad-

ministrators) confirmed that these metrics represented the health/ quality of the sample

configuration.

Individual small round dots represent the wi health index for all top-level configura-

tion object COi (i.e. immediate children of root object). These are scattered around the 3D

space, indicating their relative contribution on the health index, i.e. these points show how

each COi affect the three attributes (P,A,S). A clustering of the small dots (COi) can show

the reasons for the HI biased towards a metric (say biased towards poor performance).

Similarly, clustering of the individual ~HIi in a given quadrant would indicate potential

tilting or overarching impact of the configuration parameters in one direction. Users can

see the relative position of the HI marker and quantify/ express the HI in simple human

understandable terms (high performance, weak security etc.). Based on the relative posi-

tion of the individual blue dots, these COi are the primary candidates for closer inspection

and configuration modification.

Obviously users need a health index that indicates high performance, high security and

high availability. These values may be bound by some upper limits and counter each other.

An optimal value may be bounded much below this. Finding the upper bounds and optimal

value for ~HI is a topic for future research.

5.6 Evaluation Results

We briefly describe our implementation and present our evaluation results using few real

world configuration files.

100

5.6.1 Implementation Details

Our Python based tool: (i) parses the ’sample’ configuration file, (ii) translates the config-

uration statements into a canonical format (iii) collects individual objects COi, (iv) con-

structs a tree representing the canonical form of the configuration file (See Fig. 5.4), and

(v) recursively computes individual HIi and the final HI of the root level object. Initially

the weights ~wi given by domain expert is used to compute the overall HI of the config-

uration file. The gathered domain knowledge of COi and ~wi is stored in the knowledge

repository for later use. While parsing the new configuration file, the CHeSS framework

consults the knowledge repository for any prior knowledge of the COi. If a match is found

for a given COi, the weight ~wi is assigned to the object, else CHeSS will update the new

value wi in the repository (box 6 of Fig. 5.3). If the weights in the knowledge base and

domain expert differ beyond a threshold - CHeSS will flag this as an anomaly. Domain

experts can take action to verify the anomaly and re-adjust the weights in the knowledge

repository as explained earlier. Knowledge repository in our initial phase is a simple JSON

file representing the tree graph and corresponding weights. Additional aspects of knowl-

edge repository (representation, storage, security, global or local share etc.) is a beyond

the scope of this chapter.

As an initial study, we used few run-time configuration files from a data center net-

work topology. We processed the configuration as explained earlier and computed their

health index. These files contained between 8000 to 22000 lines of configuration data.

Discounting for any blank lines and comment lines (which were less than 100), this is

still a significant number of COi objects to process. As explained earlier, most of the

configuration objects had hierarchical sub-objects and sub-sub-objects. In some cases, the

hierarchical objects can be around several layers deep; as is expected in a complex net-

work configuration file (see Fig.5.7. HI of a few configuration files used in our evaluation

is given in Table 5.1. Space and privacy limitations restrict us from sharing the sample

101

(production level) configuration files used in the table.

File Name File
Size

Health Index

sample config file 1.txt 8936 P = 1.665, A = 1.594, S = 1.518.
sample config file 2.txt 22035 P = 1.664, A = 1.615, S = 1.652.
sample config file 3.txt 5425 P = 1.607, A = 1.720, S = 1.727.

Table 5.1: Health Index of Sample Configuration Files.

The visual representation of HI of one of the sample file is shown in Fig 5.6. The x,

y, & z axes represent the availability, performance and security attributes of HI. Individual

blue dots represent the individual HIi of all top-layer objects COi. These high level

configurations affect the overall HI and their relative position in different quadrants reveal

the state of the configuration. For example, a dense set of blue dots in any quadrant can

indicate that these configurations are either penalizing or aiding the overall HI. The root

level HI of the configuration is printed on the top of the 3D graph. This HI represents

a fairly high degree of performance, security and availability. Domain experts agree that

this is the case - as this sample file represents a production level configurations, and as

expected should have a high value for each of these attributes.

FIGURE 5.7: Sample of a Complex Hierarchical Object COi.

5.6.2 Scalability of the Framework

Large data centers have 100s of 1000s of nodes; that are grouped into a manageable

’config-types’ or ’config-classes’ to ease deployment and manageability. Though CHeSS

102

can be run over individual devices, for scalability reasons, CHeSS can be run on these

few config-types in the master config repository to discover any anomalies. Such a apriori

information is helpful for the network operators to take informed actions or applying them

globally.

5.6.3 Applicability and Feasibility of Framework

The applicability of HI can be explored in several areas. Users can query the network

topology (or collection of device configurations) to locate devices/resources with specific

HI. For example, users can locate devices with performance P ď 1.75, avoid devices

with weak security (e.g., S ď 1.25), or identify the weakest availability node (e.g., A ď

0.75) in a given path for diagnostic purposes. It can be helpful in correlating an incident

with diagnosis. Results from the lessons learnt about the configuration during incident

diagnosis can be used to improve the weights. The HI can be used along with CVSS

scores to comprehensively evaluate the security of the network device.

Administrators can use CHeSS to periodically monitor the data-center/enterprise net-

work for HI (without undue traffic or load overhead) metrics. It can assist the administrator

in predicting/ diagnosing a configuration error and catch the ill-effects of undue changes

early-on. Similar approach can be used to design and monitor HI of web-services, appli-

cations, storage clusters, etc.

5.7 Conclusion

In this chapter, we introduce CHeSS: a framework to discover, measure and quantify the

health index (HI) of a resource or a device. The oper-data and inputs from domain exper-

tise are used to compute the ~HI . CHeSS computes the HI based on each configuration

object (or hierarchy of objects) of the configuration file. The computed HI can be visual-

ized in a multi-dimensional space to aid users into a clear and common understanding of

the HI of the device/resource. Using human-in-the-loop learning, we present a model that

103

can improve the prediction accuracy of the health index over time.

This is the first step in a promising but unexplored field that could benefit from further

exploration. The most critical aspect of the proposed HI is the assignment of weights,

since the weights directly govern the accuracy and usefulness of the HI. We proposed a

two step learning model based on reverse learning from oper-data and learning weight of

objects through HIL. The learning of weights could potentially exploit transfer learning

from similar device from different vendors used in similar ways. Finally, we proposed that

recent vendor neutral device model by OpenConfig can be used to translate vendor specific

files to a canonical model.

In addition to HI of individual devices, it is useful to estimate the HI of a combined

network of resources, devices or service. Combining the HI’s together to estimate the net-

work HI must consider both the topology of the network and the operational dependencies

across the devices/resources. These dependencies are likely to be service (or workload)

dependent, which makes the dependency characterisation itself quite challenging. These

new challenges open further avenues for future research ideas.

104

CHAPTER 6

CONCLUSION

Configuration modeling and diagnosis in a data center is a complex area of study due to

numerous interdependencies that are hard to discover, analyze, and model. During this

research work, we proposed a few solutions that include:

(i) effective allocation of resources for a data center network with a goal to conserve

energy and limit the latency overheads within an acceptable range.

(ii) application of statistical machine learning techniques to predict the performance of

a Cloud Storage Gateway (CSG).

(iii) embedding of domain knowledge in stochastic processes (Genetic Algorithms &

Simulated Annealing) to recommend a suitable configuration (i.e. allocate hard-

ware and storage resource to CSG) that satisfy both the required QoS levels (e.g.

performance) and the given constraints (e.g. costs), and

(iv) formulation of a health index of a resource or a device.

Using real-world data-sets, we demonstrate the effectiveness of the above solution in the

Edge/Cloud computing environment and show its general applicability to address the sim-

ilar issues facing the data-center operators.

105

Energy management of cyber-systems and devices is important to curtail the ever in-

creasing energy consumption, waste heat dissipation, and operational costs in data cen-

ter devices. In our work on energy management techniques, we first developed an en-

ergy management extension to the popular network simulation tool (NS3) to study the

performance-energy trade-offs in data center networks. Using this extension, we proposed

a model to configure the energy management related parameters of a network node and

route the traffic to ensure that the network can both avoid congestion and maximize en-

ergy saving opportunities. Using a fat-tree network topology, our work showed that effec-

tive routing, intelligent consolidation of data flows, plus energy management techniques

can reduce power consumption up to 45% under low utilization conditions. Our work

on energy management extension to the NS3 tool opens up new avenues to study energy

management techniques in data centers.

In the course of this research work, we addressed challenges involved in effective

configuration and resource allocation in a complex cyber-systems that involve compute,

storage and network domains. Using a commercially available CSG product, we exten-

sively analyze the impact of various configuration parameters on CSG performance. Given

the complexities of behavioral characterization through direct analytic means, we explore

the applicability of machine learning to characterize this relationship to predict the per-

formance from the configuration parameters. Based on extensive testing with real world

industry workloads, we show that with adequate training data, the performance prediction

can achieve an accuracy of around 95%. This work provides a practical solution to a very

difficult and increasingly important problem in configuring a compute/storage system.

The inverse of the above problem is very demanding to formalize and answer. As

numerous configuration parameters affect the desired metric of the solution (e.g., perfor-

mance, cost, availability, etc.), finding suitable values of configuration parameters for a

given goal is very difficult. Using an Edge Computing/Storage (ESI) paradigm as an ex-

ample, we propose an approach that (i) combines a machine learning based model of the

106

desired metric, domain knowledge based grouping and ordering of configuration param-

eters, and (ii) applies well-designed meta-heuristics to efficiently determine suitable con-

figuration settings for the system. The method inherently can provide multiple solutions,

which is crucial in practice to consider aspects that are not easily formalizable. We develop

our technique in the context of Edge storage (ESI) that is needed in multiple contexts, but

the techniques are applicable generally. An extensive evaluation using real-world ven-

dor provided workloads, shows that the proposed intelligent meta-heuristics reduces the

number of iterations by 22% (for modified Genetic Algorithms) and 32% (for modified

Simulated Annealing) in 90% of the cases while yielding a solution with very similar cost.

Our work established that the behavior of all cyber systems is dependent on a set of

configuration parameters, which if set improperly could result in sub-optimal performance,

security vulnerabilities, functional issues, reduced availability, etc. Currently, there are no

effective metrics to express the quality of a configuration of a device. With a goal to aid

unambiguous description of a device configuration, we propose “CHeSS”, a framework to

capture the ”health” of a subsystem or component in terms of multiple dimensions such

as performance, security, availability, etc. We demonstrate the feasibility and application

of the Health Index framework using examples of real world configuration files. We ex-

tend our approach to use a knowledge repository to better refine the health index, which

improves with an increase in available data.

6.1 Opportunities and Future Work

Following the domain knowledge ingrained solution from our research, we envision that

future work based on similar approach can help resource allocation in other paradigms,

such as configuration of Data Storage Service for Edge and Fog, Storage as a Service

(SaaS), Containers (VMimages, Dockers), Edge solutions, etc. The behavior (perfor-

mance) prediction model can expand to include environmental factors1 such as ambient

1 See: Sondur and Gross (2020); Vaidyanathan et al. (2015)

107

temperature, vibration induced degradation, etc., and access their impact on the final out-

come. The model can further benefit from an enriched feature set and operational data

available to the data center operators to improve the efficiency of the performance predic-

tion oracle and the configuration recommending algorithms (faster convergence). Lessons

learned from this research can be applied to auto-tune the configuration as the conditions

change (e.g. workload or expected performance) or new cost function (e.g. new limits on

energy consumed). The recommended configuration output from the algorithms can be

used in solutions to “pack” or get an optimal ratio of virtual resource to physical resource;

for example, consolidate the optimal number of VMImages (or dockers) on a physical

server.

In CHeSS, we took the first step in a promising but unexplored field that could benefit

from further exploration. The CHeSS framework is built on assignment of weights which

determine the actual value of HI and hence its accuracy and effectiveness. The weights

need not necessarily be coming from human experts. We can consider reverse learning

of these weights based on the real-time analysis of the operational data collected from

network devices. The learning of weights could potentially exploit transfer learning from

similar devices from different vendors used in similar ways. It is useful to estimate the HI

of a combined network of resources, devices or service, and doing so must consider both

the topology of the network and the operational dependencies across the devices/resources.

The CHeSS framework currently makes use of canonical model for representation of de-

vice configurations. In future, we can explore the vendor neutral framework like Open-

Config models to represent the configurations which will help in analysing the HI across

vendor devices. Industry experts have acknowledged that CHeSS approach of the Health

Index is a concept way overdue and sorely needed by the industry.

We hope that this dissertation and the challenges highlighted here will open new av-

enues for future research ideas.

108

BIBLIOGRAPHY

Almseidin, M., Alzubi, M., Kovacs, S., and Alkasassbeh, M. (2017), “Evaluation of ma-
chine learning algorithms for intrusion detection system,” in Intelligent Systems and
Informatics (SISY), 2017 IEEE 15th International Symposium on, pp. 000277–000282,
IEEE.

Barroso, L. A., Clidaras, J., and Hölzle, U. (2013), “The datacenter as a computer: An in-
troduction to the design of warehouse-scale machines,” Synthesis lectures on computer
architecture, 8, 1–154.

Ben-Ameur, W. (2004), “Computing the initial temperature of simulated annealing,” Com-
putational Optimization and Applications, 29, 369–385.

Benson, T., Akella, A., and Maltz, D. A. (2009), “Unraveling the Complexity of Network
Management.” in NSDI.

Bertoldi, P., Avgerinou, M., and Castellazzi, L. (2017), “Trends in data centre energy
consumption under the European Code of Conduct for Data Centre Energy Efficiency,”
.

Bozorgi, M., Saul, L. K., Savage, S., and Voelker, G. M. (2010), “Beyond heuristics:
learning to classify vulnerabilities and predict exploits,” in Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discovery and data mining, pp. 105–
114, ACM.

Cao, Z., Tarasov, V., Raman, H. P., Hildebrand, D., and Zadok, E. (2017), “On the per-
formance variation in modern storage stacks,” in 15th Conference on File and Storage
Technologies (tFASTu 17).

Cao, Z., Tarasov, V., Tiwari, S., and Zadok, E. (2018), “Towards better understanding of
black-box auto-tuning: a comparative analysis for storage systems,” in 2018 tUSENIXu
Annual Technical Conference (tUSENIXutATCu 18), pp. 893–907.

Cappelli, W. (2015), “Causal analysis makes availability and performance data action-
able,” Gartner Report.

Chinchuluun, A. and Pardalos, P. M. (2007), “A survey of recent developments in multi-
objective optimization,” Annals of Operations Research, 154, 29–50.

109

Chirgwin, R. (2017), “Suspicious BGP event routed big traffic sites through Russia,” .

Christensen et al. (2010), “IEEE 802.3 az: the road to energy efficient ethernet,” IEEE
Communications Magazine, 48.

Cisco Systems, Inc (2019), “Cisco Network Management,” https://www.cisco.
com/c/en/us/products/cloud-systems-management/index.html.

Connolly, F. (2014), “Production operations – The last mile of a DevOps strategy,” LMC
Report.

Connor, R. (2015), The United Nations world water development report 2015: water for
a sustainable world, vol. 1, UNESCO Publishing.

Cooper, B. F., Silberstein, A., Tam, E., Ramakrishnan, R., and Sears, R. (2010), “Bench-
marking cloud serving systems with YCSB,” in Proceedings of the 1st ACM symposium
on Cloud computing, pp. 143–154, ACM.

Costa, L. B. and Ripeanu, M. (2010), “Towards automating the configuration of a dis-
tributed storage system,” in 2010 11th IEEE/ACM International Conference on Grid
Computing, pp. 201–208.

D, H. (2019), “Platypus - Multiobjective Optimization in Python,” .

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002), “A fast and elitist multiobjec-
tive genetic algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, 6,
182–197.

Drolia, U., Guo, K., Tan, J., Gandhi, R., and Narasimhan, P. (2017), “Cachier: Edge-
Caching for Recognition Applications,” in 2017 IEEE 37th International Conference
on Distributed Computing Systems (ICDCS), pp. 276–286.

Eckart, B., He, X., Ong, H., and Scott, S. L. (2009), “An extensible I/O performance
analysis framework for distributed environments,” in European Conference on Parallel
Processing, pp. 57–68, Springer.

Edkrantz, M. and Said, A. (2015), “Predicting Cyber Vulnerability Exploits with Machine
Learning.” in SCAI.

EEE (2016), “IEEE standards to enable energy-efficient operation of Ethernet,” .

Elliot, S. (2017), “Amazon. com goes down, loses $66,240 per minute,” .

Esposito, C., Ficco, M., Palmieri, F., and Castiglione, A. (2016), “Smart Cloud Storage
Service Selection Based on Fuzzy Logic, Theory of Evidence and Game Theory,” IEEE
Transactions on Computers, 65, 2348–2362.

110

Ferentinos, K. P., Arvanitis, K. G., and Sigrimis, N. (2002), “Heuristic optimization meth-
ods for motion planning of autonomous agricultural vehicles,” Journal of Global Opti-
mization, 23, 155–170.

Flash Memory Submit (2018), “SNIA Object Store: Tutorial: Everything You wanted to
Know About Storage,” https://www.snia.org.

Forum of Incident Response and Security Teams (2017), “Common Vulnerability Scoring
System,” .

Gill, S. S., Chana, I., Singh, M., and Buyya, R. (2018), “CHOPPER: an intelligent QoS-
aware autonomic resource management approach for cloud computing,” Cluster Com-
puting, 21, 1203–1241.

Gracia-Tinedo, R., Sampé, J., Zamora, E., Sánchez-Artigas, M., Garcı́a-López, P., Moatti,
Y., and Rom, E. (2017), “Crystal: Software-defined storage for multi-tenant object
stores,” in Proceedings of the 15th Usenix Conference on File and Storage Technolo-
gies, pp. 243–256, USENIX Association.

Herodotou, H. and et.al (2014), “Scalable near real-time failure localization of data cen-
ter networks,” in Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining, ACM.

Hsu, C.-J., Panta, R. K., Ra, M.-R., and Freeh, V. W. (2016), “Inside-out: Reliable per-
formance prediction for distributed storage systems in the cloud,” in 2016 IEEE 35th
Symposium on Reliable Distributed Systems (SRDS), pp. 127–136, IEEE.

Ingber, L. (1989), “Very fast simulated re-annealing,” Mathematical and Computer Mod-
elling, 12, 967 – 973.

Kant, K. (2011), “Multistate power management of communications links,” in Proc. of
COMSNET.

Kerr, A. and Mullen, K. (2019), “A comparison of genetic algorithms and simulated an-
nealing in maximizing the thermal conductance of harmonic lattices,” Computational
Materials Science, 157, 31–36.

Klimovic, A., Litz, H., and Kozyrakis, C. (2018), “Selecta: heterogeneous cloud stor-
age configuration for data analytics,” in 2018 tUSENIXu Annual Technical Conference
(tUSENIXutATCu 18), pp. 759–773.

Kumar, M., Sharma, S., Goel, S., Mishra, S. K., and Husain, A. (2020), “Autonomic cloud
resource provisioning and scheduling using meta-heuristic algorithm,” Neural Comput-
ing and Applications.

111

Lee, C.-Y. (2015), “Fast simulated annealing with a multivariate Cauchy distribution and
the configuration’s initial temperature,” Journal of the Korean Physical Society, 66,
1457–1466.

Legendre, P. and Legendre, L. F. (2012), Numerical ecology, Elsevier.

Martinez, A., Yannuzzi, M., de Vergara, J. L., Serral-Gracià, R., and Ramı́rez, W. (2015),
“An ontology-based information extraction system for bridging the configuration gap in
hybrid SDN environments,” in 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM), pp. 441–449, IEEE.

Masanet, E., Shehabi, A., Lei, N., Smith, S., and Koomey, J. (2020), “Recalibrating global
data center energy-use estimates,” Science, 367, 984–986.

Monga, S. K., Ramachandra, S. K., and Simmhan, Y. (2019), “ElfStore: A resilient data
storage service for federated edge and fog resources,” in 2019 IEEE International Con-
ference on Web Services (ICWS), pp. 336–345, IEEE.

Mostowfi et al. (2015), “A simulation study of energy-efficient ethernet with two modes
of low-power operation,” IEEE Communications Letters, 19, 1702–1705.

Mostowfi et al. (2016), “An analytical model for the power consumption of Dual-Mode
EEE,” Electronics Letters, 52, 1308–1310.

Murugan, M. et al. (2012), “On the Interconnect Energy Efficiency of High End Comput-
ing Systems,” Sustainable Computing: Informatics and Systems.

Newman, L. H. (2017), “How a tiny error shut off the internet for parts of the US,” .

Ngoupé, É. L., Stoesel, S., Parisot, C., Hallé, S., Valtchev, P., Cherkaoui, O., and Boucher,
P. (2015), “A data model for management of network device configuration heterogene-
ity,” in 2015 IFIP/IEEE International Symposium on Integrated Network Management
(IM), IEEE.

NS3doc (2015), “Network Simulator (ns3),” .

Ofer, E., Epstein, A., Sadeh, D., and Harnik, D. (2018), “Applying Deep Learning to Ob-
ject Store Caching,” in Proceedings of the 11th ACM International Systems and Storage
Conference, SYSTOR ’18, pp. 126–126, New York, NY, USA, ACM.

OpenConfig working group (2016), “Open Config Data Model,” .

Oracle (2010), “Performance Evaluation of Storage and Retrieval of DICOM Image Con-
tent ... ,” .

Pedregosa, F., Varoquaux, G., and Gramfort, A. e. (2011), “Scikit-learn: Machine Learn-
ing in Python,” Journal of Machine Learning Research, 12, 2825–2830.

112

Prahlad, A., Muller, M. S., and Kottomtharayil, R. e. (2010), “Cloud gateway system for
managing data storage to cloud storage sites,” US Patent App. 12/751,953.

Prahlad, A., Muller, M. S., and Kottomtharayil, R. e. (2012), “Data object store and server
for a cloud storage environment, including data deduplication and data management
across multiple cloud storage sites,” US Patent 8,285,681.

Rao, J., Bu, X., Xu, C.-Z., Wang, L., and Yin, G. (2009), “VCONF: A Reinforcement
Learning Approach to Virtual Machines Auto-configuration,” in Proceedings of the 6th
International Conference on Autonomic Computing, ICAC ’09, pp. 137–146, New York,
NY, USA, ACM.

Rashid, M., Newton, M. A. H., Hoque, M., and Sattar, A. (2013), “Mixing Energy Models
in Genetic Algorithms for On-Lattice Protein Structure Prediction,” BioMed research
international, 2013, 924137.

Ray, M., Sondur, S., Biswas, J., Pal, A., and Kant, K. (2018), “Opportunistic Power Sav-
ings with Coordinated Control in Data Center Networks,” in Proceedings of the 19th
International Conference on Distributed Computing and Networking, ICDCN ’18, New
York, NY, USA, Association for Computing Machinery.

Ross, D. M., Wollaber, A. B., and Trepagnier, P. C. (2017), “Latent feature vulnerability
ranking of CVSS vectors,” in Proceedings of the Summer Simulation Multi-Conference,
Society for Computer Simulation International.

Satyanarayanan, M. (2017), “The Emergence of Edge Computing,” Computer, 50, 30–39.

Shaikh, A., Hofmeister, T., Dangui, V., and Vusirikala, V. (2016), “Vendor-neutral network
representations for transport SDN,” in 2016 Optical Fiber Communications Conference
and Exhibition (OFC), pp. 1–3.

Sittón-Candanedo, I., Alonso, R. S., Corchado, J. M., Rodrı́guez-González, S., and
Casado-Vara, R. (2019), “A review of edge computing reference architectures and a
new global edge proposal,” Future Generation Computer Systems, 99, 278–294.

Sohan et al. (2010), “Characterizing 10 Gbps network interface energy consumption,” in
IEEE LCN, pp. 268–271.

Sondur, S. (2014), “Software Defined Networking for Beginners,” .

Sondur, S. and Gross, Kenny Kant, K. (2020), “Thermo-Mechanical Coupling Induced
Performance Degradation in Storage Systems,” in 2020 20th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), IEEE.

Sondur, S. and Kant, K. (2019), “Towards Automated Configuration of Cloud Storage
Gateways: A Data Driven Approach,” in International Conference on Cloud Comput-
ing, pp. 192–207, Springer.

113

Sondur, S., Ray, M., Biswas, J., and Kant, K. (2017), “Implementing data center net-
work energy management capabilities in NS3,” in 2017 Eighth International Green and
Sustainable Computing Conference (IGSC), pp. 1–8.

Sondur, S., Gross, K., and Li, M. (2018), “Data Center Cooling System Integrated with
Low-Temperature Desalination and Intelligent Energy-Aware Control,” in 2018 Ninth
International Green and Sustainable Computing Conference (IGSC), pp. 1–6.

Sondur, S., Kant, K., Vucetic, S., and Byers, B. (2019), “Storage on the Edge: Evaluating
Cloud Backed Edge Storage in Cyberphysical Systems,” in 2019 IEEE 16th Interna-
tional Conference on Mobile Ad Hoc and Sensor Systems (MASS), pp. 362–370.

Sondur, S., Shankar, G., and Kant, K. (2020), “CHeSS: A Configuration Health Scoring
System and Its Application to Network Devices,” in 2020 23rd Conference on Innova-
tion in Clouds, Internet and Networks and Workshops (ICIN), pp. 250–257.

Sondur, S., Alazzawe, A., and Krishna, K. (2020), “CyberCon: Efficient Goal Oriented
Configuration of Complex Cyber-Systems,” Submitted for publication.

Sorower, M. S. (2010), “A literature survey on algorithms for multi-label learning,” Oregon
State University, Corvallis, 18.

Tanimura, Y. and Koie, H. (2015), “Operation-Level Performance Control in the Object
Store for Distributed Storage Systems,” in 2015 IEEE International Conference on Data
Science and Data Intensive Systems, pp. 111–112, IEEE.

Tapparello, C., Ayatollahi, H., and Heinzelman, W. B. (2014), “Energy harvesting frame-
work for network simulator 3,” in ENSsys@SenSys.

Tesauro, G. et al. (2005), “Online resource allocation using decompositional reinforcement
learning,” in AAAI, vol. 5, pp. 886–891.

Ularu, E. G., Puican, F. C., Suciu, G., Vulpe, A., and Todoran, G. (2013), “Mobile Com-
puting and Cloud maturity-Introducing Machine Learning for ERP Configuration Au-
tomation.” Informatica Economica, 17.

Vaidyanathan, K., Gross, K., and Sondur, S. (2015), “Ambient temperature optimization
for enterprise servers: Key to large-scale energy savings,” in Energy Efficient Electronic
Systems (E3S), 2015 Fourth Berkeley Symposium on, pp. 1–3, IEEE.

Varma, R. (2008), “Storage media for computers in radiology,” The Indian journal of
radiology and imaging, 18, 287–9.

Wang, M., Au, K., Ailamaki, A., Brockwell, A., Faloutsos, C., and Ganger, G. R. (2004),
“Storage device performance prediction with CART models,” in The IEEE Computer
Society’s 12th Annual International Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems, 2004.(MASCOTS 2004). Proceedings.,
pp. 588–595, IEEE.

114

Wang, S., Zhang, X., Zhang, Y., Wang, L., Yang, J., and Wang, W. (2017), “A survey
on mobile edge networks: Convergence of computing, caching and communications,”
IEEE Access, 5, 6757–6779.

Wong, A. K. Y., Ray, P., Parameswaran, N., and Strassner, J. (2005), “Ontology mapping
for the interoperability problem in network management,” IEEE Journal on Selected
Areas in Communications, 23.

Wu, H., Nabar, S., and Poovendran, R. (2011), “An energy framework for the network
simulator 3,” in SimuTools.

Xu, T. and Zhou, Y. (2015), “Systems approaches to tackling configuration errors: A
survey,” ACM Computing Surveys (CSUR), 47, 70.

Xu, Y., Ye, Q., and Meng, G. (2018), “Hybrid phase retrieval algorithm based on mod-
ified very fast simulated annealing,” International Journal of Microwave and Wireless
Technologies, 10, 1072–1080.

Yi, S., Li, C., and Li, Q. (2015), “A Survey of Fog Computing: Concepts, Applications
and Issues,” in Proceedings of the 2015 Workshop on Mobile Big Data, Mobidata ’15,
pp. 37–42, New York, NY, USA, ACM.

Yin, Z., Ma, X., Zheng, J., Zhou, Y., Bairavasundaram, L. N., and Pasupathy, S. (2011),
“An empirical study on configuration errors in commercial and open source systems,”
in Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,
pp. 159–172, ACM.

Zhang, S., He, L., Dragut, E., and Vucetic, S. (2019), “How to Invest my Time: Lessons
from Human-in-the-Loop Entity Extraction,” in The 25th ACM SIGKDD International
Conference, pp. 2305–2313.

Zhang, Y. and Xu, K. (2020), “A Survey of Resource Management in Cloud and Edge
Computing,” in Network Management in Cloud and Edge Computing, pp. 15–32,
Springer.

Zhao, L.-S., Sen, M. K., Stoffa, P., and Frohlich, C. (1996), “Application of very fast simu-
lated annealing to the determination of the crustal structure beneath Tibet,” Geophysical
Journal International, 125, 355–370.

115

