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Abstract

A data warehouse (DW) is a transformation of many sources of transactional data in-
tegrated into a single collection that is non-volatile and time-variant that can provide
decision support to managerial roles within an organization. For this application, the
database server needs to process multiple users’ queries by joining various datasets
and loading the result in main memory to begin calculations. In current systems, this
process is reactionary to users’ input and can be undesirably slow. In previous stud-
ies, it was shown that a personalization scheme of a single user’s query patterns and
loading the smaller subset into main memory the query response time significantly
shortened the query response time. The Lattice Prediction under Change Detection
and Adaption (LP-CDA) framework developed in this research handles multiple users’
query demands, and the query patterns are subject to change (so-called concept drift)
and noise. To this end, the LP-CDA framework detects changes in user behaviour
and dynamically adapts the personalized smart cube definition for the group of users.

Numerous data mart (DM)s, as components of the DW, are subject to intense ag-
gregations to assist analytics at the request of automated systems and human users’
queries. Subsequently, there is a growing need to properly manage the supply of data
into main memory that is in closest proximity to the CPU that computes the query
in order to reduce the response time from the moment a query arrives at the DW
server. As a result, this thesis proposes an end-to-end adaptive learning ensemble
for resource allocation of cuboids within a DM to achieve a relevant and timely con-
structed smart cube before the time in need, as a way of adopting the just-in-time
inventory management strategy applied in other real-world scenarios.

The algorithms comprising the ensemble involve predictive methodologies from Bayesian
statistics, data mining, and machine learning, that reflect the changes in the data-
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generating process using a number of change detection algorithms. Therefore, given
different operational constraints and data-specific considerations, the ensemble can,
to an effective degree, determine the cuboids in the lattice of a DM to pre-construct
into a smart cube ahead of users submitting their queries, thereby benefiting from a
quicker response than static schema views or no action at all.
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Chapter 1

Introduction

In the application of modern data analytical methods often facilitated by queries,
software systems are tasked with serving as the custodian of the data and calculating
aggregations to respond to user’s dynamic requests. With many users interacting
with such software, denoted as database management system (DBMS), often asyn-
chronously, a challenge to address is the influx of demand in certain queries over
others— from simple select and join to conditional aggregations using nested queries
at runtime. The challenge in meeting the users’ queries demand is compounded by
the sheer size of data tables housed in a data warehouse (DW), size being a function
of their tuples. Various user types may have distinct query patterns which may be
crucial in prioritization of resources in order to speed up query processing by the
DBMS.

There are numerous procedures which impact the time required for a DBMS to return
a result in response to the user’s query. The first procedure involves the quality of the
query with regards to the order of table joins, the number of nested queries, implicit
optimization by the DBMS, explicit query optimization by experts of the specific
DBMS architecture, and the canonical form of conditional statements rather than a
verbose number of conditions on which to evaluate tuples. For example, if a query is
to retrieve all vacation spots to which people between 20 to 40 years of age travelled
in the summer of 2019, and given the primary table queried contains foreign keys of
vacation locations, dates, and a person’s profile, then it is advantageous to join on
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the date foreign key first, with the person foreign key followed by the location foreign
key. This ordering of joins would avoid pulling up the entire list of locations one
may have travelled and reduce the range of foreign keys and any attributes of interest
retrieved from disk within a limited date range. An explicit optimization involves
indexing methods, whether B+ trees, bitmap, or other, in which indices will arrange
frequently queried attributes from a table to facilitate quicker expression matching
operations, often in the query’s filter for valid row values to return in the result or
even a condition used to join on. Furthermore, explicit optimization uses views to
reduce the amount of data available to be queried and, thus, the total range of rows
any join operation has to handle; this is achieved by providing only relevant data to
a user class or restricting access to certain data within the full tables stored on disk.

Second, the choice of analytical algorithms often run between a DBMS in and third
party software adds to the query processing load alongside human user requests.
Aside from running queries from a DBMS’ native environment, one can run scripts
in programming languages such as Python and R, which are often used for in-depth
analysis and Machine Learning (ML). These scripts will run queries on the database
to aggregate and build the sets alongside other users’ queries. Data sets for ML
are often among the largest in size (columns and rows) that a human user aims to
interpret visually, requiring much of the database’s resources to compute.

Third, the hardware architecture housing the database system contributes to query
response time, as it includes permanent storage—referred to as disk space, central
processing unit (CPU) and its number of cores, increasingly the use of graphics pro-
cessing unit (GPU), and random access memory (RAM) closest to the CPU unlike
the disk. For instance, the ratio of main memory to database size in permanent stor-
age is crucial as it is widely used for query processing in popular DBMS systems,
including SQL server by Microsoft and POSTGRESQL. Certain systems respond to
user queries by first importing the required data into main memory to join across
tables, filter on values and conditional logic, and finally compute the aggregations to
return values in the result table. The less main memory, the less room available to fit
data tables along with intermediary results of computations until a result is finalized
and, as a consequence, there is more interaction between the two memory locations.
These architectures requiring main memory for resolving queries are widely used in
small organizations and enterprise environments. The cores which act on the data
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brought into main memory determine the degree of concurrent computation in which
a server can engage, whether it is executing a query per CPU core such as POSTGRE
SQL server’s one process per core policy, or other server architectures that split up
segments of a large query to resolve faster with multiple cores at a time.

A solution that aims to reduce the query response time must be dynamic as the
demand changes and account for the prior three facets. This thesis focuses on man-
aging the supply of subsets of the data, available to an organization’s employee users
to query, within the main memory hardware, particularly in RAM (aside from cache)
since it is the temporary storage of data in closest proximity to the CPU. The focus
on main memory is driven by the need by widely used and reliable DBMS systems
such as SQL server and POSTGRE SQL, to import data from permanent storage
for fast access in main memory and execute table joins, filtering on row values and
aggregation calculations. Thus, the delay in carrying data from the disk in response
to queries leads to slower computation of the response to the query for the user.

Despite the availability of cloud storage solutions, including versions of the previously
mentioned DBMS systems, there are risks of data privacy and a firm’s competitive
advantage being eroded by other organizations, given that the cutting edge cloud
systems are offered by other data harvesting and analytics firms such as Google and
Amazon. In the case of applications holding onto non-identifiable data (to an indi-
vidual), it is safe to make use of Google’s cloud database packages with ML plug and
play-style methods for immediate churning of a client’s data, or similarly Amazon’s
AWS services from the privacy perspective. Given this, we address the risk of allow-
ing an individual’s proprietary data be in the custody of a third party which is rarely
held to the same limits of liability as the original data collecting firm’s clients/user
agreements. In particular, organizations holding Personal Health Information (PHI)
are subject to safe harbour laws in North America and the GDPR laws for data pro-
tection in the European Union. Crucially, there is a trend of adopting these standards
and the associated legal consequence of failing to enact proper safeguards for the col-
lected data by custodians of PHI which are often inclusive of personal data [Ema13].
As a result, the storage of data on servers not belonging to the firm which acquired
it imposes severe risks and legal liabilities to the custodian which originally collected
the individuals’ data; with this in mind, organizations are not opting to use casually
secured database architectures or cloud computing solution suites offered by third
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parties. Cloud computing requires a large-scale development team and a generous
budget, which is why many organizations do not (yet) have their own in-house dedi-
cated teams to manage their own cloud architecture as it is not their primary source
of expertise and source of revenue. Only recently have some developers of cloud com-
puting suites such as SAP begun to offer products which can be solely stored in-house
and operated within an organization’s array of information technology.

Another industry case is Wal-Mart and its Retail Link online portal for its associates
to access sales and inventory data sets as they change over time to facilitate decisions
in its just-in-time supply management strategy. Retail Link (trademark of Wal-Mart)
is the organization’s in-house proprietary system that adds value to its business to
justify its immense development and ongoing costs. Wal-Mart is an example of a
global organization that makes non-individual granular data available to hundreds
of thousands of associate users world-wide via a cloud-like architecture (precise de-
tails of this proprietary technology are unavailable publicly) which is not feasible for
many medium and small organizations; Wal-Mart’s in-house development decision is
to retain its competitive edge by securing access to the data. In the end, the more
traditional setup of locally stored and maintained database systems for many organi-
zations has remained a large percentage of users given the ongoing development and
funding into SQL Server, POSTGRE SQL, and ORACLE’s sql database variants;
with an increasing trend in regulations implemented globally [AE20], these database
systems remain a safe option in terms of legal liability, cost-benefit business cases,
and reliable DBMSs.

Given this context, it is the goal of this thesis to formulate a framework that specifies
the correct data to place in RAM and be executable in near real-time and within
memory constraints.

DWs are large-scale repositories that are frequently accessed by multiple users and
that run analytical applications that use aggregated data across multiple relations.
For instance, in retail, decision makers often query the evolving trends in consumer
behaviour based on time, location, and product lines [KR13]. The optimization of
diverse user queries is a difficult task, since the usage patterns vary over time and
the resources used by the analytical applications are heavily influenced by the data
used (relations, tuples, and attributes), as well as the aggregation functions (e.g.
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icebergs, summation, counting, etc.) [Han15]. In relational databases, the schema for
warehousing data is a result of dimensional modelling in which the fact table houses
numeric measures pertaining to the main events of interest linked to many dimensional
tables containing the attributes of the measures [KR13]. A fact is supported by n
dimensions; these offer the most context to the fact of an event when a join across all
of these is performed. There are typically hierarchies exhibited by the attributes; in
the retail example, the hierarchy is typically the following: date and time, location
(city, state/province, country), product line levels, the composition of a complex
piece of equipment, and more [KR13]. The level of aggregation is a key feature in the
construction of an n dimensional join of tables surrounding facts (tuples of the fact
table), which, in turn, allows a user to inspect these various levels of information in
a single query result.

However, the n dimensional query results are referred to as cubes for short and, for
reasons explained in the next chapter, contain large amounts of repetition among the
attributes’ values to prioritize the swifter computation of queries rather than efficient
data storage on disk at the cost of otherwise frequent joins. The benefit of dimen-
sional modelling is the reduction of table joins to build the context surrounding facts
through concept hierarchies, albeit at the cost of frequently repeating attribute values
in permanent storage; this is in contrast to more traditional relational database de-
signs which require iterations of normalization to achieve tables with (nearly) distinct
attribute values. As stated in [AV16]: "The need to merge such heterogeneous data
sources has introduced an important problem for many companies; thus the problem
of size of the data and [degree of] dimensionality." The data sources refer to inter-
mediary data (flat) files or other databases which, once they are collected and their
contents are integrated (the process of data staging), only a single database called a
data mart within the DW [KR13] may be queried. In addition, the problem is alle-
viated by solutions which address data storage, cost of query processing [AV16], and
managing the supply of data subsets to meet the demand by user’s queries. This thesis
builds on the framework first developed in [AV16] to reduce typical query response
time in a DM and to extend its capabilities in estimating user interest exhibited
through the submitted queries to the mart. There are three primary reasons for ex-
tending the module in [AV16] to specify the data that need to undergo the author’s
solution or improving query response time. First, the work in [AV16] addresses the
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scenario with a single user; however, multiple users with differing interests is a more
likely condition to be faced by companies and organizations. Second, the author’s
approach of accounting for user interest is summarized as: "This user interest is not
static and therefore precomputing the personalized cube in advance for each user is
not a practical solution." While it is acknowledged that user interest is not static, a
differing view of data-driven predictions is presented in this thesis; here, the main con-
tribution is applying a predictive modelling ensemble of Bayesian statistics, sequence
pattern mining algorithms, and machine learning methods to precompute data cubes.
Third, the evaluation of approaches in the literature shows a heavy reliance on the
static assumption or infeasible protocols in day-to-day operations within a firm.

1.1 Motivation

The goal of this research is to predict, in near real-time, the data of interest for the
whole group of users against such a DW. These predictions are subsequently used to
construct so-called personalized Smart Cubes which contain aggregated data per user
group that evolve over time. This approach reduces the computation time of queries,
by providing user groups with access to current, relevant data.

The motivation for this research is, thus, to specify an end-to-end adaptive approach
for resource allocation of cuboids from permanent storage into fast access memory in
the form of materialized cubes within the DW domain. First, a database server needs
to process multiple users’ queries by joining various datasets and loading the result
in main memory to begin calculations. In current systems, this process is reactionary
to users’ input and can be undesirably slow. In [AV16], the authors implemented a
personalization scheme of a single user’s query patterns and preloaded the data. The
scope of [AV16], however, does not include many users simultaneously in the system;
this research addresses this shortcoming. Furthermore, it can be acknowledged that
the query patterns are subject to change (so-called concept drift) and noise; again,
current solutions do not handle these aspects. To this end, a framework was developed
to detect changes in user behaviour and to dynamically adapt the personalized smart
cube for a group of users.

This research lies within the field of adaptive intelligent systems, with a focus on
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machine learning and data warehousing. The methodology includes elements of sta-
tistical learning, machine learning , and time-series analysis to provide an end-to-end
solution to adaptive predictions in the prior stated domain.

1.2 Thesis Contributions

In this work, a framework for multi-scale prediction and adaptation to changes in user
interest is the primary deliverable; the secondary deliverable is a procedure to guide
someone in assembling the components of the ensemble validated here to fit their use
case, particularly with respect to an organization’s exact data and DBMS constraints.
A challenge addressed in this thesis is to limit the assumptions to the minimum
number required by the prediction methods, unlike alternative frameworks discussed
in the next chapter. The assumptions made in personalizing a collection of data
for users often lie in the user interest estimation process per methods surveyed from
literature; these are omitted in this framework in favour of data-driven models that
predict this interest in near real-time. The ensemble of prediction methods is drawn
from numerous data analysis domains: Bayesian parametric statistics, data mining,
machine learning, regression modelling, and functional data analysis (functions of
trends and signals in place of a data point or tuple). The methods carried into
the final experimentation phase cover a wide range of interpretability and predictive
ability trade offs, and each has merit in certain operational climates. Furthermore, the
final three predictive methods are sufficiently different in their complexity to program
and infer from, which is advantageous in ensemble learning as we try to boost the
prediction correctness. The contrast among these methods enable organizations to
implement the framework in an incremental fashion if the full ensemble poses a high
risk in development planning.

Therefore, this thesis is aimed at extending the framework by [AV16] with a prediction
of cuboids module adaptive to concept drift. The prediction functionality is a key
improvement in reducing query response time while allowing the framework in [AV16]
to handle multiple users in place of the authors’ implementation on user interest and
cuboid specification for the materialized set. The prediction module runs in near real-
time to allow the smart materialization stage in [AV16] to run in time for the effects
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to impact query response time. The dataset on which the framework is validated is a
new synthetic set of four user group query profiles motivated by real world data and
extended to enclose a mixture of trends, cyclic query patterns, and changes in user
behaviour over time.

1.2.1 Summary

In summary the contributions are:

1. Predictive procedure on multiple time scales.

2. The predictive module is adaptive to changes in the users’ interest over time.

3. An ensemble learner to leverage well performing and diverse combination of
predictive models and change detection methods with adaptive strategies.

4. A data synthesis procedure for validating the framework in the absence of readily
available data sets.

Altogether these points make up the LP-CDA framework developed in this thesis.

1.3 Organization

The remainder of this thesis is organised as follows. Chapter 2 examines various
approaches for DBMS personalization and their contrasts, branches of computational
learning to carry out predictions of data processes, approaches to handle changes
over time of such processes, and, finally, the candidate methodologies to include in
the proposed framework. Following the selection of methodologies to adapt from
Chapter 2, the framework is specified in Chapter 3.

Part II focuses on the experiments conducted, their results, and the conclusions
drawn from the analysis. The construction of the datasets, meant to represent real-
world user behaviours is a key section in Chapter 4. The analysis in Chapter 5 extends
beyond contrasting approaches and considers integration of these approaches on the
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basis of various measures aside positive prediction rate in the case of limitations faced
in hardware. Finally, the future work directions from Section 6.1 establish a near-term
road map for exploration to extend the work in this thesis and the methodology [AV16]
with which it integrates.
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Chapter 2

Background

The chapter begins in Section 2.2 with a discussion of the framework on which the
thesis builds, in addition to a contrast of previous research on query demand modelling
(a by-product of user interest in data) in a DW. This thesis focuses on a meta data-
driven analysis of user queries to leverage the smart materialization achieved in a
prior framework. An introduction to analysis methodologies is provided in sections
2.3 and 2.4. A gradual narrowing of the vast field of data analysis is presented in this
chapter, beginning in Section 2.3.1 and ending with the identification of a conclusive
set of methods to carry into experimentation in Section 2.5. It should be noted that
elements of signal processing and data mining are mentioned briefly where they can
be applied to alleviate limitations often faced in Statistical Learning (SL) or ML.

2.1 Data Warehousing

In response to the continual increase in the amount of data tuples and the num-
ber of events observed and of interest to analysts for aggregation, the usual entity-
relationship modelling of a database was replaced by dimensional modelling. The
immediate difference is the shift away from normalization, the design of data tables
to reduce redundancy in the values of attributes stored permanently in order to main-
tain the accuracy of data (one source of truth for attribute values), and the reduction
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of storage space at the cost of numerous table joins for (routine) queries. For in-
stance, processing a client’s item or purchase order return to issue a refund requires
a query to filter data on the client’s personal identity attributes, order number (if
available), or date of purchase, etc. The prior query scenario constrains the retrieval
of tuples from multiple tables with the intention to receive a few rows or less to then
be joined across tables; this translates to using the where and inner/left join on
the clients’ table clauses, as described in the structured query language (SQL). A
database’s conceptual schema likely follows the entity relationship modelling (E-R)
approach [KR13], which at least has the table holding onto clients, products/services,
purchases, and stores/location of sale, which would be interlinked by a set of foreign
keys. In these tables, a combination of values (rows) among the attributes (columns)
appear only once; one record for each unique client, for every product/service, etc. A
database design that can fit the use case described earlier is depicted in Figure 2.1.
The numerous joins across tables are necessary in the best case where the client has
an order number (ID) at the time of the return request and, in the worst case, where
fragmented information about the order is presented by the client (the location of
purchase and perhaps certain items in the order). The benefit of the normalization of
attributes in the design presented in Figure 2.1 is ease of maintaining accurate data,
as an attribute is recorded only once in most cases; a side effect is the reduction in
data storage size since redundancy is reduced.

On the other hand, consider the analysts’ use case of perpetual inventory control or
analysis of product pricing over time and correlation with sales in various locations.
These analyses require the aggregation of all tuples satisfying a set of constraints—the
amount of data to load into main memory for computations is vast. The aggregation
of data is typically of interest along the dimensions of time, location, and trends
associated to groups of client/people demographics. This second use case differs from
that associated with Figure 2.1, since the first example is focused on retrieving specific
records whereas the second is focused on generalizing over a set of parameters. The
complexity of operation required in the generalization of data competes for the DBMS
processing capacity alongside the table join operations; this competition for resources
in the case of a relational schema with degrees of normalization leads to long query
response times [AV16,KR13]. The complexity of joining many tables routinely can
be reduced if the schema is designed following dimensional modelling instead of E-
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R, given that the storage capacity has vastly increased over the last several decades,
foremost in disk and then in main memory (RAM, cache); computing capacity relative
to the amount of data queried, however, has not increased at the same rate.

To determine and record important historical aspects of a business process often over
some period of time and set of location s, the need to warehouse data covering the
vast range of time and locations and granularity of detail within these dimensions of
interest to an organization led to a new formulation of database schematic designs.
The method refined in [KR13] is dimensional modelling, and within this method, the
specific schema is star shaped. The aggregation for either business intelligence (BI)
dashboards or in-depth pattern discovery and trend analysis using data mining is
facilitated by Online Analytical Processing (OLAP). The star schema in Figure 2.2 is
an example of a result of dimensional modelling which would fit the second use case
described previously.

Figure 2.1: Partial schematic diagram (on the tables of interest) for the example
provided in the text of a database designed using relational entity modelling. The
third normal form is exemplified by way of the linkage of purchase orders being
a collection of product offerings, where an offering is a specific pricing method or
amount associated to a product at the point of sale.

The star schema exemplified by the authors of [KR13] in Figure 2.2 differs from the
E-R schema highlighted in Figure 2.1 primarily in two areas:

• the sheer volume of attributes and the cumulative gigabytes to terabytes of data
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Figure 2.2: This diagram is Figure 5.2 from [KR13], depicting the order handling
business process with selected details. Despite the fact that the detail (in number of
attributes and their granularity) surpasses the relational database schema observed
at a high level in Figure 2.1, the number of tables is proportional. In contrast, a join
on four tables is required to obtain the details of the products purchased and their
prices at the moment of sale in Figure 2.1, as opposed to the single join on product
dimension and/or deal dimension to complement the dollar amounts stored in the
fact table in this figure’s schema.

subject to aggregation queries

• the number of joins is reduced to access the details of any dimension. For
example, only one join is required with the fact table to obtain all the details
of any given dimension unlike the three joins required to obtain the prices of
specific products purchased and two table joins to obtain geographical locations
of purchases in Figure 2.1.

The DM exemplified by the star schema in Figure 2.2 can be one of many within a
DW in order to facilitate the numerous operational processes of an organization.

2.1.1 Materialized Views

In both E-R and dimensional schema environments, an aggregation of tables often
referred to in many sequences of queries may be saved, as a quick reference, in the
form of a view; this view is assigned a unique name which refers to an underlying
query often joining a number of tables and filtering rows using the where clause in
SQL. A view is beneficial for the following:
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• ensuring consistent business logic is applied where it can be standardized, this
lends to the use of updated data in calculating metrics all the while the backend
undergoes continual changes. For instance, defining notions of best selling items
where a view may be the query which subtracts product returns and defects in
monetary value from the amount sold in total; business analysts could conduct
their queries on this standard set of items and their measure of net sales.

• personalizing the schema for different classes of users, often eliminating the
need for users to conduct repetitive joins for their use case. Consider the two
roles: an analyst interested in calculating the perpetual inventory flow versus
an analyst focusing on clientele and their distribution in locations of purchases
(from figures 2.1 and 2.2). These two roles will often conduct their analyses on
a different cuboid, and using a view will eliminate the redundant query writing
by each analyst sharing a role.

• maintaining storage space. By default, a view is a reference to a query which
is calculated at runtime; there is no permanent storage increase though the
performance could be diminished if the view is large and complex to generate
repeatedly.

In addressing the last point above on performance, the ability to materialize a view
which remains in main memory would ensure the view referenced is already loaded in
main memory and the basis for user-specific queries. This materialization is beneficial
in reducing the query response time [Han15,AV16] and, in the DM context, requires
construction of the data cube. As depicted in Figure 2.3, a data cube consists of all
combinations of dimensions given an apex (the superset of data), and a combination
represents the join between the elements; the purpose of the lattice arrangement is to
enable an analyst to switch between different perspectives of dimensions of interest
at runtime without issuing independent queries to construct the individual joins of
combinations. In an OLAP environment, multiple joins within a data cube are often
of immediate interest and subject to some back and forth querying; as such, it is
reasonable to retrieve all these possible joins in one query.

Although the DW architecture referred to throughout this thesis follows the rela-
tional OLAP (ROLAP) paradigm, there are two other architectures: hybrid OLAP
(HOLAP) and multidimensional OLAP (MOLAP) [KR13]. The ROLAP paradigm
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Figure 2.3: A general data cube for any three dimensions {A, B, C} in a given DM,
obtained from Figure 3.1.4 of [Han15].

is beneficial in working with increasingly large amounts of data as the queries are
computed on the data tuples as stored in tables directly, unlike in MOLAP where
these queries act on a data cube instead. Thus, queries written on ROLAP database
architecture can lead to multidimensional results viewed statically in tabular form
with extensive aggregation across large data sets at the cost of more complex queries
required to construct data cubes as needed. However, a well performing MOLAP
architecture utilizes smaller datasets as the data are stored in a multidimensional
array using sparse matrices—the data cube structure is fixed on initialization and
this existing structure offers faster access and dynamic viewing of its contents. In a
situation in which fast access to a ready made data cube is equally important as the
ability to store large databases requiring multiple data cubes, the HOLAP architec-
ture can be successfully applied. However, HOLAP does inherit the limitations of
both architectures it integrates; whenever access to the relational tables is required
for data not available in a MOLAP setting, the access is slower and more complex
queries are required—this is the cost to perform more extensive aggregations than in
a MOLAP setting.

For instance, in the ROLAP setting, the data tables depicted in the orders DM from
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Figure 2.2, where A = product, B = Date and C = Customer Ship To, then
the cuboid AB is the join of the fact table with these two dimensions to allow for
aggregation of types of products sold and their monetary value by either categories,
product lines, or other grouping attributes, within a specified period of time. A trend
analysis of the monetary value per product group over time is facilitated by the AB
cuboid. As another example, the BC cuboid and analyst can monitor the overall
amount of transactions either in frequency or monetary at different locations in the
world over time. Using the figure of a data cube as guide, it may be noted that there
are at least 2d cuboids in the whole cube for d dimensions selected. Furthermore,
an account of the concept hierarchies present in some dimensions such as dates and
geographical locations where the granularity of detail can be chosen by users leads to
the following equation:

total number of cuboids =
d∏
i=1

(Li + 1) (2.1)

Where L is the number of levels of granularity for dimension i [Han15]; for date,
four levels may be {day, week, month, year}; and customer ship to location may be
{city/town, region/county, province/state, country}.

Materializing a view containing a data cube is costly given the number of cuboids,
and without any intervention on the side of database programmers, the redundancy
of attribute value spanning the cuboids creates a need for optimization. For this
reason, the authors of [Han15] state it is unrealistic to precompute the whole cube,
and in [AV16], the authors go further to state that precomputing altogether a data
cube is not worthwhile, rather it is better to optimally compute it near the time it is
referred to by user queries. In this thesis, we are in agreement with [Han15] and will
leverage the optimal construction of data cubes from [AV16] in order to precompute
fragments of the cube (certain cuboids) of which any other non-materialized cuboids
could be quickly generated at runtime.
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2.2 Prior Research on Personalization of View

Materialization

In a previous study [AV16], a dynamic smart cube construction and smart view
materialization is applied to a user’s query pattern in a DW environment. The smart
construction aims to achieve minimal loading of data into main memory so that any
cuboid in a data cube could be materialized faster than loading the default cuboid in
the DBMS. Next, according to the user behaviour witnessed by the system through the
query pattern, the most frequent subset of cuboids is constructed from partitions of
the data cube to store as materialized views. It follows that the user behaviour changes
along with the frequent cuboid set; the views are smartly materialized to reflect the
set of frequencies, subject to main memory size constraints. The constraints to the
problem explored in [AV16] and in this thesis are storage space and query response
time. The authors of [AV16] show through their experimentation that the dynamic
smart (constructed and materialized) views achieve query response times comparative
to competing approaches at the time using less storage space, meaning more of the
frequent data could be fit in the materialized views. In addition, an early result of
the research in [AV16] reaffirms that materialized views of relevant data cube subsets
for queries increases the query response time.

In contrast to [AV16], we are introduced to a method relying on a framework named
MapReduce in [SY17] to construct large data cubes in the 216 gigabytes to 1.75
terabytes range within the hour given a fleet of 400 machines. This contrasting
approach focuses on reducing the number of "copy-add" operations in calculating
aggregations from many rows of data and distributing other operations concurrently
across the set of machines. Of significance, the method in [SY17] requires a large
collection of machines integrated to work in parallel and is reactionary to user query
behaviour. While the constraints in the cost model for [SY17] involve the algorithmic
complexity in constructing a data cube, whereas those in [AV16] involve user interest,
run-time, and size of the resultant data cube. The common dimension in validating
the two approaches is the run-time or algorithmic complexity, which contributes to
query response time improvements. However, the primary difference is the focus
on dynamic user behaviour in [AV16] under some assumptions, whereas [SY17] does
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not have this focus. The operational setting in the two works differ significantly with
respect to real world applications, in that [SY17] is intended for large-scale computing
architectures at the business enterprise scale whereas in [AV16] the experimentation
phase takes place on a single computer acting as the host and server client where it is
a reduction resource consumption which scales up with increases in data cube demand
and variations. The concurrent demand in multiple data cubes and change in this
demand was not a point of discussion in [SY17], while it is a primary consideration
in [AV16].

In addition to the two prior approaches of reducing query response time with a focus
on data cube construction, other methods focus on the selection views to materialize
so they can resolve the bulk of user queries as they arrive. View selection methods
operate a cost model balancing the size in memory of views, frequency of queries
which a view can resolve, and the cost of maintenance of such materialized views
[MB12]. Given a set of queries observed over a period of time and their frequencies,
a query workload is used as training data for view selection strategies varying from
immediate to deferred updating materialized views as the data tuples change in an
incremental manner or are re-constructed from scratch. Additionally, whether the
selection algorithms involve query rewriting in such ways which would use the existing
set of views or rely on the syntactical analysis of workload (table relations within the
set of queries), the benefit of a set of views is limited by the relevancy of the workload
on which it is trained. As a result, the detection of change in relevant workload
is not monitored explicitly since the cost model used to decide which views should
be materialized is expected to reflect the shift in user behaviour. However, need
to detect a change explicitly is discussed later in this chapter, as many models are
not sufficiently robust in their formulation to implicitly adapt. Finally, a limitation
shared by the methods in [MB12, AV16], is the reactionary approach to make the
determination of what constitutes user queries of interest rather than making the
distinction between what was (historical patterns) and what is underway (concept
drift) to define the materialized view.

Thus, this thesis focuses on improving the dynamic aspect of smart materialization
in [AV16]’s framework in order to address many users’ behaviours in near-real time.
Given a supply of cuboids in a data mart ⊆ DW queries of some number of users,
it is unknown if the system can predict in near-real time the demand of cuboids to
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initialize the smart materialized view. The allocated main memory constraint limits
how much the system can supply to meet the demand at any given time regardless
of the accuracy of the demand prediction. If the materialized view has a degree of
overlap with all data needed to resolve queries in a time period, then by transitivity, a
materialized view satisfies the query response time in proportion to this overlap. Thus,
query response time is not an explicit measure; instead, the prediction correctness is
indicative of overall response time improvement.

A high-level description of the main paradigms among the approaches detailed in the
next chapters follows. First, the data used as input s to any of the approaches is
user blind, since the methods are not meant to focus on user-level analysis or even
user groups. The reason for this is that approaches which make assumptions about
users in order to group them together for joint consideration in making representative
materialized views introduces a bias that is difficult to update and validate in near-real
time. The benefit of most styles of approaches surveyed by [AS15] does not outweigh
the complexity of computation and errors from bias. In a DW environment, OLAP
personalization continually uses subjective input of domain experts to create and
maintain profiles or to define the rules of dynamic personalization [KB12,AS15]. The
effectiveness of prior personalization relies on correct human input, and predicting the
elements that should be in a materialized view is sensitive to timeliness of updated
profiles; a detected change resulting in a change in a user profile needs to be computed
in time for the remaining system functions to make use of this updated profile in
materializing a view. In order to predict user queries we treat actions of all users as
actions of the system, and in turn pose the question: "how will the DBMS predict
the cuboids to smartly materialize given the demand the system experiences over all;
instead of predicting the exact query specification per user?" As a result, complexity
and a degree of bias attributed to outdated or lesser reliable personalization are not
incurred by the approaches explored here. It is also true that the equal weighting
of user actions allows for minority/majority user class situations, which can lead to
extreme levels of user satisfaction. The approaches under simulation focus on meeting
the demand of cuboids and ensuring their presence, subject to available memory, in a
materialized view ahead of time tends to minimize users’ wait times for query results.
However, the recommendation role in OLAP query optimization [KB12] is beneficial,
in addition to the dynamic materialization achieved in this work.
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The approaches in this thesis involve computing predictions on multiple scales of
time, making predictions at different scales of time, and then using these predictions
as inputs into the final decision-making process, deciding which cuboids to materi-
alize. First, to attain our goal requires us to consider three overall dimensions =

{user, query, time} at any moment to make a prediction; instead, by forcing the anal-
ysis to be user blind and fixing the time of consideration, an approach’s complexity is
further reduced. At the moment a prediction time is fixed, and as the system contin-
ually knows the values of time without error, we can consider that at the local (per
scale) level, analysis time is not variable; thus, the narrowed scope = {query}.
Furthermore, the query is broken into its cuboid components that appear in main
memory when it is answered, and our modelling will use this metadata in the form
of histograms (counting cuboids overtime) to describe the user-driven events in the
DBMS.

In summary, candidate approaches in exploration address the following: main mem-
ory constraints (upper bound) within which to fit materialization, being user blind,
operating in a multi-scale analysis manner, and, by transitivity, minimizing the query
response time.

2.2.1 User Behaviour Modelling

A lattice is a segmentation and arrangement of dimensions resulting in subspaces in a
DW [AV16,KR13]. The lattice prediction (LP) process summarizes the events in
the query as subsets of data available in the DW [AV16]. Suppose the following data
are observed in a cycle: {A,B,D,F}. These can then appear in a lattice as {ABDF}
or {A,BDF} or {AB, DF} or all remaining combinations. In LP , the element AB
represents the case that data A and B jointly occur within a query (consequence
of a join operation) in a cycle by any number of users. Instead, {A,B} is the case
that data set A occurs in a query separate from the query where the dataset B
is observable. In a cycle, if the estimated observed data sets form the cuboid set
{AB,B}, this set is a distinct observation from {AB}. The estimated observed cuboid
set is then transformed into a ranked set as the output of the LP given as input to a
component of this system to prioritize the smart views to materialize [AV16].
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The authors in [AS15] use the term adaption to describe the system making edits to
the formulation of the query submitted by a user, or the system adapting its own re-
sources to cater to as much of the demand exhibited by the users’ queries; this thesis
accomplishes the latter by way of schema adaption. The adaption is performed in
two parts: deciding which dimensions to filter out of scope for materializing a view as
in Chapter 3, and constructing a smart cube most efficiently, achieved by smart ma-
terialization in [AV16]. The branch of DW personalization labelled recommendation
is synonymous with the recommender systems employed by e-commerce and decision
support software; this set of approaches assumes the user will likely need to select a
complementary or a better formulated query among the system’s suggestions. Inter-
vening in the workflow of the user to either reaffirm the query to submit or accept
another query in place of the original leads to a baseline increase in cost on the time-
axis proportional to the time it takes a user to decide. Alternatively, the adaptive
approach actively reworks the query submission without waiting for user input. In
both approaches, the topic being addressed is the basis on which we recommend or
adapt user queries?

User profile-based approaches leverage domain knowledge overwhelmingly, which in
practice depends on well-timed updates in near real time. In addition to the survey
in [AS15], a summary of database personalization approaches is provided in Table
2.1 and explored further below. Of the two branches of OLAP, personalization is
observed in published works; this thesis focuses on neither, however, because there
is no recommendation to the user nor a forced edit on their posed query to the DW.
The injection of domain knowledge (bias) is a manual process by way of DBMS
admin queries or digital forms acting as interfaces for non-programmers to specify
preferences; this clearly highlights the time delay of user profiling in the methods
covered in [AS15,KB12], and assumes the bias is correct. In other words, the analysis
of user queries is left to the domain experts and then fed into the system to act on it
(putting aside the potential problem of competing or contradictory profiles).

Next, a series of modelling languages such as PRML [GPMT09], also covered in
the survey, generate a rule-based multi-level hierarchy given "explicit extraction of
the user knowledge which may disturb the user and slow the personalization process"
[AS15]. The prior approach relies on the user to self identify a shift in their behaviour,
meaning they must decide if their actions are outlying, an abrupt change, or part of
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Approach Benefits Limitations

PRML
[GPMT09]
and
extensions

−→ rules-based adaption of schema
−→ extensive conditional logic to
reflect user behaviour

−→ explicit rule extraction, assumes
declared rules are reflective of actual
behaviour
−→ no concept drift adaption, relies
on users maintaining their relevant set
of preferences

MyOLAP
with West
Algorithm
[GR09,
BGR11]

−→ granular, row-wise data selection
to materialize in addition to dimension
selection within a DM
−→ individual level of personalization

−→ explicit user preference extraction,
assumes declared preferences are
reflective of actual behaviour
−→ no concept drift adaption, relies
on users maintaining their relevant set
of preferences

Extended
MyOLAP
[AGM+11]

−→ association rules via data mining
applied to implicitly extract
preferences
−→ benefits of root approach carry
over

−→ bias carried over from root
MyOLAP approach, assumes
MyOLAP describes actual data
brought into main memory
−→ no concept drift adaption by the
DBMS

MDX query
adaption
[RT08]

−→ ranks preferences to prioritize
their effect on personalization

−→ explicit preference extraction and
bias as seen in some above approaches
−→ narrowly works with MDX
queries, does not consider SQL or no
sql frameworks.

Smart
Cube Mate-
rializa-
tion [AV16]

−→ individual level personalization
given known and stationary behaviour
−→ achieves main memory and
near-real time constraints
−→ reduction in space utilized
compared to competing smart cube
materialization schemes

−→ does not demonstrate use with n
number of users
−→ does not empirically model user
behaviour
−→ no adaption to concept drift

[KB12]

−→ leverages principals of dimensional
modelling covered in [KR13] to
partition data in DM that are queried
on

−→ qualitative analysis with explicit
preference extraction
−→ no concept drift considerations or
empirical data analysis

Table 2.1: Comparison of a selection of schema or query adaption approaches, most
of which, except [AV16], are surveyed in [AS15]. These were selected to cover a diverse
set of ideas explored previously, however with consistent limitations.
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an incremental shift [GZB+13]. As an alternative to PRML and its variants, our
framework for prediction of cuboids in this thesisbe is intended to be merged with
the smart view materialization algorithm achieved in [AV16]. Granularity of users’
actions, though modelled differently, is a shared concept between PRML and the
multi-scale analysis applied in this work.

Authors of [KB12] conduct user profiling similar to [AV16]; their method is classified
under the schema adaption section in [AS15]. The authors state: "We will follow
a qualitative approach, since we think it is more natural for the user to express
preferences among predicates directly". These predicates, however, assume correct
preferences are submitted by the user, meaning they are reflective of the preferences
that would otherwise be inferred from meta data, and that the user profiles are kept up
to date. For real-world applications, it is not possible to scale the authors’ approach
to large groups of users of varying roles and posing varying complexities (by number
of joins and tuples) of queries.

An approach similar in nature to syntactical analysis for view selection mentioned in
prior sections is the method for personalization introduced in [RT08], where an MDX
query is modified to align with priorities set out in a user profile. Unlike an SQL
query, the MDX-type queries construct a multidimensional view instead of the rela-
tional table with two axes (rows and columns) and operate more conveniently with
data cubes as both MDX and data cubes can have any number of dimensions or axes.
However, it is entirely feasible to query cubes using SQL and build relational result
sets by reducing a multidimensional query result into a row by column table (this is
exemplified in the appendix) by using the group by clause. Otherwise, in MDX the
group-by function of SQL is implicit in the multidimensional result table and specifies
the measures or attributes of any number of axes (SQL is limited to two axes); ulti-
mately the two query languages differ in syntax. This query personalization method
from [RT08] can be applied in any OLAP setting (hybrid, relational, or multidimen-
sional) as they all store data cubes as an intermediate step or in permanent storage.
Due to the explicit extraction of preferences to determine the way a user’s query is
modified as submitted, this method suffers from real-world considerations such as ac-
curacy of submitted preferences by the user and continual relevance, and it excludes
SQL queries which are used frequently in ROLAP and HOLAP environments.
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Further in [AGM+11], the authors mine association rules on queries and preferences
explicitly written by users in the MDX query; an extension of the MDX syntax
particular to this method is required to be consistently and accurately used by the
user. There are significant barriers to adopting this process by everyday users of
OLAP, as it requires an additional step beyond the prior personalization methods,
which is learning new syntax and incorporating extra clauses in the MDX query to
convey a user’s preference for every query of interest to the user for resolving faster.
The method in [AGM+11] has an initial cost of adoption in terms of time required to
learn and apply from every user hoping to benefit from smaller data cubes generated
per their explicit preferences. A shared advantage with [AV16] is the row-wise filtering
of relevant tuples, and this is appropriate when the personalization is reactionary to
a user query; however, this poses a significant obstacle when trying to anticipate the
data required by the user. Since a mistake in preloading the filtered tuples could
render a materialized table useless, the approach taken in this thesis is to anticipate
the dimensions required within a data cube and leave the row wise reduction in the
cuboids as per the smart cube construction step in the framework of [AV16].

Thus, approaches explored in this thesis are based on evidence (cuboids) left behind as
a result of users’ queries (historical data), and the need to profile users to approximate
tendencies in data queried is avoided as we infer directly from meta data.

2.3 Statistical and Machine Learning

Stemming from elementary statistics, the SL branch focuses on inferences about the
population and groups of interest, to examine and specify relations between attributes
(inputs) and a response (output) variable. There are strict methodologies for vali-
dating a model fit to a data set and the claims made about the apparent relations.
For instance, with parametric regression, validations of the assumptions made by this
methodology after fitting a model, in addition to the inferences that may be made,
are provided in [FEH15a,She09a]. In contrast, in ML, the relations among variables
tend to be difficult to interpret, and thus the predictive performance of the models is
the primary focus.

The approaches in SL and ML to conduct affirmatory, exploratory, or predictive
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analyses differ as they are tuned to work in different environments with respect to
the number of observations and dimensions. ML succeeds at churning out models
leveraging complex patterns in the data usually at the expense of interpretability, as
the models tend to favour variance over bias ( [JWHT13]). In contrast, SL methods
require aggregation of the raw data or transformation to a higher degree before using
data as input, as is often the case for correctly specifying distributions, applying
appropriate smoothing, and denoising as strict prerequisites; in ML, these are seen
as improvements (optional). The contrast is reported in the text [JWHT13], as well
as between the texts [FEH15b,RS05a,MQJH15,FV06] in SL to [Han15] and part 2
of [PMV17] in ML.

A significant contrast is the treatment of clustering in these approaches. In SL, the
goal is to understand within and between cluster relations, and the groupings are
known prior to analysis; this approach is still part of supervised learning as seen in
part 1 of [PMV17], specifically [NM17]. In contrast, in unsupervised learning the
clusters are unknown and at most the kernel defining the nature of these clusters’
shape is known prior to analysis; this is introduced from a SL perspective in chapter
14 of the text [HTF09], followed by a ML perspective detailed in the texts [Han15,
PMV17]. The quality of clusters is evaluated alongside prediction quality in the
supervised learning setting seen in [NM17] using 10-fold cross-validation and formal
statistical tests, whereas the unsupervised setting relies on interestingness measures
from [GH06]. The differences in clustering for the two branches of analytical learning
are evident in the approaches mentioned at the beginning of this chapter where the
clusters (groups) of users are a prior as opposed to using unsupervised learning to
learn the evident groupings from the data; this is discussed in further detail in Section
6.1.

A commonality between the two branches of learning from data is classification, as
both treat this prediction problem in the supervised learning setting. The many
forms of classification often of the nonparametric form are alternatives to some of
the initial approaches in the SL domain like logistic regression [She09b], as well as
variants of KNN regression and random forests as introduced in [JWHT13]. Often,
there is consistent use of SL devices for iteratively improving prediction correctness of
the classifiers across the two domains, such as bagging the various trained classifiers
on subsets of data to smooth them into a unified classifier, and boosting the weight of
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observations during the estimation phase or when calculating the classifier’s prediction
correctness measure [JWHT13].

2.3.1 Prediction of Events Methodologies

This section describes the class of methodologies under consideration to investigate
and build approaches in order to implement LP.

Regression. To fit the data under analysis in a single set of axes and build a
multiple regression model requires our dimensions of the data to be fully ordered in
terms of the values on the axis. The query dimension includes cuboid elements, which
can only be partially ordered [Jud16]. Alternatively, building regression models for
each cuboid (categorical data in logistic regression [She09b]) will allow the use of
prediction intervals. The complexity of implementing the regression paradigm while
satisfying the near-real time constraint is challenging for an initial set of approaches
in this thesis’ context, since it requires automation of training, variable selection
[She09c], and validation [She09a,FEH15a] of the model given concept drift. For the
validation requirement, the models constructed using regression methodology must
pass a validation phase prior to inference. In this phase, the assumptions by regression
must be affirmed or the variables must be transformed iteratively (to a sensible degree)
to achieve affirmation. For parameterized models, heavy human input is required, as
detailed in all the texts we cited previously. Should a regression model not meet
the necessary assumptions in [She09a, FEH15a], then it requires human expertise
to assess and improve the model in a parameterized setting. In a nonparametric
setting with relaxation of linearity between response and predictors to be a smooth
relation, the lack of parametric structure does not alleviate computational cost or
the time required to analyze and react to the diagnostic (Q-Q) plots [She09a]; the
nonparametric setting enables a degree of flexibility, however, that is not available in
the parametric setting [JWHT13].

Furthermore, models with varying covariance structures [She09d] are likely in ana-
lyzing data for this application (Section 4.3). If the granularity of analysis is at the
user level, then stating covariance structures per user per time scale can be a way
of achieving personalization. Also, the logistic regression [She09b] and its variation
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binary logistic models are good candidates. However, the difficulties with regression
models discussed previously remain despite the advantages offered by the various
models.

Altogether, regression modelling is valuable when some permanent structure of the
data-generating process can be discovered. Since the data processes’ observations
are pooled together according to the user blind design simplification, the structure is
not expected to stay relevant due to the many changes in individual user behaviours
underlying the aggregate behaviour.

Next, a methodology to address seasonality and trend-cycle estimations in near-
real time appears in detail in the text [DB16], making use of forecasting and predictive
capabilities of regression. The other methodologies cited in the text, many of which
are ARIMA-based, are used by major statistical agencies in North America for so-
cioeconomic and natural science time series. The cycles which the system in scope
considers for analysis are fixed intervals and, if it estimates the cycles, they can over-
lap multiple fixed intervals (cycles of time scales will not necessarily match up to
cycles of the time series). This adds complexity to an approach, and is considered
unnecessary at this stage prior to exhausting simpler approaches in experimentation.
The categorical treatment of the cuboid dimension requires many models (a time
series per cuboid with or without interactions between these series), which are elab-
orate and complex. In addition, the seasonal adjustment component is not primarily
needed since a cuboid in use for a pattern of user(s) following seasonality can also be
in use by user actions outside of this pattern (recall the pooling of all user actions
into a single time series). If the granularity of the analysis is the user or user group,
then a seasonal component may be part of modelling and is dependent on reliable
user profiling.

Otherwise, when the analyst has discrete data points which describe a smooth vari-
ation, then, in principle, the data to model are a function describing this continuous
variation, though discretely observed. In this thesis, from this chapter forward, the
count of events is our discrete value and the change in frequency over time describes
a curve rather than just points. Each variation of a cuboid’s frequency of use over
some time scale is a functional observation, and functional data analysis is the
study of these situations [RS05a].
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For functional data that we expect to exhibit different behaviours in various peri-
ods, the notion of a model per each of these periods is shown to be more informa-
tive than applying a single estimate of the curve’s shape for the whole data pro-
cess [Sch02, RS05b, Ram02]. The modelling of data periodically is often associated
with Fourier analysis [RS05b], and the generalization of signals over various peri-
ods to expose underlying structure is associated with multi-scale analysis when using
wavelets instead of Fourier bases. While the "...Fourier series [is] the traditional basis
of choice for long time series, but newer techniques such as B-splines and wavelets
can match and even exceed ..." the "... computational efficiency" offered by the
Fourier series [RS05b]. Furthermore, "[t]he wavelet expansion of a function f gives a
multi-resolution analysis... [t]hus wavelets provide a systematic sequence of degrees
of locality. Note that multi-scale is often referred to as multi-resolution in the litera-
ture. In contrast to Fourier series, wavelet expansions cope well with discontinuities
or rapid changes in behaviour... means that it is often reasonable to assume that an
observed function is well approximated by an economical wavelet expansion ... even
if it displays sharp local features" [RS05b].

However, the purpose of Fourier bases, B-spline, and wavelets is to smooth functions:
"[t]he use of basis functions is a computational device well adapted to storing in-
formation about functions, and gives us the flexibility that we need combined with
the computational power to fit even hundreds of thousands of data points" [RS05b].
Wavelets do not offer a prediction mechanism, as do regression and Bayesian (as
other probability distribution-based) methods which offer prediction and credibility
intervals, and otherwise offer smoothing and de-noising functionality [Sch02]. The
time series analyzed in this work is expected to vary over different periods; as such,
it is not feasible in the initial approaches to spend time discovering underlying struc-
ture to then utilize other prediction methodologies, for which the structure becomes
irrelevant soon after discovery.

2.3.2 Multi-Scale Analysis

Time series are approached from a time domain perspective in which the relations are
modelled in accordance to a point in time; time is therefore always a feature in this
domain. However arranging observations in reference to time can be limiting to the
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modelling phase where tendencies in the data process require missing features to be
included, so that a relation between the response and time could be captured, where
otherwise no relation exists. Symptoms of the prior are evident at the moment of
prediction along a time variable which yields inconsistent correctness of the prediction
or is consistently poor. However, if predictions are made without variance of time,
then the correctness of the yields are more accurate than prior (with respect to a
prediction interval). A challenge is that removing time as a feature alleviates an
impasse in modelling, however it renders the predictions less useable if knowing the
future value of the response is required in the context of time. Instead, if there
is a way to maintain time as feature yet partially exclude it during the estimation
of patterns and relations in the remaining features’ data, then the predictions can
be made in the context of time. For various signal processing applications such as
pattern detection in images and reducing the amount of data needed to store images
the interested reader may consult [RJ09]. In addition, applications in economics are
discussed in [Sch02,Ram02].

The time domain denoted as Dt and frequency domain denoted as DHz are briefly
discussed in this section. A stationary time series is one whose statistical properties
remain idle, which is to maintain a constant value and exhibit no change or concept
drift. Such constant properties include mean, variance, correlation, auto regressive,
and others. The opposite of this scenario is a non-stationary time series.

In Dt the variation of amplitude of the signal with time is recorded. Recording events
for a 20-minute period is a Dt approach.

In DHz, over the entire time period of recording, the goal is to record the peaks in
Dt and represent the tallies as a data point plotted in DHz. This is the number
of times each unique event possible in the sample space has occurred during the
total period of observation. In other words, plotting types of variation in the period,
rather than noting all the time values for each occurrence, is a form of aggregation
focusing on the types of variation and their frequency rather than the exact time they
occurred [Sch02].

For instance, the frequency of a sinusoidal f(x) is the number of cycles in a period:
Hz = 1

period
. It is typical to work in Dt since our inferences must be applicable

to this domain; however, the analysis to yield these inferences is not constrained to
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Figure 2.4: Dt is depicted, the axis of time (t) and the values of the series over time
are recorded along axis f(t).

Figure 2.5: DHz is depicted, the possible values of the series are along the f axis and
their frequency values in a period specified are recorded along the F (f) axis.

just Dt. The tendencies of the data are analyzed in both Dt and DHz. Given the
stationary series f(t) = 1, this horizontal line with a constant slope in Dt amounts
to a singular point in DHz since there is no variation in f over t; figures 2.6, 2.7, 2.8,
2.9 are identical to those in [Sch02]. In DHz, the concern is with the scale and not
location, because the location is closely approximated to be in the period (an interval
of values along the time t axis in Dt).

At a high level, the need for multi-scale analysis is driven by the desire to focus
on the variation of the data by reducing a dimension which adds complexity to the
modelling process, namely time. Decision making is dependent on the Dt to discern
between long-term and short-term behaviour. Individual time scales enable the

Figure 2.6: A stationary time series in Dt is depicted.
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Figure 2.7: The series in Figure 2.6 is represented in DHz here. In DHz the series’
variation is represented as F (f) = δ(f).

Figure 2.8: A stationary time series given by f(0) = 1 zero otherwise in Dt is
depicted.

Figure 2.9: The series in Figure 2.8 is represented in DHz here. In DHz the series’
variation is represented as F (f) = δ(f).
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forecasting mechanism to work with more detailed information than the "crowded"
full signal. As stated in [Ram02], "Smoothness is sometimes an important property
for a [model]... if the...[f(t)] ...is thought to be smooth, then smoothness is a desirable
property" It is not possible to achieve high resolution in both DHz and Dt. Overall,
"high" resolution refers to frequent sampling of data over a feature of choice, in our
case the focus is time and as a result we may capture detailed variation in the data;
similar concept as having more decimal points to represent a real number than only
a few.

The common model yt = ft+ εt, where yt is an observed element of the time series Y ,
ft ∈ F is the actual signal (the underlying data-generating process in the stochastic
approach), and εt is the noise. The general tendency of analyses makes the unstated
assumption that F is smooth and εt is the non-smooth variation, making F less
smooth. Using these assumptions, we can approximate ft by the use of some form of
averaging over the noise [Ram02]. When smoothing is done in the situation that F
is {non-smooth, contains discontinuities, regime shifts or concept drifts}, smoothing
is counter productive since the very structure of the signal will be lost or at least
distorted [Ram02]. In the case that F is non-smooth, de-noising is needed instead
of smoothing. As stated in [Ram02], one should avoid “thoughtless use of averaging
procedures..." which mask the "signal characteristics being sought".

Next, the topic of cross-scale complexities is introduced. It may be the case that
at the longest scales F is smooth, however, at periods representing smaller business
cycles (see primary application in Section 4.3, the series F is non-smooth, and at even
smaller scales the series is both smooth and periodically non-smooth [Ram02]. Thus,
one might consider different optimal model properties at different time scales.

A "good fit" to a time series is not indicative of the quality of forecasting that can be
achieved by the model yielding this "good fit." The fit of a time series over historical
data periods can be "very good", and the ability to "forecast past the very near future
is very bad" [Ram02].
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2.4 Concept Drift

The change in user behaviour observed through their query submission is better spec-
ified using the convention consolidated in [GZB+13]— referred to consistently in this
section—in which the datasets introduced in Chapter 4 explore a mixture of changes
in user behaviours exhibited (real drift) and the samples of these behaviours witnessed
over time (virtual drift). The approaches in Chapter 3 aim to adapt to a sampling
drift among others, since the databases housing the data marts are deterministic in
the mapping of query (X) to cuboids(Y ),rather than real drift which would involve
observing changes in the DM schema or varying cuboids being called to answer iden-
tical queries (syntax-wise). It is possible that the traffic of queries (X) can change
over some period of time, and that this change can affect Y and leave P (y|X) un-
affected; the relation between predictors and the outcome is unchanged, however,
the underlying distribution of the data-generating process (the users’ submission of
queries) is expected to change. In this thesis, Y is the histogram providing the num-
ber of times a cuboid (or its subset w.r.t number of rows in the database) is pulled
into main memory for computing answers to a user’s query. Referring to Figure 2
of [GZB+13], subsequent chapters of this thesis make no assumption on the type of
drift and, in fact, the data set synthesis specified in Section 4.3 intentionally mixes
abrupt, incremental, and recurring drift with some unintentional instances of gradual
and outlying behaviour.

Following the requirements set out by the authors of [GZB+13] to specify the ap-
proaches in Chapter 3, the authors address: (1) detection of concept drift in a timely
manner, (2) adaptation to changes, and (3) implementation of the decision given the
prior steps in time for the desired effect on the next period of time in interest of analy-
sis within the constraints of a storage limit. The approaches in Chapter 3 do not focus
on distinguishing drifts (true positive detection) from noise (false positive detection);
instead, they implicitly address noise by using a histogram of outcomes Y since less
prominent instances are less likely to be predicted and inconsistent instances are less
likely to trigger a false positive detection—though explicit noise handling is covered
in Section 6.1. The high-level procedure outlined in Section 2.4 of [GZB+13] is ap-
plied in the proposed approaches specified in Chapter 3, with the iterative sequence
of actions to predict from historical data, diagnose the correctness of predictions, and
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update the prediction models.

As the update step occurs in each iteration in order to add and/or remove observations
within a sampling window, the determination of the most appropriate sliding window
to apply is addressed. A window of data is a bounded interval of time in which
data is collected in sequence and analyzed, the window typically shifts along the time
dimension to capture new data as it becomes available while leaving older data out
of scope from analysis in the next iteration. The iterative shift of the window of data
may be done using a fixed window size (the amount of time a window covers) or a
variably sized window where the size changes per algorithmic conditions. Between
the two classes presented in [GZB+13], variable sized windows are applied in
this work’s framework since they allow for consideration of two situations that are
certain to occur and they should directly affect the decision of which observations to
include in the training set and which to forget. The considerations that the authors in
the concept drift survey mention are: "...when the data is noisy or concepts reoccur,
recency of data does not mean relevance. Moreover, if slow change lasts longer than
the window size, windowing may fail as well" [GZB+13]. Hence, the window size
adjustments are made by a heuristic detection or lengthened (shrunk) by a factor of
the change amplitude, as covered in Chapter 3. Accumulating more observations to
smooth out consistent behaviours (concept) is leveraged by an increasing window of
samples to carry out LP. Forgetting samples suspected of irrelevancy by shrinking
the window size at the later points in time (for this thesis’ application) is beneficial
to carry out adaption specified in the next chapter. Selecting whether to forget
abruptly or incrementally is a topic explored in Chapter 4. Interested readers are
referred to [GZB+13] for a detailed description of windows of data, nuances of types
of concept drift and other terminology referred to in this section.

For the use case of this thesis, the primary focus is the change detection (see Figure
2.10a) and the areas where an adaption strategy can make changes to the system
under investigation (highlighted in Figure 2.10b). The purpose of explicit change
detection is to extract data points from an inflow of data over time associated with
a change in this data-generating process (phenomenon in the real world which leaves
behind observable evidence in the form of the data the system collects). Sometimes,
there is less interest in the individual data points (tuples) and instead we care more
about the interval of time in which the change occurred; this too can be identified
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(a) Four Modules of Adaption

(b) Learning Capabilities

Figure 2.10: The modules are functional areas which contribute to detection and
adaption strategies; their involvement in the mix implemented in daily operations is
highly context driven. The learning is governed by the methods which aim to keep
up with change and make valid inferences for a set of conditions at some point in
time; a change adaption strategy will likely form an ensemble of these. This diagram
is obtained from [GZB+13].
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with explicit change detection methods. As the authors of [GZB+13] cover many
examples of detection methods, only a few examples will be reviewed in this section
in order to focus on their contrasts while representing the different lines of thinking
on this topic. As per the taxonomy consolidated in [GZB+13], there are also four
dimensions (no relation of dimensional modelling in the database context) in which
methods of change detection can be plotted as being members of varying degrees,
providing better visibility of their contrasts. The four dimensions are: (1) sequential
analysis, (2) control charts, (3) monitoring (statistical distributive) differences, and
(4) heuristic.

The cumulative sum (CUSUM) of the values over time can reveal shifts in the data-
generating process distribution. The values are measures of a quality characteristic
at time t, or more generally x ∈ t, where t is a grouping of measures [Pag54]. The
function specifying the detection of change under CUSUM is:

gt = max(0, gt−1 + (xt − δ)) : g0 = 0 (2.2)

Where δ is the tolerance for change. A change detection flag is raised when gt > λ

where λ is a user-defined threshold, and gt = 0 for the next iteration of evaluating
gt. The measure cumulatively summed could be: the mean value of the process over
time, median value, other aggregations which would be a defining characteristic of
the data-generating process of interest to monitor if a when a change occurs. In the
next chapter, the quality characteristic to monitor will be discussed at length as the
percent correct predictions (xt) per cycle (t). As a result of CUSUM, control charts
can be generated as in 2.11, for a visual inspection of change over time (or sequential
groupings of the data process aggregated in groups t); extensive variations can also
be found of this general method adapted in many industrial and electrical systems
applications. While this method is primarily involves sequential analysis, it yields
control charts as well.

Next, the methods in (2) are based on known distributions, such as using Bernoulli
trials when events in a sequence follow the binomial distribution as this distribution
is well fit to track the error rate of a process over time. There is an expected (and
tolerable) error rate in the predictions however, if this is exceeded than a change is
detected as a result. The difference in this dimension (2) is the reliance on an assumed
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Figure 2.11: Generalized control chart for CUSUM computed on a data process. The
two shaded (red) areas are "out of control" zones, as per the terminology in [GZB+13].
These denote a change detection for every instance (interval) the quality characteristic
x > λ ∨ x < −λ.

distribution for detecting enough deviation compared to a threshold relative to this
distribution, as opposed to relative to the process in (1) and the example of (2) in
Figure 2.11. Crucially in statistical process control charts, the error rate is expected
to decrease as a model learns from an increasing set of training instances; otherwise,
an increase in error rate indicates the distribution of the data observed has changed
beyond what the model has predicted. Visually, methods belonging to (2) contrast
Figure 2.11, where steep upward sloping of X over t is deemed normal until it exceeds
the absolute threshold λ; the prolonged (measured by ∆σ of the error rate’s binomial
distribution) climbing of error rate would be the triggering event for a change detected
flag instead of the hard threshold.

Onto (3)the methods aim to compare the distributions of the data or xt across two
different windows of historic data; usually one acts as a reference of desired variance
in the measure x while the second represents current measures used to draw inferences
(descriptive statistics, predictions, etc.). The reference window is fixed whereas the
current frame is a sliding window of data (often along the time axis, making the
process a data stream). Two of these methods are listed below:
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• (weighted) Kullback-Leibler divergence: a measure of the difference between
two distributions (one per window of data). The measure of difference can then
be tested using the hypotheses: H1 : the distributions are two different data
processes, and H0 : there is no significant difference in the two distributions

• Hoeffding inequality-based algorithms as demonstrated in the ADWIN algo-
rithm, whereby the harmonic means of the X measures in the two windows are
compared to determine if the change in the means is "large enough and distinct
enough" [GZB+13]. This inequality is applied in more recent change detection
algorithms.

In Chapter 3, three change detection methods are to be used in combination with
three predictive models in which each pairing forms an approach, and these approaches
form the ensemble. Relating back to the overview of the learning module of a change
detection/adaption strategy in Figure 2.10b, the ensemble is managed via model se-
lection because the approaches within are intended to have little overlap in their
inferences and tend to function favourably in different situations, thus only one ap-
proach will determine the system’s actions at a given time. Within the ensemble, the
adaption is informed and some methods will trigger the predictive model to retrain
after a change is detected, while others will rely on incremental adaption. The dif-
ference in these processes is the need to re-estimate the predictive model parameters
from initialization or whether an updating function is available to make changes to
initially estimated parameters; the impact is a vast difference in runtime between the
two ways. The memory module shown in orange in Figure 2.10a is controlled by the
adaption methods to be specified in the next chapter.

2.5 Conclusion

In conclusion, the challenges to be addressed in the framework proposed in Chapter
3 are threefold. First, we require the user input to be limited to the hyper parame-
ters of the framework only and eliminate time delay related to human adjustments
made to model inputs, contrasting the methods discussed in Section 2.2.1. In turn,
this limits the human bias (heuristic) in predictive models as it is not within reach
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of an automated change adaption strategy driven by functions on factors of change.
User profiles forced onto the system or query-specific grammar to describe user pat-
terns are difficult to integrate with generic change adaption methods which take their
cues from change detection methods in sequential analysis and monitoring statisti-
cal differences (as in Section 2.4). The generality of our framework allows for it to
be applied to domains other than those explored in Chapter 4. Second, we attempt
to build an ensemble of predictive models which handle partially ordered sets
of items (lattice of elements) efficiently in order to achieve near real-time forecasts.
Third, to regain the loss in correct predictions per cycle of time we employed meth-
ods that detect changes leading to degraded predictive correctness and adapt the
predictive models.
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Chapter 3

Lattice Prediction under Change
Detection and Adaption Framework

Implementing a version of the multi-scale analysis in combination with prediction and
change detection algorithms, leads to change adaption strategies and the formation
of the LP-CDA framework detailed in this chapter. Similar to the effect of drill-down
and roll-up queries within the OLAP context, the ability to zoom in and out of a data
signal or a time series can be achieved analytically by applying multi-scale analysis
introduced in 2.3.2. Of particular interest is the ability to zoom in on shorter time
intervals for immediate and short trends in a time series and simultaneously zoom out
to lower scale of time for the over-arching trend. The framework specified in the next
sections applies a dedicated predictive model for each scale of time considered and
aims to consolidate the predictions into one actionable materialized set of cuboids.
Given the nature of the data under investigation detailed in Chapter 4, the daily
scale would have us analyze the previous days’ cuboid demand to predict the demand
for the next day’s cycle. Time scales worth analyzing include any intervals of time
within which the prediction computations can finish, and intervals for which the
DBMS expert thinks a materialization update is necessary. If a scale of time is
more granular than the time required to compute the predicted cuboid set and act on
it, then this scale is too granular to implement. Those tasked to manage the DBMS
are aware of some of its nuances about general user tendencies and some technical
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details on the execution of queries in the particular system. In this case, domain
expertise is useful in deciding on the initial frequency of predicting and materializing
so as to materialize well in advance, though not too frequent that the DBMS is left
with significantly less resource usage time to compute user queries. Also, inspecting
a sample of query logs can reveal the general duration of the query classes such as
what it means to be a short-, medium-, and long-running query — relevant to the
largest sensible time scale. As an example, suppose 77, 71, 67 hours is the group
of longest running queries for some months’ data, then long queries can be said to
take three days to run, implying a time scale of every 3 days for which to predict. In
contrast, despite a higher frequency of queries which run for a couple of hours, the
DBMS expert may limit materialization to the daily scale so as to not take away from
computing resources of the user queries, which are attributed to frequent I/O’s from
swapping and constructing views.

There are two roles for the time scales: the first role is to determine the training
data window size, and the second role is reserved for a single scale to specify the
intervals on which predictions are acted on to update the materialized view. On
the latter role, there will be a singular scale for predictive models’ results to be
pooled into a materialized set of cuboids; this scale is denoted as the critical scale.
At each cycle of the critical scale, the materialized view can change, and the set of
time scales for which to predict includes this scale. While there can be multiple and
possibly conflicting predictions across various scales, there will be a single time point
to manifest these predictions into the materialized view. For each of the time scales
for which to predict, the system allocates main memory, and their sum is the total
memory cost of the materialized view.

3.1 Framework at a Glance

The framework evaluates the correctness of the predictions made by contrasting the
cuboids in actual demand during the next time period, and those specified undergo
smart materialization as in [AV16]; this is the key performance indicator (kpi). Then,
a detection algorithm measures the amount of change in this kpi at the end of the
critical time scale (the day case in this thesis’ context). If enough change occurred,
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then an adaption procedure initiates, modifying the memory allocated to each time
scale’s prediction method and this method’s hyper parameters; the adaption is pro-
portional to the kpi deviation from a constant threshold at the time of the detected
change.

Figure 3.1: Overview of the LP-CDA framework.

For the purpose of validating the methodology (in Chapter 4) and providing evidence
to distinguish methods for real-world applications (Chapter 5), the implementation
of the LP-CDA framework at a high level is described as follows:
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1. Initialization of constants and prediction method hyper parameters.
These include:

a) The time scales on which to predict, their order of priority; the
highest being referred to as the critical scale. Then the amount of
memory reserved for each scale:

b) A key value pairing of the DW cuboids and their size in memory
units.

c) The initial hyper parameters for prediction methods.

2. Read in historic data as old as the window of time indicates for training
data; this is dynamic.

3. For each cycle in the critical scale, do:

a) Predict the next cycle’s cuboid demand, produce a ranked list of
cuboids. If it is the end of other scales’ cycle, then run the LP
method on these cycles’ training data as well.

b) Produce a materialized set by including a cuboid in order of predi-
cated rank so long as there is memory space left.

c) Compute the kpi and execute the change detection and adaption
(CDA) procedure, if a detection flag is raised the change adaption
procedure is carried out.

The flow of logic in the overview of the framework above was designed primarily for
investigation into the performance of methods in various combinations. Particularly,
steps 3a and 3b reflect the procedure undertaken at the start of a day, and 3c at the
end of the same day. However, it was computationally advantageous to keep all these
actions related to day i in the ith iteration of the simulation loop; see Figure 3.1 for
a visual breakdown. The third point in the overview is specified in Algorithm 1 as
implemented to conduct the experimentation, where the [ ] denotes a list or array (a
data structure linking elements in some order), and () denotes a function call with
its parameters enclosed within the parentheses. Using [ ] brackets is synonymous
with using subscripts; however, they are much more readable since they avoid the
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reduction in font size.

The time scales introduced at the start of this chapter control the flow of the predic-
tions that are implemented in the looping and conditional statements in Algorithm
1. In the context of the data sets detailed in Section 4.3, the LP-CDA framework is
specified with two scales of prediction, daily and weekly, since the events of interest
are tallied on the hourly scale. Then, a priority of these time scales is chosen to be
the daily predictions followed by the weekly predictions, meaning at the end of each
day, all that day’s events are collected and become the most recent addition to the
training set. Similarly, at the end of each week all of its events are added to the
weekly model’s training set. Since there are two prediction models that are meant to
instruct the cuboids that are members of the materialized view, these independent
models may contradict each other as their training sets differ. The differences are due
to the scale of time to which a model is constrained which controls the rate of relative
increase of the training set, and the change adaption procedure which controls the
shrinking of the training set. Of note, the LP method called on line 12 of Algorithm
1 at each iteration of the outermost loop simulates the passing of time at the smallest
scale of interest (i.e., day scale), whereas the weekly scale LP instance is called once
every 7 days on line 15.

The reason that only daily and weekly time scales are of interest is data dependent.
The context introduced in Chapter 1 and solidified in the data sets specified in Section
4.3 lead to the following observations:

• OLAP queries of intense aggregation are likely to run for multiple hours.

• The meta data is accurate for events within an hour’s interval of time; this is
the smallest granularity for which data is available.

• There is a concern of using up too much RAM and CPU in conducting the
prediction analysis and implementing the results of this analysis using smart
materialization too frequently.

• Domain knowledge indicates that certain topics of analysis for groups of people
often occur for a number of days less than a week; this is inferred from visual
inspection of aggregated data in Section 4.3.
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Thus, we interpret the above to indicate that predictions made at the daily and weekly
scale are sufficient, and that the day scale takes on the role of the critical scale as
a consequence of the fourth point above. The third point implies that the hourly
scale is too frequent in terms of cost (computing resources time) to benefit (up-
to-date materialized view) ratio. Recalling the multi-scale modelling consideration
discussed in Section 2.3.2, the weekly scale’s training set serves as the base signal and
the daily scale is a detailed higher resolution signal; both signals describe the same
data-generating process.

Another aspect of the time scales is their priority, which determines the scale’s model
that can add elements to the materialized set first; in the full sense of the term set,
there can be no duplicate elements. For example, on the last day of any given week,
both lines 12 and 15 of the algorithm execute; however, the highest priority scale’s
model has the first opportunity to add a cuboid ranked highly to the materialized set
(line 21) as a consequence of line 6. If a cuboid is estimated to be in high demand
under both scales’ models, and there is sufficient available space as on line 21 of the
algorithm in the daily scale’s partition of the materialized set, then it cannot be also
added as a result of the weekly prediction. As a consequence, if the same cuboid prior
drops in demand in the day scale’s model the following cycle, whether this cuboid
joins the materialized set depends on the available memory allocated for the weekly
scale

In addition, to allow for populating the materialized set, only the critical scale is
affected by the CDA procedure. Specifically, the following computation is performed
at the end of each critical scale cycle.

kpi at time t =
instances (cuboids ∈ smart materialized view ∩ total required)

instances (distinct cuboids required by DBMS)
(3.1)

It then follows that the CDA() procedure in the case of a detected change will shrink
the critical scale’s training window from the oldest cycle’s data by a factor of the
difference in the kpi and user set constant threshold. Also, the same factor is applied
to the LP method’s hyper parameters.

The following sections specify the different methods for LP and CDA in this hybrid
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Data: Table containing the column space (query q, mean µ duration in
hours, standard deviation Θ in duration) for a user role.

Result: A set of vectors in the form, (q, start hour, duration, day). It then
follows to replace q with the set of cuboids using a separate lookup
table.

1 begin
2 Initialize()
3 for cycle ∈ critical_scale do
4 leftoverMemory←− 0
5 updateTime()
6 for scale ∈ Priority do
7 startAt←− Windows[scale][0]
8 endAt←− Windows[scale][1]
9 toPredict←− endAt+ 1

10 memoryAvailable←− size[scale]
11 if scale == ”day” then
12 result[scale]←− LP (scale, startAt, endAt)
13 windows.update(scale, [startAt, toPredict])

14 else if scale="week" and current["day"]mod 7==0 and
truncate(current["day"]/7,0)=current["week"] then

15 result[scale]←− LP (week, startAt, endAt)
16 windows.update(scale, [startAt, toPredict])

17 if current["week"]=0 then
18 memoryAvailable←− totalAllocated
19 end
20 if result[scale] 6= ∅ then
21 Iterate over the ranked result[scale] list for each

element/∈ materializedV iew add the element to the
materializedView[scale] set so long as
memoryAvailable− size[element] ≥ 0

22 end
23 leftoverMemory ←− memoryAvailable

24 end
25 Iterate over the ranked result[critical_scale] list for each

element/∈ materializedV iew add the element to the
materializedView[critical_scale] set so long as
memoryAvailable− size[element] ≥ 0

26 kpi←− computePerformance(critical_scale)
27 change←− 0
28 CDA()
29 end
30 test
31 end

Algorithm 1: LP-CDA
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ensemble voting scheme in which the winner takes all. In Chapter 5, an analysis is
presented that compares LP methods and also concludes if CDA is necessary.

3.2 Bayesian Prediction from a Beta-Binomial

Distribution

This first prediction method is simpler than those that follow in this chapter; however,
a Bayesian prediction on the Beta-Binomial (BBB) may be on par regarding the
prediction correctness with the alternative methods since statistical inference with
an underlying binomial distribution has been found to be effective in two change
detection methods discussed later in Section 3.5.1. This method is considered to be
the most interpretable prediction algorithm of all considered here; its advantage is
that domain expertise can be most effectively injected into the model via the hyper
parameters to skew the distribution towards the real world behaviour, as opposed to a
black box approach using neural networks or an intermediary between interpretability
and black box algorithms, the frequent pattern mining introduced in Section 3.3. The
term interpretability refers to the ability to explain how a predictive model is fit and
the decision-making process executed to arrive at a result [JWHT13]; for instance,
the effects of data features on an outcome predicted is more difficult to explain if
that model is A Neural Network (ANN) instead of a more accessible/descriptive
model such as BBB. The domain of predicting cuboid demand over time is similar
to the prediction of number of home runs in a game per season for a given baseball
player, which has been addressed using BBB, as covered in [Fos15] and other similar
examples. In the sports context, a beta-binomial distribution is constructed after each
game whereby the hyper parameters are updated with new information over time; in
this way, the consistency (or lack thereof) of the home runs per game is reflective in
the narrowing (widening) of the bell curve around the mean. Since the input matrix
to the LP-CDA framework contains the number of times a cuboid is required per time
unit, and that the goal is to materialize a set for a collective of users despite their
individual query patterns, the cuboids are treated as independent players on the field.
Dependency among the cuboids is not explicitly modelled in this predictive model, as
it can be implicitly inferred in the ANN model later introduced. Two considerations
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in the sporting context which run parallel to the cuboid context are described below:

• The event of scoring a home run is considered dependent on the previous distri-
bution of this event, and independent of other players’ actions, since we consider
the effect to other factors to be embedded in the historic distribution of past
games’ home runs for a particular player.

• The games are independent of each other, meaning the cycles of time are inde-
pendent of each other.

Furthermore, consider the two contexts described as vectors denoted (event, measure,
cycle of time) in order to highlight their similarities: for baseball it is

(playerx,#home runs, gamet),

and in this thesis’ application it is

(cuboidx,#of times required, cyclet).

Why not rely on counting the number of times a cuboid is required and rank them by
highest count as a way to predict? Why not use the normal distribution to describe
the demand of a cuboid? Why not use a moving average or exponential smoothing
function as shown in Table 3.1?

First, the distribution is not assumed to be constant in both contexts, and thus
a geometric average will not capture skewness over time [Wel98]. Other moving
averages and exponential smoothing may be considered, however, they require that
the pace of change be constant, as indicated by the parameters in the schemes in
Table 3.1. Various averaging schemes were explored on small series of measures for a
few cuboids from the smaller data set (namely set 1 in Chapter 4) in order to evaluate
their application in the BBB method. Since the skewness of measurements over time
can be quite drastic, the first three schemes in Table 3.1 did not forecast the next
measure close to the next value in the sequence. The double moving average requires
a minimum of eight data points in a sequence; this is a severe limiting factor as it
becomes clear in Section 3.5 that often it is possible to be left with only two points
in the sequence (two time periods on which to train). As a result, the exponential
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smoothing was most tolerant in handling small sequences and delivered forecasts
closer to the actual measures in the sequence through early experimentation. In both
contexts discussed previously, the rate of change is expected to differ; indeed, in
early experimentation, the averaging schemes would not perform well relative to the
three prediction methods applied to data set 1 in Section 4.3. One feature of the beta-
binomial distribution is its narrowing or widening of the bell curve proportional to the
frequency of the measurement seen over time, which differs from using the normal
distribution since it is an updatable distribution, and does not forget its previous
shape. Using a normal distribution would only account for the most recent variation
and mean of the measure constrained to a fixed shape, being non-representative of
variable change in the distribution over time.

The beta-binomial distribution is defined using the form on page 85 of [SM09] as:

p|p:Beta(α, β), α̂ = α0 + k, β̂ = β0 + n− k

Pr(p|n, k) = Beta(α0 + k, β0 + n− k) (3.2)

for n trials with k successes. The prediction posterior is Pr(p|n, k), as in equation 3.2.
The probability of having exactly j successes in the next m trials given k successes
in the prior n trials is the prediction interval with 95% credibility [BS13], denoted as
[j1, j2].

Instead of the interval, a point estimate can be used for predicting j successes in
the next m trials, but through preliminary trials of four methods (Bayesian point
estimate, Bayesian prediction interval, frequentist point estimate, frequentist predic-
tion interval—infeasible due to real-time probability estimation as a prerequisite),
the interval is chosen for better average case accuracy. Also, the interval enables an
informed manner to break ties between events that are predicted to occur at least the
same number of times, which is relevant for highly positive correlated cuboids. Sup-
pose that two point estimates are j = 20 ∈ A and j = 21 ∈ B; then by these measures,
lattices A,B are almost equivalent in their predicted ’use’ in the next cycle instance.
However, with intervals, suppose the results are [18, 22] ∈ A and [20, 22] ∈ B; then
there is a tighter bound for B than A. This difference in bounds is affected by con-
sistency (success, failures) of past n trials and the amount of history (the value of
n); there is more insight into which lattice is probable despite both intervals being
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subject to a 95% credibility interval.

The values of [j1, j2] are determined to satisfy:

Pr(j ≤ j2|m,n, k) − Pr(j ≤ j1|m,n, k) ≥ 0.95 (3.3)

Find the tightest bound [j1, j2] among the probabilities (P ) denoted as (P, j) pairs
from the cumulative mass function (cmf) of the beta-binomial distribution. For in-
stance, given:

[jw]Pw, [jw+1]Pw+1, ..., [ji−1]Pi−1, [ji]Pi :

i∑
w=1

jw =
1

2
m(m+ 1) F (j) = P (J ≤ j)

i∑
w=1

Pw (3.4)

In equation 3.4, m retains its definition as above in this section, the w is used to
denote jw, where w ∈ 1, 2, ...,m to avoid confusion between the j1, j2 mentioned thus
far which are selected j among all of jw’s. Also, as per the cmf function described
in [Wal13], it is defined for −∞ < j < ∞ (x in [Wal13]). However, in equation 3.4,
we define this cmf for the domain 1 < j < m because our methodology will only
consider positive values and m is the upper bound which is an input to equation 3.3.

Then, choose j1 and j2 such that:

• j1 ≤ 0.025 is the best solution (closest to j1 = 0.025) of all ji’s

• j2 ≥ 0.975 is the best solution than all ji’s

It should be noted that the significance of credibility [BS13] is 95%, thus the tails
of the distribution are computed by 1 − 0.95 = 0.05 and 0.05

2 = 0.025, then the
equal-tail boundaries are 0 + 0.025 and 0.95 + 0.025. It is preferable to compute the
distribution in real time based on the updated α and β values, and to choose the j
future trials (maximum of m) for which the probability satisfies the previously listed
conditions.

For instance, the prediction example shown in Figure 3.2 depicts the result of equation
3.4. The process of fulfilling equation 3.3 is described next:
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• Select the prediction interval for j future successes in the next m trials as
[j2, j2] to have probability P (j2)−P (j1) ≥ 0.95. By inspection of the computed
equation 3.4 shown in Figure 3.2, 0.9886− 0.0292 ≥ 0.95 is the tightest bound
yielding a prediction of lattice (A) = [j1 = 10, j2 = 19].

• Thus, the chosen lattice A is predicted to occur 10 to 19 times in the next 20
trials in the next cycle of the scale from which the prediction inputs were drawn.

Figure 3.2: An example of a cmf from the beta-binomial distribution computed in
the R programming language using the extraDistr package.

Finally, the Bayesian point estimate is

m(α + k)

(α + β + n)
(3.5)

and the expectation of beta-binomial distribution is

E(X) =
α

α + β
(3.6)

First, an initial α0, β0 needs to be defined; this definition is known as the prior in
the case of Bayesian prediction. As stated in [BS13], α0 = 0.5, β0 = 0.5 is the best
non-informative prior. At the end of the first cycle of any scale, the system would
have witnessed Y ∈ Cyclei. To construct the prediction interval for the ith cycle of a
time scale, the β − binomial distribution from (i− 1)th cycle is used. To this point,
only prediction of one event over time has been detailed in this section; the process
described previously should be repeated for all cuboids per time scale. Though cycles
of different scales overlap, the larger cycle may extract a set of lattices that is not a
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super-set of the set extracted by the smaller cycle. Lastly, the averaging schemes in
Table 3.1 forecast the m number of total events to occur in the next cycle of times.

Scheme Description

Ŷt+1 =
t− 1
t Ŷt +

1
t Yt Ŷt is the forecast and Yt is the tth actual ob-

served value.

Ŷt+1 =
t− 1
t Yt +

1
t Ŷt Yt influences Ŷt+1 more than Ŷt; the opposite

is true in the above scheme.

Ŷt+p =
∑k−1

i=0 wiyt−(1+i) :
∑k−1

i=0 wi =

1, k = 4, w0 = w2 =
1
3 , w1 = w3 =

1
6 , p 3

1

Symmetric alternating weighing scheme, wi is
the weight of the (t − 1)th observation. For
this instance, k = 4.

Ŷt+1 =
αyt+α(1−α)1yt−1+α(1−α)2yt−2+...α(1−
α)kyt−k + (1− α)k+1ŷinitial : k = 3, α =

0.1, ŷinitial =
∑|{c1,c2...}|

i=0 ( 1
k + 1

∑k
j=0 yj ∈

ci)
⊕
ŷinitial =∑|{c1,c2...}|

i=0 (Median({y0, y1, ..., yk} ∈ ci))

Exponential smoothing, ŷinitial is the average
of the first k + 1 observations from the past
or it is the median of the first k + 1 observa-
tions. Better results were obtained using the
median instead. Let α be the rate of forgetting
(smoothing) and k = 3 for example.

ŷt =MA′t =
MT ′t
k2

,MT ′t =∑k
i=1MTt−i+1,MTt =

∑k
i=1 yt−i+1, k = 4

Double moving average.

Table 3.1: Here, k is the window size, correlating to the size of the training
set and the length of time which the distribution covers. We observe a y
value per cuboid per cycle of time t.

3.2.1 BBB Algorithm Specification

In this section, an implementation of the method described in Section 3.2 is spec-
ified in Algorithm 2; this is an LP method that fits in Algorithm 1. It should be
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Cycle
Instance: Beta-Binomial Parameters

At instance
(i) = 0

α0 = 0.5 , β0 =

0.5 , β:Binomial(α0, β0) , E(X) = α0
α0 + β0

At instance
i = 1

α1 = α0 + k , β1 = β0 + n−
k , β:Binomial(α1, β1) , E(X) = α1

α1 + β1

At instance
i ≥ 1

αi = αi−1 + k , βi = βi−1 + n−
k , β:Binomial(αi, βi) , E(X) = αi

αi + βi

Table 3.2: The updating of the beta-binomial prior for any cycle i of the same time
scale.

noted that the use of an exponential smoothing function to estimate m was intro-
duced previously on lines 11 and 14 of Algorithm 2, with parameters α = 0.3, m0 =

median(mk,mk−1, ...,m1). The exponential smoothing is defined in Table 3.1, and
the methods collected in [Wel98] are summarized which are largely relevant today as
building blocks in modern methods. In addition, the function to update the beta-
binomial distribution exemplified in Table 3.2 appears on line 8 of Algorithm 2, a
vector = (αnew, βnew); recall that in the pseudo code () is a vector of parameters
for a function whereas [] encloses an ordered assignment of values to a variable such
as a list or array. Then, the cdf(β − binomial) is calculated for a cuboid’s demand
with the usual parameters seen in Section 3.2 in line 21, and is provided an object
containing the β − binomial relevant logic. Finally, the results are gathered for each
cuboid in a matrix (line 26) and then sorted on two variables (line 27); the purpose of
this is to rank all events by most minimally expected (lower bound of their prediction
interval) followed by smallest upper bound. That is, the most in-demand cuboid is
a measure of the lower bound of its prediction interval, and the confidence in the
entire prediction interval is a measure of its narrowness. For instance, if an interval

for a cuboid is [
1

10
mfuture,mfuture], then the prediction is that the event can occur

any number of times; without sufficient evidence as to the number of times one way
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or another, this prediction interval is not informative and is of little actionable value
with respect to materialized views, relative to other cuboids’ intervals.

3.3 Frequent Pattern Mining

The data handled by the LP-CDA framework are a time series of events, as described
in the data mining text ( [Han15]) in its Section 8.2; these methods can be applied
to the scenario under investigation in this thesis. For instance, the challenge being
addressed is to budget cuboids in high demand as part of a materialized view given
"sequences of values or events obtained over repeated measurements of time. The
values are typically measured at equal time intervals (eg., hourly, daily, weekly)"
[Han15]. In [Han15], the approaches aim to mine (extract) patterns, whilst this
thesis has framed the task at hand to be prediction. The difference between these
ways of determining that which comes next is materially distinct in the algorithms
applied.

In Section 3.2, the LP method determined the likelihood of each event in the next m
cycles of a scale (period of time). With the data mining approach, and specifically
sequential frequent pattern mining, the algorithms determine the sequences of events
that are most likely to occur. It is then a point of decision as to how to rank the
set of mined patterns in terms of most to least likely among the set’s elements. The
distinction is that mining methods will determine likeliness relative to other events in
the sample space (training set), and it then follows to separately establish an ordering
based on this relative frequency (in the interest of this thesis). The BBB method,
however, independently calculates the likelihood of each event, and only following a
ranking of these independent predictions does a notion of relative likeliness emerge.

Next, background information on sequential pattern mining to provide context for
their application to the scope under investigation is set out in Chapter 1. Two aspects
of the similarity search method [Han15] are incorporated into the LP-CDA framework:
the window over which to normalize, and the gap of non-patterns between components
of the frequent patterns. The former aspect is synonymous to the sliding window
introduced in Section 2.4 and applied in Algorithm 1. The latter aspect handles the
cases in which "sub-sequences match if they are the same shape, but differ due to the
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Data: scale ∈ day, week and first, last ∈ Z+

Result: A matrix with column space= (cuboid,min,max) in which the last
two columns hold the start and end of the prediction interval for a
cuboid.

1 begin
2 mfuture ←− 0 and mα ←− 0.3 and k ←− last− first+ 1
3 historicSet←− get_data_set(scale, first, last): matrix of |cuboids| rows

and |hours|*|days|*|weeks| number of columns; each cell contains the
number of times an event occurred.

4 totalTraffic←− {∅} and betaPriors←− {∅}
5 for cycle ∈ historicSet do
6 m←−

∑#cuboids
i historicSetcycle,i

7 for cuboid ∈ historicSet do
8 betaPriors←− [αcuboid + historicSetcycle,cuboid,

βcuboid + (m− historicSetcycle,cuboid)]
9 end

10 totalTraffic.append(m)
11 mfuture ←− mfuture +mα((1−mα)

k)m
12 k ←− k − 1

13 end
14 mfuture ←− mfuture + ((1−mα)

last−first ∗median(totalTraffic)
15 round mfuture to 0 decimal places
16 j1 ←− {∅} and j2 ←− {∅}
17 for cuboid∈ betaPriors do
18 βBinomial←− beta.betabinom_gen(name = ”betabinom”)
19 cdf ←− {∅}
20 for i ∈ range(0,mfuture) do
21 cdf.append(βBinomial.cdf(i,mfuture, betaPriorscuboid,α,
22 betaPriorscuboid,β))

23 end
24 lower ←− 0.025 and upper ←− 0.975
25 j1.append(binarySearch(cdf, lower)’s right most result )
26 j1.append(binarySearch(cdf, upper)’s left most result )
27 result←− join the cuboid,j1,j2 lists on their index to form the final

three-column matrix, where j1 is the minimum number of times a
cuboid is predicted to occur in the next mfuture queries, and j2 holds
the maximum predicted times.

28 result.sort(first by j1 descending and second by j2 ascending)
29 end
30 end

Algorithm 2: BBB



Chapter 3: Lattice Prediction under Change Detection and Adaption Framework 57

presence of gaps within a sequence (where once of the series may be missing some
of the values that exist in the other) or differences in offsets or amplitudes" [Han15].
In his study, Han illustrates the notion of gaps as a way to tolerate variances in the
same pattern in Figure 3.3, as it pertains to continuous data; this concept is visualized
differently when applied to nominal data, as discussed in the next section.

Figure 3.3: Gaps between patterns in different instances in terms of trend analysis in
continuous time series data; image borrowed from Figure 8.5 of [Han15].

An algorithm which covers windowing and gaps in sequences of item sets (an ordering
of categorical data) called Gap-BIDE is specified in [LW08], and is the focus of dis-
cussion in the next section. The data under investigation (Sections 2.2.1 and 3.2) are
only partially ordered as a consequence of the algebraic lattice structure described
in [Jud16], yet sequences implies a full ordering. Thus, applying alphabetical order-
ing on the labelling of cuboids enforces the full ordering of the dimensions (individual
letter labels when compounded form a cuboid), as opposed to the default interpre-
tation being the set of dimensions. This may seem to be a cosmetic transformation,
however, it ensures that {ABC, AB,AC}, for instance, are the only representations
the system will benefit in the proper counting of (sub)sequences which appear in the
equivalent representations: {BAC, BA, CA}.
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Following the descriptions in Section 8.3 in [Han15], there are two classes of algorithms
which relate to objectives:

a) complete set; Spade and Prefix-Span mines every observable (sub)sequence,

b) closed set; BIDE and its variations mine sub-sequences with no super sequence
under the same support.

Some definitions allow a sequence of events to be denoted as an ordering of elements,
such as a vector s1 = (ABC,DE) being a sequence of two elements. Given another
sequence s2 = (AB,D), then s2 is a sub-sequence of s1, and s1 is a super sequence of
s2. The prior example is from the text [Han15]; however, an extension is necessary to
visualize the concept of a gap. Let the gap parameter be an integer and, for example,
a gap of 0 or 1; this sets the tolerance for a zero- or one-unit inconsistency between
similar patterns.

Let z3 = (AC,D), then z3 v z1 since AC v ABC as the missing element B is a
one-unit gap between the two compared sequences.

The support of a sequence is the number of times that it has been observed in the
window of time, sup(s1) = #(s1) instances in the data. Often the frequent pattern
mining methods require a user-defined notion of frequent ; this can be fulfilled by
setting the minimum support value to be the threshold when deciding if a sequence
is frequent.

Regarding the two concepts of full/closed set pattern mining, the distinction is ex-
plained in [Han15]: "all subsequences of a frequent sequence are also frequent, mining
the set of closed sequential patterns may avoid the generation of unnecessary subse-
quences and thus lead to more compact results ... " The prior statement emphasizes
that the discovery of all combinations of events to mine (full set) results in slower
runtime execution due to the number of operations compared to closed algorithms.
The algorithms in full set tend to differ in the amount of storage, such as the re-
cursion (PrefixSpan algorithm) versus the usual iterative design (SPADE algorithm).
Indeed, using the SPADE algorithm implemented in the R programming language
as a LP method was not feasible due to the near real-time constraint past the first
data set (specified in Section 4.3). Table 3.3 provides a brief overview on candidate
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algorithms for the data mining representative LP method. Of the two algorithms,
portions of Prefix-Span’s framework was selected by authors of [WH04,LW08] to for-
mulate the BIDE algorithms, specifically the notion of prefix-projection and using tree
data structures to facilitate traversal and omit storing large temporary data tables
(as SPADE) to conduct closure checking. Projecting a longer sequence by traversing
a tree structure beginning at some prefix is the method which Prefix-Span uses to
eliminate the need to store data tables in main memory as does SPADE; the differ-
ence is that BIDE will perform bI-directional extension pattern closure checking
on the prefix traversal tree in order to reduce the number of patterns explicitly con-
sidered. Unlike both algorithms in Table 3.3, BIDE traverses the reduced (due to
closure checking) search space in a depth-first manner; this aligns with the method’s
approach of a detailed screening of a pattern for consideration given there are likely
to be less patterns to explore than the usual breadth-first search case.

While there are other closed set pattern mining algorithms, the main competitor to
BIDE is CLOSPAN, which both significantly outperform SPADE and Prefix-Span on
dense, sparse, and semi-dense data sets, as shown in [WH04]. It follows that BIDE
outperformed CLOSPAN, conditional on the absolute minimum support threshold
being ≤ 60%, otherwise the two would interchangeably outperform each other, given
certain outlying conditions. For the purpose of testing the LP-CDA against the
scenarios detailed in Chapter 4, the supportmin ≤ 60% condition is critical. Since
the data to mine represent many users’ query usage patterns, it is unlikely to find
enough cuboids more than 60% frequent overall such that the smart materialization
will significantly impact query response time.
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In summary, a comparison of BIDE in relation to its counterparts is provided
in Table 3.3:

1. Scan the input data for frequent unary sequences, compute their supports.

2. Given each frequent unary sequence (these form the initial set of prefixes),
prune each sequence (takes effect on ≥ 2 − ary sequences) if it satisfies
the pattern closure assumptions; then the sequence is not to be explored
further. Otherwise, the prefix is extended (prefix projection method) us-
ing bi-directional extension, and the forward and backward extension of
a prefix is considered. A detailed overview of the BIDE procedure is pro-
vided in [WH04], in which the author states a prefix is not necessarily the
start of a traversal in the prefix tree; this algorithm addresses a limitation
of Prefix-Span that allows the algorithm to accept forward exclusively or
backward prefix-projection (extending or lengthening of the prefix to grow
it into a longer sequence).

From the methods surveyed in [Han15], BIDE and, specifically, its variant denoted
Gap-BIDE, were carried into experimentation in Part II for their capacity to handle
the data sets in question under the constraints outlined previously.

3.3.1 Gap-BIDE

Crucially, Gap-BIDE, which extends the BIDE framework to efficiently mine closed
set patterns in dense and sparse data, also tolerates gaps in such patterns. The
notion of gaps exemplified in Figure 3.3 on the continuous number line pertaining to
trends in functions, is now addressed by Gap-BIDE on categorical data. In particular,
the algorithm is intended to extract frequent patterns which would otherwise be
disqualified due to insufficient support as a result of a temporal gap. For instance,
this algorithm has been tested on biological events or protein sequencing, and has been
tasked to extract frequent patterns in relation to an undesirable behaviour (bugs) in
large-scale software products [LW08]. In the case of frequent cuboid mining, the gap
in dimensions is of higher interest than temporal since the LP-CDA framework relies
on fixed time intervals where dependence between events is not explicitly estimated
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Al-
go-
rithm

Description Procedure (in sequential order)

SPADE

−→ sequential pattern discovery using
equivalent classes
−→ full set method, using breadth first
search with apriori pruning
−→ forms candidate sequences, these are
combinations of unary terms to compose
increasing in length sequences
−→ due to the numerous joins between data
tables of subsequences to calculate the
support of supersequences, it is slower at
runtime as the sequence length increases
relative to Prefix-Span and closed set
methods. These joins are not only
operationally intensive, they also require
large amounts of redundant data to be
stored and brought into main memory to
yield the result.

1) One scan of the data set to find all unary
(sub)sequences and tally their supports; the
support of a sequence relays the number of
times it was found in the data set.
2) The support of 2-ary sequences is the join
of all pairs in the unary sequences data table
compiled in step 1.
3) k + 1th-ary sequences is the kth join
involving the prior kth long sequence data
table.
4) Repeat until no new supersequence has
its support ≥ supportmin threshold.

Prefix-
Span

−→ a divide and conquer method of mining
by way of recursive discovery of the
subsequences
−→ full set method applying breadth first
search
−→ does not calculate any candidate
sequences; thus less sequences are mined
(unless the data set contains all
permutations of unary sequences), requiring
less storage space and less operations than
SPADE

1) Begin with unary prefixes (subsequences)
and initiate the prefix-projection method,
registering the index (position) of each
prefix instance in the data set.
2) The next (+1 in sequence length)
sequence is identified recursively from its
prefix. The recursive nature of this
algorithm leverages a tree data structure
which stores a unary term at each node,
where the traversal of a path in the tree
reveals the supersequences to each node. In
this way, only sequences which appear in the
dataset will appear in the tree.

Table 3.3: Comparison of a diverse set of methods for sequential pattern mining
analyzed in [Han15]. These were selected for an exploration of a diverse set of ap-
proaches.
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during the prediction step. Also, as highlighted previously, the BIDE framework
prunes the search space (of patterns) to continually track or grow into longer patterns
at the initial discovery of each pattern—refer to step 2 in BIDE’s summary—thus
avoiding the need to store candidate patterns.

The hyperparameters and their initialization are:

• minimum support threshold is two-fold: min_supday = 40% andmin_supweek =
60%

• gap constraint of [M,N ] = [0, 2]

• input data, the window of cuboids for k cycles of a given time scale, each
sequence is a lexicographical ordering of some DM’s dimension(s)

The initialization of the above parameters is based on early experimentation with
Gap-BIDE on fragments of data to observe tendencies in runtime and effectiveness.

To accommodate gap constraints, the following components were replaced in the
BIDE framework [LW08]:
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a) frequent gap-constrained pattern enumeration: recursively extend-
ing each pattern discovered as in Prefix-Span; however, rather than col-
lecting the index of each instance to later traverse the prefix tree in a
single direction, Gap-BIDE applies the bi-directional extension of non-
closed patterns. In addition, the traversal accounts for a tolerated range
of gaps in any sequence discovered, and is actioned on by skipping over
x ∈ [M,N ] items within a sequence.

b) gap-constrained pattern checking scheme: if a sequence’s support
remains the same when extended in either direction along the prefix
traversal tree, then it is closed; further extensions of the sequence are not
explored. If a sequence’s support satisfies the minimum support thresh-
old, it is retained in the result set.

c) gap-constrained pruning: if an extension of a given prefix has the same
support as its shorter version due to a gap allowance, the later sequence
is retained, subject to the minimum support threshold, and the former
sequence is omitted.

Gap-BIDE is specified in detail [LW08] and remains unchanged in its application
in this thesis; it is implemented by [gpbed]. There were numerous transformations
applied to the input data to integrate the stand-alone algorithm with the LP-CDA
framework in Algorithm 1; Gap-BIDE is called on lines 12 and 15 in certain ap-
proaches, denoted in Algorithm 1.

3.4 LSTM RNN

It has been hypothesized that a portion of ML methods attempt to emulate the human
brain in the form of ANN, though this may not reflect the actual science of neurons
and their synapses in the human brain as continually discovered—it has lent itself
to algorithms which outperform many others in predicting numerical responses or
categorical labels of sequences of data. In addition, it famously showed great results
in natural language processing (NLP) to fulfill the requirement of tagging portions of
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free text (unstructured data) with their role in sentences particular to the grammar
of a language, this to enable sentiment analysis and comparison of meaning across
differently written texts or messages [SPH19]. Although ANN algorithms require a
significantly larger training set than statistical methods, the trade off is more intricate
refinement (model higher degree of variation in the data) to estimate relations among
the observations and their response. Specifically, in order to fully process a sequence
of unknown length to then anticipate or distinguish future patterns, a Recurrent
Neural Network (RNN) is most suitable among regular ANN and convolutional neural
networks (the latter found success in computer vision).

A feedforward ANN is a RNN that has the additional ability of internal memory ; this
ability is implemented by gates and the feedforward arrangement of neurons (cells in
ANN speak) in the feedforward manner, depicted by Figure 3.4. By default, ANN
is a collection of independent cells which, when combined, can estimate complex
deterministic functions, given an input value inclusive of its dependency on time
or other variations in the data process. As a result, a cell in an RNN is fed the
historical input value as transformed by its previous cell in the network; the degree
of dependency between previous values in a sequence can be extracted by the fitted
RNN. Figure 3.5 provides an example of a multiple cell RNN which can process two
observed inputs at time (or timestep) t and t + 1, whereby having the ability to
predict the response at t + 2. In contrast to Figure 3.4, the structure in Figure 3.5
has its hidden layer connections feeding the extracted information forwards or up one
layer to process the input at the next timestep. Given a long sequence of events, one
can expect nonlinear relations to exist and contribute significantly to inferring the
outcome, thus a number of hidden layers can be placed between the layer accepting
the inputs and decoding the final output of the network. This formation leads to the
claim that the overall network is "deep". As shown in the same Figure 3.5, the two
portions connected by the hidden layer dotted lines are usually shown in a vertical
placement, although for descriptive purposes they appear horizontally oriented in the
figure, reinforcing the notion of "deep" learning synonymous with the aim to model
non-linear variations in the data. Therefore, the estimation of an input depends
on an estimated (trained) network of recurring functions controlling the throughput
of values along the arrow lines (in the two figures), in order to predict time and
historically dependent responses in data processes.
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Figure 3.4: An example of a simple RNN taken from [LBE15] shows one cell, i.e. a
network of one unit. This unit (cell) contains three nodes (circular components) and
the transfer of information (gates) in the form of arrows.

Figure 3.5: An example of a multiple cell RNN taken from [LBE15] shows information
extracted from the first input on the left being transferred in the processing of the
next input on the right.
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The capacity to distinguish sequential relations in the generation of output values
by RNN is challenged with long sequences due to the vanishing gradient problem
[HS97, LBE15]. To extend on the prior, as the sequence of events grows longer,
the older inputs have less of an influence in the network despite having a material
influence in real life (the data-generating process)—this limitation is the vanishing of
early information gradually (gradient) over time (length of sequence). To resolve the
vanishing gradient problem, Long-Short Term Memory (LSTM) cells are used within
the feedforward RNN architecture, whereby the use of four cell components achieves
long-term memory (allowing the learning of long-term dependencies among sequential
events) and regulates to forget appropriate amounts of information via its forget gate
and use of dropout layers [HS97,Ola15]. Three gates are included in a LSTM cell: the
input, output, and forget gate; each is a collection of mathematical functions. Aside
from the three gates, the fourth component of the cell is the internal state which
acts as a conduit, whereby the new input, the prior information from the previous
LSTM cell, and the generated output of the current cell merge using either pointwise
multiplication or by applying a sigmoid function. This internal state is the long-term
memory and conveys the cell’s conclusive decision on the input and historical data to
the next cell in the chain in a given network layer. In turn, the receiving cell uses its
forget gate to decide how much of the prior cells’ numerical value should inform the
current cell’s decision on its output; this gate leverages a function to adjust the prior
cell’s internal state by a factor between 0 and 1. A more detailed formulation of the
LSTM-RNN can be found in [HS97], a higher-level perspective is provided by [LBE15],
and a more accessible technical review is offered by [Ola15]. The LSTM-RNN network
applied here is based on the Python implementation [kered], with the remaining
challenge being to manage the balance between an accurately (in terms of predictive
output) built model and one meeting the near real-time constraint. Particularly, like
the Gap-BIDE (Gap-BIDE) method discussed previously, the LSTM model requires
re-training per each critical scale cycle (each day of the week); only BBB has updating
functions eliminating the need to re-train from scratch. Another challenge is the
general requirement of larger training sets than its peer methods in statistical learning
for sequential/time series processing. This large training set requirement had to be
lessened at some cost to kpi because, due to frequent changes in the training window,
it is likely for us to encounter small sets. The balance between prediction correctness
(kpi) and feasibility in terms of runtime was sought and achieved (in Chapter 5) using
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the following model build:

The implemented LSTM LP-CDA framework takes a time scale to train the
model and pulls in that scale’s preprocessed data to further transform it spe-
cific to the KERAS (Python framework implementing the model [kered]) input
matrix. Then, the training procedure is initiated to build a model which takes
in the cuboid label and its count of occurrence at a given time step to then
predict the count per cuboid in the immediate next time step. The layers of
the LSTM-RNN used to fulfill the LP role in Algorithm 1, in order are:

1. The first layer takes on the encoded input matrix and uses 100 LSTM
cells; the cell’s internal state is computed using RELU (rectified linear
activation function). RELU is chosen over other options (such as sigmoid)
since it allows ANN to learn the non-linear dependencies between the
features. This learning of dependencies is an advantage over the prior
two LP methods discussed in this chapter.

2. The dropout layer with a rate of 0.4, which takes on a similar role between
layers to the forget gate between LSTM cells. A distinction is that this
layer "randomly sets input units to 0 with a frequency of rate at each
step during training time, which helps prevent overfitting. Inputs not
set to 0 are scaled up by 1/(1 - rate) such that the sum over all inputs is
unchanged" [kered].

3. LSTM layer with 50 cells; activation function remains of the form RELU.

4. The dropout layer with a rate of 0.2.

5. The dense layer formulates the final result given the inputs; from here,
the output is obtained for predicting the next time step.

The parameters were obtained through early experimentation on the synthetic data,
and not the exact sets constructed in Chapter 4. The training of the model is carried
out over 200 epochs; each epoch consists of training the model on subsets of the
training data one at a time [kered].
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3.5 Change Detection

Continuing from Section 2.4, here three detection-adaption combinations are specified
to be integrated with the predictive methods in the manner highlighted in Algorithm
1. First, a heuristic detection and adaption method is specified to fit this thesis’
use case; then, two generalized combinations build on the foundations of CUSUM to
better detect changes usingmonitoring statistical differences by way of Drift Detection
Method (DDM) and its successor, Early Drift Detection Method (EDDM).

The types of change in consideration are:

1. a singular cyclic change

2. the change which is the start of a new general tendency in users’ behaviours

3. a change part of several changes, a sequence of incremental change in the overall
users’ query behaviours

When the threshold frequency of cuboids in demand by the DBMS within a cycle of
the critical scale is not accounted for in the materialized view, the system detects a
change. At the time of detecting a change, it is not clear yet if this is an outlying
change (1), an abrupt change (2), or incremental change (3). Suppose the general

case:
0

t− 1

t

∆ t+ 1

nthday where we depict a change
occurring on the tth cycle of the daily time scale. In the heuristic change detection-
adaption method, given that we detect the change for cycle t + 1, the predictive
process will only use historical data of {t, t− 1} cycles. Limiting consideration to the
last two cycles’ (last two cycle policy) historical data in the presence of change
follows the logic of the posterior updating functions from Section 3.2. At the time
of computing predictions for the t + 1 cycle, the system resets the prior of the beta-
binomial distribution for all cuboids back to the non-informative prior in Section 3.2.
Then, the priors are updated using {t− 1, t} cycles’ historical data; in this way, the
t+1 cycle’s prediction is fairly influenced by a sample of the previous behaviour and
of the change in behaviour. The influence is dependent on the weight of each prior
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cycle manifested by the total number of events within the cycle (variable n in Section
3.2). At the time of the change detection, there is not enough evidence in the system
to differentiate between the types of change. The last two cycle policy, in combination
with the adaption specified in this section, addresses the following scenarios:

I The t+ 1 cycle is more similar to the past behaviour (t− 1 cycle) than t.

II The t+ 1 cycle is more similar to the tth cycle than t− 1 cycle.

(a) If the behaviour in t + 1’s following cycles is similar to cycle t + 1’s, then
no additional change in t+2 is detected and there is no subsequent change
adaption by the system.

(b) If the system detects further changes shortly (relative to the same time
scale), then the system frequently runs its adaption procedure.

The situation I involves a type 1 change, then II.a refers to a type 2 change, and
II.b exemplifies a type 3 drift. First, some definitions are provided:

• T is a percentage value; it is the threshold value for the minimum accepted
performance. T ∈ [0, 1], setting T = 0.75 means a minimum of 75% correctness
is accepted in our materialization at the critical scale without using change
adaption processes.

• kpi ∈ [0, 1] is the ratio between the number of times a cuboid is part of a query
and in the materialized view, and the total number of requests for any cuboid
in a cycle. It is determined by:

kpi =
count(cuboids ∈ Queries & cuboids ∈Materialized view)

count(cuboids ∈ Queries)
(3.7)

within a cycle of the critical scale.

The general adaption in response to a detected change by the heuristic detection
method (kpi < T ) is specified in Algorithm 3, where lines 2 and 12 of the algorithm
feed into the rate of change detection comparison analysis of Chapter 5. Then, line
4 is the proportional increase in memory available for materializing critical scale
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predictions in the next cycle, up to a maximum of the total reserved memory between
all scales of prediction (lines 5 to 7). Next, at line 9, the leftover memory after
increasing that allocated to the critical scale is assigned to the non-critical scales in
order of priority, and in this thesis’ use case, it is only the weekly scale. The support
measure for data mining methods is decreased in line 10, thus lowering the minimum
frequency required for discovering candidate frequent patterns, as covered in Section
3.3. The last two cycle policy is applied to the critical scale’s window of training data
in line 11, where windows[...][i] is a vector of two entries in the form most recent
cycle#, oldest cycle#).

Data: the lists sizes and betaBparams
Result: update the data

1 for each cycle of the critical scale do
2 change_flag ←− 0

3 if kpi < T then
4 critical_size←− size[critical_scale] ∗ (1 + T − kpi)
5 if critical_size>size["allowable"] then
6 critical_size ←− size["allowable"]
7 end
8 size[critical_scale]←− (critical_size)
9 size[”week”]←− size[”allowable”]− size[”day”]

10 support.update(critical_scale : kpi*support[critical_scale])
11 windows.update(critical_scale :

[windows[critical_scale][1]-1,windows[critical_scale][1]])
12 change_flag ←− 1

13 end

14 end
Algorithm 3: Heuristic change detection-adaption

In Section 2.4, the change detection algorithm CUSUM and its many variation-
s/derivations were introduced as a sequential analysis method of detection which
also produces control charts. These would complement Shewart and other moving
averages-based charts, which include a measure of the data process on the y-axis,
time or grouping of observations on the x-axis, and setting upper/lower thresholds
for "normal" behaviour of the measure in which to remain enclosed. For instance,
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CUSUM detects small systemic shifts in the quality characteristic a data process is
monitored under (kpi). Due to the implication that a change has to be drawn out
over a period of time, it detects abrupt changes at a delayed rate relative to the actual
start of the abrupt change, which are evident in the manual inspection of the kpi over
time. Slow detection creates a missed opportunity for the adaption procedure to im-
pact the kpi, where otherwise no-adaption would yield the same result, meaning the
cost of the adaption is incurred without the benefit of it (outweighing the cost). Cost
refers to the overhead in making changes to the resources allocated for materialization
and actual CPU usage of running detection and adaption actions. For CUSUM, the
abrupt change may not leave any evidence of the fact in the control chart since the
extreme value deviation of a few instances of time would not outweigh the consistent
variation captured up to these points in time; the consequences of delayed or even
missed detection are the following:

• an undetected abrupt change (type 1) would not be evident even in the visual
inspection of the chart, thus models which are not robust to change, such as
decision trees, will be swayed off course from the general tendency in the data
process.

• a type 2 change may have a lengthier duration bordering on an incremental
change, however only a slight deviation outside the δ threshold will register in
the chart. This significantly underestimates the magnitude of the change and
misleads the period for which a predictive method was off course.

Variations of CUSUM have addressed these challenges and are summarized in a tech-
nical report [Pie13]. Due to the challenges and their patchwork resolutions on the
CUSUM algorithm, the search remains for methods which build on the lessons learned
over the many iterations of the algorithm and which would work in a data stream en-
vironment ; this area of research complements the popularity in ML over the last
decade. The data stream refers to a continual capturing of observations and discard-
ing of certain data. The primary challenge is that one cannot, by limitations of the
data process or sheer storage amount required, store all the observations to use as a
training set and the basis upon which to fit a model. The streaming of observations,
as they relate to this thesis’ use case, become available as they occur dependent on
the users’ pace of querying the DM; these are examined by the prediction and change-
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detection algorithms in fixed size time intervals (the windows[...][i] in Algorithm 3).
Two methods which work well in near real-time are introduced in the next section.

3.5.1 (E)DDM Algorithms

A method developed in [GMCR04b], denoted DDM, would handle the abrupt changes
with which CUSUM struggles. In turn EDDM, improves on the detection of slow
gradual change with which DDM struggles, as highlighted during experimentation
in [BGCAF+06]. Both DDM and EDDM stem from the idea of detecting differences
in classification error as opposed to the variation of measure supposedly summarizing
the data process over time (as in CUSUM and other control chart methods). To
model change, the time series data is first represented as a sequence of Bernoulli
trials indicating if the data process under investigation was misclassified as a binary
value; consequently, these trials follow a binomial distribution. In addition, these two
algorithms share the assumption that as the amount of trials increases over time, a
decrease in the error rate should be observed if the behaviour of the data is consistent.
The approximation of the binomial distribution using the normal distribution given
a large sample is leveraged in both methods [GMCR04b,BGCAF+06]. Crucially,

• for each cycle t in the sequence of events,

• the error (kpi < T ) rate is pi,

• the (prediction error) data process has a standard deviation of st =
√
pt
1− pt
t

Of interest are the thresholds used by both change detection algorithms in this section,
specifically:
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DDM: Pt+st ≥ pmin+3smin, when this condition is met on line 7 of Algorithm
4 a concept drift is detected; this is tracked for comparison across approaches
by lines 2 and 22.
The primary measure of interest is the error rate of classification or the misclas-
sifying error [GMCR04b]; classification is the denotation for predicting labels
rather than values on the continuous or discrete scale—thus it refers to the
prediction error (kpi) of the three methods discussed in this chapter.

• The parameters were adjusted through early experimentation given the
challenge of a short transient period, i.e. min_num_instances = 7,
referring to seven cycles of the critical scale, namely seven days.

• The default parameter inputs (line 10 of Algorithm 4) are (30, 2, 3), as
in [GMCR04a]; in this thesis’ context, the primary limitation is the short
transient period within which the detection algorithm must calibrate itself
before pushing out verdicts on future observed cycles. By reducing the
transient period from 30 to 7 days, the thresholds may need to be adjusted
accordingly; indeed, with early experimentation the values that are hard
coded in line 10 of the applied algorithm are used throughout the rest of
the experimentation in Chapter 5.

• The function call on line 4 of Algorithm 4 conveys a misclassification
occurred in the sequence of events. Conversely, lines 6 and 12 convey to
the drift detector object that the prediction/classification was the desired
outcome. Similar function calls with the same purpose as these also occur
in Algorithm 5.

The detection or "out-of-control" threshold is most often inspected, while the "warning-
level" is omitted from inspection; the authors of these two detection algorithms in-
tended the warning-level to flag instances which nearly result in concept drift and
for these be stored to replace the training set in the case of a detection flag being
raised in the near future. Instead, the training window is adapted by a proportional
shrinkage to the gap in kpi and threshold T , as on lines 8 and 21 of Algorithm 4.
In addition, the training set is synthesized as per lines 11 and 12 after a change is
detected in order to avoid downtime on the part of the detection algorithm where it
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would have to wait the minimum number of instances to begin issuing its Boolean
output. The initial seven instances are used to set the tone in desired observations
(kpi ≥ T ) in place of actual for either DDM or EDDM to compare the next actual
difference in T and the kpi. In early experimentation, many configurations of the
first seven instances to relay to the detection algorithm and the effect on kpi lead
to the settled scheme in the two Algorithms 4 and 5. This usage of the algorithm
differs from the authors’ prescribed use, in which the instances recorded between
the "warning-level" and "drift-level" are stored aside and used in the training of the
predictive model after a change is detected. Instead, the generalization of individual
query behaviours into a single stream places the prediction methods at a disadvantage
of not differentiating between trends which are strongly cyclical—correlated with time
progression, and involving patterns which do not adhere strongly to progression in
time and are dependent on factors outside what is measurable by the DBMS or other
query patterns. Given the prior, a decision was made to fit the adaption strategy on
the assumption that recentness of data is a major indicator of evolving and station-
ary trends in cuboid use, since dependency among queries and other factors is not
of focus in this first iteration of the LP-CDA framework. As a result, the adaption
strategy aims to ensure that sporadic instances or periods of historic data, indicated
by the "warning-level" threshold, would not lead the majority of a newly constructed
training set after a change is detected, and that the recentness portion of a training
set perseveres since the dependency across cuboids is not investigated in detail by the
prediction methods at this stage in the framework’s life-cycle. A strategy to address
the prior noted challenge in adapting to change is discussed in Section 6.1.
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EDDM:
P ′t + 2s′t

p′max + 2s′max
< β, when this condition is met on line 7 of Algorithm

5, a concept drift is detected and tracked by polling the change_flag variable
at the end.
In contrast to DDM, the measure of interest is the distance-error-rate—the
distance between the misclassifying errors where:

• p′i is the average distance between two errors,

• s′t is the standard deviation of the same form introduced previously, except
replacing the pt terms with p′t

• throughout a continual run (no change detected), the maximum distance
p′max and standard deviation s′max

• p′max+2s′max spans 95% of the distribution of distance-error-rates observed
within tolerance

• Two tolerance thresholds are initialized by the user, only β is of interest
in this application of EDDM. β = 0.9 in [BGCAF+06], due to the shorter
transient period in the data sequences than that in [BGCAF+06], the
actual value used consistently throughout evaluations in later chapters is
β = 0.97. This threshold was chosen after initial experimentation with
fragments of data sequences. In addition, the authors of [BGCAF+06]
allowed for a transient period of 15 samples, while in this thesis only
seven are used; this is to provide for a consistent simulation with the other
detection-adaption methods which use only a seven-day period of data on
which to train—as the prediction methods use only five-day periods of
data.

The expectation for these two algorithms is that EDDM will raise more frequent
detection alarms which yields the proportional adaption (as in lines 18 to 25 of Algo-
rithm 5) which is less drastic than DDM (lines 18 to 21 of Algorithm 4) when slow
gradual changes exist. It will be evident in Chapter 4

Both of these detection methods can be used with any (statistical/machine) learning
algorithm in two ways [BGCAF+06]:
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I wrapping a batch learning algorithm

II implemented within an incremental and online learning algorithm

As evident from the involvement of change detection in Algorithm 1, this thesis utilizes
option I for manageable integration with the three distinct prediction algorithms,
where BBB is the incremental learner and the other two (LSTM and Gap-BIDE) are
batch learners.

Data: the lists sizes and betaBparams
Result: update the data

1 for each cycle of the critical scale do
2 change_flag ←− 0
3 if T − kpi > 0 then
4 ddm.add_element(0)
5 else
6 ddm.add_element(1)
7 if ddm.detected_change() is TRUE then
8 offsetWindowBy ←− round((1− ddm.get_length_estimation()) ∗

(windows[critical_scale][1]− windows[critical_scale][0]), 0)
9 ddm.reset

10 ddm.set_params(min_num_instances=7, warning_level=0.9,
out_control_level=0.988)

11 for h ∈ [0, 6) do
12 ddm.add_element(1)
13 end
14 critical_size←− size[critical_scale] ∗ (1 + T − kpi)
15 if critical_size>size["allowable"] then
16 critical_size ←− size["allowable"]
17 end
18 size[critical_scale]←− (critical_size)
19 size[”week”]←− size[”allowable”]− size[”day”]
20 support.update(critical_scale : kpi*support[critical_scale])
21 windows.update(critical_scale :

[windows[critical_scale][1]-offsetWindowBy,
windows[critical_scale][1]])

22 change_flag ←− 1

23 end
24 end

Algorithm 4: DDM change detection-adaption
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Data: the lists sizes and betaBparams
Result: update the data

1 for each cycle of the critical scale do
2 change_flag ←− 0
3 if T − kpi > 0 then
4 eddm.add_element(0)
5 else
6 eddm.add_element(1)
7 if eddm.detected_change() is TRUE then
8 offsetWindowBy ←− round((1− (eddm.get_length_estimation()−

1)) ∗ (windows[critical_scale][1]− windows[critical_scale][0]), 0)
9 eddm.reset

10 if kpi<T then
11 critical_size ←− size[critical_scale]*(1+T-kpi)
12 else
13 critical_size ←− size[critical_scale]*(1+kpi-T)
14 end
15 for h ∈ [0, 6) do
16 eddm.add_element(1)
17 end
18 critical_size←− size[critical_scale] ∗ (1 + T − kpi)
19 if critical_size>size["allowable"] then
20 critical_size ←− size["allowable"]
21 end
22 size[critical_scale]←− (critical_size)
23 size[”week”]←− size[”allowable”]− size[”day”]
24 support.update(critical_scale : kpi*support[critical_scale])
25 windows.update(critical_scale :

[windows[critical_scale][1]-offsetWindowBy,
windows[critical_scale][1]])

26 change_flag ←− 1

27 end
28 end

Algorithm 5: EDDM change detection-adaption
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3.6 Conclusion

The culmination of the multi-scale concept, three methods fulfilling the role of LP
in the framework and three others addressing the CDA module, is an ensemble of
the form shown in Figure 3.6. The resultant approaches for combining the ensemble
members lead to the experimentation detailed in the next chapter.
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Figure 3.6: An overview of the methods forming the ensemble with which to experi-
ment.
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Chapter 4

Experimental Design

In this chapter, the construction of the three data sets is described, in addition to the
process of validating an approach’s effectiveness in predicting a data set at each time
step, and the programming and hardware in use.

The chapter begins with an description of the motivating proprietary data set [Air15]
belonging to AirBNB, released on the data sharing platform Kaggle. The data set
is incomplete in the amount of data for a DM usage, and missing the meta data
this thesis aims to analyze using the LP-CDA framework. The first step, described
in Section 4.1, was to break down the flat files in [Air15] into plausible DMs and
synthesize two more from the ground up to cover some of AirBNB’s main business
processes. Then, a set of queries are assigned by their ID to four query profiles
representing four user groups; these queries are handwritten to establish the structure
while the filters are randomly filled in. Examples of the queries executed are provided
in the A.1; the remaining queries share a similar structure but differ in the tables
joined and some random variation in the where clause of the SQL queries. The
queries were executed in turn 30 times to collect the mean duration in minutes and
the variance measures shown in Table A.2. The synthesis of the time series that
makes up the final data sets on which to validate LP-CDA is specified in Section 4.3,
where the measures in Table A.2 are taken as inputs. Finally, the validation process
of the approaches within LP-CDA is outlined in Section 4.4.
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4.1 Data Sources

The challenge of finding a data set which contains meta data of the user activity
within a data set led to the extension of a real-world data set into data marts, and
then later fictitious user group profiles. The real-world data set [Air15] obtained on
the Kaggle data sharing platform contains a small portion of AirBNB’s user sign-
up and user sessions observations. AirBNB is a multi-sided online marketplace for
renting dwellings (houses, rooms, apartments, villas, and other types) for short stays;
it is multi-sided in that users can be landlords and/or renters. Extracted from the two
flat files provided in the [Air15] data set are two business processes which could be
facilitated in a DW using the DMs synthesized in figures 4.1 and 4.2. The structure of
the four DMs is not specified in [Air15]; however, the two prior DMs are inferred from
the two flat files describing user account activity, and the remaining two (discussed
next) are inferred loosely by the AirBNB business model and the business processes
covered in [KR13].

The sign-up flat file describes measures and attributes at the time a user created
an account, and the sessions file holds the attributes of the action a user took—the
firm’s version of queries. From the values seen in both flat files, one can infer the
business questions (queries) posed by AirBNB’s analysts and values on which to filter;
specifically, on reservation events and inventory control analysis as these are major
functions in the business model—supply and demand analysis within the internal
AirBNB market. Relying on the scenarios explored in [KR13], two additional DMs
were created from scratch to model reservation facts and inventory snapshots, as
shown in figures 4.3 and 4.4. As the LP-CDA framework focuses on meta data of the
firm’s analysts’ queries within the DW, an additional step of data synthesis is required
to compile a set of queries and their execution start times in order to form a time
series of events which require various cuboids for varying duration. The prior time
series is the focus of predictions and change adaption methods covered in Chapter 3.

Four user group profiles are synthesized to contain a collection of queries of similar
structure where their filter (SQL where clause) can differ randomly; samples of the
structure of queries are provided in Section A.1 for two profiles and the remaining two
share similar composition with different dimensional joins. Each query is associated
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to a cuboid, and the labelling of a cuboid is a short form of the joined dimension tables
(non-intermediary, must contain attributes) ; this can be seen in the captions of the
queries in Section A.1 and by using the AS operator in the query instances. Queries
are called into action in the database according to a synthetic schedule detailed in
Section 4.3. Three time series are generated in this manner to assess the approaches
from 3.

Figure 4.1: Description of the event of a user signing up for an AirBNB account.
The DM is inferred from one of the two flat files available in the data set released on
the Kaggle portal. An affiliate is a third-party company, in particular, other online
websites which AirBNB uses to advertise itself; it is indicative from the flat data file
that tracking the user journey from one of these external platforms is of interest to
justify marketing costs per each affiliate. This is reflected in the second user group
profile of queries.

4.2 Simulation Setup

There were two main branches of work undertaken to simulate the LP-CDA frame-
work: the first branch focused on inferring database schema and creating new ones
in place of missing definitions to formulate query execution meta data in a time se-
ries manner, and the second branch focused on passing on a matrix keeping count
of instances of each cuboid and time axes to the LP-CDA framework to compute
predictions and self-correct in the instance of concept drift.

First, the two flat data files describing user sessions and signup events were broken
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Figure 4.2: Second to the signup flat data file, this sessions DM is inferred from its
corresponding flat data file that tracks a record of user actions at a descriptive level
using attributes. The mention of details and filters in JSON is synthetic.

down into their set of dimensions and a fact for each of these two business processes
of explicit interest by the firm AirBNB in the initial release of the data on Kaggle.
The result of the prior process yields the DM for user signup events in Figure 4.1 and
another DM for the process of tracking user actions in the AirBNB online platform,
shown in Figure 4.2. With the exception of the date dimension and a few user-
dimension attributes, all attributes and measures were inferred from the data in
[Air15].

It is clear from the business model of the owner of data in [Air15] that property
reservation is the bulk source of revenue and, while released data were not available
on these new DMs, is designed for this business process which closely follows the
retail sales dimensional modelling method in [KR13]. However, a difference is the
dependency of location on dwelling seen by their direct link in Figure 4.3, unlike in the
retail sales DM where location is independent of products sold (in place of dwellings
in our case). An identical product may be available in multiple locations in the retail
scope of business, whereas this would not carry into the property reservation business
case since similar dwellings in structure have distinct legal, pricing, and capacity
dependency on the region in which they permanently exist—in fact, the location is a
defining feature of a dwelling in the AirBNB internal market.

While tracking reservation events allows analysts to learn about the demand of
dwellings over time, locations, user demographics, and the influence of price dis-
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Figure 4.3: This DM describes the reservation of a dwelling to rent out for a period of
time. It is an estimated business process given the multi-sided marketplace business
model of the particular company AirBNB which released several flat files on the
Kaggle online dataset sharing portal. The flat files were used to infer the DMs in
Figures 4.1 and 4.2. Multi-sided marketplace refers to the facilitation of a business
transaction between travelers and a host for their dwelling in the specific case of
the AirBNB data from Kaggle (made available in 2018). Visually, a star schema is
present; however, in this case, the location dimension is dependent on the dwelling
reserved and as such is not linked directly to the fact table, as it would indicate
it being independent of all other dimensions. Multiple links to a dimension table
symbolize the number of roles a dimension plays via views in the database. The
contact information of all the guests is necessary in the reservation even though they
may not be users themselves or participate in the payment transaction to follow a
reservation.



Chapter 4: Experimental Design 86

Figure 4.4: In contrast to the reservation DM in Figure 4.3 describing which dwellings
are occupied, this DM describes the (partial or full) availability of dwellings; this
allows analysis of the supply chain unlike the analysis of demand in reservations DM.
The formulation in the figure is based on the snapshot design in [KR13]. In contrast
to Figure 4.3, the analysis focuses on the location first for drill down and roll up
operations, which is opposite of dwelling first in the reservations fact table.
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counts, there are also questions on managing the supply of dwellings along similar
dimensions to match up with this user demand, as shown in the inventory snapshot
DM in Figure 4.4. In contrast with the prior three schematics, the fact table in Fig-
ure 4.4 is only a snapshot and requires updating at regular intervals (dictated by the
business case and users) in order to provide relevant measures of dwellings available
which reflect changes in the reservations DM [KR13]. Since the tuples in inventory
and reservation fact tables are randomly generated, the refreshing of the inventory
snapshot does not play a part in the simulation—the cuboids required by the firm’s
analysts are the focus of the LP-CDA and not the actual tuple results of the queries
submitted for business case analyses.

Altogether, the four DMs were staged with a combination of SQL queries and R pro-
gramming scripts to be uploaded into a PostGre SQL Server version 9.2 for Windows
10 operating system. A relatively small set of attribute values was extracted from the
flat files in [Air15] and many synthetic values were added for more variation; these
were then randomly assigned as rows to the fact table (by way of foreign keys) and
made up measurements in the fact table. The fact table consisted of 500, 000 reserva-
tion facts (tuples), 1 million session facts, 200, 000 signup facts, and 1, 000 inventory
snapshot facts. Following the loading of data in the DBMS, four user (analyst) group
query profiles were created, as described in Section 4.2.1, in order to begin polling
the duration of queries within each profile to establish a mean and standard deviation
measure useful in synthesizing the time series in Section 4.3. In the end, the time
series generated in the manner detailed in Section 4.3 in a tabular format was passed
onto the LP-CDA framework to reinterpret into a matrix in which it was partitioned
into a training window of observations on which to update the predictive models, and
another test set partition to evaluate the kpi measure introduced in Chapter 3.

4.2.1 Query Profile

A profile contains a small set of structurally distinct queries which vary at the time
of execution by their filter (SQL where clause) values; two of the four query profiles
are exemplified in Section A.1. The remaining two profiles differ in the table joins,
and otherwise are similar in structure to those shown in the A.1. Cuboids are often
labelled with letters representing a dimension in a schema; the letter labelling is
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exhibited in the AS operator in the SQL queries in the annex. The dimensions and
cuboids are only referenced using this lettering scheme. (Table A.1).

The four query profiles represent the following business analytics roles that could be
expected in a business model as AirBNB :

I Sales analysis, exemplified with queries in Section A.1. This analysis focuses on
the reservations DM in search of patterns, such as a dependency on seasonality,
regional events/holidays, promotions, or baseline location preferences, irrespec-
tive of other factors in the DW (social media, unforeseen events, etc.). Queries
which interrogate the reservations DM in the sales analysis scope aim to either
explore new data, re-affirm past trends for sales forecasting, or test hypotheses
using models on the result of the query in third-party software (Python, R,
SAS, SAP, MS Power BI, etc.).

II The focus is on acquiring new users and evaluating the customer pull meth-
ods enacted by the firm to establish the cost-benefit ratio of existing marketing
decisions and better inform the next iteration of marketing campaigns. The
affiliates seen in the signup DM describe third-party online platforms on which
AirBNB advertises and expects these to redirect users to the AirBNB signup
page; whether the user completes the signup procedure post redirection is an-
other measure of interest of the analysts to track in the signup DM. The queries
exemplified in Section A.1 cover the following:

• measuring the incoming traffic from affiliate sites

• comparing the affiliate redirected traffic with existing user profiles to either
evaluate the level of engagement and financial commitments (as a buyer
or seller of services) to perhaps cluster these users and inform the next
marketing budget within AirBNB.

In this case, the analysis focuses on signup as much as retention of customers,
hence there is an interest in the length of sessions spent viewing and searching
listings over the course of time since signup (query A.8 in Section A.1).

III Analysis of the effect of promotions on reservations per region and the patterns
of dwelling which attract sufficient attention for promotions to play a decisive
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role in closing sales. Here, the dimensions of dwelling and location play a central
role, rather than the user and financing aspects more typically assumed to affect
reservations. Distinctions in the type of queries are shown at the dimension level
in Table A.2.

IV The inventory control analyst focuses on the readability of dwellings in loca-
tions to match the timing set out by the sales forecasts. To accomplish this, an
inventory snapshot is vital to evaluate the precise standing of dwelling occupa-
tions across the whole network. In contrast to the first profile which focuses on
the demand of dwellings, this profile focuses on managing the supply to match
projected demand.

The reader will note the four profiles are not mutually exclusive in their analyses; they
are distinct in the overall set of queries executed and the granularity (focus) which
certain data cubes are analyzed over others. It follows from real-world expectations
that there is crossover in the queries performed, as the business processes the four
profiles represent are dependent on each other.

4.2.2 Software

In the interest of achieving near real-time computation of the approaches, the Python
programming language was used throughout. Initially, the work began in R, but
it become evident the implementation could better leverage Python’s numpy and
pandas libraries in addition to Keras for RNN. A summary of the libraries used to
simulate the approaches from Chapter 3 is as follows:

• Gap-BIDE implemented by [gpbed] following the algorithm specified in [LW08]

• LSTM RNN-specific Python libraries are Sklearn.preprocessing and theKeras
package to feasibly experiment with RNN at pace [kered]

• Concept drift modules EDDM and DDM found in the drift detection package
within the SKMultiF low framework [MRBA18]

• The graphs appearing in this chapter were generated using thematplotlib library
in Python [Hun07]
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• Data transformations facilitated by numpy [Oli ] and pandas [McK10]

• The Nemenyi post-hoc test using the scmamp library in R programming lan-
guage. The figures 5.2, 5.3, 5.4, 5.5, and 5.6 were generated using this library’s
functions.

Experiments were run on a Dell Inspiron 16 laptop running Windows 10-64 bit and
X64 base processor, with an Intel Core i7-6500U CPU @ 2.5 GHz and 2.6GHz access
to 8 GB RAM.

4.3 Time Series Synthesis Sets

Three synthetic datasets were created using four user profiles varying in observation
size, length of period under observation, number of correlated signals, and overall
difficulty in fitting predictive models. There is a difficulty in terms of the (non) sta-
tionary signals and the types of concept drifts, their duration, and degree of overlap
with parallel (along the time axis) signals, which represent the demand of a cuboid
over time. As with variance in data posing the usual challenge of modelling uncer-
tainty denoted by the text [JWHT13] as the bias-variance trade-off, the increase of
variance across the three data sets can be seen in this chapter’s figures.

To visualize the three data sets, boxplots are chosen to depict the variation of a
cuboid over the entire duration of a time series, with one series per data set. Next,
line graphs are inspected to spot change over time per cuboid, leading to visually
spotting correlations among the cuboids all overlaid on a single plot, in contrast to
pairwise comparison dot plots which are limited to viewing just two cuboids relative
to each other and without a time axis; these figures are not included in this section
as they span multiple pages and are cluttered. Next, in figures 4.5, 4.6, and 4.7,
the boxplots show the summary statistics of all data sets. Sets 2 and 3 have many
of their cuboids similarly varied, however the Set 3 has more outlying instances and
the variation stretches out further from the mean of a cuboid (horizontal axis =
M,SU, P,W, etc.) in many cases. The first data set is significantly different than the
other sets, it is also a sparser data set than the rest. Overall, the easier set to predict
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is the first in Figure 4.5, followed by set 2 from Figure 4.6, and finally, with the most
variability and concept drifts, is set 3 shown in Figure 4.7.

An overview of the data sets against which the LP-CDA framework is validated is
provided in Table A.1, and their construction is detailed in Section 4.3.1.

Data Set # Description

1 100 observations over a 29-day period with 13 cuboids as conse-
quence of the queries performed.

2 2208 observations over a 39-day period with 23 cuboids as conse-
quence of the queries performed.

3 5978 observations over a 100-day period with 23 cuboids as conse-
quence of the queries performed.

4.3.1 Data Synthesis

The algorithm to create the data sets has two components:

a) sample the arrival of queries and their durations per user group

b) manually select segments of query records (a vector of duration in hour units,
date of instance, and cuboids involved to resolve query) from each user group
sampled to aggregate these records into a data set. Referred to as set x : x ∈ Z+

To implement the first component (a), the sampling procedure was carried out for
four user groups (found in Table A.2 of the appendix) consisting of the following
tasks:

I Sample a Poisson distribution to specify the total number of events per unit
time (particularly the hourly scale). Apply cumulative density function (cdf)
inversion, as in Section 2.4 of [SM09].

Given λ, t, λ is the average number of events each hour and t is the length
of the period for which λ is relevant, then n ∼ Poisson(λ, t)
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Figure 4.5: A boxplot of the rankings for Set 1, where lower values on the y-axis
indicate a higher ranking (i.e., first place, second place, etc.) relative to its peers in
the plot.
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Figure 4.6: A boxplot of the rankings for set 2.
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Figure 4.7: A boxplot of the rankings for Set 3.
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II Using the prior likelihood of the unique queries within a user group [figure from
appendix], a cdf inversion is applied to determine which query ID is the kth

query such that k = 1, ..., n, where n is from the prior step. The inversion is
per the Alias algorithm specified in Section 2.2 of [SM09].

Given the cdf of the set of queries ∈ this group, the cdf is in a key-value
array of the form:

Key: 30 2 4 71 16
Value: 0.02 0.13 0.3 0.6 ...≤ 1

where keys are query identifiers (that map out to a set of cuboids) and
values are cdf probabilities.

Then, sample r ∼ U(0, 1), where r represents a sampled value to retrieve its
associated key. The array is traversed left to right and the first key for which
its value ≤ r is chosen..

III Of the n queries sampled in the previous step, sample the normal distribution
to obtain a duration in unit hours; the mean and standard deviation is specified
per query in the same Table A.2.

Given q the query ID, sample duration d of q ∼ N(µq, Θq), and repeat
sampling d(q) for as many times as q was sampled in the previous step.

IV Finally ∀ instances of q sampled from step 2, the start hour of each instance is
sampled from the uniform distribution. Specifically, the start of an instance of
q is ∼ U(1, t) : t ∈ 1, ..., 24; the range of start hours considered is selected for
user groups.

Altogether, the prior four steps combine in Algorithm 6; this procedure is run once
for each user group of the total four. At the end of the process, it follows that the
analyst manually pieces together parts of these four synthetic data sets to synthesize
the singular dynamic time series seen in the charts of this chapter.

Next, boxplots in figures 4.5, 4.6, and 4.7 show summary statistics of three data sets
whereby the y − axis shares the same units as in the line charts. Sets 2 and 3 have
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similar distribution of rank over their periods of time elapsed, however Set 3 has
more outlying instances and the variation stretches out further from the interquartile
range (the box). Instead, the interquartile range of a cuboid in Set 3 is smaller than
a cuboid in Set 2. In contrast, Set 1 is significantly different than the two other data
sets. Overall, the least variant set to predict is the first, followed by Set 2, and the
most variable data set with the most concept drifts is Set 3, as shown in Figures 4.7.

Data: Table containing the column space (query q, mean µ duration in
hours, standard deviation Θ in duration) for a user role.

Result: A set of vectors in the form, (q, start hour, duration, day). It follows
to replace q with the set of cuboids using a separate lookup table.

1 begin
2 for each day ∈ 1, ...,Z+ do
3 for each partition ∈ day do
4 /* Each partition of a day is defined by (λ, t), where t

marks the amount by which to offset the sampled start
time; in this way, different traffic densities could
be considered throughout a day. */

5 n←− apply(step 1)
6 listEvents←− apply(step 2)
7 /* A histogram holding key-value pairs having q as the

key and the number of times it appears in the sampled
set as the value. */

8 collectionSummary ←− histogram(listEvents)
9 for item in collectionSummary do

10 durations←− apply(step 3)
11 startT imes←− apply(step 4) + t
12 /* the effective start time is offset by t. */

13 end
14 end
15 daysvector ←− append(days, repeat(value = day, n times))

16 end
17 result←− append_columns(listEvents, startT imes, durations, days)
18 end

Algorithm 6: Synthesize
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4.4 Measures of Correctness and Validation

It was presented in Section 2.2 how the quickening of query execution is evaluated
by transitivity through a key performance indicator of prediction correctness, that
being the ratio of demand met over total demand in one critical scale cycle. The ex-
perimentation depends on the critical scale to be the daily scale, followed in queue to
materialize by the predictions of the weekly scale. The challenge of meeting cuboid
demand expressed by user queries is the objective of all of the approaches experi-
mented on the data sets described in Section 4.3. It should be noted, due to the main
memory size constraint, it is not realistic to expect the kpi to reach 1 −→ 100%,
as it is dependent on the individual sizes of cuboids in the DMs inside the DW. For
instance, if every three dimensional cuboid is similar in size (memory units), this size
is large enough that two such cuboids could not fit in the allocated memory, and
given similar demand exhibited, then the approaches may correctly prioritize their
inclusion in the materialized view. However, due to insufficient space, only one cuboid
can finally be included; the kpi reports the final set of cuboids able to materialize.

In addition, the kpi is calculated using the original size of cuboids in a DM instead of
estimating what the reduced size would be after applying the smart materialization
to construct the view in main memory specified in [AV16]. This means that the
amount of memory occupied by the cuboids selected to materialize is at most (and
often less than) what it is conveyed by the kpi. The decision to forgo the estimation is
brought on by being mindful of the near real-time constraint, since the computation
involved to estimate is identical to that of the actual materialization (minus the time
to retrieve data from disk ). It would require iterating over estimating the actual sizes
of the materialized view, given a set of cuboids as the reduction in memory space is
fully dependent on the intersection of data between all the dimensions in play, and
to then update the materialization pool of cuboids; this would be repeated until the
materialized view can no longer be reduced in size enough to allow for additional
cuboids to join. Consequently, there are likely more cuboids which could be fit in the
materialized view than what is indicated by the results in Chapter 5. In essence, the
kpi is a deflated measure of what can be materialized according to a main memory
constraint from the framework specified in Chapter 3; this aspect is addressed in
Section 6.1. Furthermore, the choice of this kpi is explained in the following analysis
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chapter—Section 5.1.1.

There are 24 experiments to conduct which lead to the evaluation of whether the
approaches perform significantly better along the kpi measure. Other aspects of
comparison, such as frequency of change adaption dependent on false or true positive
change detection rates, degree of stability in kpi, runtime, and more are covered in
Chapter 5. Each distinct data point in the three-dimensional space shown in Figure
4.8 represents one of the 24 experiments run and contrasted in the next chapter.

Figure 4.8: The 3-D space depicting the possible combinations of methods, where
each combination is a data point is referred to as an approach thus far. The axes
hold categorical values; no notion of distance or similarity should be inferred from
this figure.

The lattice of cuboids is represented in a key-value pair array, storing each cuboid’s
size in the system’s unit of memory. Each approach begins with the same amount of
allocated memory, such that:

• total memory allocated for a smart view is
⌊
1

3
5130

⌋
, where 5130 in MB was

the estimated size of running a roll-up query with no filters on the reservations
DM requiring CDLU cuboid—this is one of the largest results set among the
queries in the profiles explored.
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• the day scale is prioritized over the weekly scale, and the system initially reserves
2

3
of the total memory allocated.

• the remaining third of the allocation is reserved for weekly scale predictions;
these reserves are subject to change once the simulation begins according to the
approach applied

Other hyper parameters specific to an approach implemented are reported along with
simulation results in Chapter 5.

4.5 Conclusion

Altogether, the business cases apparent in both the data released by AirBNB and
publicly sourced knowledge about their business model lead to the interpretation
of four user profiles facilitated by the four DMs constructed earlier in this chapter.
The usage of the DM per user profile is exemplified in part in Section A.1 and the
motivation for its use is discussed in Section 4.2.1; while these describe user interest
in aggregation, Section 4.3 explains the generation of the detailed data-generating
process on which the approaches developed in Chapter 3 would be validated in the
next chapter.

This chapter provides an overview of the construction of three time series data varying
in difficulty along the distribution in instances per unit time, overall number of abrupt
changes, degree of slow or steep gradual change, and sheer number of distinct patterns
(clusters of cuboids). The synthesis procedure of the time series was motivated by
statistical processes fit for distributing events over time for a valid use of synthetic
data related to real-world traffic of cuboids in a DW. Next, the performance of the
nine approaches mentioned in Chapter 3 and shown in Figure 3.6 are contrasted to
determine their role in the ensemble of prediction and change adaption algorithms.
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Chapter 5

Analysis

Following the experimentation overview provided in the previous chapter, the results
of the experimentation runs described in Figure 3.6 are gathered into a series of five
tables in Section B.2 to perform a statistical test of significance on their contrasts.
The three measures on which the approaches were evaluated are specified in Section
5.1; these were followed by an analysis of the results on the measures in Section 5.2.
An ensemble summarizes the conditional use of certain approaches in concert with
the LP-CDA framework.

5.1 Evaluation Measures

The analysis of experimentation results involved three metrics measured at the end of
each time step of the simulation (iteration of Algorithm 1): the predictive kpi defined
in Section 2.4 and reviewed in Section 4.4, the degree of change in memory allocated
to the predictions formed on the critical scale as a result of change adaption, and the
rate of changes detected that initiate the adaption procedure. These measures are
of interest since the first addresses the percent of cuboid demand correctly predicted
within a time interval, the second focuses on the amount of change on the system’s
side required to recover from below threshold predictive correctness, and lastly, the
pace at which detection flags are raised which reflects how long the recovery lasted
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since the most recent adaption procedure instance. The three evaluation measures
are covered in the following subsections.

5.1.1 Predictive KPI

The key performance indicator (kpi) to evaluate the predicted set of cuboids per
cycle of the critical scale is a semblance of demand, defined as the ratio between the
number of times each cuboid requirement could be pulled from the materialized set
versus if it required an export of data from permanent storage. The weight of each
cuboid is the number of times it is called into action within a query join, with the
weight varying per demand in each time cycle. If a cuboid requires x times within a
given cycle and is covered in the materialized set, then all x instances are accounted
for as having benefited from a materialized set. The kpi is specified in Equation 3.7
and described at a high level in Equation 3.1; it is the percent amount of correctly
predicted cuboids per critical time scale cycle.

Next, the choice of the percentage correct measure is described over other more robust
performance measures often used in modern day ML and statistical analyses.

Choice of Percentage Correct Predictions as a Measure

The Percentage Correct Prediction (PCP) [Her99] measure of a predictive method’s
performance is often not the first choice among the F-score, area under the Re-
ceiver Operator Curve (ROC), Matthew’s correlation coefficient synonymous to Pear-
son’s phi coefficient, Cohen’s Kappa, and many more often cited as robust mea-

sures [Mau12]. Specifically, this percentage correct prediction =
TP

TP + FP
and is

referred to as the positive predictive value in recent literature [Mau12]; it is the kpi
measure used in this thesis on which many decisions of adaption are based. It pri-
marily lacks in using all the data available from the result of classifying test data,
as only the true and false positive metrics of the confusion matrix are used, and
true and false negative metrics are omitted from the kpi. Consequently, the author
of [Her99] demonstrates the lack of coverage in predictive performance by the PCP
in regression models and this observation has extended to many modern day classifi-
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cation methods highlighted in Chapter 2 and 3. In addition, the advantage observed
by [Her99] of using PCP has also remained constant throughout the development of
many other performance measures in ML. When comparing predictive methods from
a variety of modelling families, as is done in this thesis, not all alternative measures
of performance may apply [Her99].

In addition, regarding the dependency on predictive methods, a performance mea-
sure’s suitability is also a factor of the data under investigation in terms of the stream
or static nature of the data, types of concept drift, and biases inherent with certain
measures. For instance, not all uses of the F-Measure outside the information re-
trieval domain are sound, as exemplified in [Pow15]. In addition, there is the area
under the ROC measure that is appropriate in situations aside its intended use in
the signal processing domain despite its overuse with other types of data as examined
in the clinical setting by the authors of [BF11]. The PCP as a general measure can
fit with many data and algorithm types; however, it is also an overestimate of the
prediction performance of methods [Her99,Mau12].

If a more robust performance measure had been chosen, it would have been as a conse-
quence of the particular data set and prediction method applied. In other words, the
performance measure fits the type of data on which it is evaluated and the analysis
model which is applied to yield the predictions under scrutiny. Given the situation in
Chapter 4 of inferring data marts and supposing the query profiles to then synthesize
the time series of the events which occur within the boundaries of the defined data
marts and query profiles, we are left with many options to synthesize such a time se-
ries, and the breadth of concept drifts (abrupt, outlying, gradual) interwoven to span
all possible sets would not yield similar properties. For example in Chapter 4 between
Sets 1 and 3; Set 1 is sparse and contains bursts of high traffic activity whereas Set 3
is dense and contains many concept drifts (sometimes more than one at a time). As
a result, it is more difficult for algorithms to discern the tendency of the data process
in the future against what may be a temporary blip. The three data sets represent
three ways of synthesizing data from sources and sharing different properties where
each would be best fit with a performance method and prediction method different
from the other. Thus, the choice of a robust and more focused performance measure
would require a justification that, as a result of the data marts and query profiles,
only certain types of data may be of consequence and a more specific and robust
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performance measure other than PCP would be preferable. The data generation pro-
cess in Chapter 4 and the LP-CDA framework developed in Chapter 3 counters the
prerequisite for choosing a less flexible and more robust performance measure. Since
the predictive methods applied are of different families and in each case the response
variable to predict has been developed uniquely to the method—the procedure from
reading in the data to initializing a predictive method is different among all three
methods, and so too is the interpretation of predictions into a ranked set of events.
In addition, the three time series represent three possibilities (out of many more plau-
sible) with already different properties befitting various predictive measures (many
highlighted in [Fla12,Mau12].

Finally, the PCP is a measure of the true or false positives which are of principal
interest given the intention to place most frequent items in the materialized set. Other
measures which are closely related such as specificity, sensitivity, negative predictive
value, and accuracy involve the accounting of negative results. However, the cuboids
of varying frequency are not strictly wrong relative to others. LP-CDA will aim
to fill in as much of the allocated space for materialization, despite how few in-
demand cuboids are; as a result, it is likely for the items more generally thought of
as "negative" results to be selected into the positive class. Furthermore, there is no
decision threshold established to divide the ranked list of items into positive/negative
classes.

For the above reasons, the kpi at this stage in the work is the PCP; with reasons
covered in [Fla12, Mau12, JWHT13], it is desirable to move towards using robust
measures which fit the dynamic nature of the framework (type of data and prediction
method). The latter part of the prior statement is left for future work, in which a a
question to be answered could be: does an ensemble of performance measures succeed
to deliver robust prediction evaluations while appropriately changing for types of data
and diverse set of prediction methods?

5.1.2 Change in Memory Allocation

The initial memory allocated between the time scales for all predictive models is
identical across approaches, as indicated in Section 4.4; however, the amount allo-



Chapter 5: Analysis 104

cated may change according to the difference in kpi and static threshold T defined
in Chapter 3 over time. The timing of the change depends on the rate of detected
change (Section 5.1.3) as per one of the three change detection methods specified in
Section 2.4. The memory de-allocated from all noncritical time scales is governed by
the adaption strategy, and is often a proportion of the difference in kpi and T at the
time an adaption procedure is executed. It is of interest to measure how (not) drasti-
cally an approach re-allocates memory away from other time scales and prioritizes the
critical time scale’s predictions to materialize, as this indicates the low confidence in
these other predictive models. When the change is minimal (close to zero), then both
daily and weekly predictive models contribute to a successful performant (kpi wise)
materialized set, otherwise the long-term patterns or trends captured by the weekly
model are no longer relevant and only the daily model captures relevant patterns.

5.1.3 Rate of Change Detection

When a change is detected by a drift detection method from Section 2.4, a Boolean
value is switched to 1 from its default 0 value and reset at the start of each critical
scale cycle as per Algorithm 1; this value is recorded for each approach at each cycle
of the simulation to contrast across all approaches. It is expected that different
detection methods will detect changes at a different pace as not all are well suited
for the many types of drift examined in Section 2.4. An approach with a higher rate
of detected change indicates an unstable pairing of predictive method and change
detection method compared to its peers in Figure 3.6.

5.2 Results

In this section, simulation logs at the end of each experiment (approach per data set as
in Figure 4.8) are filtered for the measures of interest outlined in Section 5.1 to enable
an analysis; from this analysis appropriate conclusions are drawn. For instance, the
first three figures in this section show a comparison of the kpi measure for all three
data sets (Section 4.3), followed by a figure comparing the increase in memory allotted
to the critical scale of prediction as a result of adapting to change, and a comparison of
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the rate of changes detected. The Nemenyi post-hoc statistical test is applied rather
than using the more popular measures for algorithm comparison regarding predictive
ability evaluated by measures such as: F-measure, accuracy and recall, area under
the receiver operator curve. The diagrams in this section are critical difference (CD)
diagrams that result from the Nemenyi post-hoc test, from which conclusions are
drawn.

Given the diverse set of algorithms used in composition of the ensemble, their under-
lying assumptions also vary; due to this, a non-parametric test of significance leads to
more valid inferences than a parametric test. Rather than describing the similarities
among the approaches in terms of predictive performance, the analysis focused on
their differences. Then, revealing how the approaches contrast along kpi, memory
allocation between scales of prediction, and the rate of change detection/adaption
through the Nemenyi post hoc test leads to conclusive decisions on when to use a
specific approach in a DW setting.

The use of Friedman and Nemenyi tests from an instructional level are covered in
[Fla12]. The average rank is deduced from the average measure over all of the data
sets, which in the context of the experimentation here, is the average over all the
time steps (mutually exclusive subset of a data set). As defined in the text, the

Nemenyi test calculates the critical difference as follows: [CD = qa

√
k(k + 1)

6n
] where

qa depends on the significance level α as well as k number of approaches (12 approaches
per data set simulated, as shown in Section 4.3). A rank of 1 indicates highest
on average on the dimension of performance in question; these are plotted on the
horizontal axis of the critical distance graphs in this section. Ranked approaches
are also grouped (indicated by the thick lines below the horizontal axis) if they are
less than the critical distance apart from each other consecutively; this provides a
threshold to determine which approaches are different enough to consider or implicitly
too similar to distinguish between. In other words, any pair of approaches which are
not connected by a thick horizontal line can be considered statistically different from
each other.

Since the inputs to the Nemenyi test are measures per approach (column wise) at
each time step of the data set simulated (row wise), the degrees of freedom are high
enough to make conclusions that relate to other similar data processes outside this
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thesis; these input tables may be inspected in Section B.2. In the context of the
significance testing, each day in the simulation is a set of its own; thus, a data set
with 99 days worth of events means there are 99 subsets to measure and against
which to compare the approaches. The number of degrees of freedom matters in the
age of ML and applied AI as much as it does in traditional statistical inference. In
validating the worth of the algorithms and approaches, it is not just the quality of
the data sets that matters—the number of data sets is crucial as well; this is the
conclusion reached in [BH17].

5.2.1 Predictive KPI Analysis

Specifically, the Nemenyi critical distance is determined for α = 0.05 and a 95%

significance, and is reported in Figure 5.1. It can be seen that the decrease in CD
from Set 1 to Set 3 agrees with the forecast increase in difficulty from the first data
set to the third discussed in Section 4.3. In other words, the differences in average
ranks of the approaches are most apparent in Set 3.

Figure 5.1: The critical differences calculated for five tables comparing the kpi, mem-
ory allocation redistribution, and rate of change detected. Where the critical differ-
ence is in unit average rank, k is the number of approaches, and df are the degrees of
freedom.
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Figure 5.2: The critical difference plot for the Nemenyi post-hoc statistical test on
all approaches’ kpi simulated on Set 1, as shown in Figure 4.5

The Set 2 results are reported in Figure 5.3. Three groups of similar performing (on
the basis of their kpi measures) approaches are indicated by the three bold horizontal
lines in the figure. The higher on the vertical axis a horizontal bold line is, the higher
in average ranks that group is compared to the other bold lines. Of note, Gap-BIDE
and BBB − noCD (noCD referring to no change detection) are in the top-ranked
group; this implies that approaches using no change detection or EDDM tend to
higher kpi on average than approaches using naive heuristic or DDM methods.

Set 3 yields the smallest CD between the approaches of Sets 1 and 2 in figures 5.2
and 5.3, respectively, indicating that the performance is much more distinguishable
in the third data set between the approaches than in the second set. In addition,
there are many more groups in Figure 5.4 than in previous CD diagrams in this
section, as evidenced by more bold horizontal lines with less overlap between them.
This affirms the expectation made in 4.3 that Set 3 would be the most difficult to
predict; its results indicate the approaches’ ability to keep up with changes in cuboid
demand. Similarly, as with Set 2, the naive heuristic-based and EDDM change
detection methods are in the top two groups of average kpi rank (kpi → 1) out of
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Figure 5.3: The critical difference plot for the Nemenyi post-hoc statistical test on
all approaches’ kpi simulated on Set 2, as shown in Figure 4.6

six groups. However, Gap − BIDE is in the bottom half of the rankings; this is in
contrast to its placement in the previous two data sets. The top performing groups
include BBB using naive or DDM change detection, and LSTM using naive or no
change detection method. Surprisingly, an approach with no change detection and
adaption strategy is in the top ranked group out of the many alternatives; Figure 5.6
may lend an explanation for this. From the CD diagram, it is a clear choice between
BBB or LSTM as the most reliable prediction method. The next two CD diagrams
should lend evidence to guide our choice of the change detection algorithm to couple
with these two prediction methods.

5.2.2 Change in Memory Allocation Analysis

In Figure 5.5 all noCD approaches are ranked last as they have no variation in the
amount of memory allocated between the predictions scales; variation is due to the
change detection rate (false and true positives) and adaption strategies. The noCD
instances are the baseline against which to compare; in the previous three diagrams,
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Figure 5.4: The critical difference plot for the Nemenyi post-hoc statistical test on
all approaches’ kpi simulated on Set 3, as shown in Figure 4.7.

the CD was relative to the entire collection of approaches. The top ranked approaches
are those that deviated the more often and with a larger amount of memory than all
other approaches. It can be seen that LSTM with DDM and Gap − BIDE with
either naive orDDM had the highest amount/frequency increase in memory allocated
to the daily scale which results in a proportional decrease in memory allocated to the
weekly scale’s predictions. Additionally, the prior observation implies the higher the
difference between the two prediction scales in memory allocated to them, the higher
the reliability of one scale’s prediction over the other. In this thesis’ framework,
trust is lost in the weekly scale’s prediction as change is detected and a more drastic
adaption action taken in favour of the daily scale’s predictions, as discussed in Chapter
3. Crucially, we focus on the approaches that placed among the top groups in terms
of kpi measures in Figure 5.4, where BBB and LSTM using EDDM are grouped
together in the last ranked grouping in Figure 5.5. This means their variation in
memory is critically different from all other change detection variants in achieving
the middle rank with respect to kpi. Instead, BBB with DDM or naive are grouped
with LSTM − naive while the latter is also part of the group with LSTM −DDM ;
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the two variants of BBB are critically different from LSTM−DDM . Before drawing
conclusions on the change detection methods to use, the CD diagram regarding the
detection rate should be considered.

Figure 5.5: The critical difference plot for the Nemenyi post-hoc statistical test on all
approaches’ critical scale memory allocations as a result of change adaption simulated
on Set 3.

5.2.3 Change Detection Analysis

Next, in Figure 5.6, the noCD approach has a sequence of 0 values at every time
step indicating no change was detected; this is the baseline approach against which
to compare the alternatives. From the diagram, it can be seen that not all approaches
using EDDM are in the same group as noCD, indicating there is little difference in
the true/false positive detection rate between noCD (detection rate is a flat 0) and
EDDM . In addition to the observations in figures 5.5 and 5.4 regarding EDDM , this
leads to the conclusion that BB or LSTM using this change detection method are
the most stable in terms of predictive ability, frequency of change detected, and the
amount of adaption needed to achieve predictive accuracy above the (75%) threshold.
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Figure 5.6: The critical difference plot for the Nemenyi post-hoc statistical test on
all approaches’ change detection flag simulated on Set 3.

5.3 Ensemble Learning: When to Use an

Approach?

An ensemble can be constructed from the evidence gathered in 5.2 and in combina-
tion with the goals outlined in Section 2 in order to select an approach to employ. In
terms of a conclusion regarding whether an alternative hypothesis is accepted over
the null hypothesis, as noted in the many data analysis texts referenced throughout
this thesis, data analysis is performed in the context of the data, and thus conclu-
sions are conditional on the data. In addition to the context of data, the context of
hardware and DBMS system used by an organization in its day-to-day work should
be considered. While we cannot account for the many variations of current and fu-
ture data warehousing architectures, we can offer guidance that administrators of the
architectures should consider in selecting an approach from those tested.

Different priorities yield a different conclusive approach to implement, as shown in
Figure 5.7; however, swapping a prediction or change detection method later is feasible
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Figure 5.7: A qualitative summary of the approaches to carry into the ensemble.
These three approaches were selected by inspecting the five critical difference graphs.

given the framework specifications in Chapter 3. While it is more complex to change
the prediction method, it is much simpler to switch the change detection and adaption
methods, based on the experience of implementation in this work. Scenarios should
be considered in which the sequences of priorities shown in Figure 5.7 occur in an
organization’s production work.

From the resulting critical difference graphs in the prior section, we can reduce the
number of candidate approaches along the three measures evaluated:

I per kpi performance, approaches which are within the top performing group
consistently between Sets 2 and 3. These two sets are prioritized over Set
1since they are distinctly more complex and were not used as part of any initial
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calibration in parameter selection of algorithms tested. See figures 5.3 and 5.4.

• BBB - DDM

• LSTM - Naive

• LSTM - EDDM

II per detection rate, relative to no CDA employed; Figure 5.6.

• LSTM - EDDM is equivalent to almost no change detected, despite achiev-
ing performant kpi results.

• BBB - DDM is part of the mid tier for this measure.

• LSTM - Naive is a member of both the top tier and mid tier.

III per change in memory allocation, a high degree of correlation with change detect
rate is expected. See Figure 5.5.

• LSTM - EDDM fully correlated to its place in detection rate graph.

• BBB - DDM, similarly is in the mid tier.

• LSTM - Naive is a member of both the top tier and mid tier

In an effort to combine these approaches, we look to the ensemble learning domain
within the ML field. "Ensemble learning can be broken down into two tasks: devel-
oping a population of base learners form training data, and then combining them to
form a composite predictor" [HTF01]. Since there was not a single approach which
scored high on all three measures consistently, it follows that a cooperative formula-
tion may draw out their advantages and mitigate their disadvantages. For instance, a
high detection rate impacts the server resources by having to focus on re-composing
the materialized set and perhaps too often occupying CPU and context switching
between critical tasks within the operating system away from user- (client) related
queries. In the prior case, one might prefer LSTM - EDDM approaches over BBB -
DDM and LSTM.

The goal of this study is to learn a good ensemble, and that has been achieved by way
of the analysis on the results of the candidate approaches. "In terms of basis functions,
we want a collection that covers the space well in places where they are needed, and are
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Figure 5.8: A stacking of select approaches to form a winner-take-all ensemble. The
logic within the meta-classifier decides which approach’s prediction to carry over as
the final decision defining the materialization set.
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sufficiently different from each other for the post-processor to be effective" [HTF01].
This statement refers to ensemble learners given regression methods for classifications,
and while it is not identically reflective of the situation in this thesis, it is relevant.
For instance, it is clear that the diverse families of algorithms that have been utilized
to form the approaches in the experimentation are sufficiently different from each
other, to the extent that not many of the ensemble learning configurations remain
applicable. In addition, the post-processor referred to the lasso or regularization used
in regression methods to better fit the model to the variation in the data and reduce
bias—instead it is synonymous to the meta-classifier component to post-process the
predictions of the three approaches. Of the many ensemble learning configurations
available, including cascading classifiers, stacking, voting, bagging, and boosting, a
hybrid of stacking and boosting is preferred for the scenario described in this thesis.
Stacking the three approaches shown in Figure 5.7 and discussed above, enables the
flexibility of using sufficiently different approaches for the same feature space (data
relations to model).

Figure 5.9: The importance assigned the features by the Gradient Boosting Regressor
modelled per configuration A.9 outlined in Section 5.3. The y-axis represents the Gini
importance measure where all values sum to 1. It is a normalized measure of the total
reduction in the Gradient Boosting Regressor (GBR) model’s criterion attributed to
each feature.
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The three identified approaches in this section form an ensemble through a stacked
configuration, as depicted in Figure 5.8. The meta-classifier in this case is a GBR
implemented in the Python programming Library [PVG+11], whereby a set of decision
trees can be inferred from training on the data presented in Section B.1. The choice
of GBR over traditional boosting methods such as AdaBoost is supported as early
as [MBBF99]. It is further supported by the development of schemes using gradient
boosting in the ML Python library SciKit Learn referenced in this section and in 4,
funded by leading industry members using ML in day-to-day operations.

Boosting updates the weights of training tuples so that their skewed contribution to
the residual will help tune a weak learner to model the misclassified tuples over some
iterations. In the iterative optimization procedure shown in [JWHT13], the collec-
tion of stumps (decision trees of depth ≤ 3) aim to minimize the residual (prediction
errors). In addition, the prediction of the model (ensemble of decision stumps) is
indicated by the majority vote among all weak learners (each stump) weighed by
their individual accuracy value. The prior point refers to AdaBoost, where boosting
touches on the coefficients of tuples with respect to their contribution to the residual
computation; however, finalizing the singular prediction of the response variable is
determined by a vote (another form of ensemble learning).In contrast, GBR oper-
ates on the parameters of the decision trees (these can typically have a depth up
eight levels) in order to minimize the residual, however, this is guided by using the
gradient descent optimization on a loss function which is often different than those
used in boosting methods [MBBF99]. Thus, boosting attempts to achieve the goal of
minimal predictions errors with respect to training data indirectly by changing the
weight of tuples to signify importance for the model to learn; directly, GBR tunes
the parameters of each decision tree in the iteration to learn the next most rewarding
(minimizing errors) group of tuples from the last learned tree in sequence.

Both boosting and GBR-based methods produce a collection of regression (specific
to our application of these concepts) trees, and one tree is used per iteration of the
algorithm. Although either boosting algorithm may be applied to any classifier or
regression technique, it is beneficial to borrow the flexibility of the regression tree
given we aim to predict a continuous variable (kpi) and expect a high degree of
variability in the feature space that is otherwise very difficult with spline or other
parametric regression methods; the regression tree is a non-parametric method. The
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use of "collection" instead of "ensemble" is only to draw distinction between the
three approaches shown in Figure 5.8 and the separate set of learners in the boosting
method. The boosting method begins with equal weighing of each example or tuple in
the training set to which the first decision stump is fit. Then, the residual (difference
in y and ŷ) is calculated to quantify the shift in weight needed in order give higher
importance to the incorrectly classified tuples. The distribution, in turn, affects the
next decision stump to be fit in the iteration.

Distinctly, GBR relies on minimizing a loss function for which it is at its peak (of
100%) cost when a model yields no reward; whereas a model that can yield a cost of
0 (or 0%) leads to no prediction error. The latter case is unrealistic as it would imply
the predictor (features) to response (classification label) relationship is not-complex
and would not be of much interest to model; say f(x) = 1 : x ∈ R. The loss function
relates the residuals to the model’s coefficients, as in the cost on the residual (and
thus the proportion of reward - correct predictions) given a fit regression tree. The
iterative minimizing of the loss function, involves:

• Calculating the derivative on the loss function to determine the direction to-
wards the global minimum, often referred to as the negative gradient (downward
slope) as opposed to the function’s positive gradient (upward slope) to achieve
high cost.

• Setting the learning rate between 0 and 1, this factor limits how much the
coefficients can be updated (differ) from the last fit tree; a typical value is 0.1.

Altogether, the GBR method calculates the combination of regression tree coefficients
that yields the steepest descent (greedy approach) within the learning rate constraint,
iteratively over n steps. A formulaic representation of the gradient descent is found
in [Fri99].

An overview of the GBR model employed as per configuration A.10 in Section B.1:

• Loss function chosen was the least absolute deviation among least squares, Hu-
ber, and quantile estimation as it is a more robust measure. Given the ex-
pectation that the data process will have a high variance, a robust measure is
desirable to ensure the quality of predictions carry over to related data sets.
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• The Friedman mean square error is minimized by each of the 300 estimators
(regression trees).

• All other parameters reported in the appendix were determined by iterative
experimentation to yield a high regression goodness of fit R2 measure.

The R2 measure is reported as an evaluation of the goodness of fit of the meta-
classifier regression model, it is at 70%. It was evaluated on Set 3 via the data table
shown in Section B.2, and includes the number of instances of cuboids (each their
own column) per day, the time axis represented in 3 ways (day, week, iteration), the
three kpi measures of the base learners listed in this section, and the response variable
"MAX" kpi. The data set was first stratified along the response variable , y, as it
appears in Section B.1 and "MAX" in the last table of Section B.2. It was then
split into a test set containing 30% of the data, and the rest was used as training for
the GBR model. The R2 values reported in Section B.1 were not produced using a
random state parameter because this would allow for both reproducing of the exact
GBR tree and test-training data split, and enable the biased choice of random states
which yield R2 in the high 80s and above in extreme cases; this practice would be
misleading.

A feature selection step also occurred between the two configurations of the stacked
regressor, whereby features of less importance shown in Figure 5.9 were removed to
construct the A.10 model (Section B.1). The result of A.10 was a better fit to the
data set and a change in important features shown in Figure 5.10. It is evident that
the decision trees within the ensemble of trees constructed using GBR had difficulty
splitting on values to yield accurate predictions with the full set of features and relied
mainly on the base learner kpi measure. Instead, with a subset of features, the A.10
configuration made better use of the features to form scenarios in which one base
learner (the approach explored in this thesis) is better positioned to reach a higher
kpi than other learners represented.

Therefore, the progression of time in the time series is a key indicator in combi-
nation with historic kpi data of the predictors. In particular, from Figure 5.10, the
LSTM-EDDM approach contributes more by achieving higher kpimeasurements than
BBB −DDM ; LSTM − Naive are a close second choice. In addition, the cuboids
which most represent the scenarios used by the GBR regressor in selecting the base
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Figure 5.10: The importance assigned to the features by the Gradient Boosting Re-
gressor modelled per configuration A.10 outlined in Section 5.3; a subset of that used
in A.9. The y-axis represents the Gini importance measure where all values sum to
1. It is a normalized measure of the total reduction in the GBR model’s criterion
attributed to each feature.
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learner are shown on the horizontal axis of the figure referenced. Critically, the dia-
gram also highlights that the day of the week is of little importance; this is a symptom
of the concept drifts within the time series of cuboids in demand, and it follows that
the progression in weeks was not important since there was not a strong cyclical pat-
tern of cuboid demand at this time scale. The final interpretation of the stacking
ensemble results is that LSTM − EDDM is preferred over all other approaches in
terms of kpi measure given the many concept drifts under investigation, and that
BBB − DDM is a close second choice, particularly if a simpler model in terms of
complexity and runtime is required by the user.

5.4 Conclusion

In this chapter, the efficacy of the 12 approaches, three predictive methods and four
change detection-adaption methods, were contrasted on three time series. Altogether,
the Gap-Bide and BBB prediction methods operated on the order of seconds whereas
LSTM RNN was on the order of a few minutes for any of the change detection-
adaption procedures. In Figure 5.7, the conclusive roles of approaches in the ensemble
are depicted and supported by the ranked test of statistical significance in Section
5.2. Furthermore, the choice between LSTM −EDDM and BBB−DDM becomes
clearer through the analysis of feature importance resulting from implementing a
stacked ensemble of regression trees using the GBR algorithm. In the final chapter,
a summary is presented of the contributions of this work and directions for future
work.
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Chapter 6

Conclusion

This thesis concerned the intelligent adaptation to changes in user query patterns
over time. We introduced the LP-CDA framework that employed ML algorithms in
order to predict such changes across multiple time scales. Our experimental results
indicated the value of our methodology. Our results show that an ensemble of ap-
proaches, each a combination of a prediction and change detection-adaption methods,
can achieve a robust positive prediction rate ≥ 75% amidst various types of concept
drift often asynchronous and overlapping (with respect to time) of each over.

6.1 Future Work

There are several extensions of the framework developed in this thesis which would
lend to better predictions in more complex modelling scenarios. First , many ap-
proaches surveyed in Chapter 2 are based on user profiling and assume the profiles
can be used to group interests in data for querying to build materialized views of
some form. However, the assumptions of number of groups, members of the group,
and the mutual exclusive membership to a single group are biases which would con-
tradict the data-driven approach employed in this thesis. Instead, using unsupervised
clustering methods to specify that which is previously assumed will allow any benefits
of grouping observations (often proved to be beneficial in mixed effects modelling as
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in [FEH15b]) to be incurred by the framework. The clustering method must also
account for concept drift.

Second, there is evidence of the minority class problem defined in the data mining
field [Han15] and carried over into modern ML, in which certain cuboids will be
considered in low demand given their relative frequency to all other cuboids in a time
period. However, some cuboids of low frequency may be related to complex (runtime
wise) queries, thus these cuboids will not be selected with priority to join the smart
view. An element of the resolution for this minority class problem may be clustering
users, given a correlation between complex and less frequent queries and the group
of users is true.

Third, to predict along the row subset in addition to the dimensions, as in [AV16],
the authors of that article provide an example of the smart materialization algorithm
segmenting data row wise in addition to columns. The row wise materialization
is avoided in the initial work of this thesis since the consequence of an incorrect
prediction on the rows renders a materialized cuboid unusable by most DBMS in
resolving a query requiring any rows not in the materialized set (cause for errors).
A focus on exploring approaches to predict the row space demand per cuboid is a
valuable progression of the framework developed in this thesis.

Fourth, improvements to the quality of the LSTM RNN can be achieved by seeking
a stable variant of the model. Stability is not usually inherent to the LSTM model,
although some authors in recent work [MH19] have shown empirical solutions to either
replace RNNs with feed-forward models or impose stability by modifying parameters
of the RNN to achieve soft-isometry (a condition of stability for RNN). In addition,
it would be beneficial to build a Markov Chain analysis then estimate through Monte
Carlo simulations [SM09] the future demand of cuboids and to compare the results
with the current LP-CDA framework.

Finally, an addition to the ensemble built in this thesis may be to use mixed-effects
modelling given identified clusters of cuboid patterns. This may be a competitive
alternative to the LSTM-RNN method in terms of complexity to capture dependencies
between events aside from time progression.



123

References

[AE20] Luk Arbuckle and Khaled El Emam. Building an Anonymization
Pipeline: Creating Safe Data. O’Reilly Media, 2020.

[AGM+11] Julien Aligon, Matteo Golfarelli, Patrick Marcel, Stefano Rizzi, and
Elisa Turricchia. Mining preferences from olap query logs for proactive
personalization. pages 84–97, 01 2011.

[Air15] AirBNB. Airbnb new user bookings. Kaggle Online Data Sharing
Portal, 2015.

[AS15] Saida Aissi and Mohamed S. Gouider Schleicher. Towards the next
generation of data warehouse personalization system, a survey and a
comparative study. 2015.

[AV16] Daniel K. Antwi and Herna L. Viktor. Dynamic materialization for
building personalized smart cubes. Transactions on Large-Scale Data-
and Knowledge-Centered Systems XXVI: Special Issue on Data Ware-
housing and Knowledge Discovery, pages 61–88, 2016.

[BF11] Daniel Berrar and Peter Flach. Caveats and pitfalls of ROC analysis
in clinical microarray research (and how to avoid them). Briefings in
Bioinformatics, 13(1):83–97, 03 2011.

[BGCAF+06] Manuel Baena-Garcia, Jose Del Campo-Avila, Raul Fidalgo, Albert
Bifet, Ricard Gavalda, and Rafael Morales-Bueno. Early drift detection
method. Fourth International Workshop on Knowledge Discovery from
Data Streams, 2006.



Chapter 6: References 124

[BGR11] P. Biondi, M. Golfarelli, and S. Rizzi. Preference-based datacube anal-
ysis with myolap. ICDE, 3:1328–1331, 2011.

[BH17] Anne-Laure Boulesteix and Myriam Hatz. Benchmarking for clustering
methods based on real data: A statistical view. Data Science, Studies
in Classification, Data Analysis, and Knowledge Organization, pages
73–82, 2017.

[BS13] Denni D. Boos and L. A. Stefanski. Essential Statistical Inference: The-
ory and Methods, chapter Bayesian Inference, pages 163–203. Springer
New York, New York, NY, 2013.

[DB16] E.B. Dagum and S. Bianconcini. Seasonal Adjustment Methods and
Real Time Trend-Cycle Estimation. Statistics for Social and Behavioral
Sciences. Springer International Publishing, 2016.

[Ema13] Khaled El Emam. Guide to the De-Identification of Personal Health
Information. Auerbach Publications, 2013.

[FEH15a] Jr. Frank E. Harrell. Regression Modeling Strategies With Applications
to Linear Models, Logistic and Ordinal Regression, and Survival Anal-
ysis, chapter Describing, Resampling, Validating, and Simplifying the
Model, pages 103–126. Springer, Cham, 2015.

[FEH15b] Jr. Frank E. Harrell. Regression Modeling Strategies With Applications
to Linear Models, Logistic and Ordinal Regression, and Survival Analy-
sis, chapter Multivariable Modeling Strategies, pages 63–102. Springer,
Cham, 2015.

[Fla12] Peter Flach. Machine Learning: The Art and Science of Algorithms
That Make Sense of Data. Cambridge University Press, USA, 2012.

[Fos15] Robert C. Foster. Beta-binomial empirical bayes. http://www.

probabilaball.com/2015/05/beta-binomial-empirical-bayes.

html, 2015.

[Fri99] Jerome H. Friedman. Greedy function approximation: A gradient
boosting machine. 1999.

http://www.probabilaball.com/2015/05/beta-binomial-empirical-bayes.html
http://www.probabilaball.com/2015/05/beta-binomial-empirical-bayes.html
http://www.probabilaball.com/2015/05/beta-binomial-empirical-bayes.html


Chapter 6: References 125

[FV06] Frédéric Ferraty and Philippe Vieu. Nonparametric Functional Data
Analysis. Springer Series in Statistics. Springer-Verlag New York, 2006.

[GH06] Liqiang Geng and Howard J. Hamilton. Interestingness measures for
data mining: A survey. Computing Surveys, 2006.

[GMCR04a] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Pereira Ro-
drigues. Learning with drift detection. SBIA, pages 286–295, 2004.

[GMCR04b] João Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues.
Learning with drift detection. volume 8, pages 286–295, 09 2004.

[gpbed] Gap-Bide Python package. https://github.com/socrateslee/

pygapbide, 2019 accessed.

[GPMT09] Irene Garrigós, Jesús Pardillo, Jose-Norberto Mazón, and Juan Trujillo.
A conceptual modeling approach for olap personalization. volume 5829,
pages 401–414, 11 2009.

[GR09] M. Golfarelli and S. Rizzi. Expressing olap preferences. SSDBM, 3:83–
91, 2009.

[GZB+13] Joao Gama, Indre Zliobaite, ALbert Bifet, Mykola Pechenizkiy, and
Abdelhamid Bouchachia. A survey on concept drift adaption. Com-
puting Surveys, 2013.

[Han15] Jiawei Han. Data Mining: Concepts and Techniques. Morgan Hauf-
mann Publishers, 2 edition, 2015.

[Her99] Michael C. Herron. Postestimation uncertainty in limited dependent
variable models. Political Analysis, 8, 1999.

[HS97] Sepp Hochreiter and Jorgen Schmidhuber. Long short-term memory.
1997.

[HTF01] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning. Springer Series in Statistics. Springer New York
Inc., 2001.

https://github.com/socrateslee/pygapbide
https://github.com/socrateslee/pygapbide


Chapter 6: References 126

[HTF09] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Elements
of Statistical Learning. Springer Series in Statistics. Springer-Verlag
New York, 2009.

[Hun07] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in
Science & Engineering, 9(3):90–95, 2007.

[Jud16] Thomas W. Judson. Abstract Algebra: theory and applications, chapter
Lattices and Boolean Algebras, pages 299–317. Orthogonal Publishing
L3C, Ann Arbor, Michigan, 2016.

[JWHT13] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshi-
rani. An Introduction to Statistical Learning with Applications in R.
Springer, New York, NY, 2013.

[KB12] Rym Khemiri and Fadila Bentayeb. User profile-driven data ware-
houese summary for adaptive olap queries. International Journal of
Database Management Systems, 4, December 2012.

[kered] Keras: high-level neural networks API python package. https://

github.com/keras-team/keras, 2019 accessed.

[KR13] Ralph Kimball and Margy Ross. The data warehouse toolkit: The
definitive guide to dimensional modeling. John Wiley & Sons, 2013.

[LBE15] Zachary C. Lipton, John Berkowitz, and Charles Elkan. A critical
review of recurrent neural networks for sequence learning. June 2015.

[LW08] Chun Li and Jianyong Wang. Efficiently mining closed subsequences
with gap constraints. volume 1, pages 313–322, 04 2008.

[Mau12] Vihinen Mauno. How to evaluate performance of prediction methods?
measures and their interpretation in variation effect analysis. BMC
Genomics, 13, 2012.

[MB12] Imene Mami and Zohra Bellahsene. A survey of view selection methods.
Acm Sigmod Record, 41(1):20–29, 2012.

[MBBF99] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean.
Boosting algorithms as gradient descent. 1999.

https://github.com/keras-team/keras
https://github.com/keras-team/keras


Chapter 6: References 127

[McK10] Wes McKinney. Data structures for statistical computing in python.
In Stéfan van der Walt and Jarrod Millman, editors, Proceedings of the
9th Python in Science Conference, pages 51 – 56, 2010.

[MH19] John Miller and Moritz Hardt. Stable recurrent models. 2019.

[MQJH15] Peter Müller, Fernando Andrés Quintana, Alejandro Jara, and Tim
Hanson. Bayesian Nonparametric Data Analysis. Springer Series in
Statistics. Springer International Publishing, 2015.

[MRBA18] Jacob Montiel, Jesse Read, Albert Bifet, and Talel Abdessalem. Scikit-
multiflow: A multi-output streaming framework. Journal of Machine
Learning Research, 19(72):1–5, 2018.

[NM17] Shu Kay Ng and Geoffrey J. McLachlan. On the identification of
correlated differential features for supervised classification of high-
dimensional data. Data Science, Studies in Classification, Data Anal-
ysis, and Knowledge Organization, pages 43–57, 2017.

[Ola15] Christopher Olah. Understanding lstm networks. Technical report,
2015.

[Oli ] Travis Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing,
2006–. [Online; accessed May 2019].

[Pag54] E. S. Page. Continuous inspection schemes. Biometrika, 41(1):100 –
115, 1954.

[Pie13] Granjon Pierre. The cusum algorithm - a small review. Technical
report, June 2013.

[PMV17] Francesco Palumbo, Angela Montanari, and Maurizio Vichi, editors.
Data Science: Innovative Developments in Data Analysis and Cluster-
ing, Studies in Classification, Data Analysis, and Knowledge Organi-
zation. Springer International Publishing, 2017.

[Pow15] David M.W. Powers. What the f-measure does not measure: Features,
flaws, fallacies, and fixes. Technical Report KIT-14-001 Computer Sci-
ence, Engineering and Mathematics, Flinders University, 2015.



Chapter 6: References 128

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

[Ram02] James B. Ramsey. Wavelets in Economics and Finance: Past and
Future, volume 6 of International Conference on Machine Learning
and Applications. The Berkeley Electronic Press, 2002.

[RJ09] Howard L. Reskinoff and Raymond O. Wells Jr. Wavelet Analysis
The Scalable Structure of Information. Springer Series in Statistics.
Springer-Verlag New York, 2009.

[RS05a] James Ramsay and B. W. Silverman. Functional Data Analysis, chap-
ter Introduction. Springer Series in Statistics. Springer-Verlag New
York, second edition, 2005.

[RS05b] James Ramsay and B. W. Silverman. Functional Data Analysis, chap-
ter From functional data to smooth functions. Springer Series in Statis-
tics. Springer-Verlag New York, second edition, 2005.

[RT08] F. Ravat and O. Teste. New trends in data warehousing and data
analysis. Personalization and OLAP Databases, 3:71–92, 2008. 1)De-
cision Support Systems for Logistics and Supply Chain Management
2)Business Intelligence and the Web.

[Sch02] Christoph Schleicher. An introduction to wavelets for economists. 2002.

[She09a] Simon J. Sheather. A Modern Approach to Regression with R, chapter
Simple Linear Regression, pages 15–43. Springer New York, New York,
NY, 2009.

[She09b] Simon J. Sheather. A Modern Approach to Regression with R, chapter
Logistic Regression, pages 263–303. Springer New York, New York,
NY, 2009.



Chapter 6: References 129

[She09c] Simon J. Sheather. A Modern Approach to Regression with R, chapter
Variable Selection, pages 227–262. Springer New York, New York, NY,
2009.

[She09d] Simon J. Sheather. A Modern Approach to Regression with R, chapter
Mixed Models, pages 331–369. Springer New York, New York, NY,
2009.

[SM09] Ronald W. Shonkwiler and Franklin Mendivil. Explorations in Monte
Carlo Methods. Undergraduate Texts in Mathematics. Springer-Verlag
New York, 2009.

[SPH19] Tomas Sabata, Juraj Eduard Pall, and Martin Holena. Deep bayesian
semi-supervised active learning for sequence labelling. 2019.

[SY17] Mukund Sundararajan and Qiqi Yan. A simple and efficient
mapreduce algorithm for data cube materialization. arXiv preprint
arXiv:1709.10072, 2017.

[Wal13] R.E. Walpole. Essentials of Probability & Statistics for Engineers &
Scientists. Pearson, 2013.

[Wel98] Howard L. ResnikoffRaymond O. WellsJr. Wavelet Analysis The Scal-
able Structure of Information. Springer, New York, NY, 1998.

[WH04] J. Wang and J. Han. Bide: efficient mining of frequent closed sequences.
In Proceedings. 20th International Conference on Data Engineering,
pages 79–90, 2004.



130

Appendix A

Queries

A.1 Query Profiles

A number of queries from the first user profile follows below; where the dimensions
denoted by letters refer to those in the four data marts depicted in figures 4.4, 4.3,
4.1 and 4.2.

Listing A.1: User profile 1 query requiring a DLU cuboid

1 SELECT U.GENDER, D.YEAR,D.MONTH, D.WEEK_DAY, AVG(NIGHTS),AVG(TOTAL_USD_AMOUNT)

2 FROM RESERVATIONS AS F

3 INNER JOIN DATE AS D ON D.DATE_ID=F.DATE_ID

4 INNER JOIN DWELLING AS temp ON temp.DWELLING_ID=F.DWELLING_ID

5 INNER JOIN LOCATION AS L ON L.LOCATION_ID=temp.LOCATION_ID

6 INNER JOIN USER AS U ON U.USER_ID=F.USER_ID

7 WHERE D.MONTH IN (’SEPTEMBER’,’OCTOBER’,’NOVEMBER’) AND L.COUNTRY_CODE IN

(’GB’,’NL’,’CA’,’US’,’DE’) and D.YEAR >=2015

8 GROUP BY

9 GENDER,

10 CUBE (D.YEAR,D.MONTH, D.WEEK_DAY)

11 ORDER BY

12 D.YEAR, D.MONTH, D.WEEK_DAY
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In the above query, a user seeks to compute the he average number of nights and
total dollar amount spent in the Fall season by users in Great Britain, Netherlands,
Canada, U.S.A, and Germany; per years after 2014 per each Fall month, and per day
of the week to facilitate analysis of dwelling demand in the fall against expectation.
Of interest to the user is: would there be weekly patterns that differ from the usual
behaviour of frequent weekend trips in the Summer? The result of the query above
enables analytical process to be carried out to answer questions like the prior.

Listing A.2: User profile 1 query benefiting from a DL cuboid

1 SELECT D.YEAR,D.QUARTER, D.MONTH, D.WEEK_DAY,L.COUNTRY,

L.CITY_TOWNSHIP,SUM(NIGHTS), SUM(TOTAL_USD_AMOUNT)

2 FROM RESERVATIONS AS F

3 INNER JOIN DATE AS D ON D.DATE_ID=F.DATE_ID

4 INNER JOIN DWELLING AS temp ON temp.DWELLING_ID=F.DWELLING_ID

5 INNER JOIN LOCATION AS L ON L.LOCATION_ID=temp.LOCATION_ID

6 WHERE D.QUARTER IN (2,3) AND L.COUNTRY_CODE IN (’GB’,’NL’,’ES’,’AUS’,’DE’) and

D.YEAR IN (2015,2016)

7 GROUP BY

8 L.COUNTRY, L.CITY_TOWNSHIP,

9 ROLLUP (D.YEAR,D.QUARTER, D.MONTH, D.WEEK_DAY)

10 -- order of parameters yields a drill down result

11 ORDER BY

12 D.YEAR, D.QUARTER, L.COUNTRY, L.CITY_TOWNSHIP

Listing A.3: User profile 1 query benefiting from a L cuboid

1 SELECT L.COUNTRY, L.STATE_PROVINCE, L.CITY_TOWNSHIP, SUM(NIGHTS),

SUM(TOTAL_USD_AMOUNT)

2 FROM RESERVATIONS AS F

3 INNER JOIN DWELLING_BRIDGE AS B ON B.DWELLING_ID=F.DWELLING_ID

4 INNER JOIN LOCATION AS L ON L.LOCATION_ID=B.LOCATION_ID

5 GROUP BY

6 ROLLUP ( L.CITY_TOWNSHIP, L.STATE_PROVINCE, L.COUNTRY)

7 -- order of parameters yields a roll up result

8 ORDER BY

9 L.COUNTRY
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Listing A.4: User profile 1 query benefiting from a UW cuboid

1 SELECT U.GENDER, W.TYPE, W.NUMBER_BEDROOMS, DATEDIFF(YEAR, U.BIRTHDATE,

CURRENT_DATE) AS AGE , COUNT(F.USER_ID), AVG(NIGHTS),

AVG(TOTAL_USD_AMOUNT)

2 FROM RESERVATIONS AS F

3 INNER JOIN DWELLING AS W ON W.DWELLING_ID=F.DWELLING_ID

4 INNER JOIN USER AS U ON U.USER_ID=F.USER_ID

5 WHERE

6 GROUP BY

7 GENDER, DATEDIFF(YEAR, U.BIRTHDATE, CURRENT_DATE),

8 CUBE (W.TYPE, W.NUMBER_BEDROOMS)

9 ORDER BY AGE DESC

10 -- Historical dwelling preferences across demographics.

The second user group profile:

Listing A.5: User profile 2 query benefiting from a W cuboid

1 SELECT W.TYPE, W.NUMBER_BEDROOMS, W.CAPACITY, COUNT(W.DWELLING_ID),

SUM(NUMBER_OF_PEOPLE) SUM(NIGHTS), SUM(TOTAL_USD_AMOUNT)

2 FROM RESERVATIONS AS F

3 INNER JOIN DWELLING AS W ON W.DWELLING_ID=F.DWELLING_ID

4 GROUP BY

5 ROLLUP (W.TYPE, W.NUMBER_BEDROOMS, W.CAPACITY)

6 ORDER BY W.TYPE

Listing A.6: User profile 2 query benefiting from a P cuboid

1 SELECT P.TYPE,AVG(DURATION_IN_MINUTES), MAX(DURATION_IN_MINUTES),

2 FROM SESSIONS AS F

3 INNER JOIN ACTION AS P ON P.ACTION_ID=F.ACTION_ID

4 WHERE CLIENT_FACING=’Y’ AND P.CLASS IS NOT IN (’click’,’submit’)

5 GROUP BY

6 P.TYPE

7 ORDER BY P.TYPE

8 LIMIT 10



Chapter A: Queries 133

Listing A.7: User profile 2 query benefiting from a SU cuboid

1 SELECT GENDER, DATEDIFF(YEAR, U.BIRTHDATE, CURRENT_DATE) AS AGE, S.PROVIDER,

COUNT(USER_ID)

2 FROM SIGNUP AS F

3 INNER JOIN AFFILIATE AS S ON S.AFFILIATE_ID=F.AFFILIATE_ID

4 INNER JOIN USER AS U ON U.USER_ID=F.USER_ID

5 WHERE S.CHANNEL != ’direct’

6 GROUP BY

7 GENDER,

8 CUBE(AGE, PROVIDER)

9 /*To measure the way users are directed to signup on the app, in order to make

reservations. A provider takes values: google, other, craigslist,

instagram, and some others. Is the target audience for the app’s marketing

on different providers consistent with the marketing hypothesis of which

platform to target certain demographics?*/

Listing A.8: User profile 2 query benefiting from a UW cuboid

1 SELECT CLIENT_FACING,P.TYPE,T.PART_OF_DAY, AM_PM, AVG(DURATION_IN_MINUTES),

MAX(DURATION_IN_MINUTES),

2 FROM SESSIONS AS F

3 INNER JOIN ACTION AS P ON P.ACTION_ID=F.ACTION_ID

4 INNER JOIN USER AS U ON U.USER_ID=F.USER_ID

5 INNER JOIN TIME_OF_DAY AS T ON T.TIME_ID=F.TIME_ID

6 WHERE P.CLASS IN (’unavailabilities’,’ajax_country_options’,

’similar_listings’)

7 GROUP BY

8 CLIENT_FACING,

9 ROLLUP(AM_PM,T.PART_OF_DAY,P.TYPE)

10 /*Here the duration between app users and company analytics’ users at

different parts of the day (morning, afternoon, evening, night) is

aggregated as an average and the upper bound. This prepares a data set to

contrast traffic of clients and company analysts’ querying similar data

marts.*/
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Table A.1: Legend for referring to dimensions or views.

Letter Symbol Data Referenced
U User Dimension
T Time Dimension
L Location Dimension
D Date Dimension
W Dwelling Dimension
H Promotion Dimension
P Action Dimension
S Affiliate Dimension
M End Date role playing view of date dimension for reservations.
R End Time role playing view of date dimension for reservations.
C Visitor Contacts Bridge View of non-registered users.

Table A.2: Query distribution and cuboid association per profile.

Profile Query ID Cuboid Mean Variance Probability
1st 38 DLU 143 56 0.03
1st 20 DLU 5 4 0.07
1st 37 L 5 3 0.08
1st 2 UW 16 3 0.09
1st 9 DL 13 5 0.1
1st 50 DL 4 2 0.13
1st 12 UW 15 7 0.2
1st 32 L 8 4 0.3
2nd 1 PTU 28 33 0.01
2nd 14 SU 29 14 0.02
2nd 39 PTU 46 16 0.03
2nd 3 SU 5 4 0.04
2nd 34 W 7 3 0.04

Continued on next page
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Table A.2 – continued from previous page
Profile Query ID Cuboid Mean Variance Probability
2nd 23 W 6 3 0.05
2nd 43 PTU 14 3 0.11
2nd 17 P 7 2 0.13
2nd 11 SU 8 9 0.19
2nd 19 P 8 4 0.19
2nd 4 W 8 5 0.19
3rd 33 M 6 3 0.01
3rd 1 PTU 28 8 0.01
3rd 5 LT 12 4 0.01
3rd 34 W 7 2 0.02
3rd 37 L 5 3 0.02
3rd 9 DL 13 7 0.03
3rd 36 LT 3 5 0.05
3rd 50 DL 4 4 0.07
3rd 11 SU 8 4 0.13
3rd 10 M 8 5 0.13
3rd 12 UW 15 12 0.2
3rd 45 DHL 8 13 0.32
4th 26 MU 6 2 0.01
4th 41 L 8 2 0.01
4th 14 SU 29 14 0.01
4th 23 W 6 3 0.01
4th 37 L 5 3 0.01
4th 21 U 1 2 0.02
4th 18 CDL 5 3 0.03
4th 17 P 7 2 0.04
4th 13 U 7 3 0.05
4th 30 LR 23 13 0.06
4th 6 CDLU 38 16 0.07
4th 46 CDLU 2 1 0.08
4th 42 LT 5 5 0.14

Continued on next page
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Table A.2 – continued from previous page
Profile Query ID Cuboid Mean Variance Probability
4th 15 LT 10 5 0.21
4th 28 TU 8 9 0.25
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Appendix B

Analysis Data

B.1 Stacked Ensemble: Meta-Classifier

Configurations

Here we show hyper-parameters and settings used during experimentation.

Listing B.1: configuration 1 of GBR

1 import pandas as pd

2 from sklearn.ensemble import GradientBoostingRegressor

3 from verstack.stratified_continuous_split import scsplit

4 #test size is 30% of data, using the full feature data set; next example shows

a reduced set eliminating redundant variables improved the R^2 score

(regression fit score).

5 X_train, X_test, y_train, y_test = scsplit(X, y, stratify = y, test_size=0.3)

6 reg = GradientBoostingRegressor(learning_rate=0.13, max_depth=8, loss=’lad’,

n_estimators=250, criterion=’friedman_mse’)

7 #r^2 score: 0.6405120302906603

Listing B.2: configuration 2 of GBR

1 #Using a reduced set of features informed by a similar graphic for the first

configuration, this new set appears in Figure \ref{fig: feature
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importance}.

2 import pandas as pd

3 from sklearn.ensemble import GradientBoostingRegressor

4 from verstack.stratified_continuous_split import scsplit

5 X_train, X_test, y_train, y_test = scsplit(X, y, stratify = y, test_size=0.3)

6 reg = GradientBoostingRegressor(learning_rate=0.1345, max_depth=8, loss=’lad’,

n_estimators=300, criterion=’friedman_mse’)

7 #r^2 score: 0.7036641906025125

8 #using a 20% test set size, r^2 score: 0.7260587896054838

B.2 Measurements for Analysis

Remaining pages are the five data sheets which served as inputs into the analysis de-
tailed in Chapter 5 and shown in the critical distance graphs for comparing significant
differences among the approaches on the three measures for performance. The first
iteration for set 1 began on day 4 of the time series, the first four days of data were
for the initial training set. For set 2 the first iteration marks day 5 of the time series
of total 39 days. Similarly in set 3, of the 99 day total time series the first iteration
begins on day 4 leaving the 95 days of data to make up the test set.



Iteration

BBB w/ 

noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

noCD

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

noCD

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

1 0.85 0.85 0.85 0.85 0.86 0.9 0.86 0.86 0.92 0.92 0.92 0.92

2 0.97 0.97 0.97 0.97 0.9 0.97 0.9 0.9 0.8 0.8 0.8 0.8

3 0.91 0.91 0.91 0.91 0.94 1 0.94 0.94 1 1 1 1

4 1 1 1 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 0.97 1 1 0.87 0.87 0.87 0.87

6 0.96 0.96 0.96 0.96 0.88 0.89 0.88 0.88 0.62 0.62 0.62 0.62

7 0.72 0.72 0.72 0.72 0.79 0.9 0.79 0.79 0.82 0.82 0.82 0.82

8 0.71 0.81 0.81 0.71 0.8 0.88 0.8 0.8 0.81 0.92 0.92 0.88

9 0.68 0.78 0.78 0.68 0.78 0.88 0.78 0.78 1 0.96 1 1

10 0.77 0.77 0.77 0.77 0.77 0.88 0.77 0.77 1 0.96 1 1

11 0.77 0.77 0.77 0.77 0.77 0.87 0.77 0.77 1 1 1 1

12 0.75 1 1 0.75 0.75 0.86 0.75 0.75 0.96 0.9 0.96 0.96

13 0.74 0.96 0.96 0.74 0.74 0.85 0.74 0.74 0.92 0.87 0.92 0.91

14 0.72 0.91 0.91 0.72 0.71 0.9 0.91 0.71 0.9 0.89 0.91 0.91

15 0.68 0.89 0.89 0.68 0.88 1 0.88 0.88 0.87 0.87 0.87 1

16 0.75 1 1 0.75 0.87 0.8 1 0.87 0.8 0.8 0.81 0.81

17 0.75 0.8 0.8 0.75 0.76 0.74 0.8 0.76 0.74 0.74 0.74 0.74

18 0.75 0.74 0.74 0.74 0.74 1 0.74 0.74 1 1 1 1

19 1 1 1 1 1 0.2 1 1 0.98 0.22 0 0.98

20 0.98 0.2 0.2 0.2 0.1 0.99 0.1 0.1 0.99 0.99 0.01 0.99

21 0.99 0.99 0.99 0 0 0.98 0.99 0 0.9 0.69 0.79 0.9

22 0.9 0.92 0.92 0.44 0.21 1 0.98 0.21 0.98 1 1 0.28

23 0.98 0.99 0.99 0.52 0.98 0.99 1 0.98 0.67 0.99 0.99 0.99

24 0.99 0.99 0.99 0.65 0.99 1 0.99 0.99 1 1 1 1

25 1 1 1 1 1 1 1 1 1 1 1 1

26 1 1 1 1 1 1 1 1 1 1 1 1

Comparison of the KPI across all approaches on data set 1
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Iteration

BBB w/ 

noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

noCD

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

noCD

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

1 0.92 0.87 0.92 0.92 0.77 0.77 0.77 0.77 0.89 0.89 0.89 0.89

2 0.85 0.81 0.85 0.85 0.83 0.83 0.83 0.83 0.78 0.78 0.78 0.83

3 0.88 0.85 0.88 0.88 0.8 0.8 0.8 0.8 0.72 0.72 0.72 0.72

4 0.77 0.71 0.77 0.77 0.71 0.71 0.71 0.71 0.6 0.6 0.16 0.6

5 0.63 0.56 0.63 0.63 0.69 0.63 0.63 0.69 0.56 0.67 0.86 0.56

6 0.81 0.78 0.72 0.81 0.83 0.76 0.77 0.83 0.85 0.81 0.83 0.85

7 0.78 0.74 0.82 0.78 0.85 0.74 0.79 0.85 0.71 0.75 0.76 0.71

8 0.65 0.6 0.71 0.65 0.78 0.74 0.76 0.78 0.76 0.65 0.72 0.76

9 0.67 0.65 0.81 0.67 0.78 0.7 0.69 0.73 0.76 0.77 0.71 0.84

10 0.6 0.72 0.86 0.6 0.72 0.68 0.68 0.72 0.77 0.79 0.75 0.52

11 0.53 0.81 0.82 0.53 0.66 0.64 0.66 0.66 0.52 0.51 0.62 0.59

12 0.66 0.67 0.68 0.66 0.76 0.73 0.66 0.76 0.66 0.73 0.55 0.67

13 0.72 0.75 0.79 0.72 0.77 0.66 0.66 0.77 0.68 0.76 0.73 0.65

14 0.69 0.82 0.76 0.69 0.73 0.69 0.71 0.75 0.74 0.75 0.73 0.75

15 0.75 0.78 0.73 0.75 0.69 0.59 0.73 0.65 0.76 0.71 0.74 0.65

16 0.73 0.79 0.63 0.73 0.73 0.78 0.78 0.69 0.84 0.79 0.53 0.81

17 0.62 0.71 0.78 0.62 0.75 0.72 0.72 0.75 0.82 0.75 0.52 0.74

18 0.77 0.78 0.82 0.77 0.79 0.7 0.7 0.79 0.73 0.82 0.53 0.73

19 0.81 0.71 0.8 0.81 0.81 0.75 0.76 0.76 0.79 0.8 0.31 0.74

20 0.85 0.75 0.77 0.85 0.78 0.77 0.78 0.71 0.67 0.59 0.27 0.48

21 0.67 0.68 0.87 0.61 0.8 0.8 0.8 0.72 0.85 0.88 0.88 0.86

22 0.77 0.73 0.83 0.84 0.85 0.85 0.64 0.73 0.89 0.89 0.86 0.8

23 0.77 0.81 0.88 0.9 0.78 0.78 0.69 0.75 0.67 0.74 0.74 0.74

24 0.69 0.67 0.73 0.73 0.68 0.65 0.65 0.68 0.65 0.65 0.57 0.77

25 0.74 0.58 0.64 0.64 0.71 0.67 0.67 0.71 0.7 0.81 0.69 0.74

26 0.67 0.6 0.69 0.73 0.74 0.69 0.69 0.74 0.73 0.84 0.6 0.83

27 0.79 0.74 0.65 0.79 0.85 0.77 0.77 0.85 0.82 0.84 0.26 0.84

28 0.83 0.64 0.8 0.79 0.83 0.72 0.72 0.83 0.78 0.77 0.77 0.77

29 0.69 0.53 0.71 0.74 0.78 0.64 0.78 0.64 0.76 0.77 0.81 0.8

Comparison of the KPI across all approaches on data set 2
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Iteration

BBB w/ 

noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

noCD

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

noCD

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

30 0.77 0.73 0.77 0.79 0.79 0.63 0.63 0.63 0.8 0.81 0.81 0.93

31 0.91 0.81 0.8 0.8 0.82 0.6 0.7 0.82 0.79 0.81 0.81 0.91

32 0.91 0.77 0.79 0.79 0.8 0.67 0.8 0.8 0.83 0.81 0.81 0.8

33 0.82 0.79 0.79 0.77 0.73 0.71 0.75 0.67 0.83 0.76 0.77 0.78

34 0.73 0.73 0.78 0.83 0.73 0.73 0.7 0.69 0.83 0.83 0.83 0.83
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Iteration

BBB w/ 

noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

noCD

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

noCD

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

1 0.92 0.92 0.92 0.92 0.77 0.77 0.77 0.77 0.89 0.89 0.89 0.89

2 0.85 0.85 0.85 0.85 0.83 0.83 0.83 0.83 0.78 0.78 0.78 0.78

3 0.88 0.88 0.88 0.88 0.8 0.8 0.8 0.8 0.72 0.72 0.72 0.72

4 0.77 0.77 0.77 0.77 0.71 0.71 0.71 0.71 0.6 0.6 0.6 0.6

5 0.63 0.63 0.63 0.63 0.69 0.63 0.63 0.69 0.56 0.67 0.67 0.56

6 0.81 0.72 0.72 0.81 0.83 0.76 0.77 0.83 0.85 0.81 0.81 0.85

7 0.78 0.86 0.82 0.78 0.85 0.74 0.79 0.85 0.69 0.75 0.75 0.71

8 0.65 0.73 0.71 0.65 0.78 0.74 0.76 0.78 0.76 0.65 0.65 0.76

9 0.67 0.8 0.81 0.67 0.78 0.7 0.69 0.73 0.87 0.79 0.49 0.87

10 0.6 0.79 0.86 0.6 0.72 0.68 0.68 0.72 0.82 0.78 0.74 0.82

11 0.53 0.82 0.82 0.53 0.66 0.64 0.66 0.66 0.63 0.58 0.55 0.67

12 0.66 0.68 0.68 0.66 0.76 0.73 0.66 0.76 0.81 0.82 0.66 0.8

13 0.72 0.8 0.79 0.72 0.77 0.66 0.66 0.77 0.81 0.81 0.3 0.76

14 0.69 0.81 0.76 0.69 0.73 0.69 0.71 0.75 0.77 0.76 0.65 0.76

15 0.75 0.77 0.73 0.75 0.69 0.59 0.73 0.65 0.81 0.77 0.65 0.74

16 0.73 0.81 0.63 0.73 0.73 0.78 0.78 0.69 0.81 0.81 0.61 0.69

17 0.62 0.85 0.78 0.62 0.75 0.72 0.72 0.75 0.63 0.81 0.42 0.76

18 0.77 0.81 0.82 0.77 0.79 0.7 0.7 0.79 0.81 0.74 0.25 0.74

19 0.81 0.74 0.8 0.81 0.81 0.75 0.76 0.76 0.79 0.85 0.55 0.79

20 0.85 0.81 0.77 0.85 0.78 0.77 0.78 0.71 0.76 0.76 0.7 0.52

21 0.67 0.83 0.87 0.61 0.8 0.8 0.8 0.72 0.84 0.86 0.52 0.86

22 0.77 0.85 0.83 0.84 0.85 0.85 0.64 0.73 0.89 0.89 0.8 0.9

23 0.77 0.9 0.88 0.9 0.78 0.78 0.69 0.75 0.74 0.74 0.74 0.77

24 0.69 0.74 0.73 0.73 0.68 0.65 0.65 0.68 0.77 0.71 0.63 0.67

25 0.74 0.7 0.64 0.64 0.71 0.67 0.67 0.71 0.67 0.7 0.53 0.7

26 0.67 0.74 0.69 0.73 0.74 0.69 0.69 0.74 0.79 0.75 0.79 0.73

27 0.79 0.79 0.65 0.79 0.85 0.77 0.77 0.85 0.84 0.85 0.84 0.82

28 0.83 0.75 0.8 0.79 0.83 0.72 0.72 0.83 0.69 0.77 0.77 0.77

29 0.69 0.67 0.71 0.74 0.78 0.64 0.78 0.64 0.79 0.8 0.77 0.76

Comparison of the KPI across all approaches on data set 3
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Iteration

BBB w/ 

noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

noCD

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

noCD

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

30 0.77 0.76 0.77 0.79 0.79 0.63 0.63 0.63 0.61 0.83 0.8 0.8

31 0.91 0.81 0.8 0.8 0.82 0.6 0.7 0.82 0.81 0.81 0.81 0.81

32 0.91 0.8 0.79 0.79 0.8 0.67 0.8 0.8 0.77 0.76 0.8 0.77

33 0.82 0.83 0.79 0.77 0.73 0.71 0.75 0.67 0.79 0.83 0.79 0.79

34 0.73 0.83 0.78 0.83 0.73 0.73 0.7 0.69 0.82 0.83 0.82 0.82

35 0.82 0.83 0.82 0.83 0.73 0.75 0.68 0.68 0.85 0.84 0.85 0.85

36 0.87 0.84 0.84 0.82 0.82 0.82 0.69 0.69 0.92 0.91 0.92 0.92

37 0.85 0.92 0.91 0.91 0.89 0.88 0.88 0.74 0.9 0.66 0.9 0.89

38 0.92 0.9 0.9 0.89 0.86 0.7 0.7 0.86 0.89 0.9 0.9 0.89

39 0.85 0.89 0.89 0.88 0.85 0.84 0.84 0.85 0.91 0.91 0.91 0.91

40 0.8 0.91 0.91 0.9 0.83 0.83 0.83 0.83 0.94 0.96 0.96 0.96

41 0.74 0.95 0.95 0.95 0.85 0.84 0.84 0.84 0.85 0.88 0.87 0.86

42 0.62 0.85 0.85 0.87 0.76 0.75 0.75 0.76 0.69 0.76 0.7 0.69

43 0.67 0.69 0.69 0.71 0.74 0.74 0.74 0.74 0.67 0.79 0.77 0.72

44 0.62 0.87 0.86 0.81 0.81 0.8 0.8 0.81 0.62 0.71 0.24 0.68

45 0.56 0.89 0.9 0.85 0.78 0.76 0.76 0.74 0.85 0.86 0.12 0.81

46 0.79 0.85 0.86 0.79 0.82 0.8 0.8 0.78 0.84 0.88 0.9 0.79

47 0.76 0.87 0.88 0.82 0.85 0.83 0.83 0.83 0.87 0.86 0.86 0.8

48 0.75 0.83 0.86 0.79 0.83 0.77 0.77 0.77 0.77 0.8 0.8 0.59

49 0.71 0.79 0.81 0.72 0.77 0.67 0.67 0.67 0.72 0.73 0.72 0.68

50 0.69 0.74 0.78 0.68 0.73 0.6 0.6 0.61 0.74 0.75 0.18 0.59

51 0.63 0.74 0.82 0.74 0.76 0.7 0.7 0.63 0.84 0.79 0.63 0.7

52 0.67 0.82 0.82 0.75 0.79 0.62 0.62 0.62 0.92 0.76 0.69 0.61

53 0.79 0.92 0.85 0.81 0.84 0.75 0.75 0.64 0.93 0.74 0.88 0.86

54 0.8 0.92 0.86 0.81 0.85 0.75 0.75 0.64 0.97 0.91 0.95 0.91

55 0.85 0.97 0.9 0.87 0.9 0.79 0.8 0.68 0.94 0.92 0.89 0.91

56 0.82 0.94 0.91 0.88 0.88 0.78 0.78 0.67 0.93 0.94 0.88 0.93

57 0.92 0.93 0.93 0.92 0.91 0.8 0.8 0.67 0.88 0.87 0.84 0.86

58 0.77 0.81 0.84 0.83 0.82 0.72 0.71 0.61 0.65 0.66 0.63 0.71

59 0.61 0.67 0.71 0.73 0.68 0.64 0.64 0.61 0.67 0.69 0.8 0.66

60 0.66 0.81 0.69 0.87 0.79 0.78 0.78 0.76 0.76 0.72 0.82 0.76

61 0.72 0.78 0.75 0.79 0.8 0.8 0.8 0.76 0.78 0.7 0.79 0.78

62 0.77 0.78 0.78 0.8 0.8 0.77 0.77 0.47 0.85 0.73 0.88 0.85
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Iteration

BBB w/ 

noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

noCD

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

noCD

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

63 0.79 0.87 0.85 0.83 0.86 0.81 0.82 0.45 0.85 0.83 0.92 0.89

64 0.7 0.9 0.9 0.87 0.79 0.68 0.65 0.17 0.83 0.68 0.87 0.83

65 0.56 0.84 0.84 0.82 0.67 0.66 0.68 0.22 0.69 0.7 0.69 0.7

66 0.72 0.71 0.71 0.74 0.78 0.7 0.7 0.36 0.8 0.75 0.79 0.68

67 0.74 0.81 0.81 0.78 0.79 0.73 0.69 0.39 0.84 0.73 0.84 0.86

68 0.71 0.85 0.85 0.85 0.74 0.63 0.66 0.38 0.76 0.76 0.76 0.76

69 0.73 0.77 0.77 0.76 0.7 0.58 0.67 0.27 0.76 0.68 0.69 0.81

70 0.76 0.81 0.81 0.77 0.74 0.79 0.76 0.24 0.64 0.69 0.63 0.89

71 0.64 0.87 0.87 0.8 0.76 0.82 0.73 0.19 0.85 0.82 0.31 0.79

72 0.79 0.82 0.82 0.84 0.8 0.81 0.62 0.59 0.46 0.78 0.63 0.7

73 0.74 0.72 0.72 0.79 0.75 0.73 0.73 0.65 0.77 0.84 0.7 0.82

74 0.84 0.79 0.79 0.83 0.74 0.72 0.75 0.67 0.86 0.85 0.66 0.89

75 0.85 0.84 0.84 0.84 0.75 0.8 0.8 0.77 0.82 0.8 0.77 0.86

76 0.8 0.86 0.86 0.82 0.69 0.71 0.71 0.67 0.84 0.84 0.72 0.78

77 0.81 0.86 0.86 0.83 0.72 0.73 0.73 0.68 0.83 0.85 0.69 0.81

78 0.81 0.86 0.86 0.82 0.71 0.78 0.69 0.68 0.81 0.82 0.46 0.74

79 0.8 0.85 0.85 0.83 0.71 0.7 0.69 0.55 0.74 0.67 0.52 0.67

80 0.73 0.73 0.73 0.74 0.65 0.64 0.64 0.54 0.79 0.67 0.61 0.72

81 0.75 0.79 0.79 0.75 0.71 0.72 0.71 0.64 0.8 0.76 0.29 0.77

82 0.81 0.85 0.85 0.83 0.76 0.72 0.74 0.67 0.79 0.76 0.83 0.77

83 0.8 0.83 0.83 0.81 0.76 0.74 0.74 0.7 0.86 0.81 0.84 0.83

84 0.82 0.85 0.85 0.82 0.75 0.75 0.77 0.7 0.84 0.78 0.84 0.78

85 0.79 0.83 0.83 0.8 0.7 0.7 0.72 0.64 0.83 0.76 0.83 0.75

86 0.78 0.83 0.83 0.73 0.67 0.68 0.68 0.64 0.69 0.7 0.67 0.81

87 0.72 0.79 0.79 0.73 0.67 0.69 0.69 0.57 0.66 0.7 0.66 0.77

88 0.66 0.73 0.73 0.7 0.67 0.65 0.65 0.57 0.6 0.6 0.66 0.73

89 0.56 0.73 0.73 0.66 0.65 0.63 0.63 0.54 0.61 0.75 0.37 0.74

90 0.56 0.74 0.74 0.69 0.67 0.63 0.6 0.51 0.6 0.72 0.73 0.76

91 0.6 0.76 0.76 0.7 0.68 0.67 0.65 0.59 0.79 0.67 0.77 0.9

92 0.77 0.9 0.9 0.77 0.7 0.7 0.7 0.62 0.82 0.9 0.9 0.89

93 0.77 0.89 0.89 0.77 0.73 0.72 0.79 0.67 0.88 0.89 0.89 0.87

94 0.73 0.86 0.86 0.83 0.77 0.74 0.74 0.7 0.89 0.89 0.89 0.89

95 0.74 0.88 0.88 0.87 0.78 0.77 0.77 0.74 0.93 0.95 0.95 0.95
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Iteration noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

1 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0 1 1 0

4 0 0 0 0 1 1 0 1 1 0

5 0 1 1 0 1 1 0 1 1 0

6 0 1 1 0 0 0 0 0 0 0

7 0 0 0 0 1 0 0 0 0 0

8 0 1 1 0 1 0 1 1 1 0

9 0 0 0 0 1 1 0 0 1 1

10 0 0 0 0 1 1 0 0 1 0

11 0 0 0 0 1 1 0 1 1 0

12 0 1 1 0 1 1 0 0 1 0

13 0 0 0 0 1 1 1 0 1 0

14 0 0 0 0 1 1 0 0 1 1

15 0 0 1 0 1 1 0 0 1 0

16 0 0 1 0 0 0 0 0 1 0

17 0 0 0 0 1 1 0 0 1 0

18 0 0 0 0 1 1 1 1 1 0

19 0 1 0 0 0 0 0 0 1 0

20 0 0 0 1 0 0 0 0 1 0

21 0 0 0 0 0 0 0 0 1 0

22 0 0 0 0 0 1 0 0 0 1

23 0 0 0 1 0 1 0 1 1 0

24 0 1 1 0 1 1 0 1 1 0

25 0 1 1 0 1 1 0 1 1 0

26 0 1 1 0 1 1 0 0 0 0

27 0 0 1 0 0 0 0 0 0 0

28 0 0 0 1 1 1 1 0 0 1

29 0 1 1 0 1 0 0 0 0 0

30 0 0 0 0 1 1 0 0 0 0

31 0 0 0 1 1 1 0 0 0 0

Set 3 comparison of daily change detection flag
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Iteration noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

32 0 0 0 0 1 0 1 0 0 0

33 0 0 0 0 1 0 0 0 0 0

34 0 0 0 0 1 1 0 0 0 0

35 0 0 0 0 0 1 0 0 0 0

36 0 0 0 0 0 1 0 0 0 0

37 0 0 0 0 0 0 0 1 0 0

38 0 0 0 0 1 1 0 0 0 0

39 0 0 0 0 0 0 1 0 0 0

40 0 0 0 0 0 0 0 0 0 0

41 0 0 0 0 0 0 0 0 0 0

42 0 0 0 0 0 0 0 0 1 0

43 0 1 1 0 1 1 0 0 0 0

44 0 0 0 0 0 0 0 1 1 0

45 0 0 0 0 0 0 0 0 1 0

46 0 0 0 0 0 0 0 0 0 0

47 0 0 0 0 0 0 0 0 0 0

48 0 0 0 1 0 0 1 0 0 0

49 0 0 0 0 1 1 0 1 1 0

50 0 1 0 0 1 1 0 0 1 0

51 0 1 0 0 1 1 0 0 1 0

52 0 0 0 0 1 1 0 0 1 0

53 0 0 0 1 0 0 0 1 0 0

54 0 0 0 0 0 0 0 0 0 0

55 0 0 0 0 0 0 0 0 0 1

56 0 0 0 0 0 0 0 0 0 0

57 0 0 0 0 0 0 0 0 0 0

58 0 0 0 0 1 1 0 1 1 0

59 0 1 1 0 1 1 0 1 0 0

60 0 0 1 0 0 0 0 1 0 0

61 0 0 0 0 0 0 1 1 0 1

62 0 0 0 1 0 0 0 1 0 0

63 0 0 0 0 0 0 0 0 0 0
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Iteration noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

64 0 0 0 0 1 1 0 1 0 0

65 0 0 0 0 1 1 0 1 1 0

66 0 1 1 0 1 1 0 0 0 0

67 0 0 0 0 1 1 0 1 0 0

68 0 0 0 0 1 1 0 0 0 0

69 0 0 0 1 1 1 0 1 1 1

70 0 0 0 0 0 0 0 1 1 0

71 0 0 0 0 0 1 0 0 1 0

72 0 0 0 0 0 1 0 0 1 0

73 0 1 1 0 1 1 0 0 1 0

74 0 0 0 0 1 0 0 0 1 0

75 0 0 0 0 0 0 0 0 0 1

76 0 0 0 0 1 1 0 0 1 0

77 0 0 0 0 1 1 0 0 1 0

78 0 0 0 0 0 1 0 0 1 0

79 0 0 0 0 1 1 0 1 1 0

80 0 1 1 0 1 1 0 1 1 0

81 0 0 0 0 1 1 0 0 1 0

82 0 0 0 0 1 1 0 0 0 1

83 0 0 0 0 1 1 0 0 0 0

84 0 0 0 0 0 0 0 0 0 0

85 0 0 0 1 1 1 0 0 0 0

86 0 0 0 0 1 1 0 1 1 0

87 0 0 0 0 1 1 0 1 1 0

88 0 1 1 0 1 1 0 1 1 0

89 0 1 1 0 1 1 0 0 1 0

90 0 1 1 0 1 1 0 1 1 0

91 0 0 0 0 1 1 0 1 0 0

92 0 0 0 0 1 1 0 0 0 1

93 0 0 0 1 1 0 0 0 0 0

94 0 0 0 0 1 1 0 0 0 0

95 0 0 0 0 0 0 0 0 0 0
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Iteration noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

1 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140

2 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140

3 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140

4 1140 1140 1140 1140 1140 1140 1140 1174 1174 1140

5 1140 1140 1140 1140 1186 1186 1140 1350 1350 1140

6 1140 1277 1277 1140 1328 1328 1140 1458 1458 1140

7 1140 1315 1315 1140 1328 1328 1140 1458 1458 1140

8 1140 1315 1315 1140 1341 1328 1140 1458 1458 1140

9 1140 1341 1368 1140 1354 1328 1174 1140 1140 1140

10 1140 1140 1140 1140 1140 1140 1140 1140 1436 1277

11 1140 1140 1140 1140 1220 1220 1140 1140 1450 1277

12 1140 1140 1140 1140 1354 1330 1140 1334 1710 1277

13 1140 1220 1220 1140 1381 1450 1140 1334 1710 1277

14 1140 1220 1220 1140 1505 1580 1163 1334 1710 1277

15 1140 1220 1220 1140 1595 1643 1163 1334 1710 1290

16 1140 1220 1244 1140 1710 1676 1163 1140 1140 1140

17 1140 1140 1140 1140 1140 1140 1140 1140 1300 1140

18 1140 1140 1140 1140 1174 1174 1140 1140 1710 1140

19 1140 1140 1140 1140 1233 1233 1186 1151 1710 1140

20 1140 1151 1140 1140 1233 1233 1186 1151 1710 1140

21 1140 1151 1140 1254 1233 1233 1186 1151 1710 1140

22 1140 1151 1140 1254 1233 1233 1186 1151 1710 1140

23 1140 1151 1140 1254 1233 1369 1186 1140 1140 1140

24 1140 1140 1140 1140 1140 1140 1140 1151 1151 1140

25 1140 1151 1163 1140 1254 1254 1140 1197 1289 1140

26 1140 1209 1291 1140 1354 1354 1140 1257 1573 1140

27 1140 1221 1368 1140 1435 1435 1140 1257 1573 1140

28 1140 1221 1505 1140 1435 1435 1140 1257 1573 1140

29 1140 1221 1505 1186 1478 1478 1231 1257 1573 1163

Set 3 comparison of daily scale allocated memory
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Iteration noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

30 1140 1319 1565 1186 1641 1478 1231 1140 1140 1140

31 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140

32 1140 1140 1140 1197 1311 1140 1140 1140 1140 1140

33 1140 1140 1140 1197 1416 1197 1197 1140 1140 1140

34 1140 1140 1140 1197 1473 1197 1197 1140 1140 1140

35 1140 1140 1140 1197 1502 1257 1197 1140 1140 1140

36 1140 1140 1140 1197 1502 1345 1197 1140 1140 1140

37 1140 1140 1140 1197 1502 1426 1197 1140 1140 1140

38 1140 1140 1140 1140 1140 1140 1140 1243 1140 1140

39 1140 1140 1140 1140 1197 1197 1140 1243 1140 1140

40 1140 1140 1140 1140 1197 1197 1254 1243 1140 1140

41 1140 1140 1140 1140 1197 1197 1254 1243 1140 1140

42 1140 1140 1140 1140 1197 1197 1254 1243 1140 1140

43 1140 1140 1140 1140 1197 1197 1254 1243 1197 1140

44 1140 1208 1208 1140 1209 1209 1254 1140 1140 1140

45 1140 1140 1140 1140 1140 1140 1140 1186 1710 1140

46 1140 1140 1140 1140 1140 1140 1140 1186 1710 1140

47 1140 1140 1140 1140 1140 1140 1140 1186 1710 1140

48 1140 1140 1140 1140 1140 1140 1140 1186 1710 1140

49 1140 1140 1140 1186 1140 1140 1163 1186 1710 1140

50 1140 1140 1140 1186 1231 1231 1163 1210 1710 1140

51 1140 1151 1140 1186 1416 1416 1163 1140 1140 1140

52 1140 1140 1140 1140 1140 1140 1140 1140 1277 1140

53 1140 1140 1140 1140 1288 1288 1140 1140 1354 1140

54 1140 1140 1140 1208 1288 1288 1140 1151 1354 1140

55 1140 1140 1140 1208 1288 1288 1140 1151 1354 1140

56 1140 1140 1140 1208 1288 1288 1140 1151 1354 1322

57 1140 1140 1140 1208 1288 1288 1140 1151 1354 1322

58 1140 1140 1140 1208 1288 1288 1140 1140 1140 1140

59 1140 1140 1140 1140 1140 1140 1140 1243 1277 1140

60 1140 1231 1186 1140 1265 1265 1140 1318 1277 1140

61 1140 1231 1257 1140 1265 1265 1140 1358 1277 1140

62 1140 1231 1257 1140 1265 1265 1151 1426 1277 1174
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Iteration noCD

BBB w/ 

naive

BBB w/ 

ddm

BBB w/ 

eddm

GB w/ 

naive

GB w/ 

ddm

GB w/ 

eddm

LSTM w/ 

naive

LSTM w/ 

ddm

LSTM w/ 

eddm

63 1140 1231 1257 1197 1265 1265 1151 1455 1277 1174

64 1140 1231 1257 1197 1265 1265 1151 1455 1277 1174

65 1140 1231 1257 1197 1354 1392 1151 1140 1140 1140

66 1140 1140 1140 1140 1140 1140 1140 1197 1208 1140

67 1140 1186 1186 1140 1197 1197 1140 1197 1208 1140

68 1140 1186 1186 1140 1221 1269 1140 1221 1208 1140

69 1140 1186 1186 1140 1368 1383 1140 1221 1208 1140

70 1140 1186 1186 1151 1601 1494 1140 1306 1280 1208

71 1140 1186 1186 1151 1601 1494 1140 1384 1434 1208

72 1140 1186 1186 1151 1601 1524 1140 1140 1140 1140

73 1140 1140 1140 1140 1140 1140 1140 1140 1277 1140

74 1140 1174 1174 1140 1163 1163 1140 1140 1341 1140

75 1140 1174 1174 1140 1198 1163 1140 1140 1462 1140

76 1140 1174 1174 1140 1198 1163 1140 1140 1462 1265

77 1140 1174 1174 1140 1246 1210 1140 1140 1506 1265

78 1140 1174 1174 1140 1271 1234 1140 1140 1596 1265

79 1140 1174 1174 1140 1271 1308 1140 1140 1140 1140

80 1140 1140 1140 1140 1140 1140 1140 1231 1402 1140

81 1140 1163 1163 1140 1265 1265 1140 1329 1598 1140

82 1140 1163 1163 1140 1303 1316 1140 1329 1710 1140

83 1140 1163 1163 1140 1342 1329 1140 1329 1710 1163

84 1140 1163 1163 1140 1355 1342 1140 1329 1710 1163

85 1140 1163 1163 1140 1355 1342 1140 1329 1710 1163

86 1140 1163 1163 1197 1423 1382 1140 1140 1140 1140

87 1140 1140 1140 1140 1140 1140 1140 1197 1231 1140

88 1140 1140 1140 1140 1208 1208 1140 1257 1342 1140

89 1140 1163 1163 1140 1329 1329 1140 1446 1463 1140

90 1140 1186 1186 1140 1488 1488 1140 1446 1710 1140

91 1140 1198 1198 1140 1667 1710 1140 1489 1710 1140

92 1140 1198 1198 1140 1710 1710 1140 1608 1710 1140

93 1140 1198 1198 1140 1710 1710 1140 1140 1140 1140

94 1140 1140 1140 1140 1140 1140 1140 1140 1140 1140

95 1140 1140 1140 1140 1151 1151 1140 1140 1140 1140
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Day week Iteration BBB_DDM

LSTM_nai

ve

LSTM_edd

m Max UW H SU L HL DU LT LU M DHL DL PTU P U W TU CDL RU DLU CDLU LR LS MU

6 1 1 0.92 0.89 0.89 0.92 2.17 0.54 0.33 8.21 0.42 0 17 2.42 4.75 1.75 10.13 0 1.17 0.75 1.58 13 0 0.25 0 2 0 0 0

7 1 2 0.85 0.78 0.78 0.89 6.46 3.83 0.46 11.08 0 0 17 1.92 4.21 2.71 3.67 0 0 0.67 3.38 13 0 0.33 0 2 0 0 0

1 2 3 0.88 0.72 0.72 0.88 3.33 2.5 0.5 15.33 0 0 6.17 0.92 7.21 5.21 3.92 0 0 0.42 1.75 4 0 0 0 2 0 0 0

2 2 4 0.77 0.6 0.6 0.77 0 0 0.88 14.63 0.83 7.42 8.79 0.58 10.88 2.96 10.58 3 0 0 0 4.92 0 1.21 1.17 3.17 0 0 0

3 2 5 0.63 0.67 0.56 0.81 0 0 0.88 9.54 0.42 3.17 15.17 0.75 4.38 1.13 14.88 3.79 0.83 0 0 11.17 0 0 0.83 4 0 0 0

4 2 6 0.72 0.81 0.85 0.87 0 0 0 11.04 0 5.96 16 0.67 1.17 4 11.71 1.88 0.08 0 0 12 0 1.21 0.67 4 0 0 0

5 2 7 0.82 0.75 0.71 0.82 3 0.42 3.33 7 0.58 2.17 6.08 0 1.54 1.25 12.13 1 0 0.75 0 4.17 1.25 0.83 3.29 4 0.42 0 0.58

6 2 8 0.71 0.65 0.76 0.81 4.21 0.25 3.88 4.96 0 0 5.25 1.04 1.58 1.92 13.21 0 0 0.33 0 3.25 2.33 0 0.83 4 0.25 0 0.42

7 2 9 0.81 0.79 0.87 0.87 5.38 1.83 0.63 1.67 0 0 6 2.33 1.08 0.33 5.63 0 2.54 0.42 1.67 4 0 0 0 4 0 1.17 0

1 3 10 0.86 0.78 0.82 0.86 7.92 1 0.46 4.33 0.58 0 2.54 1.21 1.92 0 2.96 0 0.92 0.08 0.67 2.46 0 0 0 4.5 0 2 0

2 3 11 0.82 0.58 0.67 0.82 0 0 0.75 11.54 0 4.67 7.67 1.42 3.13 1.5 7.88 1.33 0.79 0.17 0 4.08 0 2.38 3.21 7.17 0 0.58 0

3 3 12 0.68 0.82 0.8 0.82 3.83 0 1.04 14.54 0.5 2.04 11.38 0.08 4.13 3.79 16.88 1.83 1.58 0 0 7.92 1.71 0.25 3.04 8 0 0 0.5

4 3 13 0.79 0.81 0.76 0.85 10.33 1.79 0.67 21.04 0 0 9.17 4.67 6.92 4.33 13.92 0 1.04 0.58 6.58 9.17 0 0.17 0 8 0 0 0

5 3 14 0.76 0.76 0.76 0.76 4.83 0.75 1.33 12.54 0 0 10 1.88 10.21 1.96 5.46 0 0.67 0 2.08 10 0 0 0 8 0 0 0

6 3 15 0.73 0.77 0.74 0.78 4.29 1.75 0.42 9.25 0.33 0 11.96 2.33 6.29 3.54 5.96 0 0.42 0.58 3.08 11.63 0 0 0 8 0 1.17 0

7 3 16 0.63 0.81 0.69 0.88 12.46 4.5 0 12.83 0.25 0 15 2.08 0.17 7.75 0.21 0 0.5 2.13 3.96 14 0 0 0 8 0 2 0

1 4 17 0.78 0.81 0.76 0.82 2.96 0.5 0.63 5.71 0 0 8.25 1.92 3.58 1.13 4.08 0 0 0.42 0.25 8 0 0.5 0 2.67 0 1.17 0

2 4 18 0.82 0.74 0.74 0.83 0 0 0.54 15.5 0 5.17 5.79 1.33 5.38 0 10.33 0.42 0 0.17 0 5.17 0 1.75 1 1 0 0 0

3 4 19 0.8 0.85 0.79 0.86 0 0 1.17 10.54 1 3.08 7 0.33 7.71 0 13.88 1 0.42 0.04 0 6 0 0.25 0 2 0 0 0

4 4 20 0.77 0.76 0.52 0.89 7.13 1.08 0 5.67 0 1.58 9.5 1.75 1.5 0 5.83 0.33 0.5 0.75 0.83 6 0 0.96 1.83 2 0 0 0

5 4 21 0.87 0.86 0.86 0.87 2.13 0.17 0 3.83 0 0.67 12.46 0 1.17 1 10.13 0.83 0.5 0.75 0 8.46 2.46 0.63 2.5 2 0.17 0 0

6 4 22 0.83 0.89 0.9 0.9 6.67 1.83 0.46 6.33 0 0 12.67 2.75 2.29 1.83 14.83 0 1.42 0.5 4.75 9 0 0 0.83 2 0 1.79 0

7 4 23 0.88 0.74 0.77 0.88 4.58 1.67 0.88 6.33 0 0 2.75 1.38 6.04 0.42 5.38 0 0.42 0 0 2.75 0 0 0 2 0 3 0

1 5 24 0.73 0.71 0.67 0.73 0 0 0.08 7.67 0 4.5 4.25 1 6.75 0.33 10.21 0.83 0.67 0 0 4 0 1.71 2.13 2.29 0 1.58 0

2 5 25 0.64 0.7 0.7 0.7 6.58 1.79 0.75 12.83 0 3.96 5.42 4.58 7.46 0.58 17.63 2.75 0 1.79 3.04 3.58 0 1.25 2.92 4 0 0 0

3 5 26 0.69 0.75 0.73 0.82 0.17 0.08 0.96 13.54 0 1.38 5.63 1.5 2.58 2 18.75 2 0 0.08 0 3 0 0.42 2.75 4 0 0 0

4 5 27 0.65 0.85 0.82 0.85 0 0 0.29 5.83 0.67 0 4.29 2.5 2.83 0.33 10.17 0 0 0.08 0 4.13 0 0.75 0 4 0 0 0

5 5 28 0.8 0.77 0.77 0.84 7 1.13 1 6.75 0 0 7.5 0.25 4 0.33 8.17 0 0 1.71 0 7.5 3.13 0.17 0.25 4 1.13 0 0

6 5 29 0.71 0.8 0.76 0.8 2.71 0.17 0.42 9.92 0 3 12.46 2.25 7.13 0.42 10.88 2.33 0 0.33 0 11 0 1.46 1.58 4 0.17 0 0

7 5 30 0.77 0.83 0.8 0.83 0 0 0.58 7 0 0 14.25 0.92 7.58 1.75 12.33 0.33 0 0 0 12.25 0 0 0.08 3.58 0 0 0

1 6 31 0.8 0.81 0.81 0.81 0 0 0.46 11.33 0 0 17.17 0.96 7.88 5.17 3.79 0 0.5 0.08 0 15.17 0 0 0 1.17 0 0 0

2 6 32 0.79 0.76 0.77 0.8 6.04 2.08 0 16.63 0 0 18 1.67 10.54 5.33 5.38 0 3.13 0.67 3.17 16 0 0 0 0 0 0.79 0

3 6 33 0.79 0.83 0.79 0.83 8.67 5.71 0.33 10.46 0 0 13.29 6.08 10.17 2.75 4.67 0 0.88 0 3.46 12.83 0 0 0 0 0 3 0

4 6 34 0.78 0.83 0.82 0.83 5.71 2.54 0.5 9.21 0 0 15 0.75 8.21 2.63 5.58 0 0 0 1.33 15 0 0 0 0 0 2.75 0

5 6 35 0.82 0.84 0.85 0.85 3.79 0.33 1.13 5.21 0 0 18.33 0 6.75 0.58 6.33 0 0 0.33 0 18.33 1.79 0.33 1 0 0.33 0 0

6 6 36 0.84 0.91 0.92 0.93 6.25 0 0.83 5.92 0 0 22.17 1.46 2.88 1.17 8.96 0 0 0.17 0 22.17 0.96 0 1.92 0 0 0 0

7 6 37 0.91 0.66 0.89 0.91 4.5 0 0 1.5 0 0 25.17 0.5 6.92 0 10.71 0 0.58 0 0 25.17 1.08 0 0.67 0 0 0 0

1 7 38 0.9 0.9 0.89 0.9 9.33 0.33 0 5.83 0 0 26.92 0.33 7 0 5.21 0 0 0.33 0 26.92 1.58 1 1.08 0 0.33 0 0

2 7 39 0.89 0.91 0.91 0.92 18.21 0 0.5 5.83 0 0 30.79 0 7 0 6.71 0 0 0 0 30.79 2.04 0.25 0.08 0 0 0 0.5

3 7 40 0.91 0.96 0.96 0.96 26.58 0.83 0 6.67 0 0 33 1.33 3.71 0.33 10.46 0 0.5 1.38 0 33 0.58 0 0 0 0.83 0 0

4 7 41 0.95 0.88 0.86 0.95 27.42 1.25 1.58 8.04 0 3.08 27.83 0.5 7.33 0.42 9.38 1 0 1.25 0 15.13 1.46 1.13 4.08 0.33 1.25 0 0

5 7 42 0.85 0.76 0.69 0.85 2.38 0.08 1.42 9.29 0 7.96 7.96 0 6.88 0 21.5 4.92 0 0.08 0 0 0.46 0.58 7.63 2 0.08 0 0.33

6 7 43 0.69 0.79 0.72 0.86 10.42 0 0.08 11.17 0 11.17 11.17 0 0 0 34.25 3.25 0 0 0 0 2.04 1.17 11.17 3.67 0 0 0

7 7 44 0.86 0.71 0.68 0.86 22 0.5 2.46 8.54 0 8.54 8.54 0 0 0 43.46 7.42 0 0.5 0 0 1.25 0 5.13 7.33 0.5 0 0

1 8 45 0.9 0.86 0.81 0.9 0.92 0 1.08 14.79 0 10.13 10.79 0 3.54 1.08 50.17 6.25 0.42 0.08 0 0 0.96 1.17 2.63 11.17 0 0 0

2 8 46 0.86 0.88 0.79 0.89 1.29 0.42 0.25 20.25 0.58 10.04 12.5 0 2.08 2.92 62.38 3.5 0 0.42 0 1.17 1 1.25 4.88 12.92 0.42 0 0

3 8 47 0.88 0.86 0.8 0.88 0 0 0.08 23.96 0 8.08 13.79 0.58 3.17 4.17 34.33 4.08 0 0 0 3.5 0 1.04 1.83 14 0 0 0

4 8 48 0.86 0.8 0.59 0.86 0 0 0.25 12.96 0 10.83 21.5 0 6.92 1 17.79 3.58 0 0 0 7.17 0 1.25 1.75 15.25 0 0 0

5 8 49 0.81 0.73 0.68 0.81 0 0 0.08 13.5 0.58 12.33 26.08 0.96 12.67 0 11.42 7.08 0.42 0 0 9.79 0 0 3.58 16 0 0 0

Feature table for Meta-Classification/Regression, where "MAX" (response variable) denotes the maximum expected KPI per iteration/day in the simulation
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Day week Iteration BBB_DDM
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ve
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6 8 50 0.78 0.75 0.59 0.78 5.54 0.25 0.67 18.88 0 12.67 29 0.92 7.08 1.17 15.33 14.08 0 0.33 0 12.08 1.25 0.67 5.79 17.17 0.25 0 0

7 8 51 0.82 0.79 0.7 0.82 2.92 0 1.04 12.46 0.5 4.54 23.46 0 2.83 1.08 17.08 9.63 0.92 0 0 14.17 1.42 0 4.5 18 0 0 0.5

1 9 52 0.82 0.76 0.61 0.93 3.58 0 0.92 5.33 0 0 22.92 0.5 3.33 0.58 25.63 0 0 0.33 0 17.92 2.04 0 0 18 0 0 0.58

2 9 53 0.85 0.74 0.86 0.93 4.54 0.33 0.75 3.13 0 0 27 0 2.63 1.46 28.75 0 0 1.46 0 22 0.58 0.17 1 18 0.33 0 0

3 9 54 0.86 0.91 0.91 0.97 2.75 0.42 0.25 4.83 0 0 29.58 0.58 0.58 0 37.58 0 0.42 0.42 0 24.58 0.33 0.25 0 18 0.42 0 0

4 9 55 0.9 0.92 0.91 0.94 12.04 0.75 0 6.67 0 0 35.33 0.58 2.29 0 45.54 0 0 0.75 0 30.33 1.5 0 0 18 0.75 0 0

5 9 56 0.91 0.94 0.93 0.95 8.75 0.25 0.33 3.54 0 0 37.58 0.83 4.5 0.96 51.63 0 0 0.25 0 32.58 1.38 0 0 6 0.25 0 0

6 9 57 0.93 0.87 0.86 0.93 5.54 0.79 0 1.42 0 0 10.79 1.33 4.92 0 10.38 0 0 1 0 9.54 1.96 0 0.75 0 0.79 0 0

7 9 58 0.84 0.66 0.71 0.84 8.33 0.88 0.46 5.83 1.58 0 3.58 0.33 9.63 0 12.29 0 0.42 1.88 0 3.58 4.13 0.17 0.25 0 0.88 0 0

1 10 59 0.71 0.69 0.66 0.92 7.33 0.33 0 4.92 0 0 1.33 0.75 1.29 1 11.63 0 0 0.33 0 0.33 2.29 0.25 0.92 0 0.33 0 0

2 10 60 0.69 0.72 0.76 0.82 2.29 0.17 0 12.46 0 5.96 8.63 0 3.33 2.08 20.42 1.88 0.5 0.75 0 1.92 3.71 1.88 0.92 1.17 0.17 0 0

3 10 61 0.75 0.7 0.78 0.78 3 0.42 3.33 7.96 0.58 2.17 9.63 0 5.5 1.25 27.13 1 0 0.75 0 5.17 1.25 0.83 3.67 2 0.42 0 0.58

4 10 62 0.78 0.73 0.85 0.91 4.21 0.25 3.88 4.96 0 0 11.25 1.04 1.58 1.92 23.83 0 0 0.33 0 7.25 2.33 0 0.83 2 0.25 0 0.42

5 10 63 0.85 0.83 0.89 0.91 5.38 1.83 0.63 1.67 0 0 12 2.33 1.08 0.33 5.63 0 2.54 0.42 1.67 8 0 0 0 2 0 1.17 0

6 10 64 0.9 0.68 0.83 0.9 7.92 1 0.46 4.33 0.58 0 2.79 1.21 1.92 0 2.96 0 0.92 0.08 0.67 2.63 0 0 0 2 0 2 0

7 10 65 0.84 0.7 0.7 0.84 0 0 0.75 11.54 0 4.67 7.67 1.42 3.13 1.5 7.88 1.33 0.79 0.17 0 4.08 0 2.38 3.21 3.17 0 0.58 0

1 11 66 0.71 0.75 0.68 0.83 3.83 0 1.04 14.54 0.5 2.04 11.38 0.08 4.13 3.79 16.88 1.83 1.58 0 0 7.92 1.71 0.25 3.04 4 0 0 0.5

2 11 67 0.81 0.73 0.86 0.86 10.33 1.79 0.67 21.04 0 0 9.17 4.67 6.92 4.33 13.92 0 1.04 0.58 6.58 9.17 0 0.17 0 4 0 0 0

3 11 68 0.85 0.76 0.76 0.85 4.83 0.75 1.33 12.54 0 0 10 1.88 10.21 1.96 5.46 0 0.67 0 2.08 10 0 0 0 4 0 0 0

4 11 69 0.77 0.68 0.81 0.83 4.29 1.75 0.42 9.25 0.33 0 11.96 2.33 6.29 3.54 5.96 0 0.42 0.58 3.08 11.63 0 0 0 4 0 1.17 0

5 11 70 0.81 0.69 0.89 0.89 12.46 4.5 0 12.83 0.25 0 15 2.08 0.17 7.75 0.21 0 0.5 2.13 3.96 14 0 0 0 4 0 2 0

6 11 71 0.87 0.82 0.79 0.87 2.96 0.5 0.63 5.71 0 0 8.25 1.92 3.58 1.13 4.08 0 0 0.42 0.25 8 0 0.5 0 1.33 0 1.17 0

7 11 72 0.82 0.78 0.7 0.82 6.75 3.92 1.71 15.5 0 8 5.79 4.46 5.38 0.42 13.46 3.29 0.33 1.71 1.71 5.17 1.67 2.46 2.29 1 1 1.25 0.42

1 12 73 0.72 0.84 0.82 0.87 15.63 3.71 0 13.38 0 11.63 7 1.75 2.04 0.42 19.08 4.42 0 0 3.17 6 0.58 0.83 5.08 2 0 3.17 0

2 12 74 0.79 0.85 0.89 0.89 17.29 4.13 0 12.79 0 6.88 5.88 2.67 0 1.42 27.33 0.33 0 0.5 6.13 1 1.46 0.75 10 2 0 4.92 0

3 12 75 0.84 0.8 0.86 0.86 38.88 3.88 0 23.38 0 5.04 9.08 2.71 0 6.42 16.96 3.92 0 0.67 5.58 0 1.29 0.96 17.88 2 0.33 7.17 0

4 12 76 0.86 0.84 0.78 0.86 27.17 4.33 0.5 32 0 4.75 11.83 4.08 0 9 13.08 2.13 0.83 0.67 5.5 0 1.33 0.33 8.92 2 0.67 9.17 0.5

5 12 77 0.86 0.85 0.81 0.87 26.71 6.46 0.33 40.75 0 7.5 13.83 0.92 0 13.63 9.17 3.33 1.33 2.79 7.04 0 0.38 0.83 6.21 2 0.75 10 0.33

6 12 78 0.86 0.82 0.74 0.86 42.04 13.08 0.46 45.13 0 6.58 15 2.88 5.21 17.33 9.08 3.5 0.58 2.63 2.96 0 0.33 0.92 7.08 3.63 0.5 2.92 0

7 12 79 0.85 0.67 0.67 0.85 26.63 5.67 0.25 21 0 7.96 7.13 2.71 12.67 3.63 19.08 4.92 3.25 0 5.46 1.83 0 0.58 5.71 12 0 1.08 0

1 13 80 0.73 0.67 0.72 0.73 11.83 2.58 0.96 27.54 0.33 11.17 13.75 2.67 11.17 5.04 34.83 3.25 0.33 0.5 4.79 5.75 0 1.17 8.17 13.67 0 3.17 0

2 13 81 0.79 0.76 0.77 0.79 12.63 5.5 0.38 17.71 0 8.54 19.21 0.5 2.38 1.46 45.88 7.42 0 1.17 4.29 10.08 0 0 4.63 17.33 0 4 0

3 13 82 0.85 0.76 0.77 0.85 6.25 4.5 0.42 25.17 0 10.13 25.08 2.79 4.38 5.08 50.58 6.25 0.92 0.08 3.17 12 0 0.83 0.96 21.17 0 2.83 0

4 13 83 0.83 0.81 0.83 0.85 14.67 2.83 0.5 31.42 0.58 10.04 28.08 2.25 2.08 7.83 61.63 3.5 1.33 0 3.42 3.67 0 0.75 3.13 22.92 0 4 0

5 13 84 0.85 0.78 0.78 0.85 18.71 3.08 0.08 36.5 0 8.08 31.5 2.71 3.17 10.79 32.38 4.08 1.04 0.67 1.88 3.5 0 1.04 1.75 24 0 2.83 0

6 13 85 0.83 0.76 0.75 0.83 13.08 3.17 0 24 0 10.83 34 2.58 1.08 1.25 16.42 3.58 3.46 0.42 2.08 6 0 1.25 1.75 25.25 0 1.17 0

7 13 86 0.83 0.7 0.81 0.83 20.29 4.33 0 14.5 0 12.33 12.25 3.58 0 1.17 11.13 7.08 1.5 0.67 6.04 0.75 0 0 3.58 26 0 2.67 0

1 14 87 0.79 0.7 0.77 0.79 14.38 5.13 0 18.17 0 12.67 9.83 2.17 0 1.83 9.33 14.08 1 0 6.67 0 0 0.67 5.79 27.17 0 4 0

2 14 88 0.73 0.6 0.73 0.73 10.88 2.92 0 10.79 0 8.58 8.58 1.83 0 0.5 8.75 21 0.5 0 3.08 0 0 0.58 6.83 28 0 4.67 0

3 14 89 0.73 0.75 0.74 0.75 16.63 4.21 0 14.38 0 7.63 7.63 4.75 0 1.13 9.46 27.75 0.92 0.58 5.5 0 0 1.42 4.17 30.13 0 6 0

4 14 90 0.74 0.72 0.76 0.79 14.75 2.54 0 13.33 0 9.67 9.96 3.92 0 2.25 21.58 20.46 1 2.92 2.17 0 0 0.58 4.5 32 0 3.25 0

5 14 91 0.76 0.67 0.9 0.9 23.17 2.83 0 23.54 0 4.67 19.75 3.83 0 8.54 32.88 0 0.17 0.58 2.92 0 0 0.71 3.58 33.25 0 1.17 0

6 14 92 0.9 0.9 0.89 0.9 15.46 2.75 0 32.33 0 3.63 21.92 1.5 0 14.33 46.54 0.42 0.5 1.67 3.92 0 0 0.17 5.88 34.92 0 2 0

7 14 93 0.89 0.89 0.87 0.89 10.75 2.25 0 12.58 0 6.54 5.92 3.33 0 2.33 58.33 3.54 0 0.92 6.21 0 0 0.33 11.54 36.33 0 1.71 0

1 15 94 0.86 0.89 0.89 0.9 7.83 1.92 0 18.96 0 6.75 7.67 1.38 0 4.67 71.25 2.92 2.58 2.96 5.83 0 0 1.25 3.5 39 0 3 0

2 15 95 0.88 0.95 0.95 0.95 6.25 1.67 0 6.21 0 2.58 2.58 0.71 0 0 40 1 0.25 0.25 1.96 0 0 0.21 0 40 0 1.83 0

C
hapter

B
:A

nalysis
D
ata

152


	Acronyms
	I Methods
	Introduction
	Motivation
	Thesis Contributions
	Summary

	Organization

	Background
	Data Warehousing 
	Materialized Views

	Prior Research on Personalization of View Materialization
	User Behaviour Modelling

	Statistical and Machine Learning
	Prediction of Events Methodologies
	Multi-Scale Analysis

	Concept Drift
	Conclusion

	Lattice Prediction under Change Detection and Adaption Framework
	Framework at a Glance
	Bayesian Prediction from a Beta-Binomial Distribution
	BBB Algorithm Specification 

	Frequent Pattern Mining
	Gap-BIDE

	LSTM RNN
	Change Detection
	(E)DDM Algorithms

	Conclusion


	II Simulations
	Experimental Design
	Data Sources
	Simulation Setup
	Query Profile
	Software

	Time Series Synthesis Sets
	Data Synthesis

	Measures of Correctness and Validation
	Conclusion

	Analysis
	Evaluation Measures
	Predictive KPI
	Change in Memory Allocation
	Rate of Change Detection

	Results
	Predictive KPI Analysis
	Change in Memory Allocation Analysis
	Change Detection Analysis

	Ensemble Learning: When to Use an Approach?
	Conclusion

	Conclusion
	Future Work

	References
	Appendix
	Queries
	Query Profiles

	Analysis Data
	Stacked Ensemble: Meta-Classifier Configurations
	Measurements for Analysis



