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Abstract 

 

Natural Language machine learning methods are applied to rules generated to identify 

malware at the network level. These rules use a computer-based signature specification 

“language” called Snort. Using Natural Language processing techniques and other machine 

learning methods, new rules are generated based on a training set of existing Snort rule 

signatures for a specific type of malware family. The performance is then measured, in 

terms of the detection of existing types of malware and the number of “false positive” 

triggering events. 
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1 Introduction 

This work discusses the challenges associated with identifying malware using 

characteristic behaviour at the network level (i.e., signature-based detection) and the need 

for improved, automated ways of generating these signatures. As an alternative to the 

current manual methods, different ways for automating the task of generating Snort 

signatures, are analyzed. In this chapter, the motivation and research questions are 

presented, and the main contributions outlined. Lastly, the document structure is also 

described.  

1.1 Motivation  

Malware detection strategies are part of a "cat-and-mouse" game between the malware 

creators and the companies and researchers that are trying to keep the end-user safe [1]. 

Sadly, it appears that the malware writers are currently in the lead, and this will probably 

continue to be the case [2]. This can be attributed to the relatively rapid speed at which 

single errors or oversights can be found and exploited in deployed software and the time 

required for security professionals to reverse-engineer the new malware before writing 

antivirus signatures firewall rules to detect and block all new malware variants. Equally, 

finding one error is typically going to be an easier task than fixing all of them. These 

challenges beg the question of how malware signature generation can be automated to bring 

security professionals closer to the pace of malware creation. This work looks at the task 
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of automating the generation of such signatures for Snort, a “language” often used to create 

signature-based rules for Intrusion Prevention Systems. 

 

1.2 Objectives 

Given the mundane and time-consuming task of writing Snort rules, this work aims to 

investigate how to apply Natural Language Processing (NLP)  techniques to assist in 

writing Snort rules. If complete automation (i.e., removal of all human rule generation) is 

not possible, then our goal is to provide a tool that serves as an assistant to the expert in 

generating rules for specific malware. The generated rules can then be refined further to 

fulfil specific tasks. We propose an NLP technique to simplify the rule-writing process and 

so improve the speed and accuracy of malware detection. 

 Contributions 

• Demonstrated a method which uses a selection of elements in an IP header to give 

context to classify if network traffic is malware or not (“Malware Classification 

Using NLP on Packet Header Information”). 

• Demonstrated a novel method to train a neural network to generate partially 

effective malware rules for the Snort IPS (“IPS Snort Rule Generation for Malware 

Detection using NLP”). 
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• Showed that machine-generated Snort rules could be used with the Snort engine to 

detect malware in a network, without triggering any false positives when testing 

with malware-free traffic. 

• Described various methods by which machine-generated rules can be sanitized to 

ensure they meet the strict requirements of the Snort language. 

• Showed that a neural network can be used to train on old Snort rules and generate 

new rules to detect a limited set of malware.  

 

1.3 Thesis Organisation 

The remainder of this thesis is organised as follows: 

Chapter 2 introduces the reader to the history of malware, how it has evolved over the 

years, and how the detection of malware has also evolved. Techniques used by various 

Intrusion detection/prevention systems for malware detection are described and analyzed. 

The Current literature about how AI is being used in the field of malware detection is 

reviewed and the approach used in this work for using AI NLP techniques for malware 

detection is justified. 

Chapter 3 discusses the concept of using context information extracted from an IP Header 

to classify whether traffic is malware or not. The objective was to reduce the effort 

associated with deep packet inspection and sets up the later work that uses NLP techniques. 
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NLP-based classification results are then discussed. Based on these results, our approach 

to generating malware rules (described in more detail in (in Chapter 5) is then justified. 

Chapter 4 discusses the Structure of Snort, which is the specification language used for 

generating malware rules. The analysis of how the Snort engine works and how rules are 

written for Snort is discussed. A discussion and comparison on Artificial Language 

Processing (ALP) and NLP and a literature review of recent work related to text generation 

in ALP and NLP is given. NLP feasibility for achieving the intended task is demonstrated 

along with various NLP techniques that we believe are also relevant and useful. 

Chapter 5 provides an explanation of the methods used for data collection and preparation 

of the dataset used in this work. The preparation refers to the cleaning of data and 

formatting to make the training of the Neural Network (NN) more effective. 

Chapter 6 reviews the experiments that were performed and the results that were achieved. 

The training of the neural network and the generation of the required rules for SNORT 

signatures is discussed next, along with the cleaning and testing of these rules for the 

relevant malware packet capture (pcap) files. Finally, the quality of the machine-generated 

rules is analyzed and the impact of automated rule generation discussed. 

Chapter 7 summarizes the work, highlights the main contributions and discusses future 

improvements. 
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2 Background 

This chapter surveys the recent literature on malware and malware detection, using an 

intrusion detection system (IDS) or intrusion prevention system (IPS), highlighting the 

types of malware that are visible at the level of a computer network (e.g. with tools capable 

of “sniffing” network traffic). The key differences between these two types of security 

system, that work at a network level, are highlighted and our focus on signature-based IPS 

is justified. The application of AI to IPS is then motivated and the available, current 

methods are reviewed that use AI to generate the rules that are required in signature-based 

detection of different types of malware.  

2.1 History of Malware  

Malware, has existed for over three decades [3]. Malware is used to disrupt the regular 

operations of a computer and includes: viruses, trojans, ransomware, worms, spyware, 

adware and these are defined and discussed in the next section. The first recorded incident 

of malware was one written by two brothers in Pakistan called Brain. A. [3]. The brothers 

created software that replicated itself using floppy disks. The virus did not cause any harm 

apart from it continually replicating itself on any floppy disk inserted into the computer.  

The Omega virus [3] would infect the boot sector of the computer, and on Friday 

the13th, it prevented all infected computers from booting. Code red [3] was one of the first 

internet worms (any self-replicating type of malware that can execute as a stand-alone 

entity). It spread via a vulnerability in the Microsoft Internet Information Server IIS, and 
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its main malicious action was to launch Distributed Denial of Service DDOS attacks on 

various websites like whitehouse.gov etc.  

In the past few years, malware has become more effective and more lucrative. 

Ransomware, where legitimate user files are encrypted, and victims must pay a “ransom” 

to get a promised (but not always delivered) decryption key. Similarly, malware that 

launches DDOS attacks has been used to bring down large networks. As an example of 

successful ransomware, the WannaCry ransomware infected machines in May 2017 [4], 

and demanded that victims pay between $300-400 US Dollars for the decryption key. It 

cost the UK National Health System NHS over £29 million pounds. Globally, it is 

estimated to have cost $ 29 billion US Dollars [5].  

Several decades later, the available malware is sophisticated and more malicious in 

intent, when compared with Brain. A. Ransomware of a single type in 2016 was estimated 

to cost 1billion US dollars! [6]. The trend is for continuous evolution of different kinds of 

malware, with increasingly sophisticated attacks and behaviour patterns [7]. 

2.2 Kinds of Malware 

Worms: Worms are self-replicating malicious software that infect computer systems. The 

main distinction between a worm and a virus is that a worm can self propagate without a 

host application or file. Because of this, worms usually spread via networks, whiles viruses 

tend to spread via applications that have either been downloaded from the internet or shared 

via USB storage media. As an example, the Morris worm [8], also called the “Internet 
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Worm”,  used a vulnerability in the Unix sendmail, finger and rsh utilities to spread. The 

payload behaved like a Denial of Service attack DOS. There were three key novelties in 

the Morris Worm:  it performed password guessing attacks on infected nodes, it evaded 

notice by obscuring its process parameters, cleaning up any files that it created and, finally, 

it attacked one specific operating system (Unix) but two different computer architectures. 

[9] 

Trojans: A trojan is a type of malware that disguises itself as a legitimate program 

but is maliciously performing illegitimate actions in the background. Trojans can be used 

for spying, collecting data about the user and in some cases, even espionage. Trojans come 

in various forms like games, fake antivirus software, remote access trojans etc. An 

infamous Trojan was the Zeus trojan. It infected windows machines and stole information 

like banking information, and was also logging keystrokes [10].  

2.3 Evolution of Malware Detection 

Due to the continuous evolution of malware, the various techniques used for detection have 

also evolved. Some of these methods include early-detection based techniques like 

signature-based detection and these have gradually evolved to using machine or deep 

learning techniques. As an example, the work in [11] analyzes and correlates features at 

four different levels; the kernel application, user and packages and uses these features to 

create acceptable and unacceptable behaviour patterns. 
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Signature-based detection is effective and simple to implement and use and has been 

in continuous use for a long time [12]. This technique employs the use of a unique sequence 

or pattern observed in the malware that differentiates it from other malware. Usually, these 

patterns are unique enough to identify a specific malware type or a particular family of 

malware. The challenge with this technique is that a slight deviation in the pattern will 

allow the malware to evade detection. Signature-based techniques can be considered to be 

reactive techniques [13] since they are not able to defend against new malware until new 

signatures are written for the as-yet-unseen malware types. 

Heuristic-based detection has also been used for malware detection, historically. In 

heuristic-based detection, suspicious programs are run to obtain a defined pattern of 

behaviour, and a threshold is set for that behaviour. Whenever any application exhibits that 

behaviour pattern, it is classified as that specific malware. The main advantage of the 

heuristic technique is that it can detect new types of malware, based on similar behaviour 

patterns. This technique can lead to large numbers of false positives; hence a combination 

of heuristic-based and signature-based techniques are often used. 

Increasingly, machine learning techniques such as [14], [15], [16], [17], [18], are 

being used for malware detection. The benefits of these techniques include: reducing the 

rate of false positives (i.e. something improperly identified as malware) greatly, being able 

to detect new and unknown malware variants, and providing faster overall detection rates. 
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2.4 Intrusion Detection and Prevention systems 

Intrusion Detection Systems (IDS) and Intrusion Prevention Systems (IPS) are the two 

basic types of mechanisms used to detect malware at a network level. An IDS is usually an 

"offline" software system that automates the process of the detection of an intrusion [19]. 

Normally, the outputs of an IDS are alerts, and no restoration actions are taken. 

The intrusions can arise with malware packets flowing into the network from the internet 

or could from software that is being executed inside the network, somehow, by an intruder. 

An IDS generates alerts whenever an attack is detected and requires the administrator to 

perform necessary actions to prevent further intrusion. While an IPS detects intrusions like 

an IDS, an IPS also prevents intrusions (i.e. takes a corrective action in real time). Because 

of their ability to assist in the prevention of intrusions, the detection techniques used by 

these systems can be classified into three major areas: Signature-based detection, 

Anomaly-based detection and Stateful protocol analysis [20]. 

Signature-based detection techniques deal with users writing rules that contain 

patterns or strings that correspond with a known attack or threat. Anomaly-based detection 

techniques are designed to characterize normal behaviours and then detect deviations from 

that characterized behaviour, using heuristics. The key advantage of such methods is being 

able to detect behaviour that is not yet known as malicious. The main limitation with them 

is the incidence of high false positives that are associated with “new” types of non-

malicious behaviour that has not been adequately characterized.  
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2.5 AI-Based IPS 

In an overview of the relevant literature that uses AI in IPS systems, most of the work to 

improve IDS system tends to focus on malware samples in their executable forms or in the 

form of IPS requests. Generally, there is agreement that AI technologies improve the rate 

of malware detection. Various malware sample features have been used to create accurate 

classification models. Finally, AI algorithms can be used for malware signature generation 

itself and this is the focus of the work described here.  

2.5.1 Improving malware detection using AI techniques 

Herani et al. [21] surveyed and analyzed different approaches for improving cybersecurity 

using AI. These methods included: expert systems, neural networks and intelligent agents. 

Their survey highlighted the increased accuracy and efficiency of detection when AI is 

used in intrusion detection and prevention systems. Swapnil et al. [22] did similar work but 

reviewed techniques like data mining, fuzzy systems, and pattern recognition systems. 

They concluded that using AI in such systems can help to adapt them to different 

cybersecurity situations, thereby increasing the accuracy and speed of decisions. Dalal et 

al. [23] discussed a novel architecture model based on machine learning for the prediction 

of a cyber security malware that is executed in a sandbox.  

2.5.2 AI systems for generating malware detection signatures  

Currently, signature rules for Intrusion Prevention Systems are written manually. Malware 

behaviour is studied at a network level, and corresponding rules are written to identify and 
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flag them. This might be based on the detection of specific strings in the malware payload 

and varies with the type of malware. This task can be arduous and prone to error. Such 

errors might be non-detection of malware ("false negatives") or excessive numbers of 

"false positives" (i.e. malware that is flagged, when none is actually present).  

Several researchers have attempted to automate signature-based, network-level 

malware detection methods. Different methods have been used to standardize the 

specification of signatures and to allow the manual cost of generating them to be shared by 

a larger community. Specification-based detection uses signatures written for the specific 

malware [24]. The semantics of the malware and its API calls can be combined to create a 

unique signature that can even be used for detecting  new variants of that malware [25]. 

A specification language called Snort [26] has become the de-facto standard. This is 

explained briefly and justified as a representative signature-based 'language'. Some notable 

examples of similar work include the work by [27], who used the logs from a honeypot, 

specifically honeyd, to generate Snort rules. In their work, they wrote a script that would 

parse the log files from honeyd and generate the corresponding Snort rules. The rules that 

they generated were mainly from network scans and other probing scans. Their work differs 

from ours in that we are working on generating rules for malware which, per their behaviour 

and structure, are more diverse and specifically not IP-based. Thus, our rules do not require 

IP addresses to be part of the rules that are being generated since IP addresses for malwares 

can be changed easily. 
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The work in [28], uses two data mining algorithms to generate rules for five types 

of attacks, which include Brute Force and DOS attacks. Again, it can be observed that these 

types of attacks are not sophisticated and are easily mitigated by blocking the offending IP 

address that is launching the Brute-Force or Denial of Service attacks. This approach is 

less effective for the DDOS types of attacks discussed already, which are launched from 

multiple IP source addresses. The work of [29] used a genetic algorithm solution for rule 

Snort generation, using anomalous ICMP packets as inputs. The authors then designed an 

algorithm to generate Snort rules. The malicious traffic being detected was ICMP packets, 

which are simple types of attacks that can usually be thwarted by using IP-based rules. 

Jeyasingam et al. [30] looked at the dynamic generation of Snort rules for SCADA 

Systems. The authors used descriptions provided by system administrators who used 

simplified natural language to capture relevant features and other constraints like IP 

addresses, etc. This description was passed to a parser to interpret the language definitions, 

which then generated the required rule. This technique did not use Machine Learning 

methods, per se, but is the closest related work where an IDS rule generation has been 

automated. Their work is different from ours in that they were still requiring a human to 

describe the characteristics of the system, such as: network topology, protocol, etc. before 

it could be used. Another limitation of their work is they were specifically focused on 

network-based attacks like DDOS and not on malware. Our goal is to generate signatures 

for both malware and network-based attacks.  
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We believe our work to be among the first to use machine learning techniques in 

combination with Natural Language Processing (NLP) methods for Snort rule generation. 

We do this for various families of malware, starting with existing Snort rules. Our objective 

is to do this without requiring any additional human processing steps, specifically related 

to re-writing the rules or re-interpreting them. 

2.6 Signature-Based Detection 

Signature-based detection is currently used in both the leading IDS and IPS systems [31]. 

Some of the benefits of signature-based systems include having high processing speed for 

attacks that have been identified and also having a very low false-positive detection rate 

(i.e. benign traffic classified as being malware). The goal of all IDS and IPS systems is to 

reduce the number of false positives and the number of false negatives (i.e. malware traffic 

not classified as such) too. 
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3 Related Work 

3.1 Malware Detection using AI  

Using machine learning techniques to detect malware is not new. In [18], the authors 

collected about 250 malware and benign samples, which they submitted to an online 

automatic dynamic analysis service called Anubis. This generated a report in XML. Using 

XML, they created sparse Vector models for each report, and Attribute Relation File 

Format files (ARFF). ARFF files are ASCII text files that describe a list of instances and 

the attributes they share. This file format was specifically designed for a Machine Learning 

tool called WEKA which the researchers used. The learning and classification were based 

on the ARFF files. Various Machine Learning techniques were applied to these files. Their 

key findings showed that the best performance was achieved on the J48 algorithm on both 

binary weight and term or occurrence frequency-weight datasets. The J48 Algorithm is an 

algorithm used to generate decision trees. Decision Trees are graphical representations of 

possible solutions based on specified conditions. There were slightly different 

performances between k-Nearest Neighbour k-NN, Support Vector Machines SVM and 

J48 algorithms. The main limitation with their technique is that malware detection is not 

performed in real-time, because samples need to be of the time required to reformat the 

samples used for training and then testing.  

A framework for detecting malware on Android devices was proposed in [32]. This 

is a “lightweight” malware detection system because it uses very minimal CPU, memory, 
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and battery power. Different metrics are monitored, like CPU consumption, packets sent 

via Wi-Fi, the number of processes running, the battery level and other system usage 

parameters. The data collected is processed in stages, a threat assessment generated, and 

then appropriate notifications are sent to the user about specific applications or processes. 

The goal of the report is to lead the user to either uninstall the application, kill a specific 

process or encrypt their data [32]. The authors found that Naïve Bayes and logistic 

regression algorithms were superior to other classifiers in most of the configurations.  

The work in [33] is an evaluation of different classifiers for detecting mobile 

malware [33]. Two experiments are conducted. The first experiment captures network 

packets from the Google Play Store “Top 20 clean applications” list. Next, data from the 

MalGenome dataset (which was the largest malware dataset at the time of the publication) 

is gathered. The authors use the common behaviour of malware, as defined at the time of 

publication, where 97% of the malware studied, established network connections to their 

developers (phoning home) as the basis for their study. Features are extracted from the 

samples, including frame length, frame number source port, destination port etc. Their 

results showed that Bayesian Network and Multi-layer Perceptron MLP classifiers 

provided an almost perfect Area Under Curve AUC value of 0.995 (a basic measure of 

classification accuracy indicator, with the highest value being equal to 1) with Random 

Forest having an AUC value of 0.991followed by KNN and J48.  

The researchers in [34] took raw pcap files as their input data and then used CNN 

to propose a new traffic classification model. They converted the collected pcap files into 
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CNN input data, which is in Incremental Design Exchange IDX format, which is an XML-

based messaging format. They then generated a 28*23-byte image for each type of traffic, 

using CNN image detection to detect the various types of traffic. In their work, they were 

able to achieve an impressive accuracy of 99.41%. However, the process of converting 

pcap files into image formats is quite slow, preventing detection from being done in real-

time. 

Deep Forward Neural Networks are machine learning structures that are designed 

such that the connections between the various nodes do not form a loop. In [35], the author 

trained DFNNs on 4.5 Million pcap files and tested them on a distinct set of 2.5 Million 

malware and benign sample. This study is one of the largest studies that has been performed 

to date. Features were extracted by malware experts, with domain knowledge in the field 

and the number of these features gradually reduced from 50,000 and consolidated down to 

500 and then trained on the larger subset of samples. A binary classification error rate of 

0.357% was achieved on the smaller independent subset of tested samples. However, a 

very large number of malware features needed to be extracted by domain experts and the 

authors, Shabtai et al [35]  acknowledge that their resulting classification error rate is also 

too high to be put to practical use. 

Hardy et al. [36] monitored Windows Application Programming Interface (API) 

calls to detect malware. These calls were extracted from Portable Executables PE Files. 

They studied how a deep learning architecture using the Stack Auto Encoder SAE models 

could be designed for intelligent malware detection. The SAE models were used as greedy 
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layer-wise training operations for unsupervised learning, which was then followed by 

supervised parameter fine-tuning. This resulted in 0.986 accuracy. The main drawback 

with their work is that malware not using a Windows API cannot be detected. 

From a survey of the literature, it seems that little or no research has been done to 

generate signatures for malware detection systems, using already written signatures as the 

dataset. An important goal for our research is to investigate the area of Generating new 

Snort Signatures using old Snort rules for specific malware families. With the objective of 

having the new rules detect more malware than the existing one. We set out to combine 

NLP techniques with machine learning algorithms to create signatures for use in IDS and 

IPS systems. 

3.2 Motivation for the application of AI and NLP to signature-based detection  

Snort resembles a 'language', albeit a very structured and rigid one. Based on this starting 

assumption, even though the language is 'artificial' to a large degree, we investigated the 

use of Natural Language processing techniques to generate malware-detecting rules. 

Similar approaches have been used with other forms of “natural language” with more 

structure. An example of such work is by Lee et al. [89]. In their work they used the GPT-

2 transformer to fine-tune patent claims. Patent language is very limited, specific and 

restrictive in structure. As with spoken languages, however, there is still more than one 

way to write a Snort rule. A Snort rule is acceptable for real-time malware detection 

purposes, if it follows the required syntax and correctly raises an alert, when tested with 
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the requisite malware (i.e., flags 'true positives') and does not trigger in the presence of 

normal non-malware traffic (i.e., no ‘false positive’ triggering). ‘True positives’ are 

situations when the model correctly predicts the presence of malicious samples. For 'false 

Positives’, the model incorrectly predicts a benign sample as being a malicious one. A 

‘false negative’ situation arises when the model predicts a malicious sample as being 

benign. A True negative case is when the model correctly predicts a sample as being 

benign. We want true positives and true negatives, but not false positives and false 

negatives. 

In practical systems, Snort rules that trigger on non-malware traffic are re-written 

to be more specific to the malware that they have been designed to detect. This reduces the 

number of false positives. The total number of rules must also be minimized, in such 

systems, to allow them to be used for real-time detection on hardware routers and 

monitoring systems with limited memory and processing time. This improves the speed 

and performance of the system, when in operation. Rules that no longer trigger must be 

culled and replaced with ones that provide more malware-detection capability. This must 

be done on an ongoing and continuous basis, as malware signatures evolve. 

Applying NLP to IPS Signature generation assumes that current IPS signatures can be 

viewed as rules written in a language by humans, even though this language is in fact more 

artificial than true “natural” languages. However, jut like other natural or artificial 

languages, IPS signatures must follow conventions for grammar and structure and have 

“parts of speech”, etc. 
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In truth, IPS signatures are a form of Artificial Language. They are quite rigid in their 

use and need to be highly specific and they have limited words that can be used. 

Nonetheless, we attempt to apply NLP to provide good algorithms for text generation. This 

generated text will obey the rules of this specific language and hopefully still be useful for 

intrusion prevention systems. 

4 Malware Classification Using NLP on Packet Header Information  

In this section, we discuss the task of classifying malware using NLP techniques, operating 

on data samples from network traffic. We classify malware using NLP and using just the 

TCP header information available on a packet. Since deep packet inspection is very costly 

in terms of time and processing power to any IDS or IPS, we hoped that using the header 

information alone would be feasible. Another benefit of only using header information is 

that the header is unencrypted even if the packet payload is encrypted. 

Network-based malware analysis utilizes the network traffic generated by a given 

executing malware sample to characterize its behaviour. Network traffic can be captured 

by executing the malware in a sandboxed environment and by using a packet capture tool 

(e.g., like Wireshark) to analyze outgoing and incoming network traffic, which is analyzed 

after capture. Offline processing is usually preferred since it does not require as much 

power as real-time processing. Such an offline method is widely used in industrial settings 

for malware analysis for these reasons. Sophisticated network-based malware analysis 
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intrusion detection software exists to capture network packet data and then analyze it to 

make offline intrusion detection decisions (e.g., SNORT [26]). 

Packet inspection tools typically use deep packet inspection to observe patterns in 

the packet payload. However, only looking at network flow-level information in packet 

headers might yield acceptable performance for faster processing [38]. A flow is a stream 

of continuous packets being transmitted between a source and destination, which is our 

focus here. Flow-level header information could include source address, source port, 

destination address, destination port and transport layer protocol. Using network flow 

information like this can reduce the storage and processing costs when analyzing network 

traffic. Flow-level network packet analysis has become more relevant as the network 

bandwidth has gone up and the processing costs of deep packet inspection have increased. 

[39] 

4.1 NLP Terminologies 

Defn 1: Word 

A word can be defined as an encoded version of a packet utilizing various packet header 

attributes. 

Defn 2: Sentence 

A sentence can be defined as an encoded version of a stream of packets or, more simply, 

as a sequence of words. 

Defn 3: Context 
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Context can be defined as the correlation between a group of consecutive words appearing 

in a sentence.  

N-Grams: A sequence of n words is known as an n-gram. These are used in natural 

language processing and emphasize both the different meanings of words, but also their 

context, which can affect the meaning too. 

Vectorization:  Vectorization of obtained text (or of an obtained corpus, or body of text) 

is an important step in recognizing patterns in natural language. Vectorization is used to 

compress the size of the corpus being analyzed, for both training and classification 

purposes. Different techniques used to vectorize words are listed below: 

• Term frequency: Inverse Document Frequency - a measure of how important a 

word is in the document. It considers whether a term is common or rare in a 

document. 

• Bag of Words: in this model, a sentence is represented as an unordered set of words. 

The grammar and context are not considered, but the word frequency is noted. 

• Neural Word Embeddings: is a technique involving the use of a neural network to 

map each word into a multi-dimensional vector space. 

4.2 Related work 

Natural language processing techniques have been utilized in the malware classification 

task in the past. Wang et al. [40] performed a word analysis of HTTP traffic and found that 

malicious and benign traffic differs in their term frequency, allowing detection of malicious 
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HTTP traffic. Nagano et al. [41] and Tran et al. [42] utilized the API calls made by an 

executable to form a characteristic paragraph vector which they use to characterize samples 

as malicious. The limitations of their approach are that API calls are now normally 

encrypted, rendering their technique useless. Their work relates to our work in that they 

are also trying to use metadata about the malware samples to detect whether samples are 

benign or malicious. 

NLP software techniques can be utilized in other parallel fields. An excellent 

example of this would be the extension of Word2Vec, well-known NLP software, into 

Gene2Vec and Like2Vec. A significant amount of work has been done in the field of 

natural language processing for malware analysis [43] [44] [40] [4] [42] [41]. A more 

thorough discussion of these work will follow next. 

Chatter [43] proposes the use of system event ordering to classify malware families. 

The authors utilize network events and encode them into documents which are used as 

characteristic classification templates for a malware family. They report over 75% 

accuracy and precision using three different classification methods: SVMs, k-NN and 

decision trees. This work relates to our work in that they also use metadata, which is high-

level system events and the order in which they occur to detect malware samples.  

MalClassifier [44] proposes the use of network packet traffic to classify malware 

families. The authors claim that this can be achieved at wire-speed rates (i.e., fast enough 

to work in real-time). Their work builds on previous work by Metty et al. [45] that separates 

traffic into distinct network traffic "flows" using independent component analysis. Their 
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work also relates to our work with their focus on using metadata, which in their case is 

network flow sequence behaviour. 

4.3 Methodology 

Like other network-based malware analysis methods, we analyze sequences of network 

packets from pcap files. This does not preclude wire-speed inline processing as follow-on 

work. As already stated, because we are only using header data, the amount of data that 

needs to be stored and processed is reduced by a factor of 14 times down to a total 

requirement to process only 96 bits which is the TCP header size.  

Since our technique utilizes 'text mining' techniques (which is the process of deriving 

information from a collection of text), the first step in analyzing a stream of packets is to 

create an encoding to convert raw packet data into words and sentences, as already defined. 

A stream of n packets is encoded into a sentence, giving a ‘context’ to a collection of 

packets. For malware classification of network traffic, a sentence can be defined in 

different ways. These sentences are then analyzed using text mining approaches defined 

by other researchers. 

We varied the definition and scope of the context used. We then analyzed which 

methods classify better and the reason for any relative performance advantages. We also 

examined whether the identification of flows, which are unique source/destination address 

and port and protocol instances, results in performance improvements or not. 
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4.4 Dataset 

We utilize a subset of the Deep Traffic dataset [46] for our application. This is a public 

data set, containing network traffic from malware and non-malware sources. The dataset 

contains four different traffic sources, of which three sources were benign (i.e. BitTorrent, 

MySQL and Gmail), and another source was malicious (i.e., Zeus malware). Our selection 

for these types of packet capture traffic was based on the ubiquity of both types of traffic. 

As an example, BitTorrent traffic is known to constitute about 40-70% of the current 

internet traffic [47]. 

4.5 Design Prototype 

The available header data is analyzed and pre-processed using Wireshark to create pcap 

files. A custom script was then used to convert each of these pcap files into encoded-words 

(or classification vectors) and subsequently into n-grams. Different sizes of n-gram (i.e. 

n=1 through n=9) were analyzed to determine which would give better accuracy. An 

example encoding for n=3 can be seen in the figure below. This encoding allows the text 

mining software to be utilized, but care must be taken in interpretation, given our definition 

of a 'sentence' for malware classification purposes in section 3.1. In our design we consider 

the value of n to be a concatenation of 4 header fields, Port, Protocol, Packet Size and Time. 
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Figure 1: Example encoding for n=3 

The n-grams were fed into a Doc2Vec neural network for vectorization [48]. The 

Doc2Vec network converts each n-gram into a vector of floating-point values between 0 

and 1. These vectors allow packet data size to be reduced, for training and 

testing/classification purposes. Reduction of the packet data size improves the training 

speed and of the machine learning models. 

The derived vectors were then randomly split into a training set and a test/classification set 

and labelled as being either malicious or benign, based on the specific file source. The 

training set was used to train a Support Vector Machine (SVM) classifier. Once established, 

this SVM classifier is used to make predictions and evaluate the data in the test set. This 

whole process was then repeated, with different random sampling to produce the 

classification datasets multiple times, and the results from each such trial averaged to 

derive a final performance figure for classification accuracy and precision. 

|Port |Protocol|Packet Size|Time  
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4.6 Design Evaluation 

The prototype design was evaluated using standard machine learning statistical parameters. 

Specifically, the following metrics were used: Precision, Recall, and F1 Score. Figure 2 

shows how each of these metrics is calculated. These metrics are all defined in terms of: 

True Positive (TP) and True Negative (TN) as well as False Positive (FP) and False 

Negative (FN). 

A True Positive classification is when malware packets are correctly classified as malware. 

Conversely, a True Negative classification arises when benign packets are classified as 

such. 
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Figure 2 Formulas to calculate the evaluation metrics 

4.7 Results and Analysis 

The results for the different metrics are summarized in Table 1 This data has been plotted 

graphically, for visualization purposes. Accuracy dips momentarily at n=3 and then 

continues to increase up to n=7. 

 

Ngrams Recall Precision F1 Score 

2 0.8827 0.8519 0.8398 

3 0.8929 0.8762 0.6937 

4 0.7638 0.9259 0.7865 

 

LEGEND 

Recall: ratio of true predictions to the total true predictions 

Precision: ratio of correct true predications to the total true predictions 

F1 Score: weighted average of the precision and the recall 
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5 0.7635 0.9409 0.8555 

6 0.7638 0.9395 0.876 

7 0.7683 0.9464 0.8964 

Baseline1    

Baseline1-2 0.98667 0.99418 0.85538 

Baseline1-3 0.87914 0.97148 0.91627 

Baseline1-4 0.71811 0.99724 0.98728 

Baseline1-5 0.87429 0.97672 0.92406 

Baseline1-6 0.73832 0.91304 0.95325 

Baseline1-7 0.85993 0.89966 0.94093 

Baseline2    

Baseline2-2 0.96734 0.80977 0.87593 

Baseline2-3 0.85314 0.92763 0.98292 

Baseline2-4 0.9837 0.80175 0.94396 

Baseline2-5 0.99201 0.89264 0.81642 

Baseline2-6 0.85742 0.81278 0.81266 

Baseline2-7 0.81266 0.80947 0.84751 

Baseline3    

Baseline3-2 0.9956 0.81112 0.892 
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Baseline3-3 0.97947 0.81571 0.81733 

Baseline3-4 0.94573 0.87846 0.87449 

Baseline3-5 0.94436 0.98377 0.99721 

Baseline3-6 0.83858 0.85028 0.994 

Baseline3-7 0.88694 0.90093 0.92537 

Baseline4-    

Baseline4-2 0.98308 0.90922 0.97676 

Baseline4-3 0.82462 0.83459 0.9333 

Baseline4-4 0.96838 0.95173 0.91388 

Baseline4-5 0.9529 0.94319 0.95387 

Baseline4-6 0.85831 0.98944 0.99282 

Baseline4-7 0.87353 0.87303 0.99231 
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Table 1: Recall, Precision and F1 Score (n=2 through7) 

Figure 3: Depiction of precision, f1 score and recall 

Both recall and f1 score follow a similar pattern, peaking initially at n=2, then dipping at 

n=3 and rising for the subsequent values. We might expect both recall and f1 score to rise 

for values greater than 3, because greater n values will carry more 'context'. However, it is 

less clear why the values dip at n=3. 

One plausible explanation might be that n=2 corresponds to cases of simple 

send/response messages between the sender and receiver (i.e., maximum possible and full 

context) while n=3 packets contain a mix of both of this type of short transactions but also 

partial samples from longer conversations. This results in 'extra' packets from different 

flows occurring together, resulting in distorted results. 

0.66

0.71

0.76

0.81

0.86

0.91

0.96

2 2 Base 3 3 Base 4 4 Base 5 5 Base 6 6 Base 7 7 Base

Depiction of precision, f1 score and accuracy

Recall/baseline Precision/baseline F1 Score/ baseline



31 

 

recall also never exceeds 89% for all tests and the reason for this is also unclear. 11% 

of malicious n-grams could be exceptionally similar to benign n-grams hence resulting in 

their misclassification. Equally, malicious traffic may behave identically with non-

malicious activity at certain parts of a conversation flow. 

When our results are compared to baseline scores it can be observed that baseline 

scores are better than our results, in general. This may be because “distinctive” malware 

communication might occur in packets that are spread out over non-consecutive time 

intervals. Therefore, randomizing the packets allows related communication packets from 

a “flow” to be closer to each other in the pcap (packet capture) file. This could be why the 

randomization of the packets leads to better scores across board. The ordering of the packet 

header information for our experiment does not have to be unique. We plotted our results 

with only one set of baseline results since other baseline results follow the same pattern. 

We considered base rate fallacy in our work. In base rate fallacy, people tend to ignore 

or overlook the base rate of incidences of an event because they tend to be very low [49]. 

It is known that just a very small amount of network traffic is actually malicious research 

shows that the percentage could be as low as 7% [50]. Despite being that low, there is a 

tendency to focus on false positives instead of true positives Since true positives are the 

packets that cause harm to the network.  
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4.8 Conclusion 

We have demonstrated a lightweight method to detect malware using network traffic, 

although our method is improved by packet randomization.  This seems to indicate that 

temporal “locality” in a pcap file is interfering with detection somehow.  This would seem 

to be dependent on network traffic statistics. 

A detection accuracy of 89% is not enough for commercial environments, but our work is 

comparable with other malware detection systems [51]. As already mentioned, the 

advantage of anomaly-based mechanisms is that new malware types with different 

signatures from previous malware types might also be detected, although the new type of 

malware must differ in some way from “normal” traffic types. 

In Chapter 6, rather than investigating and analyzing large sets of pcap files from different 

networks, we explain a completely different approach to malware detection, which should 

be less dependent on the network characteristics that affect pcap temporal locality of 

network “flows” in such files. We study the automation of the process for writing Snort 

rules to detect malware, since these rules can be used directly in many/most IDS and IPS 

systems. We assume that the writers of “successful” instances of such rules have been 

forced to optimize them to minimize false positives and false negatives, while maximizing 

true positives for a wider variety of networks and network conditions, as captured in 

network packet capture files. In this way, we avoid the need to evaluate large numbers and 

varieties of pcap files, ourself.  
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5 IPS Snort Rule Generation for Malware Detection using NLP 

This chapter discusses how Natural Language Processing techniques can be applied to the 

generation of rules that can trigger an IPS. These rules are written in a rules definition 

language called Snort [52]. The architecture of the Snort engine is described, along with 

the anatomy of Snort rules An explanation is given as to how such rules are written. The 

second section in this chapter compares Natural and Artificial Languages. The chapter 

concludes with a discussion of text-generation techniques, applicable for artificial 

languages like SNORT.  

5.1 Snort Intrusion Protection System 

Snort is a leading industry tool that is used in intrusion detection and prevention systems 

for detecting specific patterns of network traffic based on a rule. It is open-source and was 

created by Martin Roesch [26]. In most industries, Snort is considered to be the de-facto 

standard for capturing the rules that are used in both IDS and IPS. The language is highly 

customizable and operates very efficiently (i.e., allowing real time detection of specific 

network traffic patterns). Because Snort is an open-source tool and widely available, a large 

number of rules for detecting different types of malicious software are also available in an 

open-source format, making it attractive for research purposes. 

The Snort organisation provides two kinds of rules: Registered and Subscriber 

rulesets [53]. The Subscriber ruleset is paid, and they receive rulesets in real-time as they 

are released. It also has the complete set of known rules, along with rules for newly-
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identified and as-yet-unpublished (i.e., zero-day) threats. The registered ruleset is freely 

available for individuals and businesses and is released thirty days after the Subscriber 

ruleset is released. 

Users can also contribute rules for detecting malware, as they create them. These 

community rules are not vetted by the Snort organization, unlike their own published 

Subscriber rules. The Snort language is flexible/customizable and relatively simple to read 

and understand. As already mentioned, it is designed to be efficient enough for practical 

use in real-time scanning for malware, making it a reasonably ‘terse’ language. 

Indeed, the system resources required to run Snort are minimal and it can be run on small 

IoT devices, like a raspberry pi [54]. The Snort rule detection engine is lightweight, with 

excellent throughput for deep packet inspection, but execution time depends on both the 

number and complexity of the rules being used on network packets. Snort systems have 

evolved over the years, and most proprietary IDS/IPS systems resemble Snort, in terms of 

their architecture and the structure of their rules. A comparison of some modern IPS/IDS 

systems is given in Table 1, along with the key features of each one. Snort is the simplest 

of the three languages and is designed for single-threaded implementations, with minimal 

extensibility and offering no support for hardware acceleration. We chose Snort because it 

is the leading Opensource IPS tool on the market [52], has a very vibrant rule-writing 

community and most of the rules published are freely available.  
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Functionality Snort Suricata Bro (Zeek) 

Year Created 1998 2009 1998 

Number of 

Users 
600,000 - - 

High-Speed 

Performance 
Yes Yes Yes 

Multithreaded Single Multi Multi 

Modular 

Design 
Yes Yes Yes 

Deep Packet 

Inspection 
Yes Yes No 

Multiplatform 

Support 

Windows, Linux 

Mac OS 

Windows, Linux 

Mac OS 

Windows, Linux 

Mac OS 

Hardware 

Acceleration 
No Yes No 

Table 2: Comparison of Snort and other IDS/IPS [53] 

Snort can perform protocol analysis and content searching, which is based on keyword 

searching. This is done using regular expressions that are built into the Snort engine. Snort 

can detect various attacking probe methods, like port scanning, OS fingerprinting, buffer 

overflow, etc. Snort syntax and structure are relatively simple with only a few keywords to 

be learned, making configuration, and both the reading and writing of rules relatively easy, 

when compared to other alternatives like Suricata and Bro. This simplicity, combined with 

the open-source organization, has made Snort very popular. Many rule sets have been 

written and published for different types of malicious software. Because of this popularity, 

even Suricata also accepts rules formatted in Snort format as a valid input. 
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Once a new exploit or type of malware is detected, researchers can study the specific 

behaviours and so write rules to detect them in the future. The rule base is a separate text 

file that the Snort detection engine parses. Therefore, rules can be added "on the fly," 

without needing to re-compile anything. Rules can be written that capture a specific string 

or pattern in the payload, although packets cannot be encrypted in this case. In cases where 

malicious packets are encrypted. For encrypted payloads, however, signature-based rules 

are generally less effective, although rules can be written to detect abnormal patterns or 

keywords in the unencrypted portion (e.g., using the header information as we 

demonstrated in the previous section) of a packet. Alternatively, other packet 

characteristics like size or timing of packets can be used [54]. The main disadvantage of 

these approaches are they generally lead to many false positives, when header patterns are 

identical to other non-malicious packets, which we have already seen to be reasonably 

common. 

5.1.1 Snort Operation Fundamentals 

In this section, we look at the various parts of Snort and how they each function. We discuss 

the performance of Snort in relation to other similar IPS/IDS systems. The various parts of 

a Snort system are shown in (figure 4).  
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Figure 4 The Architecture of Snort[55] 

Referring to the figure, we note the following, which has been adapted from [55]: 

Network Traffic: The network traffic is usually captured on a network interface that is set 

up to be promiscuous (i.e., to detect all traffic and not just the traffic destined for the host 

node). Network traffic is captured via this interface and then passed on to the packet 

decoder. 

Packet Decoder: The packet decoder determines which underlying protocols are being 

used in the packet (i.e., Ethernet, TCP, UDP) and saves this information, along with the 

size of the payload, to be used by the preprocessor.  

Preprocessor: As the name suggests, the preprocessor pre-processes all received packets, 

which includes normalizing the packets that are being received into a format that the Snort 

signature processor can recognize and detecting network abnormalities that may be 

precursors to an intrusion.  
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Detection Engine: The detection engine loads the various rulesets that are specified in the 

Snort configuration file. The engine performs two main tasks: rule parsing and signature 

detection. It builds attack signatures by parsing rules. These rules are read, one line at a 

time, and placed into an internal data structure, to increase the overall speed of the detection 

process. For signature detection, the traffic is then analyzed against this internal data 

structure to verify if there is a match to any of the information that is held in the data 

structure. If so, an alert is raised; otherwise, another packet is loaded, and the process 

continues. 

Rules: A Snort rule is a formatted set of conditions and subsequent actions that are to be 

performed when a packet meets the predefined criteria that is specified in those rules. Rules 

are written manually and are specific to a particular set of malicious behaviours and stored 

in a database, to be parsed by the detection engine, as already explained. Snort rules have 

mandatory and optional components but must be tested rigorously to ensure that they do 

not trigger on non-malicious traffic (i.e., no "false positives"). 

Logging and Alert systems and Output modules: The logging and alert systems, 

combined with the output modules, allow more flexible formatting for user output files. 

The user can specify the logging facility and the priority or logging level (e.g., critical, 

minor, information, etc.) of information being logged to the file. Snort logs are saved in 

printable ASCII format. 



39 

 

5.1.2 Anatomy of a Snort Rule 

The Snort rule consists of two main parts: the rule header and rule options. The rule header 

contains actions, protocols, source and destination IP address and netmask, and the source 

and destination ports [56]. The rule options contain alert messages and a specification of 

which part of the packet should be inspected when deciding if the rule action is to be taken 

[56]. 

 

Figure 5 the structure of a snort rule 

5.1.3 How Snort Rules are Written 

Snort rules are created in stages. First, the purpose of each Snort rule must be defined. 

Rules are written to detect the defined malicious activity occurring on a network. The 

outlier behaviour(s) that are to be detected must be defined carefully and characterized to 

determine a reliable method for detection. This characterization is usually done inside a 

test or captive network. A rule must be created to detect the outlier behaviour(s), but this 
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rule should not "detect" other types of traffic, especially benign or non-malicious types of 

traffic, since this would lead to false positives.  

An example of a rule and its explanation is given below: 

alert tcp any any -> 192.168.1.0/24 111 (content:"|00 01 86 a5|"; msg: "mounted access";) 

The rule above indicates that: TCP traffic (from any source) is heading to the specified IP 

address with the corresponding subnet mask; the 111 denotes the port number. The payload 

section should be inspected to see if it has the specific content: "|00 01 86 a5|". If such a 

string is detected, an entry in the Snort log file should be created, with the corresponding 

message 'mounted access'. 

5.1.4 How Snort rules are tested. 

Once a rule is written, it needs to be tested with pcap or network files that contain the 

malicious traffic targeted by the rule and then tested with other types of traffic, including 

non-malicious traffic. As already stated, besides triggering on the desired types of 

malicious traffic, the objective is to reduce the number of false positives that may occur 

when the rule is deployed in a production environment. Real networks contain a variety of 

malicious and non-malicious traffic. Therefore, testing for triggering proceeds as follows: 

verify whether Snort is loading the rule properly, check if Snort can trigger an alert and, 

finally, confirm if alerts are being logged correctly [54]. Finally, the rule should be tested 

with a large enough representative sample of benign traffic, to make sure that it does not 
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trigger. In real systems, the consequences of false positives can range from log overflows 

to impaired detection or prevention. 

There are two techniques for a user to test Snort rules. The most common technique 

is to obtain pcap files from a trusted source, some of which are known to contain the 

malicious traffic type that is being targeted by the rule in question. This file can then be 

parsed with the designed Snort rule. This method allows rule efficacy to be verified on a 

representative set of samples in a safe “offline” manner without the need to gather the data 

from a network with “live” malware executing. 

Alternatively, Snort rules can be tested on different types of “live” systems, 

allowing the malware in question to run (e.g., a stealth scan or a buffer overflow exploit). 

Obviously, such “live” systems need to be isolated from other networks and other 

computers very carefully (e.g., “air-gapped”), which may change the behaviour of the 

malware in question (i.e., if the malware is able to detect the use of these kinds of "sandbox" 

systems and is programmed to be dormant, in such environments). Indeed, this second 

technique is often used to create the files that are used with the first technique, anyway. 

Therefore, the difference is mostly in the captive test equipment that is required by the 

Snort rule writer. 

5.2 Natural and Artificial Language Processing and Deep Learning 

In Linguistics, Natural Language (NL) is any language that has evolved naturally in 

humans through repeated use and without conscious planning [57]. This definition includes 
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all the various languages that are spoken by people during communication. An artificial 

Language (AL) is any language that has been specifically devised and usually by a single 

creator [58]. AL is normally used in computing environments. Some examples of AL 

include programming languages and markup languages. Since both languages have their 

technical requirements for forming words and sentences, they can be used in various 

linguistic tasks, related to computing activities [59]. These tasks include: Lexical Analysis, 

Statistical Analysis, Semantic Analysis, Question and Answering, Text Generation etc. 

5.2.1 Artificial Language Processing 

The earliest research work in AL is from Manna et al. [60] . They used a theorem-proving 

approach to automate the task of program synthesis. They proposed the use of 

mathematical induction to construct a simple program with loops or recursion. 

 Simon et al. [61] performed experiments to construct a compiler that makes use of 

heuristic problem-solving techniques. They concluded that there was no practical approach 

to the construction of compilers for heuristic programming. However, their interest was to 

understand what these tasks can teach about the nature of the programming task.  

 More recently, Husain et al [62] looked at the task of retrieving relevant code by 

using natural language queries. They sought to bridge the gap between natural language 

and the highly technical language that is used when creating code. This led to the creation 

of CODESEARCHNET CORPUS [62], which contains query-like natural language for 

over 2 million functions. Their objective was to simplify the process of using natural 
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language to search for code. For example, entering ‘find a function that adds two numbers’ 

into the code search engine should retrieve specific code examples that satisfy the query, 

no matter what programming language is used for the code in question. 

 Clement et al. [63] translated natural language and python code using transformers, 

that map between the two. A python method for text-to-text transformation, PYMT5, was 

created. This transformer can predict a single method from python documentation, which 

has been captured in NL.  

5.2.2 Natural Language Processing 

Natural Language Processing (NLP) is a subfield of linguistics, computer science and 

artificial intelligence (AI). NLP relates to interactions between computers and human 

language. at the focus is on how humans can communicate with computers in their natural 

language and how the computers can process the text, to make sense or meaning out of it 

and so proceed to respond accordingly. A very popular current use of NLP is in the recent 

suite of smart assistants such as Apple Siri, Google Assistant and Amazon Alexa [64].  

NLP uses statistical methods and often Neural Networks to implement different tasks. 

Popular NLP tasks include: text to speech processing, Text generation, Question-

Answering systems etc., and a growing number of others. Some common usage 

applications of NLP include: information retrieval, named-entity recognition and Parts of 

Speech tagging [65].In information retrieval, documents are found that satisfy some 

specific, required information within a large corpus of text. Named Entity Recognition 
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allows identification and location, based on specific predefined categories (e.g. 

percentages, a person’s name, locations, medical codes, monetary values, etc.). In Parts of 

Speech tagging, various words in a document are classified or tagged with the 

corresponding part of speech (e.g., verbs, nouns, etc.). Many of these are “front-end” 

functions, serving to enable subsequent processing in different computer applications. 

5.2.3 Using Deep Learning for NLP 

Deep Learning (DL) is a subfield in machine learning that relates to algorithms inspired by 

the structure and function of the brain. They are often called artificial neural networks for 

this reason. Artificial neural networks are machine representations of human brain 

processes and models (i.e., based on the firing of connections between neurons). 

There are several types of artificial neural networks. The popular ones include 

Convolutional Neural Networks (CNNs), Recurrent Neural Networks (RNNs), Gated 

Recurrent Neural Networks (GRUs), Long Short Term Memory (LSTM), and 

Transformers, but there are others [66]. These types of neural networks currently represent 

the State of the Art for performing various tasks like: Image Recognition, Financial 

Forecasting, Text Generation, and a growing list of others.  
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Figure 6 Structure of a Neural Network [82] 

A typical Deep Neural Network (NN) consists of three basic layers (input, hidden and 

output layers). Each layer has a specified number of neurons. Neurons are used to compute 

the weighted average of their inputs, and this weighted sum is then passed through a non-

linear function called the activation function. Some activation functions include the 

sigmoid function, this is an “S-shaped” curve that maps all inputs smoothly and in way that 

is continuously differentiable to output values and ensures that the output always falls 

between 0 and 1 [67]. Neurons are interconnected in layers, as shown in Figure 6, with 

neurons in a specific layer being unconnected to each other, but often being fully 

interconnected with previous or subsequent layers.  

5.3 NLP Text Generation Techniques 

Text generation, also called Natural Language Generation NLG, is a very popular 

application of NLP and is the closest application to our own. NLG is the process of training 
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a system to generate coherent and logical text. This generated text might be used for various 

tasks, such as: writing newspaper articles, summarization of complex documents, etc. 

In each case, the basic idea is to create new text that is coherent and logical. Training 

a neural network to generate coherent and logical text for natural languages, like English, 

has proved to be a very challenging task. This is due to the complexity of the English 

language and the fact that the system must understand the context, sentiment and other 

language nuances. In this way, long sentences or documents can be generated, that are both 

coherent and meaningful. 

Recurrent Neural Networks RNN are the main class of Artificial Neural Networks 

DNN that are used for NLG. RNN are a type of DNN where the connection between the 

nodes forms a directed graph. This allows temporal dynamic behaviour to be shown [68]. 

RNNs can use their memory to process input sequences of variable length. This makes 

them suitable for text generation tasks. 

DNN's are also known to be difficult to train because they are classified as Feed-

Forward Networks. In feedforward networks, input signals move in one direction, from an 

input layer onto hidden layers and then to the output layer. In contrast, RNN's can move 

signals both forward and backward. Allowing feedback like this means that RNNs can even 

contain loops in the network. In NLP, the neural network should have the capability of 

'remembering' things, because it needs to take inputs into context. The neural network 

should be able to ‘remember’ because it needs to have the ability to take several inputs and 
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see how they relate to each other. Fundamentally, this “memory” property provides the 

‘context’ for different inputs. 

Certain real-world applications of text generation are more constrained and less 

"natural". An example of this would be the text generation for complicated "legalese" in 

legal documents, converting legal terms into more understandable forms for non-lawyers, 

without changing the meaning or implications of such contracts. The objective is to make 

documents that are easier to comprehend by those who do not have any legal training, but 

that are still true to their more rigorous source information. Text generation models can 

also be used to tailor articles or stories based on a reader’s reading preference. For our 

work, these types of NLG applications are the most promising, in that they resemble an AL 

like Snort more closely than techniques optimized for natural languages. 

5.3.1 LSTM 

Long Short Term Memory, LSTM, is a type of RNN. They are popular for the task of 

language modeling because they are capable of learning long-term dependencies. Figure 7 

shows an LSTM unit with feedforward elements. There are several of these that are 

connected together to form layers. 
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Figure 7: LSTM Unit [69] 

Looking at just the inputs and outputs of the architecture shown in the figure, we observe 

that the network takes three inputs on the left-hand side of the diagram: Xt, (current time 

input), ht-1 (output from the previous LSTM unit) and Ct-1 (memory input from the previous 

unit). This single unit makes decisions, generating its own output, ht, and memory, Ct, by 

considering the current input, the previous output and the previous memory [69].  

5.3.2 Transformers 

Transformers are a novel architecture designed to solve the sequence-to-sequence tasks 

while at the same time handling long-range dependencies. Long-range dependencies refer 
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to the ability of a neural network to remember the context in a given sequence [70]. 

Transformers use context (i.e., surrounding words that are related to each other) to 

eliminate superfluous content. Text generation techniques often use context (i.e., 

surrounding words in a larger group like a sentence) to improve the quality of the generated 

text. They can also make the derived text more concise or meaningful. A sequence-to-

sequence task is a task given to a neural network to convert a text sequence into another 

text sequence. The goal is to understand the input sequence and create a smaller 

dimensional representation of that sequence. In turn, this reduced-dimension representation 

is then used to generate the output sequence [71]. Context is very important in NLG, mainly 

because a context of what is being said or what is to be understood is a basic requirement 

when forming new sentences that are non-cumbersome. A transformer looks at earlier and 

later positions in the input sequence for clues that can help it to better encode a particular 

word. The process of doing this is called self-attention. The self-attention module works 

by comparing every word in the input sequence to every other word in the input sequence, 

including the word itself. The word embeddings of each word are re-weighted to include 

contextual relevance as well as meaning. 
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Figure 8: Basic Transformer Architecture [72] 

Transformers are networks with no recurrence or loops that use only attention. Attention 

here is a technique that tries to mimic cognitive attention. The attention goal is to enhance 

or focus on the important part of the data and diminish the importance of the rest. This 

means that more processing power should be spent on the important parts of the data. 

Recurrent Neural Networks, and transformers specifically, were hard to implement in 

parallel processor architectures, historically, and were less effective in learning text with 

long-range dependencies in the input and output sequence. Implementation was 
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complicated by a requirement for computations that required significant memory. The term 

“Long-range dependencies” refers to the ability of the neural network to remember or be 

able to train on the context of words. Long-range dependencies imply that it takes a large 

part or the entirety of a sentence and then tries to make meaning or understanding out of it. 

The transformer can improve overall text-generation performance with judicious use of 

context.  

Because of this emphasis on context, a transformer can also model long-term 

dependencies nicely. Transformers use multiple heads (i.e., neurons, with multiple 

attention distributions) and multiple outputs to create a single input. Multiple attention 

distributions have multiple attention heads running simultaneously, allowing them to 

attend to different parts of the input sequence in parallel. This greatly increases the speed 

at which these models can learn, making them more practical for many new applications, 

including our own. 

5.3.3 Architecture of Transformers 

The transformer architecture was introduced by Ashish et al. [73]. The transformer is the 

first model that relies entirely on self-attention. As already explained, self-attention is a 

technique that is used by transformers to confirm the 'understanding' using surrounding 

words to provide a context [72].  

A transformer consists of two major parts: the encoder and decoder, both denoted 

by Nx, with the encoder shown on the left-hand side. The encoder has one layer of Multi-
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Head attention, which is immediately followed by another layer of Feed Forward Neural 

Network. The decoder, on the other hand, has the same structure, just with an addition of 

an extra Masked Multi-Head Attention. Masking is done to make the training more parallel, 

thereby allowing the model to train faster. 

Various neural network designs can be used in NLG tasks [74]. We have used the 

Generative Pretrained Transformer 2 (GPT2) model from OpenAI [21] in our work. This 

model is a successor to the GPT model, released to the public in 2018 [75]. The GPT-2 

architecture is not entirely new and is like a decoder-only transformer. The main difference 

is that it is trained using a very large dataset of about 8 million web pages. When the 

transformer was created, no previous model had been trained on anything like as much 

data. Different sizes of the GPT-2 model are available. In our work, we use the 124 million 

parameter model size. Training speed is faster than with larger model sizes, but a smaller 

transformer model is more manageable, in terms of required system memory, for fine-

tuning purposes with our dataset. Therefore, our selection of this model size is a trade-off 

between these two factors. 

5.3.4 Text Generation Techniques with Context (GPT and GPT-2) 

GPT is a very large transformer-based language model, with the largest model having over 

1.5 Billion parameters [75]. It was trained on a dataset of 8 million web pages with the 

object of predicting the next, given a sequence of preceding words within different texts 

[75]. GPT-2 is a scaled-up version of this GPT model, with more than ten times the number 
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of parameters of GPT, needing to be trained on more than ten times the quantity of data 

[75].  

Lots of research has been done using GPT-2 to generate different text. Lee et al. use 

the transformer to generate patent claims [89]. In their work, they focused on fine-tuning 

the GPT-2 Model on their datasets to be able to generate patent claims. As already stated, 

their task is quite similar to our task, mainly due to the unique and constrained language 

structure often used in patent claims [89]. As with Snort, the authors were able to generate 

coherent patents claims using this technique. They believe that augmented inventing may 

be viable in the near future. In June 2020, Google researchers from OpenAI released the 

GPT-3 transformer [76] although it was not widely available in time for our own work. 

This transformer has achieved text generation at near-human levels [76]. GPT-3 is the first 

General Purpose AI to be popularized. It is the largest ANN ever created, with over 175 

billion parameters. OpenAI researchers also showed that GPT-3 was able to generate 

samples of news articles, which human evaluators were not able to distinguish from those 

that had been written by humans. In several datasets on which GPT-3 was tested, it 

consistently outperformed several State of the Art Models (SOTA) models, by a margin of 

at least 20%  Relevant SOTA models include: BERT [77], XLNET [78] and ALBERT 

[79]. Other researchers have also obtained some good results using similar methods [80], 

[81], [82], [83], [84]. 
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5.4 Justification of the use of SNORT and NLP with Deep Learning 

Despite it being an AL, we believe that Snort can still be a good fit for NLP. Snort rules 

follow the specific requirements of a natural language, in terms of having a prescribed 

structure, even though that structure is constrained by more severe grammatical rules than 

might be “natural”. However, not all NLP tasks would be suitable to use with Snort, which 

does not fit the linguistic definition of a natural language. For example, techniques that rely 

on subtle nuances that are present in natural languages would probably be less appropriate. 

These include Lemmatization & Stemming, Semantic Analysis, Sentiment Analysis etc. 

However, techniques like tokenization and Syntactic Analysis could be quite suitable. 

Importantly, we believe that the use of context is important. A major objective of malware 

creators is to hide or disguise the operation of their code. Specifically, these attackers seek 

to avoid detection by computerized defences and adjust the behaviour of their malware, 

adaptively, until they are successful. By using context, illegal sequences of legitimate-

looking individual packets can still be detected, increasing the effectiveness of NLP-based 

malware detection methods. 
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6 Data Collection, Experimental Results and Analysis 

In this chapter, we discuss how we obtained our data.  We also outline the process that we 

used to prepare or clean the data prior to  training the model. We then discuss and analyze 

our results. 

6.1 Data Collection 

We used several sources to create the Snort Rules that are used in our work. The initial 

source was from the official Snort rules repository [52], which provides only the ten most 

recent rulesets. To get a larger and more comprehensive dataset of rules, an archived Snort 

ruleset from a GitHub repository was used [85]. These files contained rules for many 

different types of malware, but we chose to generate rules using the ruleset with the largest 

number of rules. This gives our Neural Network enough training data and provides a greater 

opportunity of improving the performance of the GPT-2 transformer. Based on this 

criterion, the Trojan malware ruleset was selected for our training process, containing over 

7600 rules, each created to identify this specific type of malware. 

6.2 Data Cleaning and Preparation 

As with any Machine Learning project, the first step is to clean and prepare the data. Our 

data is formatted as per the requirements of Snort rules. Because these rules are quite 

specific, we must be careful not to remove any portions of the rule that are critical to rule 
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operation. However, some fields of a Snort rule do not directly impact its performance, and 

these are discussed in [54]  



57 

 

Stage 
Description 

of Task 
Original Rule 

Sample entries 

removed/ 

Added 

0 

Initial 

Structure of 

the Snort 

Rule 

alert tcp $EXTERNAL_NET 443 -> $HOME_NET any (msg:"ET 

TROJAN Linux/Tsunami Connection Tunnel to C&C"; 

flow:established,to_client; content:"ET TROJAN Linux/Tsunami 

Connection Tunnel to C&C"; byte_test:1,&,0x80,0,relative; 

content:"|10 00 00 FF FF FF FF FF FF FF FF ff ff|"; depth:18; 

metadata: former_category TROJAN; 

reference:url,blogs.mcafee.com/mcafee-labs/linux-tsunami-

cryptocurrency-stealer-lure/; 

reference:url,github.com/dwzw935/malwryc/blob/20/Linux/Tsunami-

Malwryc1.7.dll; 

reference:url,md5,24f3c4b935de1d24f1ccc6dae5d7ee6; 

classtype:trojan-activity; sid:2018658; rev:1; metadata:created_at 

2014_03_29, updated_at 2014_03_29;) 

 

1 

Removing 

metadata & 

revision 

entries 

alert tcp $EXTERNAL_NET 443 -> $HOME_NET any (msg:"ET 

TROJAN Linux/Tsunami Connection Tunnel to C&C"; 

flow:established,to_client; content:"ET TROJAN Linux/Tsunami 

Connection Tunnel to C&C"; byte_test:1,&,0x80,0,relative; 

content:"|10 00 00 FF FF FF FF FF FF FF FF ff ff|"; depth:18; 

metadata: former_category TROJAN; 

reference:url,blogs.mcafee.com/mcafee-labs/linux-tsunami-

cryptocurrency-stealer-lure/; 

reference:url,github.com/dwzw935/malwryc/blob/20/Linux/Tsunami-

Malwryc1.7.dll; 

reference:url,md5,24f3c4b935de1d24f1ccc6dae5d7ee6; 

classtype:trojan-activity; sid:2018658;) 

metadata:create

d_at 

2010_07_30, 

updated_at 

2010_07_30;) 

Removing 

category 

entries: 

alert tcp $EXTERNAL_NET 443 -> $HOME_NET any (msg:"ET 

TROJAN Linux/Tsunami Connection Tunnel to C&C"; 

flow:established,to_client; content:"ET TROJAN Linux/Tsunami 

Connection Tunnel to C&C"; byte_test:1,&,0x80,0,relative; 

content:"|10 00 00 FF FF FF FF FF FF FF FF ff ff|"; depth:18; 

reference:url,blogs.mcafee.com/mcafee-labs/linux-tsunami-

cryptocurrency-stealer-lure/; 

reference:url,github.com/dwzw935/malwryc/blob/20/Linux/Tsunami-

Malwryc1.7.dll; 

reference:url,md5,24f3c4b935de1d24f1ccc6dae5d7ee6;  sid:2018658;) 

metadata: 

former_category 

MALWARE; 

Removing 

reference 

URL entries 

alert tcp $EXTERNAL_NET 443 -> $HOME_NET any (msg:"ET 

TROJAN Linux/Tsunami Connection Tunnel to C&C"; 

flow:established,to_client; content:"ET TROJAN Linux/Tsunami 

Connection Tunnel to C&C"; byte_test:1,&,0x80,0,relative; 

content:"|10 00 00 FF FF FF FF FF FF FF FF ff ff|"; depth:18; 

sid:2018658;) 

reference:url,do

c.emergingthrea

ts.net/bin/view/

Main/2008562; 

classtype:unkno

wn 

2 

Adding BOL 

and EOL 

descriptors 

to cleaned 

rules 

 <|startoftext|> alert tcp $EXTERNAL_NET 443 -> $HOME_NET any 

(msg:"ET TROJAN Linux/Tsunami Connection Tunnel to C&C"; 

flow:established,to_client; content:"ET TROJAN Linux/Tsunami 

Connection Tunnel to C&C"; byte_test:1,&,0x80,0,relative; 

content:"|10 00 00 FF FF FF FF FF FF FF FF ff ff|"; depth:18; 

sid:2018658;) <|endoftext|> 

<|startoftext|>, 

<|endoftext|> 

Table 3: Stages of Snort rule cleaning 

Revision entries are just informational entries that show when a rule was created and when 

it was last updated. Category entries and URL entries are also informational fields in Snort. 
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These link to documentation for the specific malware for which the rules are expected to 

trigger (e.g. a category of X or a URL of Zeus Trojan). 

This chapter discusses the various experiments that have been performed. First, the 

environment and the various techniques and strategies taken to get our desired results are 

described. Next, the results of the rule generation process are documented. Finally, these 

results are analyzed using appropriate metrics. 

6.3  Development and Testing Environments 

Google Colaboratory (Colab) is a free, online, cloud-based Jupyter notebook-like 

environment that allows any user to execute code. It is a very popular platform for 

developing machine learning models. This popularity is due to the availability of free 

Central Processing Units (CPU), Graphical Processing Units (GPU) and Tensor Processing 

Units (TPU) which are usually required for faster training of the machine learning models. 

Table 4 below gives the Hardware Specifications for Google Colab [86]. Google, Colab 

allows twelve hours of continuous execution [87], after which the virtual machine is reset.  
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Hardware Details 

CPU 
Intel Xeon Processor 2.32Ghz, 2 Cores 2 

Threads 

GPU Tesla P100, 16GB RAM, 3584, CUDA Cores 

RAM 16GB 

Storage 120GB 

Table 4: Hardware Specs of Google Colab Pro 

Figure 9 demonstrates the various stages of our rule generation process. Our initial Snort 

rule dataset was written manually by experts. These rules were cleaned to remove 

information redundant for Snort. This redundant information is useful to a human rule 

writer or reader, but was not used in our work, even though we are using techniques adapted 

from NLP research. 

The next stage was to train GPT-2 on the dataset. After some training epochs 

(distinct periods of time, where training is iterated over the entire training dataset), we then 

proceeded to generate sample rules using the trained model. The resulting rules were 

cleaned using the dumbpig tool [88] and then fed into Snort. Pcap files with malware and 

‘goodware’ were also used as inputs into Snort.  
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Figure 9: Snort-Based Rule Generation Process using GP2 

6.4 Training of the Neural Network  

Small (124M), Medium (345M) and Large (774M)) GPT-2 models are possible. As already 

stated, because of persistent insufficient memory issues on Google Colab Pro, we 

experimented with the medium and large model sizes we only used the small 124M 

Parameter model. 
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The key parameters for the architecture of the model are: 

• Vocabulary Size: This is parameter is represented by vocab_Size: and it defines the 

number of different tokens that can be represented by the inputs_ids. We used 

50257, which is the default. [89]. 

• Dimensionality of the causal mask: This is represented by n_ctx. The value used 

is 1024, which is the default. [89] 

• Dimensionality of the embeddings and hidden states: This is represented by 

n_embd. The default value of 768 was used [89]. 

• Number of Attention heads: We used a value of 12 for the number of heads, which 

is the default value and is denoted by n_head [89] 

• Hidden Layers: We used the default value of 12 for the number of hidden layers in 

our network. This is denoted by n_layer [89] 

If non-default parameters were used, the output would probably be less suitable for use in 

detecting malware samples. For our purposes, the default values seem “reasonable”. This 

is because the though the GPT-2 transformer is pretrained on natural language. Since Snort 

rules have a similar structure to English language the default values worked well for our 

task. 

6.4.1 GPT2-small (124M-parameter) model 

The small size of the model makes it faster to train. The figures below show the statistics 

of our model during training over 2000 epochs (i.e., optimization phases). 
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Figure 10: GPU Vs CPU utilization when training 

 Figure 10 shows the GPU vs CPU Utilization. This clearly shows that the neural network 

uses the GPU more heavily than the CPU when training. 
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Figure 11 Average Loss Vs Loss when training 

 (Figure 11) shows the average loss over the epochs, compared with the actual loss over 

the epochs. Eventually, the neural network converges at around 1700 epochs, which gives 

acceptable performance, in terms of computation time. 

Figure 12 shows a comparison of the system memory compared to the GPU memory 

utilization during the training period. The graph is intuitive, showing that a lot more GPU 

memory than system memory is required for training the neural network to accommodate 

our large Snort ruleset of over 7,600 rules. 
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Figure 12: System memory Vs GPU Memory use during training 

6.4.2 Rule Generation 

During the training stage, the ANN generated periodic printed samples of the rules at every 

200 epochs. This enables us to monitor the progression of the rules being generated, as the 

number of epochs increased. As the training process converges, these rules stabilize to 

constant values with very subtle changes being made as rules generation progresses. 

GPT-2 has several parameters that can be adjusted, when requesting the model to generate 

rules. One of them is referred to as temperature. The Temperature parameter ranges 

between 0.1 and 1.0, and it defines how 'hot' or 'cold generated texts would be. The higher 

or hotter the value, the more random the output will be. This means that there is more 

deviation from the original dataset, which may also deviate from the structure of a Snort 

rule.  
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6.4.3 Cleaning Up Generated Rules  

Cleaning of generated rules happens in three distinct stages. In the first stage, the 

Notepad++ text editor is used, along with a plugin called ‘compare’. This allows the two 

files to be compared for basic differences, manually. One file contained the generated rules, 

and the other file contained the dataset that was used to train the neural network. Any 

generated rules that matched exactly with the dataset were commented out, manually, as 

being trivially-generated instances. 

Next, the derived rules were cleaned up, to make them both syntactically correct 

and also forcing them to meet the basic syntax requirements of a Snort rule. Dumbpig was 

used to do this checking [88]. Dumbpig is a Perl tool developed by Leon Ward to check for 

'dumb' or obvious Snort rule errors. Some of the checks performed by the script include 

checking if each rule has revision numbers, class type, SID number etc. The script also 

checks to ensure that a rule does not do deep packet inspection and a host of other best 

practices for rule-writing. 

Using Dumbpig, we were able to trim down our generated set of rules from 400 rules 

generated by the neural network, down to 187. In the final stage of cleaning, Snort was 

then used to sanitize the rules yet further. Snort has an in-built pre-preprocessor engine that 

also checks the syntax of rules and ensures that they meet the standards. 

Using the Snort engine, we were able to detect rules with the same Snort ID (SID). 

Whenever we noticed a repeated SID, we would first check to see if the two rules were 

syntactically the same. If they were, we would comment out the duplicate. When they were 
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not identical, we would give the new rule a different ID. After this stage of cleaning was 

complete, a total of 92 valid rules remained. 

6.5 Evaluation Framework  

Using an artificial language like Snort, we need to formulate various ways of evaluating 

the effectiveness of our rules. Since normal NLP techniques are known not to work with 

such artificial languages fully, we decided to evaluate our work using the following criteria. 

Based on our discussions with working security professionals, Snort rules written by 

humans are often evaluated using similar criteria in industry. These criteria are: 

Functional Correctness: Whether rules are indeed able to perform the tasks they were 

designed to do (i.e., to detect malware) 

Human Evaluation: We had initially planned to ask experts in the field to review our rules 

and give us their professional insight into them (i.e., do the generated rules look: mundane, 

interesting, 'weird', wrong etc.) Unfortunately, we were not able to get enough experts to 

spend the time required to do this, so we compared our rules to proprietary, documented, 

Snort rule-writing best practices, instead. Unfortunately, we have not been given 

permission to publish these practices, making this criterion a difficult one to present, but 

not decreasing its importance. 

False Positive Evaluation: Our limited set of human rule reviewers all highlighted that 

false positives are a major practical issue. Therefore, we evaluated our rules using sample 

'goodware,' i.e., known malware-free traffic, to quantify the number of false positives for 
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any specific Snort rule. In truth, the difficulty of testing against all possible types of 

goodware’ is similar to or greater than the complexity of getting good test coverage over 

all types of malware. 

NLP Metrics: We used two NLP metrics: BLEU and ROUGE to measure the quality of 

our rules. We explain the challenges of using these metrics in the section 0 and section 

6.5.4, respectively.  

6.5.1 Functional Correctness (True Positive evaluation) 

A basic requirement is that the generated rules must be able to detect malware properly. At 

this stage, our task was to test if any of the newly generated rules could detect malware 

samples. We had about 980 varied malware samples provided to us by the Nokia Threat 

Intelligence Labs [90] sing data from their in-house captive testing system and also from a 

smaller private version of that same lab. 

We placed the new rules in the location where all other rules are tested. We then 

proceeded to add the entry to Snort.conf and then commented out all other rules located in 

that configuration file. Using the command Snort -r foo.pcap, we listed all the 980 pcap 

files and allowed Snort to parse each pcap file using each of the rules specified in the rules 
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file. The -r flag indicates the pcap filenames you would want Snort to parse. The results of 

some of the malware that triggered detection are shown in the table below. 1 

Snort RuleID Name of Malware Detected 

2020789 

TROJAN Zeus Bot GET to Google checking 

Internet connectivity, TROJAN 

W32/SpeedingUpMyPC.Rootkit Install CnC Beacon, 

MALWARE W32/PullUpdate.Adware CnC Beacon, TROJAN 

Linux/Onimiki DNS trojan-activity long format (Outbound), 

TROJAN Fareit/Pony Downloader Checkin 3, TROJAN Zeus 

Bot GET to Google checking Internet connectivity 

2020789, 50064, 

49772 
92MALWARE Win32/BrowseFox.H Checkin 2 

45093 
MOBILE_MALWARE Android.Walkinwat Sending Data to 

CnC Server 

45093, 45092 MOBILE_MALWARE AndroidOS.Simplocker Checkin 

Table 5: Sample Malware triggered by generated rules 

As can be seen from the table, a comparatively small number of malware files were 

triggered, and only a few of the rules triggered them. We believe this to be the case because 

of the limitations of our sample size (i.e., GPT-2 results were based on millions of training 

samples, rather than thousands). Our initial requirement when obtaining the rules and 

malware pcap files was to have a one-to-one/one-to-many efficiency mapping, where each 

pcap file triggered at least 1 rule. We reached out to several Snort and malware repositories, 

 

 

1 In this part of our experiment, we performed deep packet inspection. Hence, we used the complete information 

contained in a network packet capture  
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such as Emerging Threats and Snort User and Signature mailing lists to try to obtain such 

data but we were not successful. Virus Total granted us an educational license to their 

malware repository, but this license did not allow us to request specific malware samples. 

Instead, the samples were randomly allocated. Only paying customers can request specific 

samples. Because of their policy, all provided files were zipped executable files, rather than 

being in the desired pcap file format.  

 

However, based on the work that we have been able to do in analyzing the network 

behaviour of malware families like Trojans, we are very hopeful, but cannot show, that 

malware samples would trigger some of the other rules that we have generated, if only we 

had more of them. 

6.5.2 Human Evaluation—Hand-written Evaluation Set 

We compared our generated rules with the human-written rules to see if there was any 

novelty in our rules. To do this, we shared the generated rules with a Snort researcher on 

the Snort mailing list called Andrew Williams, who works actively with Snort at Cisco and 

his feedback was: "Taking a quick look at the rules, most of the individual pieces (e.g.: 

content sections) seem fine, but it is really difficult to say whether it would detect malicious 

traffic and/or whether some of the more generic rules would lead to false positives in the 

field. We face this challenge a lot when creating rules as well - how to make them specific 

enough to not FP but also have them match on a wide range of malware-generated traffic” 
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His comments indicate that our rules are “fine”, to a first order, at least. However, 

the problem of “false positives” was raised, while still obtaining high malware “true 

positive” coverage. The industry approach to measuring this is to assess rules (generated 

by humans or otherwise) in a captive testing lab, as has already been discussed. 

In spite of the proprietary nature of Snort rules writing at Cisco, Nokia and other large 

network vendors, here are a few documented, public best practices that can be followed 

when writing such rules [91]. Two of these are now discussed:  

Targeting the vulnerability and not the exploit kit: This advises the rule writer to focus 

on writing a rule that targets the vulnerability that the malware is exploiting, rather than 

writing the rule to detect the exploit itself. There are numerous exploit kits available. To 

write a rule to detect a particular kit would mean that the moment the malware designer 

only needs to make slight changes or ‘dither’ their attack to bypass the rule [91]. Our rules 

were obtained from the approved Snort rules repository and so are vetted to be in line with 

this best practice, before being approved for release to the broader community that use the 

rules. Therefore, our generated rules are in line with this best practice, since the training 

data was defined in exactly this way.  

Detect the “Oddities” of the Protocol: This best practice focuses on ensuring that the rule 

matches the various options or oddities that a protocol permits (i.e. all of the legal variations 

of a particular ‘signature’). A typical example would be the FTP protocol which allows 

different ways for the username to be written like user<space>root user<tab>root [92]. 

Snort rules should be written to match all of the possibilities allowed by a protocol. In most 
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cases, for the rule to handle all such possibilities, a Perl-Compatible Regular Expression 

(PCRE) keyword is used. This allows the user to write a regular expression to match all 

the possibilities. It was observed that most of the rules that had specific protocols nested in 

them also used the PCRE keywords. 

6.5.3 Nuisance-Triggering Avoidance (“False Positive” Evaluation) 

Our public and private human rule reviewers emphasized the importance of avoiding false 

positives, which can quickly cause overflows in log files and can reduce real-time detection 

times for malware. We decided to evaluate our rules using sample 'goodware', (i.e., known 

malware-free traffic) to see if we would get any false positives. This is, by no means, an 

exhaustive test in a proper captive testing facility, but is a basic type of “Go/No Go” test. 

To obtain representative samples of goodware, we downloaded goodware pcaps from 

[https://www.stratosphereips.org/datasets-normal] as shown in (Table 6). The CTU dataset 

was selected, since it is a widely-used source of both malware and goodware datasets [93]. 

Other ‘goodware’ datasets contain either encrypted malware or were not considered to be 

representative of everyday browsing activities. As already indicated, testing against all 

possible types of benign traffic is a formidable task. Even in industry applications, we were 

told, some “false positive” problems are only detected in the field and not in the pre-testing 

that is done in a captive network. 
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Name of Capture File Description Size (MB) 

CTU-Normal-7: P2P traffic from a user with a Linux laptop. 398 

CTU-Normal-12: P2P traffic running on a normal Linux notebook (with 

webpage access) 

809 

CTU-Normal-13: Computer access to this website 

https://www.us.hsbc.com 

494k 

CTU-Normal-20 Traffic collected with users browsing the internet and 

using different desktop applications 

296M 

CTU-Normal-21: Traffic collected with users browsing the internet and 

using different desktop applications 

297M 

Table 6: ‘Goodware' dataset used for testing false positives 

As a very basic sanity check, we were able to achieve zero false positives with all of our 

generated rules. Direct access to live systems with 'wild' malware and 'goodware' samples 

would be required for more reliable estimates of functional correctness and nuisance-

triggering avoidance. However, this still might not be adequate, in terms of adequate testing 

coverage. 

In this section, Natural Language Processing metrics are used to analyze the rules 

generated by the neural network. To measure the quality of our generated rules for text 

generation, the generated text coherence is measured, for a large body of text.  

As already stated, a basic way to measure rule quality is to determine whether the generated 

rule is indeed effective at detecting malware or not. To do this, we used the following 

metrics: Bilingual Evaluation Understudy Score (BLEU), Recall Oriented Understudy for 
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Gisting Evaluation (ROUGE) score. These scores are described in the next two sections 

and the results are shown in tables for each section. 

BLEU: Bilingual Evaluation Understudy Scores 

BLEU-n is a metric that calculates an n-gram (i.e., recall that this was n “words”, each 

separated by spaces) overlap between the reference text and the generated text. This n-

gram overlap is a measure of precision or “similarity” between the generated text and 

correctly generated text and is independent of the order of the n-grams. However, the 

BLEU-n calculation process also includes a stage where ubiquitous words or constructs are 

identified and included as being mandatory, rather than discretionary. There is also a 

brevity penalty in BLEU, which is applied when the generated text is too small compared 

to the target text. 

The ideal behaviour for a BLEU score would be that, as the n-gram size is increased, 

the score monotonically reduces and gradually levels out between a score of 0.6 -0.7 [39]. 

With the addition of more layers, the neural network converges faster but might also tend 

towards overfitting. In our experiment results (Figure 13 & Table 6), the 12-layer neural 

network is the closest to the desired performance and the 16-layer neural network BLEU 

scores for various n-grams deviates the most. We believe that this is indeed because of 

overfitting types of effects. It can also be observed that the baseline performances are far 

worse than for our test case. This is because Snort rules are required to follow specific 
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formats in terms of keywords used and where these keywords are to be situated within the 

text. 
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Transformer Layers BLEU-1 BLEU-2 BLEU-3 BLEU-4 

8L 0.887 0.697 0.482 0.438 

12L 0.937 0.799 0.601 0.414 

16L 0.65 0.645 0.569 0.523 

8L-baseline1 0.398 0.143 0.123 0.353 

12L-baseline1 0.326 0.312 0.183 0.122 

16L-baseline1 0.11 0.113 0.186 0.16 

8L-baseline2 0.181 0.138 0.186 0.174 

12L-baseline2 0.166 0.16 0.117 0.221 

16L baseline2 0.276 0.214 0.154 0.166 

8L-baseline3 0.133 0.22 0.216 0.133 

12L baseline3 0.288 0.265 0.278 0.23 

16L baseline3 0.177 0.131 0.166 0.249 

8L baseline4 0.279 0.128 0.159 0.255 

12L baseline4 0.232 0.208 0.121 0.251 

16L baseline4 0.114 0.266 0.238 0.231  
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Table 7: BLEU Scores 

 
Figure 13: A plot of BLEU 1-4 scores 

6.5.4 ROUGE: Recall Oriented Understudy for Gisting Evaluation 

A ROUGE metric is often reported along with BLEU scores for standard tasks. While 

similar to the BLEU definition, ROUGE is recall-focused, rather than precision-focused 

(see previous definitions for these terms). The ROUGE scores count the number of 

overlapping n-grams that are found in both the model’s output and the reference text and 

then divides this by the total number of n-grams in the reference text. 

There are three types of ROUGE score. The most common is ROUGE-n, which has n-gram 

overlap, where n can be 1 or higher. L-ROUGE checks for the Longest Common 

subsequence, rather than for n-gram overlap. The third type of ROUGE score is s-ROUGE, 

which focuses on the number of skip grams, where a skip-gram is a contiguous set of s 
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words that are skipped or ignored. In our work we used ROUGE-n , which seemed best at 

capturing all of the relevant information contained in the reference text. 

The expected behaviour for a ROUGE-n score would be that values increase to 1.0 

as n increases, indicating that the model is capturing all relevant information in the dataset. 

Different ROUGE-n scores are plotted for our method (Figure 14 & Table 7). The 12-layer 

model approaches 1.0 at the fastest rate. As with the BLEU score, the 12-layer model is 

optimal for training with our dataset and provides more relevant machine-generated rules. 
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Transformer ROUGE-1 ROUGE-2 ROUGE-3 ROUGE-4 

8L 0.683 0.699 0.717 0.818 

12L 0.721 0.812 0.894 0.983 

16L 0.521 0.583 0.618 0.759 

8L-baseline1 0.226 0.187 0.112 0.242 

12L-baseline1 0.382 0.238 0.125 0.358 

16L-baseline1 0.194 0.249 0.101 0.137 

8L-baseline2 0.054 0.269 0.245 0.394 

12L-baseline2 0.201 0.017 0.043 0.291 

16L baseline2 0.291 0.013 0.232 0.066 

8L-baseline3 0.258 0.185 0.118 0.216 

12L baseline3 0.022 0.28 0.067 0.334 

16L baseline3 0.127 0.309 0.106 0.314 

8L baseline4 0.247 0.351 0.099 0.095 

12L baseline4 0.316 0.082 0.324 0.169 

16L baseline4 0.234 0.22 0.289 0.241 
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Table 8: ROUGE Scores 1-4 

 

Figure 14: A plot of ROUGE scores 1-4 

In summary, the increasing ROGUE-n scores imply that our model is capturing the 

relevant information contained in the dataset and the decreasing BLEU-n scores indicate 

that our model is not merely regurgitating rules form the original dataset. These two factors 

imply that the quality of our model is high. Also, since the main task of our model is to 

generate text for a language that is artificial and the structure and syntax are not varying a 

lot, the higher scores also show that our model is not generating syntactically errored text. 

It can also be observed that all the baseline performances are far worse than for our test 

cases. This is because Snort rules are required to follow specific formats in terms of 

keywords used and where these keywords are to be situated within the text therefore having 

them rearranged randomly would not lead to them being similar to the base text. 
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The quality of the text generated is measured more practically by applying these 

generated rules to real malware (in a real-world network or simulator) and then evaluating 

the detectable types of malware. Indeed, other researchers [94] have also noted that these 

NL metrics are less suited for Artificial Language (AL) tasks and suggest that AL tasks are 

measured better using functional correctness metrics instead (e.g., in “live” or simulated 

systems). This would have been our preference too, given access to such resources. 

6.6 Broader Impact 

This technique, if further investigated, has the potential to be useful in a variety of ways: 

Speed up the generation of Snort rules: Currently, Snort rule creation requires an 

extensive amount of domain knowledge and malware behaviour knowledge. In our 

discussions with Rule writing experts at the Nokia Threat intelligence lab, at least one co-

op term (i.e. about four months) is required to get students to the point where they can write 

efficient and effective rules. In addition to this, extra time is also required for students to 

understand new types of malware behaviour and then analyze a malware sample to identify 

the unique string or behaviour that is going to be used in a generated rule. 

Enable non-rule writers to generate usable rules: With our process, people who have 

almost zero knowledge on how to create Snort rules or, potentially, little knowledge of the 

operation or behaviour of the malware, can still generate working rules quickly. Malware 

researchers can use this tool to generate rules and test malware “in the wild”. If the 
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generated rules detect the malware, the core part of the rule can be analyzed to see if it 

matches the unique behaviour of specific, desired malware being analyzed. Unfortunately, 

we have not been able to do this testing ourselves. 

The implicit assumption for usefulness here is that new malware is somehow predictable 

from older types of malware or, more specifically, to the rules that were created to detect 

that malware at that time. The NLP techniques we propose here are expected to partially 

represent or aggregate some of the skills of the experts who generated these rules. 

  



82 

 

7 Conclusions and Future Work 

This chapter gives a summary of our findings, the main contribution of our research work 

challenges that we encountered and suggestions for improving and extending the work. 

7.1 7. 1 Summary of Contributions  

We have examined the process of automating the task of Snort rule generation using neural 

networks. The task has always been done by humans, and it is quite a tedious and time-

consuming one. It is also a task that requires skill to understand the specific behaviour of 

the malware before it is possible to create an effective and efficient corresponding detection 

rule. Our solution has the benefits of requiring less time and reducing the required amount 

of expert knowledge about virus behaviour or rule-writing. 

• We demonstrate a method in which we use a selection of a few elements in an IP 

header to give context and then proceed to classify traffic flowing in a network as 

malware (or not) although performance seems to vary with the “temporal locality” 

of data packets in the file.  This variation was not investigated further. 

• We demonstrate a novel method of training a neural network to generate malware 

rules for the Snort IDS that seem to be “reasonably effective”. 

• We show that machine-generated Snort rules can be used in tandem with the Snort 

engine to detect malware flowing through a network.  
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• We demonstrate that our generated rules do not trigger any false positives when 

tested with everyday malware-free (i.e., 'goodware') traffic, albeit using a limited 

subset of such traffic and limited amounts of testing. 

• We describe various methods by which machine-generated rules can be sanitized to 

ensure they meet the strict requirements of the Snort language.  

• We show that a neural network can be trained on old Snort rules and generate new 

rules that can detect more recent types of malware, although this requires further 

testing over time (i.e. with future types of malware) in “live” networks before 

stronger statement can be made about practicality. 

7.2 Challenges 

Access to a wider set of pcap files, generated in different types of networks would have 

helped to refine our method using only the packet headers. Alternatively, techniques for 

sorting pcap files to isolate flows (e.g. based on the source and destination address) might 

have helped to create a more robust detection method, when compared with a randomize 

baseline of packets. The difficulty of obtaining a “diverse” set of pcap files, with unique 

temporal distributions of packets for both malicious and non-malicious software was 

somewhat side-stepped by the main approach described in this work (i.e. by using rules 

generated to fire only for specific malware types). 

As mentioned earlier in the work, for this main approach, the previous difficulty of getting 

a diverse set of pcap files is replaced by the task of getting a one-to-one/one-to-many 
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mapping of Snort rules and their corresponding malware is also a major challenge. Such a 

dataset would simplify the training and detection phases, allowing us to assume that a set 

of rules were representative before starting the analysis and synthesis work. With active 

adversaries, malware can be expected to continue to evolve so that it becomes undetectable 

by existing defences, so this would need to be an ongoing process. It would have been ideal 

to have been able to study the performance of generated rules over a longer duration in a 

captive or “live” network, running representative levels of traffic, as malware was adapted 

in this way. 

Besides having access to our own captive network, it would have been very useful to 

have had access to a wider set of Snort experts and their generated rules. We believe that 

this would have enriched the training process. Initially, assistance and expert opinions were 

received from a contact person at the Nokia Threat Intelligence Lab (who we’d like to 

thank, anonymously!). However, with recent global pandemic developments and resulting 

changes in the security landscape, this same person was not available for consultation and 

nor was their lab, nor were other possible diverse sources of ruleset creators and testers. 

7.3 Conclusions 

We believe that this work provides a basis for further research into using GPT-2 (and its 

successor, GPT-3) to train more artificial languages, including rule specification languages 

like Snort. In the field of rule writing for Snort, this work can be used to explore the various 

possibilities that exist in rule writing. To the extent that previous versions of malware are 
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predictive of future ones (i.e., “zero day” attacks that are variants of previous malware 

types) we have shown that our method has good value in being used to create more rules 

for various families of malware. The possibilities seem endless since code can be 

considered as an Artificial Language. This work also shows that the future of malware 

signature generation has a lot of potential using upcoming language models being designed.  

7.4 Future work 

For future work, we recommend the use of the largest size of the GPT2 model (i.e. the 1.5 

Billion parameter model [89, p. 2] or, better still the OPT Model[95] which is a new 

language model which is open access. Recent variants of GPT-3, especially the Codex 

model, which is being used for code generation, are also exciting developments that might 

be useful tools. Unfortunately, because of its big parameter size and our limited processing 

and memory, these were not feasible in our testing. With a more powerful platform, these 

tools could be trained with the same dataset that we have used. However, an even larger 

number of parameters might allow more data points to be generated from the initial rule 

set and thereby improve yield. 

Rather than using our offline analysis approach alone, it would be useful to correlate 

classification performance with results that were obtained in “live” networks and/or captive 

networks, running with representative traffic environments, in terms of both malware and 

‘goodware’. Becoming a paid subscriber to the rules feeds/services or enlisting their co-

operation to gain access to the Snort rules that are being used currently might also improve 
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the results. Unfortunately, the proprietary nature of this content, stemming from the hard-

won expertise that is needed to write effective and efficient rules that generate true positives 

only, makes this unlikely. For example, neither of our industrial collaborators were 

prepared to grant us public access to this material. 

Finally, it would be informative to study the “future” effectiveness of the rules we have 

generated. This would allow us to test more thoroughly the implicit assumption that is 

made in this work about malware similarities over time (i.e. that new types of malware are 

derived from previous malware versions, in a way that is detectable at the network level). 

It would also be informative to measure the effects of new types of “goodware” and how 

changes in benign traffic patterns over time affect our generated rules. 
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9 APPENDIX A 

Source Code available at https://github.com/afoteygh/SnortRuleGen  

Sample Machine Generated Rules which triggered 

 

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"ET TROJAN 

ELF/Emptiness PWS Variant CnC Beacon"; flow:established,from_server; content:"|02 

00 00 01 00 00 00 00|"; fast_pattern:only; sid:2020789;) 

 

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"MALWARE-

CNC User-Agent known malicious user-agent string - Win.Tool.Shindo"; 

flow:to_server,established; content:"User-Agent|3A| Apache-

HttpClient/UNAVAILABLE"; fast_pattern:only; http_header; metadata:impact_flag red, 

policy balanced-ips drop, policy security-ips drop, service http; sid:45093;) 

 

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"MALWARE-

CNC User-Agent known malicious user-agent string - Win.Tool.Shindo"; 

flow:to_server,established; content:"User-Agent|3A| Apache-

HttpClient/UNAVAILABLE"; sid:45092;) 

 

alert tcp $EXTERNAL_NET $HTTP_PORTS -> $HOME_NET any (msg:"ET TROJAN 

ELF/Emptiness PWS Variant CnC Beacon"; flow:established,from_server; content:"|02 

00 00 01 00 00 00 00|"; fast_pattern:only; sid:2020789;) 

 

 

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"MALWARE-

CNC Doc.Trojan.Agent variant outbound cnc connection attempt"; 

flow:to_server,established; content:"WinHttp.WinHttpRequest.5"; fast_pattern:only; 

http_header; content:!"Referer"; http_header; metadata:impact_flag red, policy balanced-

ips drop, policy max-detect-ips drop, policy security-ips drop, service http; sid:50064;) 

 

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"MALWARE-

CNC Doc.Trojan.Agent variant outbound cnc connection attempt"; 

flow:to_server,established; content:"WinHttp.WinHttpRequest.5"; fast_pattern:only; 

http_header; content:!"Referer"; http_header; metadata:impact_flag red, policy balanced-

ips drop, policy max-detect-ips drop, policy security-ips drop, service http; sid:49772;) 
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Sample Machine Generated Rules at various temperatures 

 

 

0.1  

 

alert tcp $HOME_NET any -> $EXTERNAL_NET 25 (msg:"ET TROJAN SC-KeyLog 

Keylogger Installed - Sending Log Email Report"; flow:established,to_server; 

content:"SC-KeyLog log report"; nocase; content:"See attached file"; nocase; 

content:".log"; nocase; reference:url,www.soft-central.net/keylog.php; 

reference:url,doc.emergingthreats.net/2008348; classtype:trojan-activity; sid:2008348; 

rev:2; metadata:created_at 2010_07_30, updated_at 2010_07_30;) 

 

alert tcp $HOME_NET any -> $EXTERNAL_NET 1024: (msg:"ET TROJAN Turkojan 

C&C Keepalive (BAGLANTI)"; flow:established,to_server; dsize:9; 

content:"BAGLANTI?"; metadata: former_category MALWARE; 

reference:url,doc.emergingthreats.net/2008026; classtype:trojan-activity; sid:2008026; 

rev:3; metadata:created_at 2010_07_30, updated_at 2010_07_30;) 

 

 

0.7 

 

alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"ET TROJAN 

Banload FakeAV GET Request to .zsh file"; flow:established,to_server; content:"GET"; 

http_method; content:"/files/DownloadReport.zip"; http_uri; metadata: former_category 

MALWARE; reference:url,www.fireeye.com/blog/fireeye-technical-threat-

analysis/2014/07/a-lil-monthly-operation-uplinkocean-to-the-chairs.html; 

classtype:trojan-activity; sid:2017972; rev:2; metadata:created_at 2014_07_27, 

updated_at 2014_07_27;) 

 

 

0.9 

 

:10; classtype:trojan-activity; sid:2029222; rev:1; metadata:affected_product 

Windows_XP_Vista_7_8_10_Server_32_64_Bit, created_at 2017_03_10, 

performance_impact Low, updated_at 2019_09_28;)<|endoftext|> 

 

1.0 
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alert; metadata: former_category MALWARE; 

reference:md5,18b182656fda9d6f3f4ebd06d9d1fea10; classtype:trojan-activity; 

sid:2018671; rev:2; metadata:created_at 2014_11_07, updated_at 

2014_11_07;)<|endoftext|> 

 

<|startoftext|>alert tcp $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS 

(msg:"ET TROJAN x2telegram sending data via SMTP"; flow:to_server,established; 

content:"POST"; http_method; content:"POST"; http_client_body; depth:10; 

pcre:"/^POST\x2e\x20/U"; content:"POST (User-Agent|3a 20|SMSV1|20 2d 0a|"; 

http_header; fast_pattern:36,20; pcre:"/^POST\x2d\xff\x20/U"; content:!"Referer|3a 

20|"; http_header; metadata: former_category TROJAN; 

reference:url,github.com/Dwzw935/malwryc/blob/20/Linux/Tsunami-Malwryc2.7.dll; 

reference:url,github.com/dwzw935/malwryc/blob/20/Linux/Tsunami 

 

 

 


