
A System for Automatic Information

Extraction from Log Files

by

Anubhav Chhabra

Thesis submitted to the University of Ottawa

in partial fulfillment of the requirements for the degree of

Master of Computer Science

in

Electrical and Computer Engineering

University of Ottawa

Ottawa, Ontario, Canada

© Anubhav Chhabra, Ottawa, Canada, 2022

Abstract

The development of technology, data-driven systems and applications are constantly rev-

olutionizing our lives. We are surrounded by digitized systems/solutions that are trans-

forming and making our lives easier. The criticality and complexity behind these systems

are immense. So as to meet user satisfaction and keep up with the business needs, these

digital systems should possess high availability, minimum downtime, and mitigate cyber

attacks. Hence, system monitoring becomes an integral part of the lifecycle of a digital

product/system. System monitoring often includes monitoring and analyzing logs out-

putted by the systems containing information about the events occurring within a system.

The first step in log analysis generally includes understanding and segregating the various

logical components within a log line, termed log parsing.

Traditional log parsers use regular expressions and human-defined grammar to extract

information from logs. Human experts are required to create, maintain and update the

database containing these regular expressions and rules. They should keep up with the

pace at which new products, applications and systems are being developed and deployed,

as each unique application/system would have its own set of logs and logging standards.

Logs from new sources tend to break the existing systems as none of the expressions match

the signature of the incoming logs. The reasons mentioned above make the traditional log

parsers time-consuming, hard to maintain, prone to errors, and not a scalable approach.

On the other hand, machine learning based methodologies can help us develop solutions

that automate the log parsing process without much intervention from human experts.

NERLogParser [58] is one such solution that uses a Bidirectional Long Short Term Memory

ii

(BiLSTM) architecture to frame the log parsing problem as a Named Entity Recognition

(NER) problem. There have been recent advancements in the Natural Language Processing

(NLP) domain with the introduction of architectures like Transformer [64] and Bidirectional

Encoder Representations from Transformers (BERT) [17]. However, these techniques have

not been applied to tackle the problem of information extraction from log files. This gives

us a clear research gap to experiment with the recent advanced deep learning architectures.

This thesis extensively compares different machine learning based log parsing approaches

that frame the log parsing problem as a NER problem. We compare 14 different ap-

proaches, including three traditional word-based methods: Naive Bayes, Perceptron and

Stochastic Gradient Descent; a graphical model: Conditional Random Fields (CRF); a

pre-trained sequence-to-sequence model for log parsing: NERLogParser [58]; an attention-

based sequence-to-sequence model: Transformer Neural Network; three different neural

language models: BERT, RoBERTa and DistilBERT; two traditional ensembles and three

different cascading classifiers formed using the individual classifiers mentioned above. We

evaluate the NER approaches using an evaluation framework that offers four different eval-

uation schemes that not just help in comparing the NER approaches but also help us assess

the quality of extracted information.

The primary goal of this research is to evaluate the NER approaches on logs from new

and unseen sources. To the best of our knowledge, no study in the literature evaluates the

NER methodologies in such a context. Evaluating NER approaches on unseen logs helps

us understand the robustness and the generalization capabilities of various methodologies.

To carry out the experimentation, we use In-Scope and Out-of-Scope datasets. Both the

datasets originate from entirely different sources and are entirely mutually exclusive. The

iii

In-Scope dataset is used for training, validation and testing purposes, whereas the Out-

of-Scope dataset is purely used to evaluate the robustness and generalization capability of

NER approaches.

To better deal with logs from unknown sources, we propose Log Diversification Unit

(LoDU), a unit of our system that enables us to carry out log augmentation and enrichment,

which helps make the NER approaches more robust towards new and unseen logs. We

segregate our final results on a use-case basis where different NER approaches may be

suitable for various applications. Overall, traditional ensembles perform the best in parsing

the Out-of-Scope log files, but they may not be the best option to consider for real-time

applications. On the other hand, if we want to balance the trade-off between performance

and throughput, cascading classifiers can be considered the go-to solution.

iv

Acknowledgements

First and foremost, I would like to thank my supervisors Professor Paula Branco, Professor

Guy-Vincent Jourdan and Professor Herna Viktor. I am really grateful to have been

carrying out my research work under the supervision and guidance of such supportive and

knowledgeable people. I want to express my gratitude to Professor Guy-Vincent Jourdan

and Professor Paula Branco, who convinced me to shift from a course-based to a research-

based program. It was one of the best decisions that I have ever made.

I want to thank my family: my mom, dad and brother Rahul for their unconditional

support in the past years. My friends have been integral to this journey, so I would like to

thank Kanwar, Anushree, Dilpreet, and Geetpal. I was lucky to have Kanwar to encourage

me and help me make decisions. Finally, I would like to thank Anushree for believing in

me and being rock-solid support throughout this adventure.

v

Table of Contents

List of Tables xi

List of Figures xiii

Acronyms xvi

1 Introduction 1

1.1 Motivation . 3

1.2 Objectives . 5

1.3 Publications . 7

1.4 Organization . 7

2 Related Work 8

2.1 Diversity in Logging Practices . 8

2.2 Traditional Methods for Information Extraction 10

vi

2.3 Message Template Generation . 12

2.4 Attention based Log Analysis . 14

2.5 NER for Log Parsing . 15

2.6 Current Gaps in Information Extraction from Logs 18

3 System Design 21

3.1 System Architecture . 21

3.2 Log Diversification Unit (LoDU) . 23

3.2.1 Entity Enrichment Module . 23

3.2.1.1 Timestamp Enrichment Sub-module 25

3.2.1.2 Hostname Enrichment Sub-module 28

3.2.2 Log Pre-processing Module . 28

3.2.2.1 Entity Shuffling Sub-module 29

3.2.2.2 Digit Handling Sub-module 30

3.3 Log Parsing Unit . 30

3.3.1 Traditional Methods . 32

3.3.2 Graph based Methods . 33

3.3.3 Sequence to Sequence Models . 37

3.3.4 Language Models . 40

vii

3.3.4.1 BERT . 41

3.3.4.2 RoBERTa . 43

3.3.4.3 DistilBERT . 43

3.3.5 Ensembles . 45

3.3.6 Cascades . 48

3.4 Delimiter Classification Unit . 51

3.5 IOB Tag Stitching Unit . 54

4 Experimental Design 56

4.1 Datasets . 57

4.1.1 In-Scope Dataset . 59

4.1.2 Out-of-Scope Dataset . 62

4.1.3 LoDU treated In-Scope Dataset . 63

4.2 ML Algorithms and Hyperparameter Optimization 66

4.2.1 ML Algorithms . 66

4.2.2 Hyperparameter Optimization . 66

4.2.2.1 Bayesian Optimization . 68

4.3 Evaluation Strategy . 69

4.3.1 Performance Evaluation Framework 76

viii

4.3.2 Timing Evaluation . 79

4.4 Software Tools and Libraries . 80

4.5 System and Hardware Requirements . 80

4.6 Summary . 81

5 Experimental Results and Analysis 82

5.1 Hyperparameter Search and Analysis . 83

5.2 In-Scope Data Results . 86

5.3 Out-of-Scope Data Results . 87

5.3.1 Ranking Results . 94

5.4 Cascade Threshold Analysis . 99

5.4.1 In-Scope Data - Cascade Threshold Analysis 99

5.4.2 Out-of-Scope Data - Cascade Threshold Analysis 100

5.5 Impact of LoDU and Delimiter Classification Unit 105

5.6 Statistical Tests . 107

5.6.1 Wilcoxon Signed Rank Test . 107

5.6.2 Friedman’s t Test and Nemenyi’s Post Hoc Test 109

5.7 Synthesis and Discussion . 111

5.8 Summary . 117

ix

6 Conclusions 120

6.1 Contributions . 121

6.2 Areas of Improvement and Future Work 122

References 126

APPENDICES 137

x

List of Tables

3.1 Timestamp Formats present in the Timestamp Enrichment Sub-module . . 27

3.2 Token to Tag Mapping . 32

3.3 One-to-Many relationship between the token and tags 33

3.4 Feature Functions used to build CRF . 36

3.5 Comparison of different Language Models 44

3.6 Log Entities separated by different delimiters 52

3.7 Features used for building the delimiter classifier 53

4.1 CSV Files Structure . 57

4.2 Distribution of the number of logs and entities for the In-Scope dataset. . . 61

4.3 Distribution of number of logs and entities for the Out-of-Scope dataset. . 64

4.4 Comparison of Metrics before and after treatment of logs by LoDU. 65

4.5 An example of the scoring categories for the different evaluation schemes. . 79

5.1 Hyperparameter Search Space for All Classifiers. 84

xi

5.2 Performance results for In-Scope data. 88

5.3 Strict Evaluation for Out-of-Scope Data. 90

5.4 Exact Evaluation for Out-of-Scope Data. 94

5.5 Inference times of NER approaches for Out-of-Scope Log Files. 95

5.6 Ranking of NER approaches for Out-of-Scope Log Files. 96

5.7 Ranking of inference times of NER approaches for Out-of-Scope Log Files. 97

5.8 Out-of-Scope Data: CRF-Transformer Cascade Threshold Analysis 102

5.9 Out-of-Scope Data: CBT Cascade Threshold Analysis 105

5.10 Strict Evaluation for Out-of-Scope Data without LoDU and Delimiter Clas-

sification Unit. 106

1 Partial Evaluation for Out-of-Scope Data. 138

2 Entity Type Evaluation for Out-of-Scope Data. 139

xii

List of Figures

2.1 Example Depicting IOB tagging . 16

2.2 Architecture of NERLogParser . 19

3.1 Example Depicting IOB tagging for logs. 21

3.2 System Architecture . 24

3.3 Entity Enrichment Module . 26

3.4 Example depicting Entity Shuffling . 29

3.5 Digit Handling Sub-Module . 30

3.6 NER Sequence to Sequence Models . 37

3.7 Transformer Neural Network . 39

3.8 Stacking Multiple Encoders to form BERT 41

3.9 Example of a sub-tokenised input for BERT 45

3.10 MV Ensmbl and SV Ensmbl using CRF, Transformer and BERT 47

3.11 Architecture of a Cascade . 49

xiii

3.12 Cascade Architecture built using CRF, BERT and Transformer. 50

3.13 Delimiter Classification Unit . 52

3.14 IOB Tag Stitching Unit . 55

4.1 Example of a grammar used to Tag Entities 58

4.2 In-Scope Length Distribution. 60

4.3 OOS Length Distribution . 60

4.4 Distribution of Entities in LoDU treated logs. 65

4.5 Modelling of Surrogate Function . 70

4.6 Token level evaluation and calculation of Confusion Matrix 71

4.7 An Example depicting different Prediction Scenarios. 75

5.1 Hyperparameter Importances and Contour Plots for CRF, Transformer and

BERT . 85

5.2 Strict F1 scores obtained using various NER approaches for In-Scope test

data. 87

5.3 Box Plot for Strict F1 scores. 92

5.4 Ranking of NER Approaches for Out-of-Scope Log Files. 97

5.5 Ranking of Inference Time of NER Approaches for Out-of-Scope Log Files. 98

5.6 In-Scope Data - Cascade Performance Result 100

5.7 Out-of-Scope Data - CRF-Transformer Cascade Performance Result 101

xiv

5.8 Out-of-Scope Data - CBT Cascade Performance Result 104

5.9 Heat Map depicting P values for Wilcoxon’s Signed Rank Test. 108

5.10 Wilcoxon Test - 95% conf. 109

5.11 Wilcoxon Test - 99% conf. 109

5.12 Heat Map depicting P values for Nemenyi’s Friedman Test. 110

5.13 Nemenyi’s Post Hoc Test depicting Ranking and Critical Difference 111

xv

Acronyms

BERT Bidirectional Encoder Representations from Transformers. iii, 5, 14, 22, 31, 41–44,

46, 47, 49, 51, 56, 66, 68, 69, 80, 83, 84, 86, 89, 96, 99, 105, 106, 108, 114–117, 120,

121, 124

BiLSTM Bidirectional Long Short Term Memory. ii, iii, 4, 16–18, 124

CB Cascade CRF-BERT Cascade. 51, 66, 86, 89, 92, 96, 99, 103, 108, 118

CBT Cascade CRF-BERT-Transformer Cascade. 51, 66, 86, 89, 92, 96, 99, 102, 108,

116, 118

Cisco ASA Cisco Adaptive Security Appliance. 62, 89, 101, 103, 106, 116

Cisco IOS Cisco Internetwork Operating System. 62, 89, 92, 101, 103, 106, 113, 116, 117

CNN Convolutional Neural Network. 16

CPU Central Processing Unit. 81

CRF Conditional Random Fields. iii, 16, 19, 22, 33–35, 46, 47, 49–51, 66, 69, 80, 83, 86,

89, 91–93, 98, 99, 105, 108, 113–117, 119, 120, 124

xvi

CSV Comma Separated Values. 57, 60

CT Cascade CRF-Transformer Cascade. 51, 66, 86, 90–92, 96, 99, 100, 103, 108, 113,

115, 118

ENT Entity. 16

GB Gigabyte. 81

GloVe Global Vectors. 17

GPU Graphical Processing Unit. 81

IOB Inside-Outside-Beginning. 16, 17, 21–23, 33–35, 37, 44, 54, 56, 57, 62, 69, 71, 73, 74,

80

IP Internet Protocol. 17, 25, 29, 35, 60

IPLoM Iterative Partitioning for Log Mining. 12

IQR Inter Quartile Range. 90, 91

JSON Javascript Object Notation. 2, 10, 54

LAnoBERT Log Anomaly BERT. 14, 15

LenMa Length Matters. 13

LoDU Log Diversification Unit. iv, 6, 22, 23, 30, 56, 59, 63, 81, 82, 105, 106, 112, 122

xvii

LoPU Log Parsing Unit. 22, 30, 31, 56, 59, 62, 63, 81

LSTM Long Short Term Memory. 16, 17, 38

ML Machine Learning. 3, 5, 22, 66, 121

MLM Masked Language Modelling. 42, 43

MV Ensmbl Majority Voting Ensemble. 47, 66, 86, 89, 91, 95, 114, 119

NER Named Entity Recognition. iii, iv, 3–8, 15–21, 31, 33, 34, 47, 51, 56, 57, 59, 66,

72–74, 76, 77, 80, 82, 86, 87, 90, 91, 93–95, 97, 105–107, 109, 112–114, 117–125

NERLogParser Named Entity Recognition Log Parser. 3–5, 17–19, 22, 46, 59, 66, 69,

86, 89, 91, 93, 96, 98, 108, 113, 120

NLP Natural Language Processing. iii, 4–6, 8, 14, 16, 18, 34, 38, 41, 42

NSP Next Sentence Prediction. 42, 43

RAM Random Access Memory. 81

RNN Recurrent Neural Network. 38

RoBERTa Robustly Optimized BERT Approach. 5, 31, 43, 66, 80, 89, 91, 96, 108, 111,

121

SGD Stochastic Gradient Descent. 31, 66, 86, 89, 111, 118

SIEM Security Information and Event Management. 2

xviii

SLURM Simple Linux Utility for Resource Management. 80

SV Ensmbl Soft Voting Ensemble. 47, 66, 86, 89–91, 93, 95, 98, 108, 114, 115, 119

WAE Windows Application Events. 62, 89, 93, 102, 103, 113, 116, 117

WSE Windows Security Events. 62, 89, 98, 102, 116

WSYE Windows System Events. 62, 89, 101, 103, 113, 117

xix

Chapter 1

Introduction

The development in technology and the data world is constantly revolutionizing our lives.

A plethora of industries have moved and are moving towards digitization. Watching your

favourite movie on NetFlix, getting your groceries delivered to your doorstep using In-

stacart, booking a taxi service using Uber, and digitizing your home using Alexa are some

examples that many of us enjoy in our day to day lives. We are unknowingly surrounded

by solutions that make our lives easier by providing services with a single command. The

shift toward cloud computing and distributed systems has helped these solutions scale

globally. The criticality and complexity behind these digital systems are immense. To

meet the business needs and ensure high availability, these systems should possess min-

imum downtime. There could be various reasons for the downtime, including deploying

a buggy code into the production environment, the server not being able to scale to the

number of incoming requests, network outages, cyber attacks, and power outages, to name

a few. System health and status monitoring thus become an integral part of the routine

1

in the Information Technology industry. System monitoring generally involves monitoring

the logs outputted by the system to reproduce bugs and carry out root cause analysis.

Even the modern-day Security Information and Event Management (SIEM) tools rely on

logs to detect and prevent cyber attacks.

A log is an unstructured piece of textual data outputted by a system, device, or appli-

cation containing information about the events taking place within a system throughout

its lifecycle. The logging of events could happen on a device’s storage or remotely over

another server. The content within logs may change based on the event taking place and

the source from which it originates. Systems generally log information about the events

in a file with a .log extension. The analysis of log files commences with the parsing of the

log instances. Log parsing involves the extraction of logical units from log instances. It is

difficult for developers, analysts and operatives to efficiently investigate vast amounts of

unstructured text. Thus, there is a need for a structured format. Searching for a keyword

is one of the most common operations performed on logs. For example, searching for a

particular transaction ID for which the system broke. Searching through such amounts

of unstructured text is a challenge for operatives involved in the investigation. Parsed

logs possess a Javascript Object Notation (JSON) like structured format containing key-

value pairs, making the searching operation efficient. The SIEM tools require the logs to

be parsed, and the extracted information act as features for each log instance. The fea-

tures extracted from the key-value pairs are then used to prevent attacks, followed by the

appropriate steps.

Most traditional log parsing approaches focus on building regular expressions, rules or

grammars to carry out information extraction [5,8,51]. We need a team of experts to build

2

regular expressions or rules for each type of log present in the system, and this process

needs to be repeated for all the systems present. Regular expressions or rules need to be

regularly maintained because of the addition or removal of applications or systems from

the environment. Since there is substantial human intervention, the process becomes prone

to errors. A single error in the rules can cause the system to break and be challenging to

debug. Hence, the entire process is costly in terms of time and human effort. Machine

learning based solutions can be used to extract information from log files. Named Entity

Recognition Log Parser (NERLogParser) [58] is one such solution which framed the log

parsing problem as a Named Entity Recognition (NER) problem. All the tokens present

in the logs are labelled with tags, and supervised learning is carried out. The use of such

Machine Learning (ML) driven automated solutions removes human intervention and saves

time and effort, making the process a lot more efficient and faster.

This thesis is focused on experimenting with a wide variety of machine learning and

deep learning methods to solve the problem of information extraction from log files. The

primary goal of this work is to improve the generalization capabilities of log parsers so that

they do not break when prompted with logs from unseen sources. The remainder of this

chapter discusses the motivation and the objective of the research work.

1.1 Motivation

Most of the work in the field of log parsing revolves around the use of regular expressions

and human-defined grammar or rules. Maintaining a database of regular expressions or

rules and regularly updating it is an overhead and is prone to errors. Domain Experts

3

need to be allocated specifically to this task as it requires intense effort and time. We

need to make sure after each deployment cycle that all the logging standards are being

followed. Logging methods and standards also need to be reviewed in order to protect the

log parser from breaking. In some cases, there can be a need to introduce organization-wide

standards.

A number of studies have been performed around generating message templates and

performing frequent pattern recognition [27, 43, 55, 63]. These approaches work on mining

a set of patterns/templates containing frequent words and wildcards ("*"). The wildcards

are used to denote placeholders and are positions in the template where not-so-frequent

tokens are present. The problem with these approaches is that they cannot be directly

used or even extended further to perform information extraction. The wildcard symbol

does not help in determining which type of entities might be present.

A relatively small number of studies have been carried out to perform information

extraction from log files using Machine Learning and Deep Learning techniques. NER-

LogParser makes use of a Bidirectional Long Short Term Memory (BiLSTM) based ar-

chitecture to carry out NER for log files. There have been recent advancements in the

Natural Language Processing (NLP) domain with attention-based systems and related

language models. This gives us an opportunity and room for experimentation and research

by studying these recent techniques to information extraction from log files.

4

1.2 Objectives

Most of the work with log files is focused on message template generation and is further ex-

tended to the problem of anomaly detection. Recent NLP techniques like Transformer [64]

and Bidirectional Encoder Representations from Transformers (BERT) [17] have also been

used to carry out anomaly detection from log files [25, 26, 38, 73], but there are no studies

in the literature supporting information extraction from logs using these architectures. We

extend the idea of NER used in [58] to carry out information extraction from log files using

recent NLP-based models like transformer neural network, BERT, Robustly Optimized

BERT Approach (RoBERTa) and more. Mentioned below are the various goals of our

research work:

• Goal 1: To perform an extensive comparison between various ML-based NER systems

used in the context of information extraction from log files. We experiment and

compare a total of 14 different approaches, including word-based baselines like Naive

Bayes, graph-based models like Conditional Random Fields, a pre-trained sequence-

to-sequence model for log parsing: NERLogParser, sequence-to-sequence models like

transformer, language models like BERT, ensembles and cascading classifiers of these

individual approaches.

• Goal 2: To understand the generalization capability of various NER approaches

used to extract information from log files. We evaluate the NER approaches for

their generalization capabilities to check how well the systems are able to extract

information from logs in a format unseen in the training phase. We use two different

5

datasets to carry out the evaluation process: 1) In-Scope data; and 2) Out-of-Scope

data. The In-Scope data is used to train-validate-test the various NER approaches.

On the other hand, the Out-of-Scope data contains logs originating from unseen

sources and is used to test how well the NER systems generalize. The generalization

aspect is an important factor to consider to understand whether the system can adapt

well to new incoming logs.

• Goal 3: To develop a system that tackles different challenges of information extrac-

tion from logs. We propose Log Diversification Unit (LoDU), a component of our

system responsible for diversifying and enriching logs. This component carries out

log augmentation and helps increase the generalization capabilities of various NER

approaches. We also develop the Delimiter Classification Unit, responsible for pre-

processing the logs to remove unwanted delimiters, which could become a bottleneck

for log parsing systems containing logs with various delimiters.

We employ the framework proposed in [52] to evaluate the NER systems. The evalua-

tion framework uses four different schemes to evaluate the systems resulting in 4 different

sets of precision, recall and F1 scores. Each evaluation scheme gives a different perspective

of looking at the extraction results. Using the framework, we are able to compare the

systems based on their extraction capabilities and are also able to understand the reasons

why the system is not able to perform well. This thesis intends to employ the latest ad-

vancements in NLP to address the problem of information extraction from log files. This

work also revolves around verifying and improving upon the generalization capabilities of

log parsing NER systems.

6

1.3 Publications

We have published a paper out of this research:

• [10] Anubhav Chhabra, Paula Branco, Guy-Vincent Jourdan, and Herna L. Viktor.

"An Extensive Comparison of Systems for Entity Extraction from Log Files." In

International Symposium on Foundations and Practice of Security, pp. 376-392.

Springer, Cham, 2022.

We plan to write an additional journal paper and are working on the same.

1.4 Organization

The remainder of this thesis is structured as follows. Chapter 2 discusses the related

work in the field of log analysis to help the reader understand what advancements are

taking place considering the logs. We then discuss NER and how it can be used to tackle

information extraction from logs in detail. Chapter 3 explains the complete system design

and its various components. We describe in detail how different algorithms are employed to

carry out NER in log files. We also look at what techniques can be employed to make the

classifier more generalized to new and unseen logs. Chapter 4 presents the experimental

design of the system and throws light on the used datasets, hyperparameter optimization

and evaluation strategy. The results and analysis are presented in Chapter 5. Finally,

Chapter 6 provides the main conclusions and presents improvements and directions for

future work of this research.

7

Chapter 2

Related Work

This chapter discusses the relevant work performed in the field of log analysis. It begins

by throwing light on the diverse nature of logging standards. We then examine tradi-

tional information extraction methods, including regular expression-based extractions. It

is followed by a discussion of various studies that suggest approaches to perform message

template extraction. We also discuss the recent advancements in NLP and how it has

benefited log analysis. The chapter then discusses NER in detail and how it can be framed

to tackle log parsing. Finally, we discuss the possible areas of improvement and research

gaps that should be addressed.

2.1 Diversity in Logging Practices

Logs can be used to cater to multiple purposes like real-time monitoring of systems,

anomaly detection, and even calculating statistics related to the health and life of the

8

system. There have been protocols in place to make the process of logging standardized

across various use cases. But due to the dissimilar requirements of different use cases, these

protocols may become bottlenecks. Hence, these are not followed for all the use cases. One

such standardization is the Syslog protocol [23]. It lays out the various rules and formats

that provide use case specific information to be plugged in a structured way.

It is essential to log information about the events happening within a system. Various

organizations and communities also work on setting up best practices related to logging,

which the developers may or may not follow. Below mentioned are some of the common

practices while logging information about events.

• Using standard logging libraries to log information about events.

• Logging with proper usage of severity levels of events.

• Using a common language like English for logging across various systems.

• Using a common structured or unstructured standard for logging messages across all

the systems.

The standards mentioned above are not always followed and may vary across teams and

organizations. For example, some developers may choose to use print statements to log the

information about events rather than using logging libraries. Logging generally includes

the severity level of messages; INFO, DEBUG, and CRITICAL are some of the severity

levels of the logged events. Some developers may choose not to use these levels properly

and could log CRITICAL messages at an INFO level. Some developers may want to violate

9

the use of English language while logging and could use their native language to log the

information. Another approach that can vary across developers is logging information in a

machine-parseable format. Some developers could log information in JSON-like key-value

pair format, while others stick to the semi-structured text.

Hence, such a wide variety of practices, personal choices, and no adherence to the

practices across teams/organizations lead to a wide diversity in the structure, content and

other properties of logs. This makes the information extraction task even more challenging.

2.2 Traditional Methods for Information Extraction

Most of the traditional methods for information extraction from log files rely either on

regular expressions or human-made rules/grammar. This section will discuss some of these

works, how the information extraction is performed, and the typical issues that arise while

using these approaches.

Chen et al. [8] worked on finding the correlation of the event logs. They use five sources

of logs in their work, including Door Logs, Windows 2000 Security logs, Apache Server Logs,

Browser Logs, and SysLogs. The logs from different sources are converted to a canonical

representation set out by the authors. The canonical representation consists of 11 fields

to be extracted from the event logs. These canonical representations are then stored in a

database which is finally used to perform the correlation analysis. The conversion of the

raw logs to the canonical representation includes the use of pre-parsers and parsers. The

pre-parsers include rules related to the pre-processing of log instances. On the other hand,

10

the parsers are based on Java-based regular expressions. Various sets of regular expressions

are developed to tackle the parsing of multiple log files, which help extract the 11 fields to

form the canonical representation.

Schatz et al. [51] proposed automated detection of forensic scenarios based on the

information gathered from the log files. Three different log sources, including Windows

2000 System logs, Apache Logs and Door Logs, are used to create a knowledge base.

Since the unstructured and heterogeneous logs cannot be inserted into the knowledge base,

authors use parsers to extract the information and represent logs from all sources in a

standardized manner. The parsers used to extract the information are purely based on the

use of regular expressions. The structured logs are then pushed to the Jena framework

used to create the knowledge base.

Traditional methods perform well at parsing the logs for which the regular expressions

and rules are already present in the system. But, as soon as a new log is made incident, the

system breaks leading to poor extraction of information. Even a small update in the system

can lead the parser to collapse. For systems relying on traditional methods, regular human

intervention is needed to maintain and update the regular expressions. Hence, it becomes

a costly process in terms of human labour and time. Due to the reasons mentioned above,

traditional methods may not be a scalable approach for the rapidly growing distributed

and complex systems.

11

2.3 Message Template Generation

Log parsing is an ambiguous term used for different tasks. Many studies employ this term

to refer to the template generation process while few others refer to information extraction

from log files. Most of the solutions that carry out template generation use unsupervised

learning methodologies. This section will discuss the various unsupervised log parsing

approaches that already exist and why they are not suitable for our use case.

Vaarandi et al. [63] proposed a novel data clustering algorithm and a tool for mining

frequent patterns from log files. The main idea behind the algorithm is based on the

frequency of words present in the log files. The author studies that most words in log

files are infrequent, whereas a small fraction of terms is frequently present. Using this

characteristic of log files, the algorithm performs a density-based clustering. A total of three

iterations are performed over the log files. The first pass over the log files mines the frequent

words considering their absolute position; the second pass prepares the cluster candidates,

including grouping the frequent words to form a template. The final iteration helps select

the cluster candidates having an occurrence greater than a user-defined threshold. The

final template consists of wildcards ("*"), representing the variables or infrequent words.

The template generation problem can also be solved using hierarchical partitioning of

log instances based on their properties. Makanju et al. [43] proposed Iterative Partitioning

for Log Mining (IPLoM) , a novel algorithm that performs better than [63] and does not

depend on the frequency of words. The algorithm consists of 4 steps, including three

iterative partitioning steps and a template generation step. The first partitioning step

divides the log instances based on the token count such that the logs with the exact token

12

count are clustered together. It is followed by partitioning each cluster based on the token

position. The token position with the least number of unique values is chosen, forming

groups based on each unique value. The third partitioning is based on finding the most

occurring pair of tokens. The final step is the generation of templates containing wildcards.

Length Matters (LenMa) [55] uses the length of tokens present in the logs to develop a

novel online clustering algorithm. It performs a single pass over the logs to group the log

instances and generates log message templates in an online fashion. It starts by preparing

a word length vector and a word vector for the new incoming log instance. The cosine

similarity score is computed between the word length vector and all the clusters with the

same word length. If the similarity score is greater than a threshold, then the incoming log

is a match for the cluster. Otherwise, a new cluster is formed using the new log instance.

The cluster vectors are updated every time a new instance matches the signature. The

cluster’s word length vector is used to calculate the cosine similarity, whereas the cluster’s

word vector generates message templates.

Xu et al. [70] performed source code analysis, which included iterating the entire source

code to form log message templates. Once the message templates have been built, the real-

time logs are matched with every log template to extract the information. The templates

contain wildcards/placeholders which can be used to capture the information from the

incoming log instance. Many more solutions tackle the log parsing problem by generating

templates, including Drain [27] and Spell [20]. Drain makes the use of regular expressions

and a fixed depth tree, whereas Spell makes the use of the Longest Common Subsequence

approach.

13

All the message template generation approaches are suited well for tasks like pattern

matching, clustering of logs, and even carrying out log anomaly detection through the

use of these templates. These approaches generate wildcards which represent placeholders

in the templates. Knowing what field the wildcard represents is not handled by these

approaches, and hence, these do not hold value in the information extraction domain.

2.4 Attention based Log Analysis

There have been recent advancements in the area of NLP with the introduction of attention-

based mechanisms such as the Transformer Neural Network [64], BERT [17] and other large

language models. These techniques have been widely adopted across various domains but

have not been widely studied for log analysis. Only a few studies carry out anomaly

detection using BERT as the underlying architecture.

LogBERT [25] is a self-supervised framework that helps predict anomalies present in a

log sequence. It uses the underlying principle of BERT but tweaks the objective functions

that need to be minimized. LogBERT is pre-trained using two tasks: 1) Mask Language

Modeling of log sequences depicting normal behaviour, which helps the model understand

the context within a log sequence; 2) Volume of hypersphere minimization, which focuses

on bringing the normal log sequences closer, whereas the anomalous logs can far apart

in embedding space. Log Anomaly BERT (LAnoBERT) [38] is another study showing

how BERT can be used to detect log anomalies. LAnoBERT is different from LogBERT

as, rather than considering log sequences, LAnoBERT considers single log instances irre-

spective of their temporal order. Pre-training of LAnoBERT is carried out using Masked

14

Language Modeling of the normal log instances. Masked tokens are predicted using the

pre-trained model, and the predictions’ probabilities are calculated. Since LAnoBERT is

trained on normal log instances, the confidence of predicting masked tokens in normal

cases is high. In contrast, this behaviour is not observed for the logs which haven’t been

seen during the pre-training phase. Masked tokens present in the anomalous logs are not

predicted with high confidence; hence, this property can be used to detect anomalies in

the log data.

Current attention-based log analysis studies do not cover the information extraction

aspect. There hasn’t been any formal work that uses these methods to perform information

extraction from log files. However, deep learning techniques have been employed to tackle

information extraction in [58].

2.5 NER for Log Parsing

NER is the process of extracting named entities from a piece of text [49]. The initial idea

of NER was developed to extract named entities like person, organization and location.

NER includes annotating sections of texts with pre-defined class labels that we want to

identify. Formally framed, NER can be considered a multiclass classification task where

the primary goal is to predict which text sections belong to which categories. Over the

years, the idea of NER has evolved to solve a wide variety of information extraction and

text labelling tasks. It has been actively employed in medical domains [53,68] and has also

been extended to languages other than English [4, 9].

15

Since classification is a supervised learning task, we need labelled pieces of text to

perform NER. Every token in the text is tagged with a respective label using a standardized

process. The most widely accepted labelling process is the Inside-Outside-Beginning (IOB)

tagging. IOB tagging includes labelling tokens using three different tags: B-ENT, I-ENT

and O, where ENT is the acronym for the named entity. If the named entity spans a single

token, it is tagged as I-ENT. On the other hand, if a named entity spans multiple tokens,

then the first token is tagged as B-ENT, followed by I-ENT for all the tokens contained in

the entity. The O tag is used to label all the tokens that do not belong to any pre-defined

categories. Figure 2.1 shows the IOB tagging of a sentence having three named entities.

Figure 2.1: Example Depicting IOB tagging

Studies have been carried out to perform NER using traditional machine learning clas-

sifiers like Naive Bayes and more [7, 21, 62]. Deep Learning techniques have also been

widely studied and employed for applications involving NER. Chiu et al. [13] employed

Long Short Term Memory (LSTM) and Convolutional Neural Network (CNN) to perform

NER, whereas [36] proposed a combination of BiLSTM and Conditional Random Fields

(CRF). Recent advancements in NLP and attention-based mechanisms have enabled the

language models to cater to token classification tasks such as NER [17,42,50].

The concept of NER can be extended to the log parsing problem. Log parsing is

the information extraction process from log instances; similarly, NER is the process of

16

extracting named entities from text. Hence, the overlap in the primitive goal of both

the problem statements lets us frame the log parsing problem as a NER problem. Log

records contain text sections representing various fields/entities like timestamp, IP address,

hostname, service and more. Each of these fields may span one or more tokens in length,

allowing the IOB tagging to be carried out. Every token in the log instance must be

labelled with its respective IOB tag. Once the data is prepared in such a format, different

classifiers can be trained and evaluated.

NERLogParser [58] applies NER to extract information from log files and support

digital forensics. NERLogParser is an automatic tool capable of parsing logs from various

sources. It comes bundled as a pre-trained model in a python package. The log parser

is pre-trained on a dataset containing over 300,000 log instances spanning eleven different

sources. The NER problem is further framed as a sequence-to-sequence learning task,

which aims to convert an input sequence to an output sequence. In the context of log

parsing, the input sequence is the sequence of tokens present in the logs, whereas the output

sequence contains the respective IOB tags. NERLogParser’s underlying architecture relies

on BiLSTM. BiLSTM [24] consists of two different LSTMs, one in the forward direction

(left-to-right) and the other in the backward order (right-to-left), giving the architecture

the ability to learn the context of words from both the directions.

Since words cannot be directly fed to the BiLSTM architecture, authors use the Global

Vectors (GloVe) word embeddings to map words to vectors. The GloVe word embed-

ding [46] is similar to a lookup dictionary which contains numerical vectors for different

words. The idea of word embeddings reflects that words with similar meanings should be

close in their vector space while dissimilar words should be far apart. In this use case,

17

NERLogParser makes the use of glove.6B embedding with a size of 300 dimensions. NER-

LogParser also uses character-level embeddings to deal with unknown tokens as used in [36].

The word embedding and the character-level embedding of the log token are concatenated,

and the resultant vector is fed to the BiLSTM network for training. Figure 2.2 shows the

underlying architecture of NERLogParser. The authors divided the log data into a 60-20-

20 split for training, validation and testing sets. To carry out evaluation on the testing

set, the authors use precision, recall, F1 score and accuracy to compare NERLogParser

with other traditional machine learning approaches where NERLogParser outperforms the

other methodologies.

2.6 Current Gaps in Information Extraction from Logs

Recent NLP advancements, including neural machine translation [3,64] and language mod-

els [17, 42, 50], have impacted a wide variety of applications. Studies have improved the

architectures in terms of performance metrics, training times and even inference times on

benchmarking datasets. The introduction of the attention mechanism in [3] helps unfold

how different tokens rely on each other within a sentence. The transformer neural net-

work [64] removes the use of recurrent units and relies entirely on the attention mechanism

resulting in faster training times. These architectures frame the neural machine translation

as a sequence-to-sequence problem and improve over the previously existing state-of-the-art

methodologies. NERLogParser uses the BiLSTM architecture to frame the NER problem

as a sequence-to-sequence learning problem. The attention-based methodologies discussed

above show state-of-the-art performance on the machine translation tasks, but their per-

18

Figure 2.2: Architecture of NERLogParser

formance efficiency has not been evaluated in our application’s context. Hence, there is a

possible gap for further research in this area. Another area which has not been explored

is the application of language models to extract information from log files. The advance-

ments in language models let us carry out multiple tasks, including NER. No formal study

applies or evaluates the language models for information extraction, allowing us to extend

this idea further.

NERLogParser compares its performance with standard machine learning methods,

including Naive Bayes and Perceptron, to name a few. CRF [65] classifier is a method-

19

ology that has been used to carry out NER, but the authors do not consider it while

performing the comparison. A clear research gap exists in conducting a systematic and

detailed comparison study evaluating multiple non-traditional classifiers. We employ vari-

ous methodologies and perform a detailed comparison between NER approaches. Another

motivation behind this work is to evaluate the generalizability of a log parser. To the best

of our knowledge, no study in the literature evaluates the methodologies in this aspect.

The primary goal of our work is to develop a system capable of parsing the logs originat-

ing from new and unseen sources. We discuss the system development and evaluation in

Chapters 3 and 4, respectively.

20

Chapter 3

System Design

3.1 System Architecture

The problem of log parsing can be addressed using supervised machine learning as our goal

is to classify a section of text belonging to a particular class. We frame the log parsing

problem as a NER problem. To carry out NER, we need to have the data in a specific IOB

tagged format as used in [49] and need to train and test machine learning models using

the IOB-tagged logs. Figure 3.1 depicts and example of IOB tagging for a log instance.

Figure 3.1: Example Depicting IOB tagging for logs.

The systems discussed in the previous chapter based on regex, grammars [8, 51] and

21

other ML approaches [58] do not consider the wide variety and constant evolution of logs.

Such systems could break when there is even a minute difference in the log format. We

carry out various experiments to support this statement in section 5.5. Our primary goal

in this work is to develop an end-to-end system capable of performing well with logs from

previously seen sources and logs from unseen sources.

The information extraction system that we propose is divided into a total of 4 units.

These are: 1) Log Diversification Unit (LoDU), 2) Log Parsing Unit (LoPU), 3) Delimiter

Classification Unit, and 4) IOB Tag Stitching Unit. Figure 3.2 reflects the complete end-

to-end flow of the system containing all the mentioned units. These units are completely

decoupled and can be used as stand-alone units without dependencies. These units include

different modules responsible for carrying out different operations on the log data.

Since our primary focus is on performing well on logs from new and unseen logs, we

introduce LoDU. The raw IOB-tagged logs are firstly passed through LoDU, which is re-

sponsible for enriching the logs and adding randomness/diversity to the logs. The enriched

and diversified logs are then used to train the machine learning models present in LoPU.

LoPU consists of diverse models including traditional word-based baselines such as Naive

Bayes, graph based models like CRF [65], sequence-to-sequence model: Transformer Neu-

ral Network [64], language models including BERT [17], ensembles and complex cascades

of many models. NERLogParser is used as a pre-trained log parsing tool and is directly

used as a log parser and evaluation is performed.

At the time of inference, the logs are first passed through the Delimiter Classification

Unit, which converts logs into space-separated tokens and eventually fed to the LoPU. The

22

trained models are then used to predict IOB tags for the testing logs, which are then fed

to the IOB tag stitching unit to obtain the entities. We provide more details on these four

key units in the upcoming sections.

3.2 Log Diversification Unit (LoDU)

Our goal is to design a system capable of performing well not only on logs from seen

sources but also on logs that originate from a set of new and unseen sources. Building

Machine Learning models on a dataset that is just constrained to a few sources could lead

to overfitting [18] and would result in models not generalizing well to logs from unknown

sources. Data Augmentation techniques can help boost the performance of text classifi-

cation systems [67]. LoDU performs data augmentation by adding new synthetic logs to

the existing log dataset and providing randomness and diversity. LoDU takes the raw logs

and outputs augmented logs that are fed to the Log Parsing Unit to train different ma-

chine learning models. LoDU consists of two modules: 1) Entity Enrichment Module and

2) Log Pre-processing Module. We will discuss these modules in detail in the upcoming

subsections.

3.2.1 Entity Enrichment Module

The first component of LoDU is the Entity Enrichment Module. The Entity Enrichment

Module takes care of adding diversity to the logs by introducing/replacing entities within

the logs. The enriched logs help achieve a training set that could be representative for

23

Figure 3.2: System Architecture

24

new logs and could help avoid overfitting [72]. Figure 3.3 depicts the Entity Enrichment

Module, which consists of two different ways of entity enrichment as listed below.

• Entity Gazetteer: The first way to achieve entity enrichment is to define an entity

gazetteer. Entity gazetteer is a pre-defined list of entity values that is used as a

replacement for the entity values present in the training logs. An example of such

a list is a month gazetteer that can be used to diversify the logs which just contain

timestamp having a single month.

• New Entity Generation Logic: Another way to add/replace entity values could be to

dynamically generate values rather than using a fixed list of values. This approach

could be suitable for cases where the entities could have a huge number of possible

values. For example, entities like IP addresses could be dynamically generated using

stored procedures.

The same concept can be applied to enrich any number of entities to achieve diversity.

We apply the entity enrichment module to two different entities and explain them in the

following sub-sections.

3.2.1.1 Timestamp Enrichment Sub-module

Logs originate from a variety of sources and include information relating to events that

take place within a system, application or device. Depending upon the source and the

events taking place, the entities within a log change. These entities can be but are not

limited to hostname, IP address, timestamp, and more. Generally, timestamp is the only

25

Figure 3.3: Entity Enrichment Module

common entity present in the logs, irrespective of source and event. Though it is common

across logs from different sources, it is heterogeneous in nature [16] and varies a lot in

terms of format and when the information has been logged. There are several timestamp

formats depending upon the precision of time that we want to record. Some may contain a

12-hour time format, while some could be following a 24-hour time format. Some formats

could contain months in numeric form, while others could have a string representation. A

few formats could contain granularity of up to seconds; on the other hand, a few do not

represent the seconds. There could even be formats where the year is not present; just the

month and day are enough to represent the timestamp of the event. All of the formats

are use-case dependent and are generally in the hands of System Administrators, DevOps

Engineers and developers. Hence, the timestamp format could vary across organizations,

departments and even across development teams.

Since there are such diverse timestamps present in the logs, it can be challenging to

intelligently predict them, given the fact that the logs are constrained to a few sources and

26

are collected over a short period. One way to tackle this situation is to collect the logs from

many sources and over a long period (so that the timestamp includes all the months/days

and a few years). A better and quicker way to tackle this challenge is by diversifying and

enriching the timestamps present in our training data. This way, we achieve a training set

with enough diversification such that the models understand the concept of the timestamp

in general rather than using an extensive dataset with all the possible permutations and

combinations of timestamps. The diversity in timestamp can be introduced in two different

ways: 1) by introducing new and unseen timestamp formats into the data; and/or 2) by

introducing new and unseen timestamp values into the data.

Table 3.1: Timestamp Formats present in the Timestamp Enrichment Sub-module

Time format Year
Present

Timestamp Format

24 hour format Yes <d B Y H:M:S>, <d b Y H:M:S>, <d-B-Y H:M:S>, <d-b-Y H:M:S>, <d.m.Y H:M:S>,
<d/m/Y H:M:S>, <d-m-Y H:M:S>, <m.d.Y H:M:S>, <m/d/Y H:M:S>, <m-d-Y H:M:S>,
<Y.m.d H:M:S>, <Y/m/d H:M:S>, <Y-m-d H:M:S>, <d/B/Y H:M:S>, <d/b/Y H:M:S>

24 hour format No <d B Y I:M:S p>, <d b Y I:M:S p>, <d-B-Y I:M:S p>, <d-b-Y I:M:S p>, <d.m.Y I:M:S p>,
<d/m/Y I:M:S p>, <d-m-Y I:M:S p>, <m.d.Y I:M:S p>, <m/d/Y I:M:S p>, <m-d-Y I:M:S
p>, <Y.m.d I:M:S p>, <Y/m/d I:M:S p>, <Y-m-d I:M:S p>, <d/B/Y I:M:S p>, <d/b/Y
I:M:S p>

12 hour format Yes <d B H:M:S>, <d b H:M:S>, <d-B H:M:S>, <d-b H:M:S>, <d.m H:M:S>, <d/m H:M:S>,
<d-m H:M:S>, <m.d H:M:S>, <m/d H:M:S>, <m-d H:M:S>, <d/B H:M:S>, <d/b H:M:S>

12 hour format No <d B I:M:S p>, <d b I:M:S p>, <d-B I:M:S p>, <d-b I:M:S p>, <d.m I:M:S p>, <d/m
I:M:S p>, <d-m I:M:S p>, <m.d I:M:S p>, <m/d I:M:S p>, <m-d I:M:S p>, <d/B I:M:S
p>, <d/b I:M:S p>

The entire set of training logs is passed through the timestamp enrichment sub-module

to obtain a timestamp-enriched version of the dataset with a total of 54 timestamp formats.

Table 3.1 depicts all the timestamp formats produced by the timestamp enrichment sub-

module.

27

3.2.1.2 Hostname Enrichment Sub-module

Hostname is another common entity found in logs of applications/devices that operate

over a network. It is generally an alphanumeric string uniquely identifying a computer

system within a local network. The alphanumeric nature of the hostname entity makes the

prediction challenging as the alphanumeric list is inexhaustible. Just a few hostnames in

the training dataset can lead to over-fitting [72] as the prediction models could memorize

the hostname string literals. Adding diversity to the hostnames is thus essential as it could

make the models generalizable about predicting hostnames.

A preliminary analysis is run on the training logs to find out the diversity in the

hostnames. A total of 4 hostnames are found in the logs: ubuntu, ps3, nssal-ps3, victoria.

Such few hostnames can lead to overfitting, thus there is a need to diversify the hostnames

as well. To carry out the enrichment process for hostnames, we use a hostname gazetteer

containing one million hostnames and randomly replace the four hostnames with random

hostnames present in the gazetteer. The resultant enriched dataset contains over 65K

hostnames which could avoid over-fitting.

3.2.2 Log Pre-processing Module

The Log Pre-Processing Module encapsulates the Entity Shuffling and Digit Handling Sub-

modules. These sub-modules are responsible for introducing diversification and avoiding

overfitting. The upcoming subsubsections discuss these sub-modules in detail.

28

3.2.2.1 Entity Shuffling Sub-module

Logs from similar sources may not always have the same order of entities. For example,

the logs of a server may have an IP address present after the request timestamp, whereas

a different server may have an IP address prior to the timestamp. This change in order

is evident because of the different configurations that the logs can possess. Hence, the

sequential order of entities in a log is prone to change because of human intervention.

Figure 3.4: Example depicting Entity Shuffling

Building Machine Learning models on a fixed set of sequences for a single source may

lead to overfitting. Such models would not be able to generalize well when prompted with

unseen logs from various sources. Adding diversification to the logs in terms of the sequence

of entities can help us generalize better. As shown in Figure 3.4, the Entity Shuffling Sub-

module shuffles the order of the entities present in the log, providing a more rich set of

logs in terms of sequential order. The shuffling adds another level of diversification and

29

randomness to the logs by introducing modified logs with different entity sequences.

3.2.2.2 Digit Handling Sub-module

Many entities present in a log can be purely numeric like date, year, log level and number of

bytes transferred, to name a few. Entities like date and log level possess a fixed number of

values, but this is not the case with all the numeric entities present in the log. Some numeric

entities may possess an inexhaustible list of values that could make the learning process

difficult. Machine Learning algorithms work with tokens/textual data by maintaining a

set of training vocabulary. Since the list of possible values that the numeric entities can

possess is inexhaustible, the size of the vocabulary could increase enormously which hinders

the learning process. To tackle this situation every digit present in the log is converted to

a special <num> token. Figure 3.5 shows an example of a pre-processed log.

Figure 3.5: Digit Handling Sub-Module

3.3 Log Parsing Unit

Once the logs have been augmented and enriched using LoDU, these are passed to the Log

Parsing Unit (LoPU). LoPU is the core component of the system as it takes care of all

30

the models’ training and serves the log parsing requests during the inference phase. LoPU

consists of various models, including word-based baselines: Naive Bayes [47], Perceptron

[48], and Stochastic Gradient Descent (SGD) [6], graph-based model: Conditional Random

Fields [65], sequence-to-sequence model: Transformer Neural Network [64], neural language

models like BERT [17], RoBERTa [42] and DistilBERT [50], ensembles of the standalone

models and even more complex models like cascading classifiers. We experiment with a

total of 14 models, all of which treat the log parsing problem as a NER problem. Since

models vary a lot in terms of perspective and fundamentals, the input to these models

could differ too. Each model present in LoPU has its pre-processor that converts the log

data to a model-friendly format, and this is used to carry out the training process.

The presence of multiple models in LoPU gives users and domain experts the ability

to switch between models and use them on a use-case basis. For example, ensemble-

based classifiers can have a huge memory footprint and may even take time during the

inference phase. Because of this reason, ensembles may not be a good fit for real-time

use-cases. Such models are not a good fit for environments that demand less computing

and memory usage. On the other hand, ensembles might be the best option if a use case

allows such bandwidth in terms of time and memory. Word-based classifiers like Naive

Bayes may not possess high performance. Still, they are included in the LoPU because the

traditional word-based methodologies can be considered a decent baseline to compare other

classifiers/approaches. Further, this section discusses the traditional word-based methods

followed by other complex NER approaches.

31

3.3.1 Traditional Methods

Traditional methods are the word-based or token-based methods used as baselines in our

work. These methods are purely based on the vocabulary (set of tokens) seen during

the training phase. Based on the knowledge learnt from the vocabulary, the inference is

carried out. The token-based classifiers do not take context into account, which means the

presence of neighbouring words does not impact the prediction of a particular token, and

hence these classifiers are purely based on the training vocabulary. Many standard machine

learning algorithms could be used as baselines, but we decided to choose Naive Bayes [47],

Stochastic Gradient Descent [6], and Perceptron [48]. These classifiers are trained on a

token-tag mapping, as shown in Table 3.2.

Table 3.2: Token to Tag Mapping

Token Tag

01-12-2020 B-TIM

13:11:46 I-TIM

ubuntu I-HOS

gdm[8057]: I-SER

pam_unix(autologin): I-SUB

session O

opened O

32

All the training logs are traversed and the token-tag pairs are extracted. As seen in

the Table, tokens are the space-separated words present in the log instance, and the tag

represents the corresponding IOB tag. The NER task for the baseline methods is simply

a multiclass classification problem where the algorithms have to pick a tag for each token

present. The tokens and tags possess a one-to-many relationship as the same token in

the log can belong to multiple entities and hence have different tags; this can be seen in

Table 3.3. The token "May" has 3 different tag mappings: B-TIM. I-TIM and O, this

one-to-many mapping could make the learning process harder as there is no other factor

to determine the entity to which the token belongs. The token-tag mapping is converted

to a one-hot-encoded form, resulting in a sparse matrix. This sparse matrix is finally used

to train the token-based baseline classifiers.

Table 3.3: One-to-Many relationship between the token and tags

Log Instance IOB tags Mapping

May 14, 2021 B-TIM I-TIM I-TIM May:B-TIM

14 May 2021 B-TIM I-TIM I-TIM May:I-TIM

Session closing for user May O O O O O May:O

3.3.2 Graph based Methods

Conditional Random Fields (CRF) [65] is an undirected graphical model that finds its

significance in the information extraction domain. CRF is a heavily used model in the field

33

of NLP to tackle sequence-related tasks such as sequence labelling problems. It has been

utilized in medical applications, including Biomedical NER, Disorder NER, and Disease

NER, to name a few [40, 53, 68]. CRF has also been used to carry out NER in languages

other than English [4,9]. In its primary sense, NER for logs is a sequence labelling problem

where the input is a sequence of log tokens, and we need to label each token with an IOB

tag. The sequential and ordered nature of entities within a log makes CRF a sound fit to

drive NER. Unlike the traditional baseline methods, CRF takes context into account by

looking into the neighbouring words and IOB tags, making it a better fit for predicting

sequences.

CRF defines the conditional probability of an output sequence Z1:n given an input

sequence X1:n, as shown in Equation 3.1.

p(Z1:n|X1:n) =
1

K
exp(

N∑︂
n=1

F∑︂
i=1

λifi(Zn−1, Zn, X1:n, n)) (3.1)

where K =
∑︁

Z1:n
exp(

∑︁N
n=1

∑︁F
i=1 λifi(Zn−1, Zn, X1:n, n)) is a normalization factor which

is used to bring the value of probability between 0 and 1, fi are feature functions and λi

are the weights assigned to the feature functions, F is the total number of feature functions

considered, N is the total number of tokens present in a log instance, and n is the current

index being considered. In the equation above, we observe that for each token index n, a

weighted summation of all the feature functions fi is performed using weights λi. This is

repeated for all the N indices and then finally divided by a normalization factor K which

brings down the probability value between 0 and 1. This process is continued for all the

log sequences present in the training dataset.

34

The whole idea of CRF revolves around feature functions. Feature function fi is a

function that takes in input sequence tokens, word-level features for these tokens, current

index of consideration and the IOB tags; and returns a real value. All of these functions

carry weights λi that are to be learnt at the time of training. Table 3.4 depict the various

feature functions used to train the CRF classifier. The feature functions depend on the

use case and may change depending upon the problem being solved. Different properties

of logs and characteristics of various entities were studied and analysed to come up with

the final list of feature functions. To take context into account, for an index i, feature

functions of the ith, (i + 1)th, and (i − 1)th are computed and used in training. These

features are engineered by taking into account the characteristics of logs, for example, not

all the words in logs are part of the English vocabulary. Similarly, entities like IP address

are of fixed length and contain periods in between. Such characteristics are used to engineer

approximately 17 feature functions.

During the training phase, we compute the conditional probability for all the sequences

present in the training dataset and try to maximize the conditional likelihood objective

function using gradient descent. This way, we find the optimal set of learnable weights

λi and each feature function is assigned a weight/importance. Equation 3.2 depicts the

conditional likelihood computed for m sequences present in the training dataset.

m∑︂
j=1

log(p(zj|xj)) (3.2)

where zj and xj depict the jth output and input sequence respectively.

35

Word-Based Functions Return Type Description

is_pure_digit Boolean 1 if the token is pure digit else 0.

is_pure_alpha Boolean 1 if the token is pure alphabetic else 0.

is_alphanumeric Boolean 1 if the token is alphanumeric else 0.

contains_slash Boolean 1 if the token contains slash else 0.

contains_period Boolean 1 is the token contains period else 0.

num_slash Numeric The number of slashes present in the token.

num_period Numeric The number of periods present in the token.

length_of_word Numeric Total number of chars in the token.

is_english_word Boolean 1 if the token is present in English Dictionary else 0.

is_upper Boolean 1 if the token is uppercase else 0.

is_title Boolean 1 if the token is titled.

contains_num Boolean 1 if the token contains number else 0.

contains_symbols Boolean 1 if the token contains any symbols else 0.

word.lower String The lower-cased token.

word_suffix String The suffix of the token.

is_eos Boolean 1 if the token is end of the sentence else 0.

is_bos Boolean 1 if the token is beginning of sentence.

Table 3.4: Feature Functions used to build CRF

36

3.3.3 Sequence to Sequence Models

The problem of log parsing can also be framed as a sequence-to-sequence task. A sequence-

to-sequence model involves mapping a variable-length input sequence to a variable-length

output sequence. For a log parsing use case, log tokens can be considered an input sequence,

and the related IOB tags can be regarded as the output sequence. A model can be trained

using a dataset present in such a format. Depending upon the length of the input and out-

put sequences, several architectures have been proposed to solve the sequence-to-sequence

problem, and Figure 3.6 depicts two such architectures. The first architecture represents

an encoder-decoder model in which the length of the input and output sequences may vary.

In contrast, the second architecture can be employed in use cases where the lengths of both

sequences match.

Figure 3.6: NER Sequence to Sequence Models

37

The encoder-decoder architecture has been widely used in NLP tasks and has shown

remarkable results in the field of machine translation. Both Recurrent Neural Network

(RNN) [61] and Long Short Term Memory (LSTM) [29] have been used to solve the problem

of machine translation [14,60]. Irrespective of the recurrent units, the encoder is responsible

for reading the input sequence one token at a time and encoding information into a fixed-

length context vector that is passed to the decoder block, which outputs the tokens of

the output sequence one step at a time. This architecture faces difficulties for use-cases

involving long-length sequences as the fixed-length context vector cannot carry enough

knowledge to decode long-length sequences [3].

Bahdanau et. al [3] introduced the notion of attention, which made decoding long-

length sequences easier. The authors presented an architecture that disregards using a

single fixed-length context vector and instead passes a set of attention weights to the

RNN/LSTM unit at each time step. The fixed-length context vector carries a hidden

representation of the entire sentence used for decoding sentences. In contrast, the notion

of attention helped the model search for input sequence segments relevant to the target

word being predicted.

Another solution in the sequence-to-sequence domain is the transformer neural net-

work [64]. The transformer neural network purely relies on the attention mechanism and

eliminates the need for any recurrent units like RNN or LSTM. The elimination of recur-

rent units leads to faster training times as the input sequences can be fed all at once [64].

The transformer neural network has an encoder-decoder architecture as shown in Figure

3.7. We discuss about the architecture in detail below.

38

Figure 3.7: Transformer Neural Network

Encoder: The encoder consists of two main components: a multi-headed attention

block and a feed forward network. The word and positional embeddings for all the tokens in

the log sequence are calculated and are fed to the multi-headed attention block. Positional

embeddings are used to educate the transformer about the relative positions of tokens

within a sequence. The multi-headed attention block is responsible for computing self-

attention, a set of weights which carry information about how different words in a sequence

are contextually related. Once the self-attention is computed, the normalized output is

passed through a feed-forward network and the output is then again normalized. The

normalization process helps transformer reduce the training time and also ensure that

there is no weight explosion taking place.

Decoder: The decoder consists of a total of 3 primary components: 1) Masked multi-

39

headed attention block; 2) Multi-headed attention block, and 3) Feedforward network.

Both the attention blocks operate entirely differently; the masked multi-headed attention

block computes the self-attention for the target sequence. Masking is done to achieve the

training in parallel and avoid cheating at the time of training. All the blocks are connected

one after the other with a normalization layer in between. The normalized output from

masked multi-headed attention and the encoder is fed to the multi-headed attention block.

This block calculates attention weights which carries information about which segment of

the input sequence should be focused on while predicting a particular target word. The

normalized attention weights are then fed to the feed-forward network. The normalized

output from the decoder is fed to a linear layer with a softmax activation function which

provides us with the target token probabilities.

3.3.4 Language Models

Language models are a vital part of any NLP pipeline. These models help us determine

the probability of a sequence of words. This probability measure carries information about

the context of the words in a sequence. Language models are generally trained over a large

corpus of text and learn about the arrangements and context from the data itself. We can

model language either by using: 1) Statistical Language Models; or 2) Neural Language

Models. In this subsection, we will discuss three different neural language models to see

how they can be used to tackle the problem of log parsing.

40

3.3.4.1 BERT

Bidirectional Encoder Representations from Transformers (BERT) [17] is a language model

based on the transformer neural network [64]. The transformer neural network consists

of an encoder and a decoder. BERT is developed by stacking multiple encoders, one over

the other. The output of one encoder is fed into the input of the consecutive encoders,

and the final output is made incident to a fully-connected layer. Figure 3.8 depicts the

stacking of numerous encoders. There are two different variants of BERT depending upon

the number of encoders being stacked together: BERT Base and BERT Large. The base

variant uses 12 encoders, whereas the larger variant uses 24. BERT has been widely used

in solving various NLP problems and has shown state-of-the-art results for 11 different

tasks, including Sentence Classification, Sentence Pair Classification, Question Answering,

Sentence Tagging and more.

Figure 3.8: Stacking Multiple Encoders to form BERT

BERT training is carried out in two phases: 1) Pre-training; and 2) Fine-tuning . Next

we describe these phases in detail.

41

1. Pre-training Phase: BERT is pre-trained on the complete Wikipedia English and

BookCorpus data, having a total vocabulary of over 3,000M words. BERT learns

language by pre-training on two different unsupervised tasks: 1) Masked Language

Modelling (MLM) and 2) Next Sentence Prediction (NSP). In MLM, 15% of the

tokens in a sentence are masked/hidden, and BERT learns to predict these masked

tokens using the context from nearby words. So basically, in MLM, we are teaching

language to BERT using a "Fill in the Blanks" strategy. The NSP task includes

predicting whether a sentence can follow another sentence or not. Both these tasks

help BERT learn about context; MLM helps BERT learn the intra-sentence context,

whereas NSP helps it understand the inter-sentence context. Pre-training of BERT

includes minimizing the aggregated loss from both the mentioned tasks.

2. Fine-tuning Phase: Once the pre-training of BERT is completed, it is ready to be

used for several NLP problems. The basic idea behind fine-tuning BERT is to connect

a dense layer at the output end and train it with the dataset of interest. The dense

layer head connected to BERT varies depending upon the task being solved. Different

NLP tasks require different outputs orientation, and accordingly, the heads can be

changed. At a higher level, we can say that BERT tries to understand language in

the pre-training phase while it adapts to the problem statement in the fine-tuning

stage.

42

3.3.4.2 RoBERTa

Robustly Optimized BERT Approach (RoBERTa) [42] is a variant of BERT developed

at Facebook, which uses a different and improved pre-training methodology. It is trained

on enormous amounts of text compared to BERT, using more computational power. The

training methodology of RoBERTa is different in two ways:

1. RoBERTa completely removes the NSP task used for pre-training.

2. RoBERTa makes use of dynamic masking in the MLM task. In MLM, a set of

tokens are masked, and the model is asked to predict these tokens. BERT uses static

masking, in which the same tokens are masked after each epoch, whereas, RoBERTa

uses dynamic masking, which hides different tokens after each epoch.

3.3.4.3 DistilBERT

Both BERT and RoBERTa are huge in size, making them computationally expensive and

have significant inference times. These models may not be the preferred choice in real-time

applications because of memory footprints and time-taken. On the other hand, language

models which are equally performant and smaller in size could be an excellent fit for such

applications. One of such language models is the DistilBERT [50]. DistilBERT, as the

name suggests, is a distilled version of BERT. It considers the BERT-base architecture and

trims some of the layers from it. The resultant architecture is a faster and smaller variant

without much degradation in the model’s performance. DistilBERT is formed using the

process of knowledge distillation [28] used to compress the size of a neural network using a

43

teacher-student architecture. Table 3.5 depicts a comparison between the language models

based of different measures.

Model No. of Weights Data Methodology

BERT-Base 110 million 16 GB (Wikipedia + Book
Corpus)

MLM and NSP

BERT-Large 340 million 16 GB (Wikipedia + Book
Corpus)

MLM and NSP

RoBERTa-Base 110 million 160 GB (BERT data + ad-
ditional)

Dynamic MLM

RoBERTa-Large 340 million 160 GB (BERT data + ad-
ditional)

Dynamic MLM

DistilBERT 66 million 16 GB (BERT data) MLM, NSP using
Knowledge Distil-
lation

Table 3.5: Comparison of different Language Models

For our use case, we employ the language models for a sentence tagging task in the

context of logs. Each log can be considered a sequence of tokens, and each token has its

corresponding IOB tag. Log sequences are pre-processed using a tokenizer(different for

each language model) to make the data compatible with the language model, resulting in

a subword-tokenized format. Figure 3.9 shows the BERT input in a subword-tokenized

form. The token’s IOB tag is mapped to the first subword, while the remaining subwords

are mapped to the tag "X." Once the subword tokens are prepared, the subword tokens

and the IOB tags are converted to integer-based indices and are padded to a fixed length.

44

The input and output sequences are then fed to the language model to perform a full

fine-tuning of the model.

Full fine-tuning includes changing the weights of the entire language model. Performing

a full fine-tuning can be costly in terms of storage and memory as we need to store a new

model for every downstream task that we perform. On the other hand, there are ways

which keep the weights of the language model frozen, but optimize a small task-related

vector. Prefix-tuning [41] and Prompt tuning [39] are two examples of recent advancements

that allow to achieve this.

Figure 3.9: Example of a sub-tokenised input for BERT

3.3.5 Ensembles

Ensembles are a class of machine learning models formed by combining two or more machine

learning models. The concept of ensembles is closely based on the human group decision-

making process in which an opinion by a human is analogous to the classification by

a classifier [30]. The intuition behind ensembles is that each individual classifier in a

group has its own perspective of looking at the problem being solved and learning it.

45

Ensembles aggregate the predictions from participating models to output a final prediction.

Combining the predictions from different models leads to depreciation in prediction errors

and, hence, a boost in prediction accuracy [19, 35]. The aggregation of predictions from

multiple models can be carried out in various ways. The most straightforward way is to

perform majority voting. In majority voting, we vote between the classifier’s predictions

and move ahead with the output having a maximum count of votes. Another way is to look

at the prediction probabilities for all the classifiers and average them out; this is called soft

voting. We can also assign weights to different classifiers such that a particular classifier

holds more dominance in predicting an output. These weights can either be learned or set

by a domain expert.

Ensembles can be formed in two ways, including 1) Training multiple classifiers of the

same type on different versions of data; and 2) Training different types of algorithms on

the same dataset. The ensembles that use the same algorithm are called homogeneous

ensembles, whereas those using different algorithms are termed hybrid/heterogeneous en-

sembles. Both these types of ensembles have been applied and heavily exploited in a wide

variety of domains, including medical [15, 45, 71] and cybersecurity [11, 33, 34, 54] to name

a few.

We chose to form the ensemble using different learning algorithms rather than training

the same algorithm on different subsets of logs. We select a total of 3 different algo-

rithms from different categories: a graphical model: CRF, a language model: BERT and

a sequence-to-sequence model: Transformer Neural Network. The traditional word-based

classifiers are not chosen because of their poor performance and inability to contribute to

the ensemble. NERLogParser is not chosen as it is not trained on the augmented logs

46

and is just used to evaluate generalizability. Each of the approaches used in creating the

ensemble tackles the problem of Named Entity Recognition differently, and the underlying

principles of each algorithm vary. CRF is based on the feature functions that consider the

word-level features, as shown in Table 3.4. BERT is a language model capable of under-

standing the English language, and the inference depends on the sub-tokenized version of

the log, as depicted in Figure 3.9. On the other hand, the transformer neural network

tackles the NER problem by framing it into a word-based sequence-to-sequence problem.

Using such diverse principles within an ensemble could reduce prediction errors while per-

forming NER. Figure 3.10 depicts the Majority Voting Ensemble (MV Ensmbl) and Soft

Voting Ensemble (SV Ensmbl) using CRF, BERT and Transformer. The predictions of the

individual classifiers are aggregated using a voting mechanism in majority voting, whereas

the prediction probabilities are averaged in the case of a soft vote.

Figure 3.10: MV Ensmbl and SV Ensmbl using CRF, Transformer and BERT

47

3.3.6 Cascades

As discussed in the previous subsection, traditional ensembles may boost performance by

taking multiple algorithms/opinions into consideration, but this increase in performance

comes at the cost of:

1. Computational Expensiveness.

2. Increased Complexity of Models.

3. Less Interpretability of Ensemble.

4. Increase in Training and Inference Times.

Since log parsing finds its importance in software monitoring and system security, there

is quite a high chance that the tools using log parsers would require a massive throughput

in real-time. Traditional ensemble-based solutions may help boost the performance but

may not be a good fit for such use cases because of the enormous inference times and com-

putation [66]. For such use cases, we want solutions comparable to traditional ensembles

in terms of performance but, on the other hand, possess less inference time and compute.

One of such solutions is a cascade/cascading classifier [2]. The Cascading Classifier is a

class of ensembles that uses two or more classifiers but operates differently from traditional

ensembles. Traditional ensembles are based on the aggregation of classifiers’ predictions,

whereas cascades are not. Cascades follow linear fashioned cascading from one classifier

to another to transfer control flow. Figure 3.11 shows the architecture of a cascading

classifier. The participating classifiers in a cascade are arranged in a fashion that the least

48

computationally expensive model comes first and is followed by classifiers that are more

computationally expensive.

Figure 3.11: Architecture of a Cascade

Cascades are driven by policies/rules which govern the control flow. These policies

are the basis on which an exit is made from the cascade. The policies in a cascading

classifier can vary from architecture to architecture, but one of the most common policies

is based on confidence thresholds. In such a policy, we compare a classifier’s prediction

probability with a pre-defined confidence threshold; based on the comparison, we either

pass the control to the next classifier or exit the cascade.

To build a cascade for our use case, we chose:

1. The same pre-trained classifiers as used in the ensembles: CRF, BERT and Trans-

former.

49

2. A soft voting node at the end as a fallback for all the classifiers.

3. A confidence threshold-based policy.

CRF is the least computationally expensive out of the three classifiers, whereas the

Transformer Neural Network is the most expensive. We arrange the classifiers in an order

of increasing complexity. We also adjust our architecture by adding a soft voting node at

the end of the cascade; this means we have a soft-voting ensemble as our terminal fallback.

Since we have four nodes in our cascade, the total thresholds to be decided are three.

For simplicity, rather than choosing three thresholds for each step, we prefer a common

threshold that can be applied to the whole cascade. Figure 3.12 shows the cascading

classifier built for our use case.

Figure 3.12: Cascade Architecture built using CRF, BERT and Transformer.

We experiment with a total of 11 thresholds ranging in [0, 1], compare the results

and choose the threshold giving the best performance. A threshold-based analysis of

various cascades is present in Section 5.4. A zero threshold implies that control would

50

be constrained just to the CRF classifier and won’t be cascaded ahead. On the other

hand, the threshold value of 1 leads to the transfer of control to the soft voting ensemble.

The cascade becomes a computationally expensive algorithm as we keep on increasing the

threshold towards one. We also consider two more cascade models: a fusion of CRF-BERT

(CB Cascade) and CRF-Transformer (CT Cascade). These architectures are evaluated to

understand whether the smaller cascades can match the performance of the CRF-BERT-

Transformer Cascade (CBT Cascade). The CB Cascade has three nodes: CRF, BERT

and soft-voting node. Similarly, the CT Cascade is built using the CRF, Transformer and

soft-voting node. The same threshold values and experimental settings are used in CB

Cascade and CT Cascade as in the CBT Cascade.

3.4 Delimiter Classification Unit

Entities within a log may not always be space-separated. There can be a presence of some

other special symbols that act as a delimiter to separate the entities. The significance

of a delimiter is to separate the entities so that analytics can be easily performed. This

delimiter is configurable and may change across different applications, devices, development

teams, or organizations. Table 3.6 shows an example of log entities separated by different

delimiters.

The machine learning models discussed in the previous section operate over space-

separated log tokens. For the models to perform NER correctly, all the log entities should

be space-separated. The presence of a delimiter other than space causes the entities to

concatenate together, thus forming a single token. This concatenation of the tokens leads

51

Log Delimiter Present

3 Jan 13:11:43 ps3 NetworkManager: <info> Trying to start... Space

3 Jan 13:11:43|ps3|NetworkManager:|<info>|Trying to start... Pipe (|)

3 Jan 13:11:43\tps3\tNetworkManager:\t<info>\tTrying to start... Tab (\t)

3 Jan 13:11:43;ps3;NetworkManager:;<info>;Trying to start... Semi-colon (;)

Table 3.6: Log Entities separated by different delimiters

to wrong predictions as the model could miss a few tokens because of the delimiter present

between the entities. Hence, there is a need for a solution that converts the delimiter sepa-

rated logs to purely space-separated tokens; this is handled by the Delimiter Classification

Unit as shown in Figure 3.13.

Figure 3.13: Delimiter Classification Unit

The Delimiter Classification Unit consists of three different components as listed below:

• Feature Extractor: Machine Learning algorithms cannot be directly applied to

the logs, and thus we need to extract features from the log dataset using feature

52

Feature Name Description

num_chars The total number of characters present in the log instance.

delim_freq The total number of occurrences of a delimiter being considered.

delim_first_idx The index of the first occurrence of the delimiter being considered.

delim_last_idx The index of the last occurrence of the delimiter being considered.

Table 3.7: Features used for building the delimiter classifier

engineering. Each log in the dataset is iterated, and different character-level features

are extracted. Table 3.7 shows the different features and their description that are

computed for every log instance present. The delim_freq, delim_first_idx and de-

lim_last_idx features are calculated for all the possible delimiters being considered.

• Delimiter Classifier: Once the features are successfully extracted from the training

logs using the feature extractor, the entire dataset can be used to train multiple ma-

chine learning models. Different machine learning models like Decision Tree, Random

Forest, K Nearest Neighbors and more can be used to prepare the classifier. This

classifier is then used to predict the delimiter in real-time.

• Space Separation Logic: The Log Parsing Unit expects the input formatted as

space-separated log tokens. This component uses the predicted delimiter to generate

input data in the required format.

53

3.5 IOB Tag Stitching Unit

The IOB Tag Stitching Unit is responsible for converting the IOB tags to entities. The

log parsing unit outputs IOB tags for each corresponding log token, which is fed as an

input to the IOB tag stitching unit. The tags having the same suffix are stitched together

as an entity. For example, B-TIM and I-TIM tags are stitched together to form the

timestamp entity. On the other hand, the stitching process operates slightly differently for

the language models because of the sub-tokenized token input. Stitching is a two iteration

process for the sub-tokenized input: 1) Every tag that is followed by a series of X tags is

stitched to form a single IOB tag. 2) Tags having the same suffix are stitched together.

Once the IOB tag stitching is complete to form entities, the result is converted to a JSON

like key-value representation. Figure 3.14 clearly depicts the IOB tag stitching unit.

54

Figure 3.14: IOB Tag Stitching Unit

55

Chapter 4

Experimental Design

In the previous chapter, we saw how the log parsing problem could be framed as a NER

problem using different classifiers. We discussed LoDU and how it performs log augmenta-

tion and enrichment techniques that could help tackle log parsing for a wide variety of logs.

We also explored LoPU and the different classifiers it considers to carry out NER. These

classifiers included baseline solutions like Naive Bayes, graph-based methods like Condi-

tional Random Fields, sequence-to-sequence methods like Transformer Neural Network,

neural language models like BERT, and committee-based approaches like Ensembles and

Cascades. We also discussed the other units, including the Delimiter Classification Unit

and the IOB Tag Stitching Unit. In this chapter, we will be discussing the experimental

design and settings used to carry out the experiments. The chapter is organized into multi-

ple sections discussing the datasets used, machine learning algorithms and hyperparameter

optimization, the strategy used to evaluate the NER solutions and system and hardware

requirements to carry out the experiments.

56

Input Sequence Output Sequence

[Dec, 11, 13 : 11 : 46, ubuntu, gdm[8057],] [B − TIM, I − TIM, I − TIM, I −HOS, I − SER,]

[220.181.108.182,−,−, [01/Jan/2017 : 08 : 44 : 12,−800],] [I − IPA, I −DAS, I −AUT,B − TIM, I − TIM,]

Table 4.1: CSV Files Structure

4.1 Datasets

We have already discussed that the problem of log parsing can be framed as a NER problem.

The NER problem is a use case that falls under the umbrella of supervised learning.

Supervised learning includes training a classifier with a pair of input and output. In the

context of logs, a single log instance can be considered an input, and the output should be

a value that indicates which set of tokens represent which entities. A sophisticated way to

achieve this is to have IOB tags for each token present in the log instance as used in [58].

The dataset should have a structure consisting of pairs of input and output sequences; input

sequences representing the log tokens and the output sequences depicting the respective

IOB tags for the tokens. Table 4.1 shows the structure of the CSV files that we create for

our datasets.

The log files do not inherently contain IOB tags, but these tags are vital and are needed

to carry out NER. We can form regular expressions or grammar to perform labelling of

the dataset. Logs can be derived from various sources and can have completely different

structures and content. The varying structure and scope of logs make it hard to write a

standard grammar or regular expression that tackles various logs. To simplify the entire

process, we develop one or more grammar for each source. Sources that have an exact

57

similar structure tend to follow a standard grammar for all the logs, but there could be

a few sources that have logs utterly different in terms of structure. We develop multiple

grammars for some sources to handle such situations and simplify the labelling strategy.

Figure 4.1 shows an example of grammar for a log belonging to a particular log file.

Figure 4.1: Example of a grammar used to Tag Entities

In this era of data-driven applications and large-scale distributed systems, millions of

events are being logged per second. The number of logs can quickly grow to hundreds of

billions if we consider logs being ingested from numerous sources over a long period of time.

Collecting logs from such an environment and in such a volume guarantees diverse nature,

structure and content but poses a few challenges. One of these challenges is the training

of machine learning and deep learning models, as having such a quantity of data requires

substantial computing resources and time. To solve this problem, we use a small dataset

58

of logs and treat the logs using the LoDU to enrich and diversify in terms of structure and

content. The idea of log diversification extends well to use-cases that include logs from

unseen sources.

We have divided our datasets into two different categories based on whether they are

used to train-validate-test the machine learning models or only test. These are 1) The

In-Scope dataset and 2) The Out-of-Scope dataset. The In-Scope dataset is used to train

all the classifiers present in the LoPU; it is also used for validation and testing purposes. In

contrast, the Out-of-Scope dataset consists of logs originating from entirely different sources

than the In-Scope dataset. It is used to test how well the machine learning models perform

with logs from new and unseen sources. The Out-of-Scope dataset gives a reasonable

estimate of the generalizability of the trained models. In the upcoming subsection, we

discuss the In-Scope and the Out-of-Scope Datasets in detail.

4.1.1 In-Scope Dataset

The In-Scope dataset is used to train, validate and test the various NER solutions we

prepare. This dataset is a subset of the logs used to train the NERLogParser in [58].

We contacted the author of NERLogParser [58] to collect the entire dataset and were

able to gather a fair number of the sources but missed some of the sources including the

"Honeynet Challenge logs". The logs in the gathered dataset originate from 10 different

sources, which include: Auth Logs, Bluegene Logs, Daemon Logs, Debug Logs, Dmesg

Logs, Kernel Logs, Message Logs, Proxifier Logs, Web Logs, and Zookeeper Logs. Logs

from all the sources mentioned above differ in the following terms: 1) The event being

59

Figure 4.2: In-Scope Length Distribution. Figure 4.3: OOS Length Distribution

logged, 2) The Application/device from where the event is being logged, 3) The structure

of the log, and 4) The types of entities present in the log. All the log instances from

the mentioned sources are aggregated in a single CSV file to form the In-Scope dataset

spanning over 120,000 log instances. Table 4.2 depicts the distribution number of logs and

entities grouped by the source.

The In-Scope dataset contains a total of 23 unique entities, including timestamp, host-

name, service, sub-service, IP address and more. Dmesg logs contain three entities, which

is the least, whereas weblogs comprise nine entities, the highest amongst all the sources.

The length of the log sequences in the dataset lies in the range [1, 67]. Figure 4.2 shows

the distribution plot of the sequence length of the logs present in the In-Scope dataset. To

carry out the training and evaluation process, we divide the In-Scope dataset into three

parts: a training set, a validation set and a testing set using a 60-20-20 split resulting in

∼ 73, 000 log instances in the training set and ∼ 24, 000 logs in each of the remaining sets.

60

Table 4.2: Distribution of the number of logs and entities for the In-Scope dataset.

Log File No.Instances No.Entities Entities present in the logs

Auth 16669 5 timestamp, hostname, service, subservice, message

Bluegene 10001 8 socket, number, timestamp, core, source, service,
level, message

Daemon 9809 5 timestamp, hostname, service, subservice, message

Debug 1722 6 timestamp, hostname, service, unix_time,
subservice, message

Dmesg 7218 3 unix_time, subservice, message

Kernel 34246 6 timestamp, hostname, service, unix_time,
subservice, message

Message 11338 6 timestamp, hostname, service, unix_time,
subservice, message

Proxifier 10107 6 timestamp, service, arch, domain_or_ip, status,
message

Web 10883 9 ip_address, dash, auth, timestamp, command,
status_code, num_bytes, referrer, client_agent

Zookeeper 10000 5 timestamp, dash, status, job, message

Total 121993

61

4.1.2 Out-of-Scope Dataset

Our work’s primary novelty is supported and rooted in the usage of the Out-of-Scope

dataset. The Out-of-Scope dataset is solely used for evaluating the generalizability of the

classifiers trained in the LoPU. None of the logs present in this dataset has been seen dur-

ing the training or the validation phase. These logs originate from 9 different applications,

servers, systems and devices, including Cisco Adaptive Security Appliance (Cisco ASA),

Cisco Internetwork Operating System (Cisco IOS), Linux Secure, Linux Apache, Linux

Secure, two different NGINX servers, Windows Application Events (WAE), Windows Se-

curity Events (WSE), and Windows System Events (WSYE). None of these sources are

shared with the In-Scope dataset, and thus, the In-Scope and Out-of-Scope datasets are

mutually exclusive in nature. Initially, we had only a single NGINX log file which was later

split into two variants (v1 and v2) as logs from two different NGINX servers were present

in the file.

The logs are collected from sources deployed within the premises of the University of

Ottawa. The number of events logged from these sources is enormous, but we decided to

use only a small subset from each source, contributing to a total of ∼ 21, 000 log instances.

The logs present in this dataset differ in structure and entities present; Figure 4.3 shows

a distribution of the length of logs present in the dataset. To evaluate the performance

of different classifiers on the Out-of-Scope dataset, we need a golden standard to compare

the predictions. We analyze the structure of all the log files and develop different grammar

to prepare the IOB tags for the logs. The total number of unique entities present in the

Out-of-Scope logs is 37, whereas the In-Scope dataset has 23. Out of these sets of entities,

62

only 11 are common, and we evaluate our approaches only on these entities. Table 4.3

shows the distribution of the number of logs and entities across various log files collected.

4.1.3 LoDU treated In-Scope Dataset

To develop a solution that generalizes well to new and unseen logs, we need to make sure

that the training dataset is diverse enough and thoroughly understands the outline of each

entity present in the logs. We use LoDU to add a diversity vertical to our solution. The

training set of the In-Scope dataset is treated with LoDU to carry our enrichment and

diversification of logs. The design of LoDU is not influenced by the logs present in the

Out-of-Scope dataset. In other words, none of the logs present in the Out-of-Scope dataset

were seen while preparing augmentation techniques for the training logs. Table 4.4 shows

some of the dataset metrics before and after the treatment. The number of date formats

increases from 5 to 54, the number of hosts increases from 4 to ∼ 58, 000, and the number of

unique sequences rises from 244 to 15235. Figure 4.4 represents the distribution of entities

present in the LoDU treated logs. The distribution of entities is not balanced within the

logs. Entities like timestamp (TIM), host (HOS), service (SER) and subservice (SUB) are

present in more than 40,000 log instances. On the other hand, entities like arch (ARC) are

not well represented and is present in less than 50 log instances. The diversity added by

LoDU is quite considerate and increase the total number of total instances from ∼ 73, 000

to ∼ 110, 000. Finally the LoDU treated logs are used to train all the classifiers present in

the LoPU.

63

Table 4.3: Distribution of number of logs and entities for the Out-of-Scope dataset.

Log File No.Instances No.Entities Entities present in the logs

Cisco ASA 1691 5 timestamp, hostname, colon, facility_severity_mnemonic,
message

Cisco IOS 2999 6 timestamp, hostname, colon, service,
facility_severity_mnemonic, message

Linux Secure 3000 13
timestamp, hostname, service, ip_address, dash, auth,
http_request_timestamp, http_command, status_code,
num_bytes, referrer, client_agent, message

Linux Apache 3000 9 ip_address, dash, auth, timestamp, http_command,
status_code, num_bytes, referrer, client_agent

NGINX v1 2954 17

ip_address, dash, auth, timestamp, http_command,
status_code, num_bytes, referrer, client_agent,
http_x_forwarded_for, request_time,
upstream_response_time, scheme, scheme_protocol,
url, http_range, sent_http_x_varnish_cache

NGINX v2 46 17

ip_address, dash, auth, timestamp, http_command,
status_code, num_bytes, referrer, client_agent,
http_x_forwarded_for, request_time,
upstream_response_time, scheme, scheme_protocol,
url, http_range, sent_http_x_varnish_cache

Win App Events 1392 12
timestamp, logname, source_name, event_code, event,
event_name, computer_name, task_category, op_code,
keywords, record_number, message

Win Sys Events 3000 15

timestamp, logname, source_name, event_code, event,
event_name, computer_name, user, security_identifier,
security_identifier_type, task_category, op_code,
record_number, keywords, message

Win Sec Events 3000 12
timestamp, logname, source_name, event_code, event,
event_name, computer_name, task_category, op_code,
record_number, keywords, message

Total 21082

64

Figure 4.4: Distribution of Entities in LoDU treated logs.

Metric Sub-module
used

Pre-treatment
Value

Post-treatment
Value

No. of Date For-
mats

Date-Enrichment
Sub-module

5 54

No. of Hostnames Host-Enrichment
Sub-module

4 58388

No. of unique En-
tity Sequences

Entity Shuffling
Module

244 15235

Table 4.4: Comparison of Metrics before and after treatment of logs by LoDU.

65

4.2 ML Algorithms and Hyperparameter Optimization

4.2.1 ML Algorithms

We use 14 different ML-based approaches to carry out NER. These include models having

different underlying principles and include three traditional word-based methodologies:

Naive Bayes, SGD, and Perceptron; a graphical model: CRF, two sequence-to-sequence

models: NERLogParser, and Transformer Neural Network; three language models: BERT,

RoBERTa, and DistilBERT; two traditional ensembles: MV Ensmbl and SV Ensmbl; three

cascading classifiers: CBT Cascade, CB Cascade, and CT Cascade. Each methodology

accepts data in its own compatible format, and the raw log sequences need to be pre-

processed and converted to the desired format. For example, CRF relies on data present in

the form of feature functions; Traditional word-based methodologies rely on token-to-tag

mapping. All of the classifiers and their respective compatible data format has already been

discussed in Section 3.3. In the next subsection, we discuss hyperparameter optimization

and how it is carried out for the various algorithms discussed.

4.2.2 Hyperparameter Optimization

Hyperparameters are a set of attributes or properties belonging to a machine learning

or deep learning model that: 1) Helps them in the decision-making process during the

training and inference time; and 2) Helps set up the model’s architecture and change the

way they operate. Hyperparameters allow us to configure the internals of a machine or

deep learning classifiers. These can be considered the knobs of an algorithm that can help

66

tweak the model’s behaviour.

Hyperparameter optimization is the process that tries to scout for hyperparameter

values that result in finding the global maxima/minima of the performance metric being

considered. There are several ways to carry out the hyperparameter optimization process.

Some of these are 1) Manual Search, 2) Grid Search, 3) Random Search, and 4) Bayesian

Optimization. All of these approaches are discussed below.

• Manual Search: Manual search includes searching for the best hyperparameters

manually. Generally, a domain expert would look at the performance of different

models and, based on the metrics, would hand tune the hyperparameters till a sat-

isfactory performance metric is obtained.

• Grid Search: Grid Search requires defining a search space for each hyperparameter.

The performance metric is calculated for all the possible combinations of hyperparam-

eters, and the best hyperparameters are returned. If we have two hyperparameters

with a search space of n values each, then n2 is the number of possible combinations.

The machine learning model would be trained and evaluated n2 times, and the best

hyperparameters are returned.

• Random Search: While performing a random search of hyperparameters, we need

to specify the search space for each input and the total number of iterations that

we want to run. After each iteration, models are trained and evaluated using ran-

dom combinations of different hyperparameters. Once the number of iterations is

exhausted, the best-performing hyperparameters are selected.

67

• Bayesian Optimization: Unlike Grid Search and Random Search, Bayesian Opti-

mization does not make use of all possible/random combinations of hyperparameters.

Instead, it follows a statistically guided approach to search for the best performing

hyperparameters [22]. We have used this approach to carry out the hyperparameter

optimization for our use case. The following subsection discusses Bayesian Optimiza-

tion in detail.

4.2.2.1 Bayesian Optimization

Bayesian Optimization treats every algorithm as a black box, looks at the input-output

pairs and tries to model the hidden objective function. It prepares a probabilistic model

that approximates the objective function. Computing the objective function using all the

possible values in the input space is a costly process. Instead, Bayesian Optimization lets us

approximate the objective function using less number of trials. Once the function has been

approximated, the global minima/maxima can be calculated, and so can be the hyperpa-

rameters. The underlying objective function can be predicted by evaluating the model at

each combination of hyperparameters and is easily achievable using grid search. Although

this approach can expose the hidden objective function, it is not a scalable approach in the

era of deep learning based algorithms. Exhausting all the hyperparameter values for train-

ing complex models like BERT and Transformer may require enormous time and resource

consumption. We can avoid such brute force approaches by using educated and statistically

backed input guesses. Bayesian Optimization is one such educated approach that develops

a probabilistic model that helps in a guided search of parameters. Bayesian Optimization

tries to approximate the objective function by modelling a surrogate function. Figure 4.5

68

shows the iterative modelling of the surrogate function. The blue colour function depicts

the real objective function that the surrogate function tries to mimic. Red stars denote

the points where the black box evaluation has been carried out. In part A, the surrogate

function is modelled using five observations and does not quite match the shape of the

underlying objective function. New hyperparameter inputs are statistically calculated and

are evaluated. This is followed by the re-modelling of the surrogate function in part B.

Finally, after a certain number of iterations, we observe that the surrogate function has

almost approximated the hidden objective function in part C. The approximated function

gives us a fair idea about the best-performing hyperparameters.

We set a search space for each hyperparameter that defines a domain within which the

value should be searched. A total of 20 trials are carried out to approximate the best per-

forming hyperparameters for each algorithm used. The best-performing hyperparameters

are chosen, and the resultant models can be used for testing and deployment purposes. Hy-

perparameter optimization is not perfromed for NERLogParser, ensembles and cascades.

NERLogParser is used as a pre-trained model for log parsing and the pre-trained frozen

model weights are used. On the other hand, the best performing individual models (CRF,

BERT, Transformer) are used to form the ensembles and cascades.

4.3 Evaluation Strategy

Each trained classifier outputs a sequence of IOB tags when prompted with a log sequence.

A trivial approach to evaluate the log parsing systems is to compare the golden standard

IOB tags with the predicted IOB tags. Each IOB tag is treated as a separate class, and

69

Figure 4.5: Modelling of Surrogate Function

the evaluation becomes similar to a multiclass classification problem use case. Standard

evaluation metrics like accuracy, precision, recall and F1 score can be computed for each

classifier and used for comparison purposes. Figure 4.6 shows how a confusion matrix

70

can be prepared to calculate the standard metrics. Accuracy can be calculated using the

formula mentioned in Equation 4.1 where N represents the total number of IOB tags and

Mij depicts the element present in the ith row, jth column of the confusion matrix.

Figure 4.6: Token level evaluation and calculation of Confusion Matrix

∑︁N
i=1

∑︁N
j=1 Mij(i==j)∑︁N

i=1

∑︁N
j=1 Mij

(4.1)

Using Equation 4.1 we obtain an accuracy of 8/11 = 0.7272 for the example displayed

in Figure 4.6. The accuracy score obtained here is fair, but if we look at an entity level

(across span of tokens forming an entity), we notice that only the service entity (having

I-SER tag) is correctly predicted. All the other entities, including timestamp, hostname,

subservice and message, are incorrect across the complete span of tokens. Hence, this re-

71

flects that the evaluation methodology that we discussed above is not suitable for assessing

the performance of the NER system as it may not reflect correctly the performance in some

cases. The evaluation methodology mentioned above is based on a tag level and not on an

entity level and thus can be misleading in some situations. Thus, we do not abide by this

methodology. Since the end goal of a NER system is to extract the entities present within

a sequence correctly, the evaluation should also be based on the entity level. Using an

entity-level evaluation framework could make it easier to compare NER systems without

misleading conclusions as in tag-based evaluation schemes. Apart from the framework, we

also need to tackle some use-case related concerns like:

• Should we consider computing accuracy for the task at hand?

• If we consider the precision/recall framework, is precision more relevant than recall

for our use case, or do both carry equal weight?

• What other contextual metrics should we consider apart from traditional ones?

• Is explainability important in our use case?

Answering the above questions gives us more clarity regarding what is expected from

the system. Since entities may not be present in an equal ratio, it is wise not to choose

accuracy as a measure of comparison. The trade-off between precision and recall is affected

by the number of false positives and false negatives present. Minimizing the false positives

increases precision, whereas minimizing the false negatives boosts the recall. In most cases,

minimizing the count of one of these comes at the cost of increasing the other counter. In

72

most cybersecurity problems, either of the two carries more weight. For example, precision

is more relevant in spam detection, whereas, in intrusion detection, recall can be considered

a better metric. In the log parsing use case, both the false positives and false negatives are

relevant, and hence we choose the F1 score as the basis for comparing log parsing systems.

Another essential metric to consider for this use case is the time taken in parsing the log.

The time metric helps us identify whether the developed solution can be deployed in real-

time scenarios. It can also be termed the system’s throughput and estimates logs parsed

per second. Explainability is another vital aspect for dissecting the working of machine

learning models. The medical domain is one of the fields where explainability matters, but

it does not hold significant importance in the log parsing use case; we are just interested

in getting out logs parsed correctly.

Before taking a look at the evaluation framework, we need to understand all the possible

scenarios that can take place in a NER-based log parsing system. Below are the six

scenarios that can arise while a system is at work:

1. System perfectly matches tokens and entity type: The system predicts correct

IOB tags for each of the tokens present in the sequence.

2. System hypothesizes an entity: The system predicts an entity in place of an ‘O’

tag.

3. System misses an entity: The system predicts one or more ‘O’ tags in place of

valid IOB tags depicting an entity.

4. System predicts a wrong entity: The system misunderstands the concept of an

73

entity and predicts it as a different entity. The IOB tags of one entity are placed at

the position of some other entity.

5. System predicts wrong boundaries: The predicted entity is correct but, the

offset of IOB tags is misplaced.

6. System predicts wrong boundaries and entity: System predicts both the entity

and the offset incorrectly.

Figure 4.7 shows an example representing all the possible prediction scenarios mentioned

above. Scenarios 1-4 represent correct and incorrect predictions having an exact boundary

match. On the other hand, scenarios 5 and 6 reflect partial matching. Partial matching

includes the cases where a certain set of tokens get misclassified or gets drifted toward the

neighbouring entities. Partial matches can easily occur within a NER system and carry

information about an entity’s underlying knowledge/concept. Metrics capturing partial

matches can help us improve the existing systems by taking the necessary steps. An

evaluation system considering partial matching can be robust and constructive. Hence, an

evaluation framework should cater to the following for our use case: 1) It offers detailed

metrics that help us understand how the systems are working at an entity level, 2) It offers

metrics that are comparable while comparing two or more NER systems, and 3) It offers

metrics that help us understand the areas where the System is performing inefficiently.

74

Figure 4.7: An Example depicting different Prediction Scenarios.

75

4.3.1 Performance Evaluation Framework

Chichor et al. [12] introduced five different scoring categories that help capture the different

types of errors made by an NER system and are based on comparing the gold standard

with the prediction made by the system. These scoring categories can be used to calculate

the precision, recall and F1-score of any NER system and these namely are:

• Correct (COR): The prediction is same as the gold standard.

• Incorrect (INC): The prediction and the gold standard do not match.

• Partial (PAR): The prediction and the gold standard match partially.

• Missing (MIS): The gold standard is not captured by the system.

• Spurious (SPU): The predicted entity is not present in the gold standard.

• Actual (ACT): |COR|+ |INC|+ |PAR|+ |SPU |

• Possible (POS): |COR|+ |INC|+ |PAR|+ |MIS|

These scoring categories capture various aspects including full matches, partial matches,

incorrect matches as well as missing entities. We employ the evaluation framework devel-

oped in [52] that uses the above mentioned scoring categories to compare the NER systems

across two axes: tokens and entities. The framework offers four different evaluation schemes

that let us assess the performance of the system in various scenarios and attributes. These

include:

76

• Strict Evaluation Scheme: Includes token and entity-type matching. Evaluation

takes place across both the axes.

• Exact Evaluation Scheme: Includes evaluation across one axis: tokens. Performs

token matching, irrespective of the predicted entities.

• Partial Evaluation Scheme: Includes partial token matching, irrespective of the

predicted entities.

• Entity-Type Evaluation Scheme: Includes entity-type matching, irrespective of

the tokens.

Each of the evaluation schemes mentioned above has its own set of precision, recall

and F1 score. These metrics over four evaluation schemes allow us to better understand

the working of the NER systems. The strict evaluation scheme is the most favourable for

comparing systems as it considers both axes (tokens and entities). The exact and partial

evaluation schemes consider just the tokens. On the other hand, the entity-type evaluation

only looks at the entities. The exact, partial and entity type evaluation schemes give a

different perspective on the problem being solved. These are not used to compare the

systems but help analyze and improve the systems. A NER system with a high F1 score

in the strict evaluation scheme will reflect a high score in the rest of the three evaluation

schemes. On the other hand, if a system has a high F1 score in the exact evaluation scheme

but a comparatively low score in strict evaluation, it suggests that the boundary matches

of the tokens are correct. However, the prediction of entities might be incorrect. A low F1

score in the strict and exact evaluation scheme but a high F1 score in partial evaluation

77

indicates that the system outputs many boundary mismatches. Equations 4.2 and 4.3

depict the precision and recall for strict and exact evaluation schemes whereas Equations

4.4 and 4.5 state the same metrics for partial and entity type evaluation schemes.

PrecisionA =
|COR|
|ACT |

(4.2)

RecallA =
|COR|
|POS|

(4.3)

PrecisionB =
|COR|+ (0.5 ∗ |PAR|)

|ACT |
(4.4)

RecallB =
|COR|+ (0.5 ∗ |PAR|)

|POS|
(4.5)

Table 4.5 depicts an example showing the various scoring categories for the different

evaluation schemes considered in the framework. Each row in the table represents an entity-

tokens pair which is scored using the scoring categories already discussed. The scoring is

performed for all the entity-tokens pair present in all the logs. By performing summation of

various scoring categories across all the evaluation schemes we can calculate the precision

and recall using the Equations 4.2-4.5. For the strict evaluation we perform summation

over the column and get the following: |COR| = 1, |INC| = 3, |PAR| = 0, |MIS| = 1,

|SPU | = 0, |ACT | = |COR| + |INC| + |PAR| + |SPU | = 4, and |POS| = |COR| +

|INC| + |PAR| + |MIS| = 5. With the values obtained for different scoring categories

78

we calculate the precision and recall for the strict evaluation scheme using Equations 4.2

and 4.3: PrecisionA = |COR|
|ACT | = 1

4
= 0.25 and RecallA = |COR|

|POS| = 1
5
= 0.2. The same

methodology can be applied across all the evaluation schemes and the evaluation metrics

can be computed for each.

Table 4.5: An example of the scoring categories for the different evaluation schemes.

Ground Truth System’s Prediction Evaluation Schemes
Entity Tokens Entity Tokens Strict Exact Partial Entity Type

Time Dec 28 18:12:51 Time Dec 28 INC INC PAR COR

Host ubuntu Host 18:12:51 ubuntu INC INC PAR COR

Service cron[4154]: Time cron[4154]: INC COR COR INC

Sub-Service pam_unix(cron:session): Sub-Service pam_unix(cron:session): COR COR COR COR

Message-Type <info> MIS MIS MIS MIS

4.3.2 Timing Evaluation

Timing is another critical factor in evaluating and comparing various systems. Log parsers

find their application in security and monitoring systems. The nature of the systems can

vary depending upon whether they process logs in real-time or not. If the systems are bound

to make operations and take action in real-time, then the timing constraint carries utmost

importance. For a real-time system, we would like to have a log-parser that could match

the throughput of the parent system. Log parsers that require massive time in processing

and outputting the entities are not a suitable fit for such real-time applications. On the

other hand, if the use case being solved is time-independent, we may have room to explore

approaches that could increase the performance at the cost of consuming more time. In

both the cases discussed, time can be used to compare the log parsing systems. To make a

79

fair comparison, we need to ensure that the measurement of time is standardized across all

the approaches being considered. We considered the following processes while measuring

the time: 1) Preprocessing data to model suitable format, 2) Predicting Delimiters, 3)

Making IOB tag predictions, and 4) Saving the predictions in a csv file.

4.4 Software Tools and Libraries

All the experiments are carried out using Python v3.7.0 and compatible data processing

and machine learning based libraries. Numpy v1.21.2 and Pandas v1.1.5 are used to load,

preprocess and perform transformations on data. Pyparsing v2.4.7 is used to develop

grammars to parse the logs and tag them with the IOB tags. All the traditional word-based

NER approaches are implemented using scikit-learn v0.24.2. CRF is implemented using the

sklearn-crfsuite v0.3.6 package. PyTorch v1.9.1 and torchtext v0.6.0 are used to implement

the transformer neural network and other internals required to carry out the training and

inference. Pre-trained language models, including BERT, RoBERTa and DistilBERT, are

imported from the HuggingFace library. Bayesian Optimization is performed using the

optuna v2.10 library [1].

4.5 System and Hardware Requirements

All the experiments, including training and inference, are carried out on a Linux machine

on a cedar cluster belonging to Compute Canada. The training and inference scripts are

submitted as jobs using Simple Linux Utility for Resource Management (SLURM). We

80

use 16 GB RAM, a v100 GPU and a 4-core CPU for each job across all the experiments

performed.

4.6 Summary

We discussed two datasets: the In-Scope and Out-of-Scope datasets. The In-Scope dataset

is used to train-validate-test, whereas the Out-of-Scope dataset originates from a com-

pletely different distribution/source and is used to test the trained system to get an idea

about the generalizability of the trained classifier. Since the end goal is to develop a sys-

tem that can cater to many new and unseen logs, we treat the In-Scope logs with LoDU.

The LoDU helps diversify and enrich the In-Scope logs that are finally used to train the

classifiers present in the LoPU. We perform hyperparameter optimization using bayesian

statistics to get the best-performing models. Bayesian Optimization provides a guided

approach to approximating best-performing hyperparameters using less number of trials.

We use an evaluation framework that offers multiple evaluation schemes: Strict Evalua-

tion, Exact Evaluation, Partial Evaluation, and Entity-Type Evaluation to evaluate the

trained models. These multiple perspectives help us evaluate, compare and improve the

log parsing systems. Taking into account the log parsers’ real-time usage, we also measure

the timing attribute. Once all the evaluation metrics are in hand, statistical tests and

rankings can be easily carried out. The next chapter will showcase the results obtained

using the experimental design mentioned in this chapter.

81

Chapter 5

Experimental Results and Analysis

This chapter discusses the results and analysis for the experimental design covered in the

previous chapter. We start by discussing the hyperparameter search and present the best-

performing hyperparameter values for each algorithm. Then, we report the performance

metrics using four different evaluation schemes for the In-Scope dataset. Similarly, we

consider the various log files in the Out-of-Scope dataset and evaluate them using the

same evaluation framework. A time-based analysis is also performed for the Out-of-Scope

log files. This is followed by performing a threshold analysis for different cascade classifiers

that we consider. Then we discuss the impact of LoDU and Delimiter Classification Unit

on the performance of a few NER classifiers. We then perform various statistical tests on

the results obtained. Finally, a synthesis and discussion section is presented.

82

5.1 Hyperparameter Search and Analysis

Table 5.1 shows the various hyperparameters for each algorithm selected using Bayesian

Optimization. It also depicts the datatype, search space and selected value for each hy-

perparameter. Figure 5.1 depicts the hyperparameter importance and contour plots for

CRF, Transformer and BERT. The hyperparameter importance signifies the contribution

of each hyperparameter in achieving the best performance. In other words, it can be con-

sidered a weight that indicates how a hyperparameter directly impacts the performance

of a classifier. The top two contributors are selected, and a contour plot is plotted. The

contour plot helps map the relationship between the hyperparameters and their impact on

the performance. The axes of the contour plot depict the two hyperparameters, whereas

the colour of the plot represents either the strict F1 score or loss value. The grey region is

the area of our interest, whereas we want to avoid choosing hyperparameters which result

in a blue region.

Considering the contour plots, we can observe that Bayesian Optimization has helped

us intelligently select the hyperparameters. This is because there are fewer trials in the

darker region, whereas most of the trials are present in the grey area of the plot. Another

interesting point is that the search space for the hyperparameters in the contour plot has

been explored thoroughly. The trials are evenly distributed and are not present in a single

region of consideration. For CRF, ‘max iterations’ is the dominant hyperparameter in

terms of importance. As seen in the contour plot B), trials with max iterations of over

150 are located in the grey region. Moving beneath, we observe different shades of blue.

Similarly, we select the top two hyperparameters for the transformer: Learning Rate and

83

No. Encoder/Decoder. From contour plot D), we observe that the left part of the plot

is primarily grey, whereas when the learning rate increases, we observe different shades of

blue irrespective of the no. of encoder/decoder. For BERT, only the learning rate holds

primary importance as a hyperparameter, and hence we do not plot a contour plot.

Table 5.1: Hyperparameter Search Space for All Classifiers.

Model Name Datatype Search-Space Selected Value

Naive Bayes Alpha Float low=0, high=5, step=0.1 0.1

Penalty Categorical [’l1’, ’l2’] l2
Perceptron

Max Iterations Int low=50, high=1000, step=50 400

Loss Categorical [’hinge’, ’log’] hinge

SGD Penalty Categorical [’l1’, ’l2’] l2

Max Iterations Int low=50, high=1000, step=50 400

C1 Log Uniform low=1e-3, high=10 0.5075814

CRF C2 Log Uniform low=1e-3, high=10 0.0265048

Max Iterations Int low=20, high=200, step=10 170

Learning Rate Log Uniform low=5e-5, high=5e-4 0.0001447

Forward Expansion Categorical [4, 64, 128, 256, 512, 1024, 2048] 2048

Dropout Uniform low=0.1, high=0.3 0.2197131
Transformer

Embedding Size Categorical [128, 256, 512] 512

No. Heads Categorical [1, 2, 4, 8] 8

No. Encoder/Decoder Int low=1, high=6, step=1 3

Epochs Int low=2, high=4, step=1 4, 4, 3

BERT, RoBERTa, DistilBERT Batch Size Categorical [16, 32] 32, 16, 16

Learning Rate Categorical [3e-4, 1e-4, 5e-5, 3e-5] 3e-5, 3e-5, 3e-5

84

Figure 5.1: Hyperparameter Importances and Contour Plots for CRF, Transformer and
BERT

85

5.2 In-Scope Data Results

This section presents the In-Scope data results where we compare the various NER ap-

proaches applied to the In-Scope data. Table 5.2 depicts the precision, recall, and F1

score(rounded of to 5 decimal places) for different evaluation schemes across various NER

approaches considered.

All the traditional word-based methods did not perform well, having a strict F1 score

value of less than 0.66. Perceptron performed the worst of all methodologies with a strict F1

score of 0.35, even worse than the random guessing baseline. In comparison, Naive Bayes

and SGD performed slightly better than random guessing, with a strict F1 score greater

than 0.6. All the other models, including CRF, Transformer, NERLogParser, Language

models, ensembles, and cascades performed exceptionally well with a strict F1 score of over

0.998. The CB Cascade and CBT Cascade perform the best with the highest strict F1

score of 0.99992. This is followed by the Majority Voting Ensemble (MV Ensmbl), Soft

Voting Ensemble (SV Ensmbl) and the CT Cascade having a strict F1 score of 0.99991.

All the language models achieved a strict F1 score > 0.9996, with BERT having the best

performance. Out of all the NER approaches excluding word-based baselines, Transformer

showed the least performance with a strict F1 score of 0.99897.

Such high values of strict F1 scores indicate a near-to-perfect NER with just a few errors

in predicting entities. Figure 5.2 shows a bar chart comparing the strict F1 scores of the

aforementioned NER approaches. Cascades and Ensembles are the two best performing

types of NER approaches. We prefer cascading classifiers over ensembles as they balance

the trade-off between time and performance. Table 5.2 reports all the evaluation schemes,

86

Figure 5.2: Strict F1 scores obtained using various NER approaches for In-Scope test data.

but only the strict evaluation scheme is heavily used. The other evaluation schemes do

not play a significant role in use cases where the strict F1 score is close to 1. The other

evaluation schemes are considered when we have to dig deeper to determine the areas where

the NER approach is not performing well.

5.3 Out-of-Scope Data Results

We primarily focus on evaluating the NER approaches on the Out-of-Scope data to un-

derstand how well the log augmentation techniques work. All the NER approaches are

applied to the different Out-of-Scope log files, and the various metrics are recorded. Table

5.3 depicts the precision, recall and F1 score for the strict evaluation scheme for all the log

files present in the Out-of-Scope data. The results are discussed further below.

All the traditional methods perform poorly, having an F1 score of less than 0.1 for all

87

Table 5.2: Performance results for In-Scope data.

Model Metric Strict Exact Partial Entity-type

Naive Bayes
Precision 0.70017 0.72445 0.73292 0.71711
Recall 0.61576 0.63711 0.64456 0.63066
F1-score 0.65526 0.67798 0.68590 0.67111

Perceptron
Precision 0.29729 0.46288 0.46498 0.30151
Recall 0.42795 0.66631 0.66934 0.43402
F1-score 0.35085 0.54627 0.54875 0.35583

SGD
Precision 0.66569 0.71016 0.72528 0.69593
Recall 0.58694 0.62615 0.63948 0.61361
F1-score 0.62384 0.66552 0.67968 0.65218

CRF
Precision 0.99976 0.99979 0.99978 0.99976
Recall 0.99993 0.99996 0.99995 0.99993
F1-score 0.99985 0.99987 0.99987 0.99985

Transformer
Precision 0.99927 0.99965 0.99970 0.99937
Recall 0.99868 0.99907 0.99912 0.99879
F1-score 0.99897 0.99936 0.99941 0.99908

NERLogParser
Precision 0.99988 0.99988 0.99988 0.99988
Recall 0.99989 0.99989 0.99989 0.99989
F1-score 0.99989 0.99989 0.99989 0.99989

BERT
Precision 0.99987 0.99988 0.99988 0.99987
Recall 0.99988 0.99989 0.99989 0.99988
F1-score 0.99988 0.99989 0.99988 0.99988

RoBERTa
Precision 0.99953 0.99954 0.99955 0.99956
Recall 0.99967 0.99967 0.99968 0.99969
F1-score 0.99960 0.99960 0.99961 0.99963

DistilBERT
Precision 0.99983 0.99983 0.99983 0.99983
Recall 0.99980 0.99980 0.99980 0.99980
F1-score 0.99981 0.99981 0.99981 0.99981

MV Ensmbl
Precision 0.99992 0.99992 0.99992 0.99992
Recall 0.99989 0.99989 0.99989 0.99989
F1-score 0.99991 0.99991 0.99991 0.99991

SV Ensmbl
Precision 0.99992 0.99992 0.99992 0.99992
Recall 0.99990 0.99990 0.99990 0.99991
F1-score 0.99991 0.99991 0.99991 0.99992

CT Cascade
Precision 0.99990 0.99991 0.99991 0.99990
Recall 0.99992 0.99993 0.99993 0.99992
F1-score 0.99991 0.99992 0.99992 0.99991

CB Cascade
Precision 0.99988 0.99988 0.99988 0.99988
Recall 0.99995 0.99995 0.99995 0.99995
F1-score 0.99992 0.99992 0.99992 0.99992

CBT Cascade
Precision 0.99989 0.99989 0.99989 0.99989
Recall 0.99994 0.99994 0.99994 0.99994
F1-score 0.99992 0.99992 0.99992 0.99992

88

the Out-of-Scope log files except the Naive Bayes - Cisco ASA pair. The traditional word-

based methods could not parse any of the windows-based log files resulting in an F1 score

of 0. Perceptron performs the worse out of all the word-based baselines getting an F1 score

of 0 in 6 out of 9 log files. This behaviour is followed by SGD scoring 0 in parsing 4 log files.

Since NERLogParser is used as a pre-trained log parsing tool, its performance vary a lot.

NERLogParser is unable to parse the windows-based log files obtaining a strict F1 score of

0. The MV Ensmbl, SV Ensmbl, CB Cascade and CBT Cascade models get well adapted

to the windows-based log files and perform the best parsing the same. These approaches

achieve an F1 score > 0.96 and 0.9 for WAE and WSYE, respectively. The WSE log file

is not parsed entirely, and all the approaches mentioned above get an F1 score ranging

between 0.6 and 0.77. All the individual stand-alone classifiers face challenges scoring a

high F1 score for the windows-based log files.

There is no model that best parses all of the Out-of-Scope log files. Different models

work best for different log files. A summary of the same is provided below. The transformer

neural network works the best for parsing the Cisco ASA log file with an F1 score of ∼ 0.95.

The CB Cascade achieves an F1 score of ∼ 0.84 for the Linux Secure log file. The NGINX

v1 file is best parsed using the CRF model and achieves an F1 score of ∼ 0.83. None of

the classifiers performed well in parsing the NGINX v2 log file, as the highest F1 score

achieved is 0.44818 using the NERLogParser. The WAE log file is almost entirely parsed

by the CBT Cascade with an F1 score greater than 0.99, making just a few errors in parsing

the entities. The RoBERTa language model performs the best in parsing Linux Apache

and WSE log files with ∼ 0.97 and ∼ 0.78 F1 scores, respectively. Cisco IOS and WSYE

log files are best parsed using the MV Ensmbl with an F1 score greater than 0.9. BERT,

89

DistilBERT, SV Ensmbl and CT Cascade did not perform best for any of the individual

log files.

Table 5.3: Strict Evaluation for Out-of-Scope Data.

Log files Metric Cisco
ASA

Cisco
IOS

Linux
Secure

Linux
Apache

NGINXx
v1

NGINX
v2

WAE WSYE WSE

Naive Bayes
Precision 0.42381 0.09362 0.08945 0.00237 0.00445 0.05775 0 0 0
Recall 0.5 0.08510 0.04874 0.00148 0.00135 0.04948 0 0 0
F1-score 0.45876 0.08915 0.06310 0.00182 0.00207 0.0533 0 0 0

Perceptron
Precision 0 0 0.02308 0.00293 0 0.06762 0 0 0
Recall 0 0 0.01338 0.00148 0 0.04948 0 0 0
F1-score 0 0 0.01694 0.00197 0 0.05714 0 0 0

SGD
Precision 0 0.01755 0.06123 0.00293 0.00450 0.06738 0 0 0
Recall 0 0.01562 0.02947 0.00148 0.00135 0.04948 0 0 0
F1-score 0 0.01653 0.03979 0.00197 0.00207 0.05714 0 0 0

CRF
Precision 0.96463 0.64672 0.79183 0.9374 0.77894 0.41278 0.5009 0.56116 0.33564
Recall 0.5 0.65556 0.78627 0.8781 0.88958 0.46927 1 1 1
F1-score 0.65861 0.65111 0.78904 0.90679 0.83059 0.43922 0.66747 0.71890 0.502597

Transformer
Precision 0.914553 0.85191 0.63514 0.95965 0.70481 0.38972 0.33333 0.33467 0.33333
Recall 0.981076 0.96462 0.56342 0.93748 0.88640 0.50838 1 1 1
F1-score 0.946648 0.90477 0.59713 0.94844 0.78525 0.44121 0.5 0.50150 0.5

NERLogParser
Precision 0.66667 0.58878 0.9999 0.97521 0 0.41787 0 0 0
Recall 1 0.68887 0.52822 0.95957 0 0.48324 0 0 0
F1-score 0.8 0.63491 0.69126 0.96733 0 0.44818 0 0 0.

BERT
Precision 0.50432 0.70477 0.66253 0.94601 0.44677 0.37773 0.62534 0.48828 0.42241
Recall 0.5 0.82279 0.62428 0.92132 0.89274 0.53073 1 1 1
F1-score 0.50215 0.75922 0.64284 0.9335 0.59552 0.44135 0.76949 0.65616 0.59394

RoBERTa
Precision 0.42127 0.70173 0.62283 0.97474 0.57604 0.36714 0.50417 0.52420 0.64047
Recall 0.5 0.80900 0.57493 0.9695 0.88743 0.49589 1 1 1
F1-score 0.45727 0.75156 0.59792 0.97211 0.69861 0.42191 0.67036 0.68783 0.78084

DistilBERT
Precision 0.31361 0.32528 0.25008 0.8965 0.3881 0.35141 0.40595 0.39856 0.46026
Recall 0.5 0.55144 0.25053 0.89269 0.62763 0.48883 1 1 1
F1-score 0.38545 0.40919 0.25031 0.89459 0.47962 0.40888 0.57747 0.56996 0.63038

MV Ensmbl
Precision 1 0.94450 0.81533 0.95652 0.73350 0.39651 0.9336 0.98437 0.49875
Recall 0.5 0.93040 0.72451 0.93180 0.90754 0.50838 1 1 1
F1-score 0.66667 0.93739 0.76724 0.944 0.81129 0.44553 0.96566 0.99222 0.66555

SV Ensmbl
Precision 0.98623 0.84612 0.80107 0.95873 0.62473 0.38477 0.95868 0.88183 0.61690
Recall 0.50827 0.90180 0.77432 0.9359 0.90573 0.52235 1 1 1
F1-score 0.67082 0.87307 0.78747 0.94718 0.73943 0.44313 0.9789 0.93720 0.76306

CT Cascade
Precision 0.96349 0.64105 0.78930 0.94568 0.6997 0.38771 0.52727 0.57714 0.42959
Recall 0.77262 0.68898 0.77749 0.92263 0.88568 0.51117 1 1 0.99966
F1-score 0.85756 0.66415 0.78335 0.93401 0.78178 0.44096 0.69047 0.73188 0.60094

CB Cascade
Precision 0.99529 0.67423 0.83554 0.95654 0.50322 0.386503 0.967338 0.89874 0.51203
Recall 0.5 0.68554 0.85512 0.93323 0.906116 0.52793 1 1 1
F1-score 0.66561 0.679841 0.84521 0.94474 0.64708 0.44628 0.98339 0.94667 0.67727

CBT Cascade
Precision 0.99562 0.67783 0.83181 0.95971 0.51463 0.38383 0.98444 0.84033 0.42863
Recall 0.53814 0.71092 0.85811 0.93631 0.90531 0.53072 1 1 1
F1-score 0.69865 0.69398 0.84476 0.94786 0.65622 0.44548 0.99216 0.91324 0.60006

Figure 5.3 depicts the box plot for strict F1 scores across various NER approaches.

We use the box plot to compare the Medians, Inter Quartile Range (IQR) and the overall

distribution of strict F1 scores. The traditional methods have a really low strict F1 score,

90

so we do not consider them for comparison. The MV Ensmbl and SV Ensmbl have a

median value of ∼ 0.8, whereas, for the cascading classifiers, it is ∼ 0.7. The median

for NERLogParser and DistilBERT lies between 0.4 and 0.5. The individual classifiers,

including CRF, transformer and language models, have a median value of < 0.7. The CT

Cascade has the smallest IQR, but it does not have the highest performing median across

all the other approaches; and hence it cannot be considered the best. The IQR for all

the language models is somewhat similar, with RoBERTa being the best performing and

DistilBERT the worst. NERLogParser has the highest IQR, making it the most unstable

approach. We also consider the extreme values and the length of whiskers to understand

the overall spread of F1 scores. The lower end of the lower whisker denotes the minimum

value. For most of the approaches, the lower end of the whisker is positioned between 0.4

and 0.5. This is because of all the approaches’ inability to parse the NGINX v2 file. The

overall spread of F1 scores is similar for majority of the NER approaches except the CT

Cascade, CRF, DistilBERT and NERLogParser.

We have been using the strict evaluation scheme to compare the NER systems. The

other evaluation schemes can not be directly used to compare the approaches. Still, they

can provide a complementary set of metrics which help us understand and improve the

systems that are not performing well. Here, we discuss the exact evaluation scheme and how

we use it to understand the internals of a NER system. Table 5.4 shows the precision, recall

and F1 score calculated using the exact evaluation scheme for different NER approaches

across all the Out-of-Scope log files. The exact evaluation scheme calculates the precision,

recall and F1 score by only considering token matching, irrespective of the entity-type

matching. A high strict F1 score would also mean that we have a high exact F1 score. On

91

Figure 5.3: Box Plot for Strict F1 scores.

the other hand, the reverse does not hold. We will now look at the cases where the strict

F1 score is low, but a high exact F1 score is present. For the Cisco IOS log file, CRF, CT

Cascade, CB Cascade and CBT Cascade have a strict F1 score below 0.7. At the same

time, the exact F1 score for all the approaches mentioned above is above 0.95. Similarly,

for Linux Secure log file, the CB Cascade and the CBT Cascade have a strict F1 score of

0.84, but the exact metric score is 0.97.

Such high values of exact F1 score suggest that the token grouping and matching occurs

ideally with just a few boundary mismatches. When the high exact F1 scores complement

the low strict F1 scores, we understand that the entity prediction is not perfect. This

92

scenario is generally reflected in the entity-type F1 score (table present in the Appendix

section). Cases with high exact F1 scores and low entity-type scores could also mean

that the NER approach has learned to mispredict an Entity A as Entity B. For example, a

timestamp can always be predicted as an IP Address. This boosts exact evaluation metrics

but dips the entity-type evaluation metrics, leading to an overall drop in the strict F1 score.

Partial and entity-type evaluation schemes can be used similarly and help make multiple

performance inferences; tables depicting these schemes are present in the appendix section.

The time required to parse the log files is also an essential factor in selecting NER

approaches. Different use-cases allow different timing thresholds, and thus it is crucial to

keep timing into account. Table 5.5 shows the inference times of all the NER approaches

across all the Out-of-Scope log files. All the timing values mentioned in the table are in

seconds. Timing precision of up to milliseconds has not been considered because of the

gigantic difference between the inference times of different NER approaches. CRF achieves

the least inference time across all the Out-of-Scope log files. On the other hand, SV Ensmbl

takes the most time because of the sequential processing of three different approaches. The

CRF is almost 100 times faster than the ensembles in some cases. For example, CRF takes

10 seconds to parse the complete WAE file, whereas the SV Ensmbl takes 1018 seconds.

The overall trend of inference times that can be observed in the table is as follows: CRF

< Language Models < Traditional Methods < NERLogParser < Cascades < Transformer

< Ensembles.

93

Table 5.4: Exact Evaluation for Out-of-Scope Data.

Log files Metric Cisco
ASA

Cisco
IOS

Linux
Secure

Linux
Apache

NGINX
v1

NGINX
v2

WAE WSYE WSE

Naive Bayes
Precision 0.42381 0.09362 0.12411 0.04359 0.46983 0.21580 0 0 0
Recall 0.5 0.08510 0.06763 0.02723 0.14232 0.18489 0 0 0
F1-score 0.45876 0.08915 0.08755 0.03352 0.21847 0.19915 0 0 0

Perceptron
Precision 0 0.0061 0.06818 0.02838 0.47504 0.15302 0 0 0
Recall 0 0.00815 0.03953 0.01436 0.14232 0.11197 0 0 0
F1-score 0 0.00698 0.05005 0.01907 0.21903 0.12932 0 0 0

SGD
Precision 0 0.01755 0.10048 0.02837 0.47504 0.15248 0 0 0
Recall 0 0.01562 0.04836 0.01436 0.14232 0.11197 0 0 0
F1-score 0 0.01653 0.06529 0.01907 0.21903 0.12912 0 0 0

CRF
Precision 0.96463 0.98629 0.84631 0.95226 0.78049 0.48157 0.5009 0.56116 0.33564
Recall 0.5 0.99977 0.84036 0.89202 0.89135 0.54748 1 1 1
F1-score 0.65861 0.99298 0.84332 0.92116 0.83224 0.51241 0.66747 0.71890 0.502597

Transformer
Precision 0.91455 0.85191 0.89261 0.97647 0.70791 0.44967 0.33333 0.33467 0.33333
Recall 0.98107 0.96462 0.79181 0.95392 0.89029 0.58659 1 1 1
F1-score 0.94664 0.90477 0.83919 0.96507 0.7887 0.50909 0.5 0.50150 0.5

NERLogParser
Precision 0.66667 0.58878 0.9999 0.98086 0.34122 0.4855 0 0 0
Recall 1 0.68887 0.52822 0.96513 0.14387 0.56145 0 0 0
F1-score 0.8 0.63491 0.69126 0.97293 0.2024 0.52072 0 0 0

BERT
Precision 0.50432 0.70605 0.84768 0.97262 0.44770 0.4334 0.62534 0.48828 0.42241
Recall 0.5 0.82428 0.79874 0.94723 0.89460 0.60893 1 1 1
F1-score 0.50215 0.76060 0.82248 0.95976 0.59676 0.50638 0.76949 0.65616 0.59394

RoBERTa
Precision 0.42127 0.70233 0.73626 0.99217 0.58089 0.42393 0.50417 0.52420 0.64047
Recall 0.5 0.80969 0.67964 0.98684 0.89489 0.57260 1 1 1
F1-score 0.45727 0.75220 0.70682 0.9895 0.70448 0.48717 0.67036 0.68783 0.78084

DistilBERT
Precision 0.62296 0.33550 0.59642 0.93824 0.44730 0.43172 0.40595 0.39856 0.46026
Recall 0.99319 0.56878 0.59749 0.93425 0.72338 0.60055 1 1 1
F1-score 0.76567 0.42205 0.59695 0.93624 0.55279 0.50233 0.57747 0.56996 0.63038

MV Ensmbl
Precision 1 0.94450 0.93743 0.97046 0.73485 0.45751 0.9336 0.98437 0.49875
Recall 0.5 0.93040 0.833 0.94538 0.90921 0.58659 1 1 1
F1-score 0.66667 0.93739 0.88214 0.95775 0.81279 0.51407 0.96566 0.99222 0.66555

SV Ensmbl
Precision 0.98623 0.85592 0.93267 0.97326 0.62604 0.44238 0.95868 0.88183 0.61690
Recall 0.50827 0.91225 0.90153 0.95008 0.90763 0.60055 1 1 1
F1-score 0.67082 0.88319 0.91684 0.96153 0.74099 0.50947 0.9789 0.93720 0.76306

CT Cascade
Precision 0.96607 0.92274 0.88435 0.96071 0.70829 0.44915 0.52727 0.57714 0.42959
Recall 0.77469 0.99173 0.87112 0.93730 0.89656 0.59217 1 1 0.99966
F1-score 0.85986 0.95599 0.87768 0.94886 0.79139 0.51084 0.69047 0.73188 0.60094

CB Cascade
Precision 0.99529 0.97232 0.95966 0.97112 0.50423 0.44376 0.967338 0.89874 0.51203
Recall 0.5 0.98863 0.98215 0.94745 0.90792 0.60614 1 1 1
F1-score 0.66561 0.98041 0.97077 0.95914 0.64837 0.51239 0.98339 0.94667 0.67727

CBT Cascade
Precision 0.99562 0.92860 0.95553 0.97355 0.51566 0.4404 0.98444 0.84033 0.42863
Recall 0.53814 0.97392 0.98574 0.94982 0.90712 0.60893 1 1 1
F1-score 0.69865 0.95072 0.97040 0.96154 0.65753 0.51113 0.99216 0.91324 0.60006

5.3.1 Ranking Results

Different approaches worked well for different log files in the Out-of-Scope dataset. We did

not have a single NER approach that performed the best for all the Out-of-Scope log files.

We also did not observe any single approach doing well for a majority of log files. Hence,

we perform ranking on the strict F1 scores to understand which approach(es) performs

94

Table 5.5: Inference times of NER approaches for Out-of-Scope Log Files.

Cisco ASA Cisco IOS Linux Secure Linux Apache NGINX v1 NGINX v2 WAE WSYE WSE

Naïve Bayes 36 60 53 56 61 0 23 58 57

Perceptron 35 58 50 54 48 2 36 68 66

SGD 31 58 61 62 62 1 25 50 53

CRF 8 15 17 15 24 0 10 21 37

Transformer 213 339 508 391 604 6 418 1127 1463

NERLogParser 49 62 110 159 179 1 72 159 285

BERT 12 23 28 30 33 0 11 32 31

RoBERTa 11 23 27 27 28 0 11 28 30

DistilBERT 11 19 23 24 26 0 11 26 34

MV Ensmbl 456 765 1079 827 1576 13 953 1924 2333

SV Ensmbl 465 777 1117 853 1689 13 1018 2081 2560

CT Cascade 35 73 88 115 201 1 55 106 284

CB Cascade 200 183 346 358 356 5 170 363 382

CBT Cascade 249 423 434 444 492 7 210 478 786

the best. We follow an average ranking method that includes assigning an average rank

whenever there is a tie. Table 5.6 shows the ranking results of various NER approaches

across the Out-of-Scope log files. We compute an average rank and standard deviation of

ranks using which we compare all the approaches. We also plot line charts depicting the

ranks of various approaches, as shown in Figure 5.4.

The MV Ensmbl performs the best with an average rank of 3.722. The SV Ensmbl

follows with an average rank of 3.889. Comparing the spread of ranks using the line chart,

we can say that although the average rank of the MV Ensmbl is less, the SV Ensmbl is

more stable. Stability is even more evident while comparing the standard deviation values;

SV Ensmbl has a standard deviation of 1.099, whereas the MV Ensmbl seems to be a bit

95

Table 5.6: Ranking of NER approaches for Out-of-Scope Log Files.

Cisco ASA Cisco IOS Linux Secure Linux Apache NGINX v1 NGINX v2 WAE WSYE WSE avg_rank std

Naïve Bayes 10.0 12.0 12.0 13.0 11.5 14.0 12.5 12.5 12.5 12.222222 1.030402

Perceptron 13.5 14.0 14.0 13.0 13.5 12.5 12.5 12.5 12.5 13.111111 0.613631

SGD 13.5 13.0 13.0 13.0 11.5 12.5 12.5 12.5 12.5 12.666667 0.527046

CRF 8.0 9.0 3.0 10.0 1.0 9.0 8.0 6.0 9.0 7.000000 2.905933

Transformer 1.0 2.0 10.0 3.5 3.0 7.0 10.0 10.0 10.0 6.277778 3.659926

NERLogParser 3.0 10.0 7.0 2.0 13.5 1.0 12.5 12.5 12.5 8.222222 4.779070

BERT 9.0 4.0 8.0 8.5 9.0 7.0 5.0 8.0 8.0 7.388889 1.662959

RoBERTa 11.0 5.0 9.0 1.0 6.0 10.0 7.0 7.0 1.0 6.333333 3.366502

DistilBERT 12.0 11.0 11.0 11.0 10.0 11.0 9.0 9.0 5.0 9.888889 1.968894

MV Ensmbl 6.0 1.0 6.0 7.0 2.0 2.5 4.0 1.0 4.0 3.722222 2.122775

SV Ensmbl 5.0 3.0 4.0 5.0 5.0 5.0 3.0 3.0 2.0 3.888889 1.099944

CT Cascade 2.0 8.0 5.0 8.5 4.0 7.0 6.0 5.0 6.0 5.722222 1.901916

CB Cascade 7.0 7.0 1.5 6.0 8.0 2.5 2.0 2.0 3.0 4.333333 2.460804

CBT Cascade 4.0 6.0 1.5 3.5 7.0 4.0 1.0 4.0 7.0 4.222222 2.029109

unstable with a value of 2.122. Traditional methods performed the worst and achieved an

average rank of over 12. Out of all the language models, RoBERTa performed the best with

an average rank of 6.333, whereas DistilBERT performed the worst, having an average rank

9.889. BERT achieved an average rank of 7.389, worse than RoBERTa. Comparing BERT

and RoBERTa using the line chart, we can say that BERT is more stable than RoBERTa

as the rank spread is wide for RoBERTa than BERT. Even the standard deviation of

RoBERTa is double that of BERT. NERLogParser is the most unstable approach as it

achieves a standard deviation of 4.779 and ranks ranging between 1 and 13.5. Cascading

classifiers show promising results. The CBT Cascade achieves an average rank of 4.222,

close to both the ensembles. The CB Cascade and CT Cascade got an average rank of

4.333 and 5.722, respectively. Overall, the cascading classifiers are less stable than the

ensembles.

96

Figure 5.4: Ranking of NER Approaches for Out-of-Scope Log Files.

Table 5.7: Ranking of inference times of NER approaches for Out-of-Scope Log Files.

Cisco ASA Cisco IOS Linux Secure Linux Apache NGINXv1 NGINX v2 WAE WSYE WSE Avg_rank Std Dev

Naïve Bayes 8 7 6 6 6 3 5 6 6 5.888889 1.364225

SGD 5 5.5 7 7 7 7 6 5 5 6.055556 0.950146

Perceptron 6.5 5.5 5 5 5 9 7 7 7 6.333333 1.346291

CRF 1 1 1 1 1 3 1 1 4 1.555556 1.130388

Transformer 11 11 12 11 12 11 12 12 12 11.555556 0.527046

NERLogParser 9 8 9 8 8 7 9 9 9 8.444444 0.726483

BERT 4 3.5 4 4 4 3 3 4 2 3.500000 0.707107

RoBERTa 2.5 3.5 3 3 3 3 3 3 1 2.777778 0.712000

DistilBERT 2.5 2 2 2 2 3 3 2 3 2.388889 0.485913

MV Ensmbl 13 13 13 13 13 13.5 13 13 13 13.055556 0.166667

SV Ensmbl 14 14 14 14 14 13.5 14 14 14 13.944444 0.166667

CT Cascade 6.5 9 8 9 9 7 8 8 8 8.055556 0.881917

CB Cascade 10 10 10 10 10 10 10 10 10 10.000000 0.000000

CBT Cascade 12 12 11 12 11 12 11 11 11 11.444444 0.527046

We also perform ranking on the inference times of the various NER approaches. Table

5.7 shows the ranks of various NER approaches’ inference times with their average ranks

97

Figure 5.5: Ranking of Inference Time of NER Approaches for Out-of-Scope Log Files.

and standard deviations. Figure 5.5 complements the data shown in Table 5.7 by plotting

a line chart for the same. Ranks are not widely spread and do not vary a lot across the log

files. The line chart for the inference times’ ranks is relatively uniform compared to the line

chart of strict F1 score. CRF achieves a rank of 1 for every Out-of-Scope log file except the

WSE; the average rank for CRF is 1.55. In comparison, the SV Ensmbl has the highest

average rank of 13.944. Looking at Figure 5.5, we observe a general trend in inference

time rank as follows: CRF < Language models < Traditional Methods < NERLogParser

< Cascading Classifiers < Transformer < Ensembles.

Cascades depend on a threshold-based policy, which governs the transfer of control from

one classifier to the other. The cascades used in this section were the best performing

cascades out of a group of cascades formed using different thresholds. We discussed the

best performing cascades in the results but did not highlight the threshold selection process.

A threshold-based analysis for all three cascades is present in the following section, where

98

we evaluate and compare the various cascades formed using different values of thresholds.

5.4 Cascade Threshold Analysis

As discussed in Chapter 3, cascading classifiers consist of multiple individual models and

work by transferring control from one model to another based on a pre-defined threshold-

based policy. This section discusses and analyses the effect of various threshold values on

the performance of the cascading classifiers.

5.4.1 In-Scope Data - Cascade Threshold Analysis

We consider three different cascade classifiers, including the following combinations: 1)

CRF + BERT + Transformer (CBT Cascade), 2) CRF + Transformer (CT Cascade),

and 3) CRF + BERT (CB Cascade). We experiment with 11 threshold values for each

of the cascading classifiers mentioned above. As a result we have a total of 33 cascade

models (11 for each combination) including the following thresholds: [0, 0.25, 0.5, 0.6,

0.7, 0.75, 0.8, 0.85, 0.9, 0.95, 1]. Figure 5.6 depicts the relationship between the strict F1

score and inference time of the different cascading classifiers built with the abovementioned

thresholds. The points plotted over the line chart represent the threshold values.

As we increase the threshold from 0 to 0.95, we observe an increase in the strict F1 score

but not a significant increase in the inference time. On the other hand, we notice a plateau

formation when we move from 0.95 to 1. There is no significant difference between the

strict F1 score obtained using 0.95 and 1 threshold values. The inference time shoots up

99

Figure 5.6: In-Scope Data - Cascade Performance Result

as we approach a threshold of 1 as the cascade model converges to a soft voting classifier.

The performance of all the cascading classifiers peak at t = 1 but we choose t = 0.95 as

the inference time is approximately ten times lesser.

5.4.2 Out-of-Scope Data - Cascade Threshold Analysis

Once we are done finding the best-performing thresholds using the In-Scope dataset, we

further decide to conduct the same experiments on the Out-of-Scope dataset to confirm

whether the threshold behaviour is identical across the datasets. We plot line graphs

depicting the strict F1 scores and inference times for different Out-of-Scope log files; Figure

5.7 represents the same for the CT Cascade. The points over the line graph represent the

various thresholds, and the threshold with a red marker denotes the peak threshold point.

The behaviour of the cascade models varies tremendously across all the nine Out-of-Scope

log files. It is challenging to generalize whether the performance experiences an upward or

100

a downward trend as the threshold increases.

Figure 5.7: Out-of-Scope Data - CRF-Transformer Cascade Performance Result

Cisco ASA, Cisco IOS, Linux Apache and Windows System Events (WSYE) have a

101

Table 5.8: Out-of-Scope Data: CRF-Transformer Cascade Threshold Analysis

Cisco
ASA

Cisco
IOS

Linux
Secure

Linux
Apache

NGINX
v1

NGINX
v2

WAE WSYE WSE Avg
Rank

Std
Dev

0.00 0.65862 0.65112 0.78793 0.90232 0.78793 0.44068 0.66747 0.71813 0.47099 7.500000 3.570714

0.25 0.65862 0.65112 0.78793 0.90232 0.78793 0.44068 0.66747 0.71813 0.47099 7.500000 3.570714

0.50 0.69194 0.64567 0.78263 0.90381 0.78994 0.44068 0.66747 0.71813 0.47099 7.777778 2.905933

0.60 0.85306 0.64232 0.77042 0.92055 0.78629 0.44416 0.90272 0.75399 0.50878 6.222222 3.153481

0.70 0.85866 0.64316 0.76627 0.92420 0.78662 0.44248 0.67328 0.76369 0.53229 6.333333 3.082207

0.75 0.85490 0.64391 0.76759 0.92640 0.78428 0.44000 0.68003 0.76564 0.54620 6.666667 2.549510

0.80 0.85129 0.64821 0.77192 0.92742 0.78351 0.43627 0.68622 0.76961 0.56201 6.222222 2.862594

0.85 0.86361 0.65948 0.77612 0.93244 0.78689 0.43879 0.68420 0.72880 0.57438 5.111111 2.848001

0.90 0.85323 0.66927 0.78285 0.93129 0.78215 0.44417 0.68673 0.73224 0.58224 4.222222 2.386304

0.95 0.85756 0.66416 0.78335 0.93402 0.78178 0.44096 0.69048 0.73189 0.60094 4.000000 2.915476

1.00 0.83854 0.65912 0.78364 0.93394 0.77983 0.44634 0.68540 0.73346 0.66875 4.444444 3.320810

peak threshold value ranging between [0.8, 0.95]. The best-performing threshold for Linux

Secure is t=0. On the other hand, it is t=1 for NGINX v2 and Windows Security Events

(WSE) log files. NGINX v1 and Windows Application Events (WAE) log files have a

peak threshold of 0.5 and 0.6, respectively. It isn’t easy to visually judge and select a

common threshold value that works well for all the log files present in the Out-of-Scope

dataset. Hence, we rank thresholds across various Out-of-Scope log files and compute an

average rank for each threshold point. Table 5.8 shows the strict F1 scores for various

thresholds across different Out-of-Scope log files; it also shows the average rank and the

standard deviation of rank across multiple files. Threshold t=0.95 performs the best with

an average rank of 4.0, whereas t=0 and 0.25 perform the worst with an average rank of

7.5.

The same set of experiments are performed using the CBT Cascade. Compared to the

102

CT Cascade, a completely different set of best-performing thresholds is obtained in these

experiments. Figure 5.8 shows the strict F1 scores vs inference time trend as the threshold

value increases from 0 to 1. By visual judgement and analysis, we cannot generalize the

trend being followed across all the log files. We notice the formation of different line graph

shapes. The ideal form that is expected is a plateau such that the strict F1 score saturates

as we reach a threshold of 1 and the time keeps increasing. Cisco ASA, Cisco IOS, Linux

Secure, and WSYE log files experience a hill formation. NGINX v1 and v2 log files face

a decrease followed by an increase in strict F1 score resulting in a valley-like shape. We

also notice plateaus in the case of Linux Apache and WAE logs. Hence, we cannot select

a standard threshold that best performs across all the considered log files.

As a result, we again perform the exact ranking mechanism. The threshold with the

minimum average rank across all the log files is selected as the best-performing value. Table

5.9 depicts the strict F1 scores and the average ranks of the cascade models trained with

different threshold values for all Out-of-Scope log files. We observe that the cascade model

with threshold t=0.95 has an average rank of 2.77, which is the least compared to the other

values. On the other hand, t=0.75 has the least standard deviation, but the average rank

is relatively higher when compared to t=0.95 and therefore, we select the t=0.95 threshold

as the best-performing value.

Similarly, we consider the CB Cascade and perform the same set of experiments. We

find out that threshold t = 0.9 performs the best. It achieves an average rank of 3.11 with

a standard deviation of 2.315.

103

Figure 5.8: Out-of-Scope Data - CBT Cascade Performance Result

104

Table 5.9: Out-of-Scope Data: CBT Cascade Threshold Analysis

Cisco
ASA

Cisco
IOS

Linux
Secure

Linux
Apache

NGINX
v1

NGINX
v2

WAE WSYE WSE Avg
Rank

Std
Dev

0.00 0.65862 0.65112 0.78793 0.90232 0.78793 0.44068 0.66747 0.71813 0.47099 8.555556 2.973260

0.25 0.65862 0.65112 0.78793 0.90232 0.78793 0.44068 0.66747 0.71813 0.47099 8.555556 2.973260

0.50 0.65862 0.64842 0.79075 0.90710 0.76318 0.44068 0.66747 0.72324 0.47155 8.555556 2.297341

0.60 0.66055 0.64857 0.79991 0.92717 0.71189 0.44836 0.90596 0.91116 0.51016 6.444444 2.877113

0.70 0.66094 0.64948 0.81396 0.93489 0.67669 0.44612 0.94501 0.90824 0.53267 6.111111 2.027588

0.75 0.66471 0.65015 0.82503 0.93700 0.66998 0.44226 0.95277 0.90334 0.54620 6.222222 0.833333

0.80 0.66627 0.65603 0.83330 0.94002 0.66398 0.43645 0.99004 0.91783 0.56290 5.222222 2.862594

0.85 0.66902 0.66454 0.83291 0.94372 0.66069 0.44523 0.99110 0.89847 0.57559 4.777778 1.922094

0.90 0.67449 0.67986 0.84668 0.94550 0.65598 0.44418 0.99358 0.90416 0.58241 3.666667 3.122499

0.95 0.69866 0.69399 0.84476 0.94787 0.65623 0.44549 0.99216 0.91324 0.60006 2.777778 2.773886

1.00 0.66967 0.67985 0.78531 0.94888 0.74450 0.43780 0.98166 0.73220 0.66987 5.111111 3.723051

5.5 Impact of LoDU and Delimiter Classification Unit

In this section, we discuss the results of the system without LoDU and the Delimiter

Classification Unit as used in [10]. Without the two mentioned units, there is no enrichment

and augmentation within the system, and the system relies on learning from the provided

logs. Table 5.10 shows the strict precision, recall and F1 score for CRF, Transformer and

BERT achieved across all the Out-of-Scope log files. In this experimentation, the NGINX

v1 and v2 files were combined, and the results were reported. The CRF model is unable

to learn the underlying concepts of entities and got a strict F1 score of 0 for 6 out of the 8

Out-of-Scope log files. All the NER approaches failed to extract the timestamps from the

windows log files and get a strict F1 score of 0. A similar performance behaviour is observed

for the NGINX log files, which could not be parsed either, and all the NER approaches

105

Table 5.10: Strict Evaluation for Out-of-Scope Data without LoDU and Delimiter Classi-
fication Unit.

Log files Metric CRF Transformer BERT

Cisco ASA
Precision 0 0.6666 0.997
Recall 0 0.9923 0.997
F1-score 0 0.7975 0.997

Cisco IOS
Precision 0 0.5688 0.00053
Recall 0 0.8629 0.00066
F1-score 0 0.6856 0.00059

Linux Secure
Precision 0.9696 0.9698 0.7028
Recall 0.5348 0.4407 0.6193
F1-score 0.6894 0.6060 0.6584

Linux Apache
Precision 0.9598 0.9993 0.9821
Recall 0.6841 0.9907 0.9711
F1-score 0.7988 0.9950 0.9766

NGINX (v1+v2)
Precision 0 0.0351 0.0121
Recall 0 0.0060 0.0067
F1-score 0 0.0102 0.0086

WAE, Precision 0 0 0
WSYE, Recall 0 0 0
WSE F1-score 0 0 0

achieve a strict F1 score of close to 0. The Linux Apache log file is parsed the best out of

all the log files with a strict F1 score above 0.8. BERT achieves a near-to-perfect result

in parsing the Cisco ASA logs, whereas it suffers in extracting information from the Cisco

IOS file. Comparing the results obtained here with those after treating the logs with LoDU

and Delimiter Classification Unit, we observe a substantial increase in the strict F1 scores

across most Out-of-Scope log files. We can infer that training the NER approaches on the

augmented and enriched log dataset give the algorithms a comprehensive view of the value

that the entities can possess.

106

5.6 Statistical Tests

We perform a set of non-parametric statistical tests on the resultant data to check our

results’ statistical significance. We compare every possible pair of NER approaches using

the Wilcoxon Signed Rank Test. We then perform Friedman’s t-test, which is followed by

Nemenyi’s post hoc test. Further subsections discuss each statistical test in detail.

5.6.1 Wilcoxon Signed Rank Test

The Null hypothesis for the Wilcoxon Signed Rank Test for our use case is as follows: Given

two NER approaches, A and B, both A and B perform equally. There are a total of 14c2

pair combinations possible with 14 NER approaches. We perform the test on each pair and

calculate its corresponding p-value. Figure 5.9 shows a heat map depicting the p-values

of each possible pair of NER approaches. The heatmap is symmetric; that is, the lower

left and the upper right triangles of the heatmap represent the same information. Figures

5.10 and 5.11 show the binary representation of whether there is a statistical difference

between the two approaches at 95 percent and 99 percent confidence, respectively. The

black cells of the heatmap depict no statistical difference between the two NER approaches.

At the same time, the light-coloured cells represent the pair of NER approaches that are

statistically different.

At 95% confidence, 47 pairs of algorithms possess statistical differences, whereas the

number drops to 38 at 99% confidence. Out of these combinations, at least 30 pairs included

at least one traditional method at both confidence levels. For the 95% confidence level,

107

Figure 5.9: Heat Map depicting P values for Wilcoxon’s Signed Rank Test.

the following pairs had statistically significant differences: DistilBERT-CRF, DistilBERT-

BERT, DistilBERT-RoBERTa, DistilBERT-Ensembles, DistilBERT-Cascades, BERT En-

sembles, BERT-CB Cascade, BERT-CBT Cascade, RoBERTa-SV Ensmbl and NERLog-

Parser-CT Cascade. At the same time, for 99% confidence, the following pairs had a

statistically significant performance difference: BERT-Ensembles, DistilBERT-RoBERTa,

DistilBERT-Ensembles and DistilBERT-Cascades.

108

Figure 5.10: Wilcoxon Test - 95% conf. Figure 5.11: Wilcoxon Test - 99% conf.

5.6.2 Friedman’s t Test and Nemenyi’s Post Hoc Test

The null hypothesis for the Friedman’s t-test applied to our use case is as follows: Given

a group of NER approaches, all perform equally. Unlike the Wilcoxon Signed Rank test,

Friedman’s t-test is not used for pairs but computes a p-value for the entire set of NER

approaches. The calculated p-value has a value of 2.4827e-10, which is less than 0.05 and

0.01, so we can say that all the NER methodologies do not perform equally at both the con-

fidence levels. Since the p-value of the test is statistically significant, we can proceed with

the Nemenyi’s post hoc to determine which methodologies differ. Figure 5.12 shows the

heatmap depicting the p values for the Nemenyi’s Friedman test. Similar to the Wilcoxon

Signed Rank Test, we can compare the p values to 0.01 or 0.05 to check the statistical

significance at the respective confidence levels.

Figure 5.13 shows a rank graph depicting the average ranks of different NER method-

ologies over a number line. CD refers to the critical difference and is a measure used to

109

Figure 5.12: Heat Map depicting P values for Nemenyi’s Friedman Test.

identify whether two approaches are statistically significant or not. The value of the critical

difference at 95% confidence is calculated to be 6.6134. The bold black horizontal lines are

used for comparing two or more approaches and are of the same length as critical difference.

Suppose the difference between the average ranks of any two approaches is greater than

the critical difference. In that case, there is a statistically significant difference between the

performance of the two methodologies. After referring to the heatmap and the rank graph,

110

we can observe that there is a statistically significant difference between the following pairs:

Traditional methods - Ensembles, Traditional methods - cascades, Transformer-Perceptron

and RoBERTa-Perceptron.

Figure 5.13: Nemenyi’s Post Hoc Test depicting Ranking and Critical Difference

5.7 Synthesis and Discussion

In-Scope Data Results: The traditional word-based baseline methods, including Naive

Bayes and SGD, perform decently high with a strict F1 score of over 60%. Both the

approaches surpass the random guessing baseline. The underlying principle of these ap-

proaches is to learn just by using the tokens without knowing the surrounding context.

Getting such a high score without knowing the context points towards an overlap of the

vocabulary of training and testing datasets. We investigated and found out that over 63%

of tokens present in the test logs are also a part of the training vocabulary. This percentage

of overlap justifies the strict F1 score achieved by the baseline learners. Despite having a

heavy overlap in the vocabulary, perceptron suffers in the learning process and reaches a

strict F1 score of 0.35.

111

In comparison, all the other approaches which take context into account perform well,

with a strict F1 score of over 0.998. A strict F1 score close to 1 depicts the ability of the

parser to parse the entire log file with just a few entity mismatches. There is no significant

difference between the performance of all these models. To dig down into such high F1

scores, we analyzed the number of unique entity sequences present in the training and

testing datasets. The test data contains 24,399 log instances with a total of 226 unique

entity sequences. The LoDU treated augmented training dataset includes 15,235 different

entity sequences. The intersection between the two sets is really high, with 223 entity

sequences. Over 98% of the entity sequences present in the testing set are present in the

training dataset. This commonality in the structure of logs across the training and testing

dataset justifies achieving high strict F1 scores.

Out-of-Scope Results: Most NER approaches worked well for parsing the Linux

Apache log file with a strict F1 score > 0.9. Interestingly, we achieve such high performance

even on a log file that originates from an entirely different distribution. We analyzed

the structure of the Linux Apache log files and found out that it is very similar to the

structure of the Web Logs present in the training dataset. In contrast, we observe the

opposite behaviour with the NGINX v2 log file. All the NER methodologies could achieve

a maximum strict F1 score of ∼ 0.45, even worse than the random guessing baseline. The

NGINX v1 log file is better parsed than the NGINX v2 file and gets a strict F1 score >

0.6 for most of the methodologies having the best performing model present at a score of

0.83. We compared the two versions of NGINX files and found that both are structurally

similar except for the presence of two hyphens (-) within the logs of the NGINX v2 file.

The presence of hyphens could be the reason for a dip in NER models’ performance for

112

the second version of the log file. The traditional word-based methods could not parse

any windows-based log files and got a strict F1 score of 0. NERLogParser achieves a

strict F1 score of 0 for all the windows-based log files. NERLogParser is not trained on

the augmented data and is used as a pre-trained model and hence, it does not perform

well on some of the Out-of-Scope log files. The Transformer model achieved a strict F1

score of 0.5 for all the windows files. We investigated the predictions and found that the

Transformer model introduces a lot of false positives by predicting ‘O’ as ‘I-HOS’, and ‘I-

SER’. Ensembles work the best in parsing the windows log files, reaching a strict F1 score

> 0.9 for WAE and WSYE whereas >0.65 for the Security Events (WSE) log files. Even

the cascade models, except the CT Cascade, achieved similar performance to the ensembles

for parsing the windows-based log files. It is clear from the results that the Transformer

model does not play an essential role in extracting information from the windows based

log files as it introduces a lot of false positives. Another interesting observation is that all

the NER approaches except the traditional methods and NERLogParser score a recall of

1 for all the windows-based log files. This vast difference between the precision and recall

is because the count of |ACT| is greater than the count of |POS| (Equations 4.2, 4.3). For

the Linux Secure log file, CRF achieves a strict F1 score of 0.79, whereas the language

models could not perform well, having a score < 0.65. We can thus infer that the feature

functions of the CRF better capture the dependencies than the attention-based language

models in parsing log files structurally equivalent to Linux Secure. On the opposite end, we

see an inverted pattern for the Cisco IOS file where the attention-based language models

outperform the feature function-based CRF model.

The selection of the best-performing model is challenging. Choosing the model with

113

the best strict F1 score would not be wise. There are a lot of factors that we need to take

into account, including 1) Performance on the In-Scope data, 2) Average rank achieved

on the Out-of-Scope log files, 3) The stability/standard deviation of the model, and 4)

Throughput of the NER approach

The use-case of the log parser is also an essential factor which could help us decide which

model to choose. If we are required to parse the logs in real-time, ensembles are probably

not an option to choose. On the other hand, if we need the best results, ensembles could

give us the best parsing capabilities. The CRF model can be the best choice in use cases

involving real-time streaming and processing. The throughput of the CRF model is ∼ 50

times faster than the SV Ensmbl. To balance the trade-off between time and performance,

cascades can be employed. Cascading classifiers could be a viable option, as the throughput

is approximately 2 to 8 times faster than the ensembles without a significant compromise

in strict F1 score. From one perspective, the MV Ensmbl achieves the least average rank of

3.722 in parsing the Out-of-Scope log files, and it should be considered the best performing

model. Whereas, if we look at the standard deviation, the SV Ensmbl is more stable in

performance with a standard deviation of 1.099 and a comparable average rank of 3.889.

Cascade Results: We experiment with a total of three different cascading classifiers.

We selected models having completely different underlying principles to tackle the same

problem statement. We decided to form the cascades out of different combinations of CRF,

BERT and Transformer. CRF is chosen to be the first model in all three cascades because

of the high performance and less inference time. The motivation and end goal of developing

cascades is to achieve similar performance to ensembles and possess a better throughput.

Different levels of thresholds are used to perform experimentations to understand the effect

114

of the level of participation of various models in the prediction process.

In-Scope Data Cascade Results: For the In-Scope data, we start with a threshold of

0 (individual CRF model), keep increasing the threshold to 1 (soft voting classifier including

all three models), and reach a strict F1 score of 0.99992 for all the three cascades. At

threshold t = 0.95, we achieve almost the same performance as the SV Ensmbl but a ten

times higher throughput. This happens because the cascading classifiers include knowledge

from all the models on a need and conditional basis. The high throughput and performance

equivalent to SV Ensmbl make the cascades better suited for real-time applications.

At t = 0.95 threshold, we fall back to the BERT/Transformer model only if a predic-

tion’s confidence score is less than 0.95. With just a stand-alone CRF model (t=0), we

achieve a high strict F1 score of 0.99985. We observe that t = 0.95 helps boost the strict

F1 score to 0.99992. BERT and Transformer models could be confident in predicting

entities for cases where CRF is not confident enough (confidence score < 0.95). The high

throughput of cascades at t=0.95 can be justified by the high confidence score obtained

by CRF for most of the instances. The high confidence score of CRF doesn’t allow it to

fall back to the other participating models in the cascade and hence the throughput of the

cascade is ten times faster than the SV Ensmbl.

Out-of-Scope Data Cascade Result: On the other hand, all three cascades perform

entirely differently for every log file present in the Out-of-Scope dataset. Further below,

we discuss the performance of various cascades in detail. The CT Cascade best parsed 6

out of 9 files at a threshold value other than 0 (stand-alone CRF model) or 1 (SV Ensmbl).

We observed no standard threshold value that performs the best across all the log files,

115

and hence we move ahead with performing a ranking on various log files across different

threshold values. For Cisco ASA, the stand-alone CRF model achieves a strict F1 score

of 0.65, and the Transformer model scores 0.95 (Table 5.3). Referring to Table 5.8, the

cascade performs best in parsing Cisco ASA at t = 0.85, achieving a strict F1 score of 0.86,

lying well between the performance metrics of the two participating models. The infused

knowledge of Transformer in cases where CRF is not confident helps boost the score of the

entire system and increases it by 0.2. Similar behaviour can be observed in Linux Apache,

WAE, and WSE log files, where falling back to the Transformer model helps boost the

performance.

In contrast, the infusion of knowledge from the Transformer Neural Network does not

help in improving the parsing quality of Cisco IOS, Linux Secure, NGINX v1 and NGINX

v2 log files. This could be justified as the CRF model could be very confident in predicting

even the wrong entities, which prevents it from transferring control to the Transformer

model. Overall, there is a decreasing trend in the average rank as we increase the threshold.

The average rank decreases from 7.5 to 4.4 as we increase the threshold from 0 to 1. The

minimum ranking threshold is t = 0.95 with an average rank of 4.

The CBT Cascade best parses 6 out of 9 log files at a threshold other than 0 or 1.

For the Cisco ASA log file, the strict F1 score increases from 0.65 to 0.69 (Table 5.9)

when the threshold increases from 0 to 0.95. The individual transformer model achieves

a strict F1 score of 0.94, but the cascade suffers from using the model’s knowledge. The

infusion of knowledge doesn’t occur as the Transformer is placed last on the cascading

ladder. The total number of control diversions to the transformer model could be less than

that of the BERT model. Even a threshold value of 1 results in a strict F1 score of 0.66

116

because the CRF and BERT could be confident about predicting wring entities. Hence,

it overpowers the knowledge carried by the Transformer. The same pattern is observed

for the Cisco IOS log file. For the Linux Secure log file, CRF achieved a strict F1 score

of 0.78, whereas BERT and Transformer got 0.64 and 0.59, respectively. The cascade

of these models achieves a strict F1 score of 0.84 at a threshold of 0.8. This increase in

performance could be because BERT and Transformer better predict entities where the

CRF model suffers. The individual participant models of the cascade did not perform

well in parsing the windows log files, with Transformer getting a strict F1 score of 0.5

across all the three files. Even with a low score achieved by Transformer, the cascade

model managed to achieve high strict F1 scores of over 0.9 for WAE and WSYE log files.

This high performance by the cascade can be justified by the meagre participation of the

Transformer in the prediction-making process. The confidence scores of CRF and BERT

could be high enough to prevent the control from being transferred to the Transformer

model.

5.8 Summary

The experimentation started by using Bayesian Optimization to conduct the hyperparam-

eter search for all NER approaches. We performed 20 trials to best estimate the underlying

objective function for each NER approach. We found that various hyperparameters had

different importances in contributing to the best-performing classifier. For instance, 1)

max iterations for CRF, 2) learning rate, number of encoders-decoders for Transformer,

and 3) learning rate for BERT contributed the most in finding the best performing variant

117

of the model. The best hyperparameters for each model were observed and reported.

Next, we performed a cascade threshold analysis where we experimented with three

different cascades and eleven different levels of thresholds. A total of 33 different models

are used to parse all the log data. The threshold value of 1 performed the best for parsing

the In-Scope log data, but we decided to choose t = 0.95 because of the high throughput

and equivalent performance. The same analysis is performed on the Out-of-Scope log

files. Since different threshold values worked best for different Out-of-Scope log files, we

performed a ranking on the strict F1 scores and selected the model with the least average

rank for each of the cascades. We observed that t = 0.95, t = 0.9 and t = 0.95 worked the

best for CT Cascade, CB Cascade and CBT Cascade respectively.

Once the best-performing cascades were selected, an extensive comparison between 14

different NER approaches was performed. We started by considering the In-Scope log

data. The precision, recall and F1 score was reported for four different evaluation schemes.

For the In-Scope data, even the traditional word-based methods (Naive Bayes and SGD)

achieved a strict F1 score > 0.6. The high performance by the baselines was investigated,

and it was found that there was a heavy overlap between the tokens present in the training

and testing log data. The other NER approaches performed nearly perfectly, with a strict

F1 score of over 0.99. The high structural similarity of logs present in the training and

testing dataset was responsible for such high-performance results. The CB Cascade and

CBT Cascade were the two best performing models for the In-Scope data having a strict

F1 score of 0.99992.

The same metrics were collected for each log file present in the Out-of-Scope log dataset.

118

Most NER approaches best parsed the Linux Apache log file with a strict F1 score > 0.9.

The NER approaches suffered in parsing the NGINX v2 log file having a strict F1 score <

0.45. It was found that different NER approaches worked best for different Out-of-Scope

log files. We performed a ranking across all the log files to choose the best-performing

model. The MV Ensmbl achieved the least average rank of 3.722, followed by the SV

Ensmbl with an average rank of 3.889. The ranking process was also carried out on the

inference times of the NER approaches. CRF was the best-performing model in terms of

inference time, whereas the Ensembles were the worst. Different use cases were considered,

and various attributes of the NER approaches were compared to select a best-performing

model relevant to each use case. Traditional ensembles could be the go-to models if the

log parser needs to be used in applications that analyze the log’s patterns and content,

and no immediate action needs to be taken. In systems that require real-time streaming

and processing of logs, it would be unrealistic to deploy ensemble-based solutions. Despite

the high average rank, the stand-alone CRF model could better fit the real-time systems.

Overall, we saw that there is a trade-off between the performance and inference times in

our experimentations and hence, Cascades can be a go-to option as they try to balance

both.

119

Chapter 6

Conclusions

In this thesis, we focused on developing a robust system to carry out information extraction

from log files. The information extraction problem was framed as a NER problem. The

primary goal of this research work was to evaluate the robustness of information extraction

systems when prompted with previously unseen data. We developed augmentation and

enrichment techniques that helped improve the generalization capabilities of the NER

systems. A total of 14 NER approaches were implemented and evaluated, including word-

based baselines like Naive Bayes, graphical model: CRF, attention-based sequence-to-

sequence: Transformer and NERLogParser, language models like BERT, ensembles and

cascades of individual models. A rigorous comparison between these NER approaches

was conducted using a multiple-perspective evaluation framework. This chapter further

discusses the contributions of our research work and areas where future work can be carried

out.

120

6.1 Contributions

In this thesis we provided the following main contributions:

• Extensive experimental comparison of ML-based NER methodologies for

log parsing: We experiment with 14 different NER approaches ranging from simple

baseline word-based approaches to complex deep learning based language models.

Out of all the NER methodologies, four are purely attention-based, including Trans-

former, BERT, RoBERTa and DistilBERT. We also experiment with Majority Voting

and Soft Voting Ensembles to utilize knowledge from multiple individual classifiers.

To balance the trade-off between performance and inference time, we also include cas-

cading classifiers, a class of ensembles that operate on conditional threshold-based

policies. We employ an evaluation framework that offers multiple evaluation schemes,

helping us compare and assess the quality of information extraction.

• Evaluate robustness and generalization capabilities of information extrac-

tion systems for log files: No formal studies evaluate the robustness or general-

ization capabilities of information extraction systems. The primary contribution of

our research work is the evaluation of the NER approaches using previously unseen

data. The assessment of NER systems using new or previously unseen data gives

us an idea about the generalization capabilities and robustness of the systems. We

considered two different datasets to carry out the evaluation: The In-Scope data and

the Out-of-Scope data. The In-Scope data is used to train-validate-test the NER

approaches, while the latter contains logs originating from entirely different sources

and is solely used for evaluation purposes.

121

• Text augmentation techniques specific to log files: Another gap in the research

which has not gained much attention is data augmentation for log files. There have

been applied studies which have developed and experimented with various data aug-

mentation techniques for textual data [56, 67]. These data augmentation techniques

cannot be extended to log files as these are specific to English language classification

tasks. In contrast, the nature and structure of log files differ a lot from the English

language. We propose the LoDU, which takes care of the enrichment and diversi-

fication of log instances. This unit is responsible for entity enrichment, structural

enrichment, and other pre-processing tasks specific to log files.

Overall, this thesis fills in many research gaps and previously undocumented areas,

focusing on improving the generalization capabilities of NER systems for log files.

6.2 Areas of Improvement and Future Work

The first and foremost improvement for further research lies in the number of logs being

considered. The experimental work presented in this thesis considers a dataset with 120K

log instances. Modern-day distributed systems can emit such amounts of log lines in

a few moments. Thus, we can say that this setting does not reflect real-life scenarios

closely. Considering a dataset with various log sources collected over a considerable time

period can help solve this problem. Another aspect which we can consider in this work

is the structural differences between logs. Rather than collecting many logs from sources

with structural similarities, we can collect smaller chunks from multiple sources having

122

structural differences. This can help us introduce diversity inherently within the dataset.

The experimental setting used in this thesis divides the In-Scope dataset into training-

validation-test set using a random 60-20-20 split. This can be extended by exploring the

correlation between various logs based on their origin, content and features like length to

have a better representative split.

The current In-Scope dataset consists of logs containing 23 different entities. On the

other hand, the Out-of-Scope dataset contains 37 unique entities. Out of these sets of

entities, 11 belong to the intersection. We evaluate the NER approaches based on these

intersecting entities. We can work on collecting a dataset with a comparatively larger set

of entities in the future. Increasing the size of intersecting entities is also an area of interest

that can be explored in the future work. The main idea is to create datasets that closely

reflect the modern-day distributed systems.

We train our NER approaches on the In-Scope dataset and use the Out-of-Scope dataset

to evaluate the robustness. The key distinction between both datasets is that they originate

from different sources. In the future work, we can better define the notion of distinction

for logs which could include features relating to log origin and log content. We can also

formulate a similarity score for log instances and can use datasets with different similarity

scores to evaluate the robustness and generalization capability of NER approaches.

Carrying out log augmentation much more extensively may benefit the system as well.

We performed enrichment on just two entities to portray the idea and results in this work.

This can be scaled to several entities so that the NER approaches get a decent under-

standing of the concept of entities. The log augmentation can be improved by introducing

123

gibberish or symbols in between log instances; this way, the NER approaches could dis-

tinguish between the gibberish and the entities. All the NER approaches could not parse

the NGINX v2 log file with a strict F1 score < 0.45 because of the presence of a hyphen

("-") in the log instances. The training data was missing log samples which contained

examples with such symbol values. Hence, log augmentation techniques which include ran-

dom symbols or gibberish can be helpful in such situations. The augmentation techniques

that we discussed above are at a human readable entity level, there are also augmentation

techniques that rely on higher level representations including sentence-level embeddings.

Mixup [59] is one of such techniques and it does not require any domain knowledge for

carrying out augmentation. Mixup has also been used in the context of performing NER

for English and Chinese language [69].

Currently in our work, we have considered CRF to be an individual model in ensembles.

We can also use the CRF as a top head present over other complex networks to enforce

the sequence of the entities present in the logs. Misawa et al. [44] and Souza et al. [57] use

CRF over BiLSTM and BERT to carry out Japanese and Portuguese NER respectively.

Exploring the use of different threshold values within the same cascading classifier could be

valuable in studying as well. Currently, the cascade classifiers use a single threshold value

throughout the classifier. A single threshold limits the possibility of searching through

all the possible combinations of contributions of the participating classifiers. The use of

cascades proved to help decrease the inference time while maintaining the performance

level in an offline setting. We can consider evaluating all the NER approaches, including

cascades in an environment with streaming data that closely reflects real-time distributed

systems.

124

The NER approaches employed in this work are evaluated and compared on the basis

of strict F1 score, stability and inference time. Another interesting perspective could be to

compare the models on the basis of their calibration. In this work, we framed the log parsing

problem as a Named Entity Recognition (NER) task. We can also frame this problem as a

question-answering task. Language models like SpanBERT [31] are better trained to tackle

tasks involving predicting spans of text and can be used to extract information from logs.

With the help of Delimiter Classification Unit, we are able to handle logs contain-

ing delimiters other than white-space. In the future, we can completely remove the need

of Delimiter Classification Unit and make the system inherently delimiter independent.

Language models like ALBERT [37] employ a language independent tokenizer: Senten-

cePiece [32]. Making the use of ALBERT and SentencePiece in the context of logs can

make the system inherently delimiter independent. Finally, with the recent advancements

in modelling language models and tokenizers, we can consider working on pre-training a

language model using logs. Such a language model pre-trained on vast amounts of logs

can be used for purposes like anomaly detection, temporal ordering of logs, information

extraction, etc.

125

References

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama.

Optuna: A next-generation hyperparameter optimization framework. In Proceedings

of the 25th ACM SIGKDD international conference on knowledge discovery & data

mining, pages 2623–2631, 2019.

[2] Ethem Alpaydin and Cenk Kaynak. Cascading classifiers. Kybernetika, 34(4):369–374,

1998.

[3] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation

by jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[4] Yassine Benajiba and Paolo Rosso. Arabic named entity recognition using conditional

random fields. In Proc. of Workshop on HLT & NLP within the Arabic World, LREC,

volume 8, pages 143–153. Citeseer, 2008.

[5] Ivan Beschastnikh, Yuriy Brun, Michael D Ernst, and Arvind Krishnamurthy. Infer-

ring models of concurrent systems from logs of their behavior with csight. In Proceed-

126

ings of the 36th International Conference on Software Engineering, pages 468–479,

2014.

[6] Léon Bottou et al. Stochastic gradient learning in neural networks. Proceedings of

Neuro-Nımes, 91(8):12, 1991.

[7] Xavier Carreras, Lluis Marquez, and Lluis Padro. Learning a perceptron-based named

entity chunker via online recognition feedback. In Proceedings of the seventh conference

on Natural language learning at HLT-NAACL 2003, pages 156–159, 2003.

[8] Kevin Chen, Andrew Clark, Olivier De Vel, and George Mohay. Ecf-event correla-

tion for forensics. In First Australian Computer, Network and Information Forensics

Conference, pages 1–10. We-B Centre. com, 2003.

[9] Wenliang Chen, Yujie Zhang, and Hitoshi Isahara. Chinese named entity recognition

with conditional random fields. In Proceedings of the Fifth SIGHAN Workshop on

Chinese Language Processing, pages 118–121, 2006.

[10] Anubhav Chhabra, Paula Branco, Guy-Vincent Jourdan, and Herna L Viktor. An

extensive comparison of systems for entity extraction from log files. In International

Symposium on Foundations and Practice of Security, pages 376–392. Springer, 2022.

[11] Anubhav Chhabra, Tirumala Sree Akhil Nandyala, and Paula Branco. Heal: Hetero-

geneous ensemble and active learning framework.

[12] Nancy Chinchor and Beth M Sundheim. Muc-5 evaluation metrics. In Fifth Message

Understanding Conference (MUC-5): Proceedings of a Conference Held in Baltimore,

Maryland, August 25-27, 1993, 1993.

127

[13] Jason PC Chiu and Eric Nichols. Named entity recognition with bidirectional lstm-

cnns. Transactions of the association for computational linguistics, 4:357–370, 2016.

[14] Kyunghyun Cho, Bart Van Merriënboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning phrase representa-

tions using rnn encoder-decoder for statistical machine translation. arXiv preprint

arXiv:1406.1078, 2014.

[15] Darya Chyzhyk, Manuel Grana, Alexandre Savio, and Josu Maiora. Hybrid dendritic

computing with kernel-lica applied to alzheimer’s disease detection in mri. Neurocom-

puting, 75(1):72–77, 2012.

[16] Biplob Debnath, Mohiuddin Solaimani, Muhammad Ali Gulzar Gulzar, Nipun Arora,

Cristian Lumezanu, Jianwu Xu, Bo Zong, Hui Zhang, Guofei Jiang, and Latifur Khan.

Loglens: A real-time log analysis system. In 2018 IEEE 38th international conference

on distributed computing systems (ICDCS), pages 1052–1062. IEEE, 2018.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv preprint

arXiv:1810.04805, 2018.

[18] Tom Dietterich. Overfitting and undercomputing in machine learning. ACM comput-

ing surveys (CSUR), 27(3):326–327, 1995.

[19] Huong TX Doan and Giles M Foody. Increasing soft classification accuracy through

the use of an ensemble of classifiers. International Journal of Remote Sensing,

28(20):4609–4623, 2007.

128

[20] Min Du and Feifei Li. Spell: Streaming parsing of system event logs. In 2016 IEEE

16th International Conference on Data Mining (ICDM), pages 859–864. IEEE, 2016.

[21] Oren Etzioni, Michele Banko, Stephen Soderland, and Daniel S Weld. Open informa-

tion extraction from the web. Communications of the ACM, 51(12):68–74, 2008.

[22] Peter I Frazier. A tutorial on bayesian optimization. arXiv preprint arXiv:1807.02811,

2018.

[23] Rainer Gerhards et al. The syslog protocol. Technical report, RFC 5424, March, 2009.

[24] Alex Graves and Jürgen Schmidhuber. Framewise phoneme classification with bidi-

rectional lstm networks. In Proceedings. 2005 IEEE International Joint Conference

on Neural Networks, 2005., volume 4, pages 2047–2052. IEEE, 2005.

[25] Haixuan Guo, Shuhan Yuan, and Xintao Wu. Logbert: Log anomaly detection via

bert. In 2021 International Joint Conference on Neural Networks (IJCNN), pages

1–8. IEEE, 2021.

[26] Hongcheng Guo, Xingyu Lin, Jian Yang, Yi Zhuang, Jiaqi Bai, Bo Zhang, Tieqiao

Zheng, and Zhoujun Li. Translog: A unified transformer-based framework for log

anomaly detection. arXiv preprint arXiv:2201.00016, 2021.

[27] Pinjia He, Jieming Zhu, Zibin Zheng, and Michael R Lyu. Drain: An online log

parsing approach with fixed depth tree. In 2017 IEEE international conference on

web services (ICWS), pages 33–40. IEEE, 2017.

129

[28] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural

network (2015). arXiv preprint arXiv:1503.02531, 2, 2015.

[29] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural compu-

tation, 9(8):1735–1780, 1997.

[30] Kuo-Wei Hsu. A theoretical analysis of why hybrid ensembles work. Computational

intelligence and neuroscience, 2017, 2017.

[31] Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S Weld, Luke Zettlemoyer, and Omer

Levy. Spanbert: Improving pre-training by representing and predicting spans. Trans-

actions of the Association for Computational Linguistics, 8:64–77, 2020.

[32] Taku Kudo and John Richardson. Sentencepiece: A simple and language indepen-

dent subword tokenizer and detokenizer for neural text processing. arXiv preprint

arXiv:1808.06226, 2018.

[33] P Arun Raj Kumar and S Selvakumar. Distributed denial of service attack detection

using an ensemble of neural classifier. Computer Communications, 34(11):1328–1341,

2011.

[34] P Arun Raj Kumar and S Selvakumar. Detection of distributed denial of service

attacks using an ensemble of adaptive and hybrid neuro-fuzzy systems. Computer

Communications, 36(3):303–319, 2013.

[35] Ludmila I Kuncheva, Marina Skurichina, and Robert PW Duin. An experimental

study on diversity for bagging and boosting with linear classifiers. Information fusion,

3(4):245–258, 2002.

130

[36] Guillaume Lample, Miguel Ballesteros, Sandeep Subramanian, Kazuya Kawakami,

and Chris Dyer. Neural architectures for named entity recognition. arXiv preprint

arXiv:1603.01360, 2016.

[37] Zhenzhong Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma,

and Radu Soricut. Albert: A lite bert for self-supervised learning of language repre-

sentations. arXiv preprint arXiv:1909.11942, 2019.

[38] Yukyung Lee, Jina Kim, and Pilsung Kang. Lanobert: System log anomaly detection

based on bert masked language model. arXiv preprint arXiv:2111.09564, 2021.

[39] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-

efficient prompt tuning. arXiv preprint arXiv:2104.08691, 2021.

[40] Dingcheng Li, Guergana Savova, and Karin Kipper. Conditional random fields and

support vector machines for disorder named entity recognition in clinical texts. In Pro-

ceedings of the workshop on current trends in biomedical natural language processing,

pages 94–95, 2008.

[41] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for

generation. arXiv preprint arXiv:2101.00190, 2021.

[42] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer

Levy, Mike Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly

optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019.

[43] Adetokunbo AO Makanju, A Nur Zincir-Heywood, and Evangelos E Milios. Clustering

event logs using iterative partitioning. In Proceedings of the 15th ACM SIGKDD

131

international conference on Knowledge discovery and data mining, pages 1255–1264,

2009.

[44] Shotaro Misawa, Motoki Taniguchi, Yasuhide Miura, and Tomoko Ohkuma.

Character-based bidirectional lstm-crf with words and characters for japanese named

entity recognition. In Proceedings of the first workshop on subword and character level

models in NLP, pages 97–102, 2017.

[45] Loris Nanni. Ensemble of classifiers for protein fold recognition. Neurocomputing,

69(7-9):850–853, 2006.

[46] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 conference on empirical

methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[47] Irina Rish et al. An empirical study of the naive bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence, volume 3, pages 41–46, 2001.

[48] Frank Rosenblatt. The perceptron: a probabilistic model for information storage and

organization in the brain. Psychological review, 65(6):386, 1958.

[49] Erik F Sang and Fien De Meulder. Introduction to the conll-2003 shared task:

Language-independent named entity recognition. arXiv preprint cs/0306050, 2003.

[50] Victor Sanh, Lysandre Debut, Julien Chaumond, and Thomas Wolf. Distilbert,

a distilled version of bert: smaller, faster, cheaper and lighter. arXiv preprint

arXiv:1910.01108, 2019.

132

[51] Bradley Schatz, George Mohay, and Andrew Clark. Rich event representation for

computer forensics. In Proceedings of the Fifth Asia-Pacific Industrial Engineering and

Management Systems Conference (APIEMS 2004), volume 2, pages 1–16. Queensland

University of Technology Publications, 2004.

[52] Isabel Segura-Bedmar, Paloma Martínez Fernández, and María Herrero Zazo.

Semeval-2013 task 9: Extraction of drug-drug interactions from biomedical texts

(ddiextraction 2013). Association for Computational Linguistics, 2013.

[53] Burr Settles. Biomedical named entity recognition using conditional random fields

and rich feature sets. In Proceedings of the international joint workshop on natural

language processing in biomedicine and its applications (NLPBA/BioNLP), pages 107–

110, 2004.

[54] Asaf Shabtai, Robert Moskovitch, Yuval Elovici, and Chanan Glezer. Detection of

malicious code by applying machine learning classifiers on static features: A state-of-

the-art survey. information security technical report, 14(1):16–29, 2009.

[55] Keiichi Shima. Length matters: Clustering system log messages using length of words.

arXiv preprint arXiv:1611.03213, 2016.

[56] Connor Shorten, Taghi M Khoshgoftaar, and Borko Furht. Text data augmentation

for deep learning. Journal of big Data, 8(1):1–34, 2021.

[57] Fábio Souza, Rodrigo Nogueira, and Roberto Lotufo. Portuguese named entity recog-

nition using bert-crf. arXiv preprint arXiv:1909.10649, 2019.

133

[58] Hudan Studiawan, Ferdous Sohel, and Christian Payne. Automatic log parser to

support forensic analysis. 2018.

[59] Lichao Sun, Congying Xia, Wenpeng Yin, Tingting Liang, Philip S Yu, and Lifang

He. Mixup-transformer: dynamic data augmentation for nlp tasks. arXiv preprint

arXiv:2010.02394, 2020.

[60] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with

neural networks. Advances in neural information processing systems, 27, 2014.

[61] Ah Chung Tsoi. Recurrent neural network architectures: an overview. International

School on Neural Networks, Initiated by IIASS and EMFCSC, pages 1–26, 1997.

[62] Yoshimasa Tsuruoka, Jun’ichi Tsujii, and Sophia Ananiadou. Stochastic gradient

descent training for l1-regularized log-linear models with cumulative penalty. In Pro-

ceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th

International Joint Conference on Natural Language Processing of the AFNLP, pages

477–485, 2009.

[63] Risto Vaarandi. A data clustering algorithm for mining patterns from event logs.

In Proceedings of the 3rd IEEE Workshop on IP Operations & Management (IPOM

2003)(IEEE Cat. No. 03EX764), pages 119–126. Ieee, 2003.

[64] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N

Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in

neural information processing systems, 30, 2017.

134

[65] Hanna M Wallach. Conditional random fields: An introduction. Technical Reports

(CIS), page 22, 2004.

[66] Xiaofang Wang, Dan Kondratyuk, Kris M Kitani, Yair Movshovitz-Attias, and Elad

Eban. Multiple networks are more efficient than one: Fast and accurate models via

ensembles and cascades. arXiv preprint arXiv:2012.01988, 2020.

[67] Jason Wei and Kai Zou. Eda: Easy data augmentation techniques for boosting per-

formance on text classification tasks. arXiv preprint arXiv:1901.11196, 2019.

[68] Qikang Wei, Tao Chen, Ruifeng Xu, Yulan He, and Lin Gui. Disease named entity

recognition by combining conditional random fields and bidirectional recurrent neural

networks. Database, 2016, 2016.

[69] Linzhi Wu, Pengjun Xie, Jie Zhou, Meishan Zhang, Chunping Ma, Guangwei Xu,

and Min Zhang. Robust self-augmentation for named entity recognition with meta

reweighting. CoRR, 2022.

[70] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I Jordan. Detect-

ing large-scale system problems by mining console logs. In Proceedings of the ACM

SIGOPS 22nd symposium on Operating systems principles, pages 117–132, 2009.

[71] Tao Yang, Vojislav Kecman, Longbing Cao, Chengqi Zhang, and Joshua Zhexue

Huang. Margin-based ensemble classifier for protein fold recognition. Expert Sys-

tems with Applications, 38(10):12348–12355, 2011.

[72] Xue Ying. An overview of overfitting and its solutions. In Journal of Physics: Con-

ference Series, volume 1168, page 022022. IOP Publishing, 2019.

135

[73] Chunkai Zhang, Xinyu Wang, Hongye Zhang, Hanyu Zhang, and Peiyi Han. Log

sequence anomaly detection based on local information extraction and globally

sparse transformer model. IEEE Transactions on Network and Service Management,

18(4):4119–4133, 2021.

136

APPENDICES

137

Table 1: Partial Evaluation for Out-of-Scope Data.

Log files Metric Cisco
ASA

Cisco
IOS

Linux
Secure

Linux
Apache

NGINX
v1

NGINX
v2

WAE WSYE WSE

Naive Bayes
Precision 0.42381 0.28395 0.24815 0.15804 0.70252 0.30851 0.12903 0.10812 0.04235
Recall 0.5 0.25813 0.13522 0.09874 0.21281 0.26432 0.25036 0.25 0.23317
F1-score 0.45876 0.27042 0.17505 0.12155 0.32667 0.28471 0.17029 0.15095 0.07168

Perceptron
Precision 0.0 0.08156 0.15643 0.16971 0.71032 0.26157 0.01626 0.02501 0.01462
Recall 0.0 0.10894 0.0907 0.08587 0.21281 0.19141 0.06178 0.06517 0.0665
F1-score 0.0 0.09328 0.11482 0.11404 0.32751 0.22105 0.02575 0.03615 0.02396

SGD
Precision 0.21196 0.25106 0.26067 0.16968 0.71032 0.26064 0.04395 0.04141 0.0
Recall 0.25 0.22338 0.12546 0.08587 0.21281 0.19141 0.08477 0.09467 0.0
F1-score 0.22941 0.23642 0.1694 0.11403 0.32751 0.22072 0.05789 0.05762 0.0

CRF
Precision 0.96463 0.98629 0.84759 0.96087 0.82253 0.5516 0.5009 0.56117 0.33565
Recall 0.5 0.99977 0.84163 0.90009 0.93935 0.62709 1.0 1.0 1.0
F1-score 0.65862 0.99298 0.8446 0.92949 0.87707 0.58693 0.66747 0.71891 0.5026

Transformer
Precision 0.91455 0.85191 0.90156 0.9824 0.74519 0.51499 0.33333 0.33467 0.33333
Recall 0.98108 0.96463 0.79975 0.95971 0.93717 0.67179 1.0 1.0 1.0
F1-score 0.94665 0.90477 0.84761 0.97093 0.83022 0.58303 0.5 0.5015 0.5

NERLogParser
Precision 0.66667 0.58878 0.9999 0.9865 0.34128 0.57125 0.25 0.25 0.25
Recall 1 0.68887 0.52822 0.97067 0.14389 0.66061 0.5 0.5 0.5
F1-score 0.8 0.63491 0.69126 0.97852 0.20243 0.61269 0.33333 0.33333 0.33333

BERT
Precision 0.50432 0.76396 0.85017 0.98025 0.41395 0.48211 0.62534 0.48828 0.42242
Recall 0.5 0.89189 0.80109 0.95466 0.77128 0.67737 1.0 1.0 1.0
F1-score 0.50215 0.82298 0.8249 0.96728 0.53875 0.5633 0.76949 0.65617 0.59394

RoBERTa
Precision 0.42128 0.73406 0.75473 0.99321 0.61062 0.48682 0.50417 0.5242 0.64048
Recall 0.5 0.84627 0.69669 0.98787 0.94069 0.65753 1.0 1.0 1.0
F1-score 0.45727 0.78618 0.72455 0.99053 0.74054 0.55944 0.67036 0.68784 0.78084

DistilBERT
Precision 0.62296 0.4353 0.67534 0.95767 0.50092 0.48896 0.40595 0.39857 0.46026
Recall 0.9932 0.73796 0.67655 0.9536 0.81009 0.68017 1.0 1.0 1.0
F1-score 0.76567 0.54759 0.67594 0.95563 0.61905 0.56893 0.57747 0.56996 0.63038

MV Ensmbl
Precision 0.99823 0.88927 0.91816 0.97421 0.73274 0.53091 0.94952 0.98457 0.5963
Recall 0.5 0.8956 0.77882 0.94409 0.89855 0.67179 1.0 1.0 1.0
F1-score 0.66627 0.89242 0.84277 0.95891 0.80722 0.59309 0.97411 0.99223 0.7471

SV Ensmbl
Precision 0.98902 0.88486 0.93535 0.97978 0.65471 0.50945 0.96 0.87796 0.6192
Recall 0.50621 0.94177 0.90178 0.9559 0.9493 0.67737 1.0 1.0 1.0
F1-score 0.66967 0.91243 0.91826 0.96769 0.77495 0.58153 0.97959 0.93502 0.76482

CT Cascade
Precision 0.96608 0.92648 0.88668 0.97122 0.74514 0.51165 0.52727 0.57715 0.42967
Recall 0.77469 0.99575 0.87342 0.94755 0.9432 0.67458 1.0 1.0 0.99983
F1-score 0.85986 0.95987 0.88 0.95924 0.83255 0.58193 0.69048 0.73189 0.60104

CB Cascade
Precision 0.99529 0.97442 0.96334 0.97897 0.52754 0.5 0.96734 0.89874 0.51203
Recall 0.5 0.99075 0.98592 0.95511 0.94989 0.68296 1.0 1.0 1.0
F1-score 0.66562 0.98252 0.9745 0.96689 0.67835 0.57733 0.9834 0.94667 0.67728

CBT Cascade
Precision 0.99562 0.93764 0.95875 0.98097 0.5398 0.49394 0.98444 0.84034 0.42863
Recall 0.53814 0.9834 0.98906 0.95706 0.94959 0.68296 1.0 1.0 1.0
F1-score 0.69866 0.95998 0.97367 0.96887 0.68832 0.57327 0.99216 0.91324 0.60006

138

Table 2: Entity Type Evaluation for Out-of-Scope Data.

Log files Metric Cisco
ASA

Cisco
IOS

Linux
Secure

Linux
Apache

NGINX
v1

NGINX
v2

WAE WSYE WSE

Naive Bayes
Precision 0.42381 0.47429 0.33751 0.23127 0.00446 0.24316 0.25805 0.21623 0.08471
Recall 0.5 0.43115 0.18391 0.1445 0.00135 0.20833 0.50072 0.5 0.46633
F1-score 0.45876 0.45169 0.23809 0.17787 0.00207 0.2244 0.34058 0.3019 0.14337

Perceptron
Precision 0.0 0.0 0.19957 0.28559 0.0 0.2847 0.03253 0.05002 0.02923
Recall 0.0 0.0 0.11571 0.1445 0.0 0.20833 0.12356 0.13033 0.133
F1-score 0.0 0.0 0.14649 0.1919 0.0 0.2406 0.0515 0.07229 0.04793

SGD
Precision 0.42392 0.48457 0.38162 0.28554 0.00451 0.28369 0.0879 0.08282 0.0
Recall 0.5 0.43115 0.18367 0.1445 0.00135 0.20833 0.16954 0.18933 0.0
F1-score 0.45883 0.4563 0.24799 0.19189 0.00208 0.24024 0.11577 0.11524 0.0

CRF
Precision 0.96463 0.64673 0.7944 0.95451 0.86166 0.51843 0.5009 0.56117 0.33565
Recall 0.5 0.65556 0.78881 0.89413 0.98405 0.58939 1.0 1.0 1.0
F1-score 0.65862 0.65112 0.79159 0.92333 0.9188 0.55163 0.66747 0.71891 0.5026

Transformer
Precision 0.91455 0.85191 0.65118 0.97147 0.77298 0.46039 0.33333 0.33467 0.33333
Recall 0.98108 0.96463 0.57764 0.94903 0.97212 0.60056 1.0 1.0 1.0
F1-score 0.94665 0.90477 0.61221 0.96012 0.86119 0.52121 0.5 0.5015 0.5

NERLogParser
Precision 0.66667 0.58878 0.9999 0.98568 0 0.52173 0.5 0.5 0.5
Recall 1 0.68887 0.52822 0.96986 0 0.60335 1 1 1
F1-score 0.8 0.63491 0.69126 0.97770 0 0.55958 0.66667 0.66667 0.66667

BERT
Precision 0.50432 0.82059 0.66751 0.96119 0.42848 0.41948 0.62534 0.48828 0.42242
Recall 0.5 0.95799 0.62897 0.9361 0.79835 0.58939 1.0 1.0 1.0
F1-score 0.50215 0.88398 0.64767 0.94848 0.55766 0.49013 0.76949 0.65617 0.59394

RoBERTa
Precision 0.42128 0.76519 0.65976 0.97625 0.62275 0.41582 0.50417 0.5242 0.64048
Recall 0.5 0.88216 0.60902 0.971 0.95937 0.56164 1.0 1.0 1.0
F1-score 0.45727 0.81953 0.63338 0.97362 0.75525 0.47786 0.67036 0.68784 0.78084

DistilBERT
Precision 0.31361 0.51349 0.40781 0.93537 0.48665 0.40964 0.40595 0.39857 0.46026
Recall 0.5 0.87052 0.40854 0.93139 0.78701 0.56983 1.0 1.0 1.0
F1-score 0.38546 0.64596 0.40818 0.93338 0.60141 0.47664 0.57747 0.56996 0.63038

MV Ensmbl
Precision 0.99823 0.90877 0.80367 0.96972 0.76263 0.47241 0.94952 0.98457 0.5963
Recall 0.5 0.91524 0.6817 0.93974 0.93519 0.59777 1.0 1.0 1.0
F1-score 0.66627 0.91199 0.73768 0.9545 0.84014 0.52774 0.97411 0.99223 0.7471

SV Ensmbl
Precision 0.98902 0.90191 0.80733 0.97274 0.68067 0.45168 0.96 0.87796 0.6192
Recall 0.50621 0.95992 0.77836 0.94903 0.98695 0.60056 1.0 1.0 1.0
F1-score 0.66967 0.93001 0.79258 0.96074 0.80568 0.51559 0.97959 0.93502 0.76482

CT Cascade
Precision 0.9635 0.64854 0.79289 0.96226 0.77048 0.45339 0.52727 0.57715 0.42974
Recall 0.77262 0.69703 0.78103 0.93881 0.97528 0.59777 1.0 1.0 1.0
F1-score 0.85756 0.67191 0.78692 0.95039 0.86087 0.51566 0.69048 0.73189 0.60114

CB Cascade
Precision 0.99529 0.67841 0.8429 0.97224 0.54778 0.44172 0.96734 0.89874 0.51203
Recall 0.5 0.68979 0.86265 0.94854 0.98633 0.60335 1.0 1.0 1.0
F1-score 0.66562 0.68405 0.85266 0.96025 0.70437 0.51004 0.9834 0.94667 0.67728

CBT Cascade
Precision 0.99562 0.6959 0.83825 0.97455 0.56088 0.43434 0.98444 0.84034 0.42863
Recall 0.53814 0.72987 0.86474 0.9508 0.98668 0.60056 1.0 1.0 1.0
F1-score 0.69866 0.71248 0.85129 0.96253 0.7152 0.5041 0.99216 0.91324 0.60006

139

	List of Tables
	List of Figures
	Acronyms
	Introduction
	Motivation
	Objectives
	Publications
	Organization

	Related Work
	Diversity in Logging Practices
	Traditional Methods for Information Extraction
	Message Template Generation
	Attention based Log Analysis
	NER for Log Parsing
	Current Gaps in Information Extraction from Logs

	System Design
	System Architecture
	Log Diversification Unit (LoDU)
	Entity Enrichment Module
	Timestamp Enrichment Sub-module
	Hostname Enrichment Sub-module

	Log Pre-processing Module
	Entity Shuffling Sub-module
	Digit Handling Sub-module

	Log Parsing Unit
	Traditional Methods
	Graph based Methods
	Sequence to Sequence Models
	Language Models
	BERT
	RoBERTa
	DistilBERT

	Ensembles
	Cascades

	Delimiter Classification Unit
	IOB Tag Stitching Unit

	Experimental Design
	Datasets
	In-Scope Dataset
	Out-of-Scope Dataset
	LoDU treated In-Scope Dataset

	ML Algorithms and Hyperparameter Optimization
	ML Algorithms
	Hyperparameter Optimization
	Bayesian Optimization

	Evaluation Strategy
	Performance Evaluation Framework
	Timing Evaluation

	Software Tools and Libraries
	System and Hardware Requirements
	Summary

	Experimental Results and Analysis
	Hyperparameter Search and Analysis
	In-Scope Data Results
	Out-of-Scope Data Results
	Ranking Results

	Cascade Threshold Analysis
	In-Scope Data - Cascade Threshold Analysis
	Out-of-Scope Data - Cascade Threshold Analysis

	Impact of LoDU and Delimiter Classification Unit
	Statistical Tests
	Wilcoxon Signed Rank Test
	Friedman's t Test and Nemenyi's Post Hoc Test

	Synthesis and Discussion
	Summary

	Conclusions
	Contributions
	Areas of Improvement and Future Work

	References
	APPENDICES

