
 
 
 
 
 

A Driver Fatigue Monitoring and Haptic Jacket-Based 
Warning System 

 
 
 

NILOUFAR AZMI 
 
 
 
 
 

A thesis submitted to the Faculty of Graduate and Postdoctoral Studies  
in partial fulfillment of the requirements for the degree of 

 
 

MASTER OF APPLIED SCIENCE 
IN ELECTRICAL AND COMPUTER ENGINEERING 

 
 
 

Ottawa-Carleton Institute for Electrical and Computer Engineering 
School of Electrical Engineering and Computer Science   

University of Ottawa 
Ottawa, Canada 

 
 
 
 
 
 
 
 

© Niloufar Azmi, Ottawa, Canada, 2012  
 

 



ii 
 

Abstract  

 
Driver fatigue is a major factor in most traffic accidents. This issue has increased the 

urgency for in-vehicle collision avoidance systems relying on proper driver fatigue 

detection and warning technologies. Computer vision approaches have been of much 

interest due to their non-invasive nature for detecting drowsiness. In addition, increased 

effort has been dedicated to the design of safety systems that warn drivers of various 

types of collisions. How these systems alert the sleepy drivers when integrated, however, 

is a crucial component to their effectiveness. A nonintrusive method is proposed in this 

thesis as a feasible solution to accurately detect fatigue levels and perfectly produce timely 

warnings. Fatigue progression over time is quantified to more accurate fatigue levels 

according to reliable PERCLOS measurements in a continuous LBP + SVM based eye state 

recognition process. Given the quantized fatigue levels, a novel haptic jacket-based 

alerting scheme is provided to safely convey varying criticality signals. Drivers would have 

the option to customize haptic jacket settings for the preferred type of feedback 

perception. This thesis reviews existing approaches, details the proposed system, and 

finally presents system performance evaluation and usability studies. 
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Chapter 1 - Introduction 

1.1 Background and Motivation 

Driving is a process that involves situation awareness of the environment, decision making, 

and the performance of actions. In this process, the most complicated stage is the 

situation awareness. In a complex and dynamic driving environment, attention demands 

result from information overload, complex decision making and the performance of 

multiple tasks. Direct attention is needed not only to perceive and process the available 

cues but in the later stages of decision making and reaction as well.  On the other hand, 

sleep is an active state of the brain and is involuntary. A renowned sleep scientist, Allan 

Hobson [1], phrases the central role of the brain in sleep (by rephrasing Abraham Lincoln’s 

famous declaration about government): sleep is of the brain, by the brain, and for the 

brain. The brain controls itself so as to produce sleep. We can fall asleep and never even 

recognize how difficult we try to stay awake or to sleep. We may be able to try not to sleep 

or to sleep long, but it does not belong to our free-will, to govern sleep or wakefulness. 

The brain’s own electrical activity changes in response to signals from networks of brain 

cells.  

Driving and sleepiness form an incompatible and dangerous combination. Fatigued driving 

refers to “being unintended to perform driving task at hand”. During long periods of 

driving or as a result of driver’s initial conditions, motivation for steering declines, reaction 

time extends, short-term memory deteriorates, attention drops, important signals are 

ignored, and decision errors and short-term failures of memory occurs. In extreme case, a 

microsleep as a short period in which driver loses consciousness comes on which can have 

fatal consequences. However, facing with work-related and personal responsibilities, 

countless people are cutting back on sleep and hence driving drowsy or fatigued.  

How fatigue progresses over time could be a useful knowledge for development of fatigue 

recognition systems. Many studies have shown that driver fatigue happens periodically 
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instead of linearly increase. In fact, with a general tendency towards increased fatigue, 

there are time intervals during which drivers struggle with fatigue causing their alertness 

decrease [2]. The process of falling asleep at the wheel in a fatigue episode could be 

characterized by gradual decline in alertness from a normal state leading to a state of fuzzy 

consciousness followed by the onset of sleep. Figure 1 displays fatigue progression over 

time while driving until approaching the sleep onset.  

 

Figure 1: The process of falling asleep at the wheel 

 

1.1.1 Cause and Type of Experienced Fatigue  
The European Transport Safety Council (ETSC) study [3] shows that the level of fatigue or 

sleepiness (sleepiness is the outside exhibition of fatigue) is a function of the amount of 

activity in relation to the brain’s physiological waking capacity. Several factors can 

influence this physiological waking capacity and, hence, lower the fatigue threshold. The 

main causes of fatigue are described as: 

 Sleep debt or poor sleep, 

 Internal body clock (circadian rhythm), and 

 Time-on-task (long working hours). 
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These factors have cumulative effects and a combination of any of these can greatly 

increase the risk of fatigued-related crashes.  

1.1.1.1 Sleep Debt 

Sleep debt is the accumulated lack of sleep resulting from poor sleep habits. Even the loss 

of one hour of sleep time for several days can negatively influence our daily life. Sleep 

deprivation slows driver’s reaction time to sudden driving conditions happening on the 

road. A questionnaire study participated by 154 truck drivers for evaluating the 

relationship between prior sleep, work, individual characteristics and drowsiness found out 

that the prior sleep effects contributed the most to sleepiness while driving [4].  

1.1.1.2 Circadian Rhythm 

Fatigue is linked to the circadian rhythm acting as an internal biological clock and 

controlling normal sleep/wake cycles. Therefore, it has a direct effect on alertness, mood, 

motivation, and performance. The human body has a greater need for sleep at certain 

times in the    – hour cycle. First peak occurs in the middle of night sleep (most commonly 

at night between   –   am) and second sleepiness peak occurs during mid-afternoon, in    

hours after the first sleepiness peak. People driving during these hours are at an increased 

risk of driver fatigue. 

1.1.1.3 Time on Task 

Prolonged activity inevitably leads to physical and mental fatigue. Researchers have 

related the duration of activity, or the so called time-on-task, to fatigue symptoms. Studies 

show that after just four hours of non-stop driving, drivers’ reaction times can slow up to 

   percent, so the risk of crashes doubles during this time and the risk increases more than 

eight-fold after just six hours of non-stop driving. Figure 2 displays the percent of fatigue 

driving crashes and its relationship with number of hours driven [5].  
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Figure 2: Relationship between number of hours driven and the percent of crashes related to 

fatigue driving [5] 

Drowsiness-related crash scenarios appear to be quite unique. Fatigue or drowsiness-

related crashes tend to occur after midnight or in the afternoon with vehicles traveling at 

high speeds. Among fatigue-related accidents, crashes caused by fall-sleep-drivers are 

more common and serious in terms of injury severity. Often time drivers do not perform 

any maneuvers to prevent a crash before the crash happening.  

1.1.2 Who Drives While Fatigued? 
Populations of drivers that are at risk of crashes due to fatigue driving include:  

 young male who are more likely to be sleep deprived and drive at night; 

 drivers with sleep disorders who suffer from chronic sleep deprivation; 

 drivers under the influence of medication side effects which intensify sleepiness; 

 night or rotating shift workers who are more likely to lack quality sleep; 
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 Commercial vehicle operators who are likely to experience fatigue after spending 

long hours monotonous driving. 

1.1.3 Significance of the Problem  
Studies show that     –     of driving accidents are fatigue related [6]. The US National 

Highway Traffic Safety Administration (NHTSA) estimates that drowsy driving causes more 

than         crashes each year resulting in        injuries,      deaths and an 

estimated       billion in diminished productivity and property loss [7]. These numbers 

represent      of all police reported crashes and approximately    of fatalities. The 

National Transportation Safety Board (NTSB) confirmed fatigue as the main reason for 

    of     single-vehicle accidents involving heavy trucks, whereas only in nearly     of 

the cases the driver admitted to falling asleep [8]. Federal Highway Administration (FHWA) 

also concluded that more in-depth investigations would yield higher percentages of 

fatigue-related crashes than those indicated in samples of police accidents reports. In a 

     survey with     drivers in the province of Ontario, nearly     of the drivers 

admitted driving while fatigued or drowsy, and     reported falling asleep while driving 

during the past year [9] [10]. In Australia, approximately    of crashes may be 

attributable to driver drowsiness and fatigue. In England, up to        of police 

reported vehicle crashes are related to driver fatigue.  

Researches show that if drivers get a caution one second earlier than accidents, about 

    accidents can be prevented. Therefore, developing technologies for detecting driver 

fatigue is essential to accident prevention.  

1.1.4 Challenges in Driver State Estimation 
The difficulty in determining the incident of fatigue-related accidents is due to the 

difficulty in identifying fatigue as a causal or contributing factor in accidents [11]. Unlike 

alcohol-related crashes, no blood, breath, or other objective test for sleepiness behind the 

wheel currently exists, which investigators could give to a driver at a crash scene. Driver 

impairment is usually masked by the increased arousal following the crash and hidden 

from the investigating officer. Even in some cases, resulting crashes might be attributed to 
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other causes. For example, a police officer may report a crash as the result of driver 

running a red light, whereas the crash has actually occurred because of driver’s 

inattentiveness due to sleepiness. As a result, sleepiness as a contributing factor in 

roadway accidents is underreported in crash databases that are based on police accident 

reports. From drivers’ side, almost all drivers rate their driving ability as superior. This over 

confidence makes them underestimate the reaction time required and the risk involved. 

An overwhelming majority of the drivers who have nodded off while driving reported that 

they were startled awake by a crash. Failing to recognize fatigue warning signs can 

seriously increase the chances for falling asleep or nodding off while driving. To assist the 

driver with the problem of drowsiness, an on-board device that monitors driver’s attention 

level in real time and provides interactions that make sense for the driver is vital. 

1.1.5 Fatigue Warning Indicators 
Fatigue can often affect driving ability long before drivers even notice they are getting 

tired. In an attempt to avoid having accidents, most tired drivers will try to fight against 

sleep with different durations and sequences of the physiological events that precede the 

onset of sleep. The National Sleep Foundation suggests a list of signs that can be used to 

decide on when the driver is no longer in conditions of continuing driving. These signs 

could be categorized as physical and cognitive signs as the followings: 

Physical Signs 

 Frequent and long eye-blinks, difficulty keeping eyes open, repeated yawning and 

head nodding off at the wheel; 

 Lazy steering, varying vehicle speed for no reason, a drifting vehicle that wanders 

over road lines; 

 Slowdown of breathing and heart rate, decline of muscle tone and body 

temperature, Electromyogram (EMG) shift to lower frequencies and higher 

amplitude, increase of electroencephalogram (EEG) alpha waves. 
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Cognitive Signs 

 Difficulty focusing and daydreaming, trouble remembering the last few miles 

driven; 

 Increased risk-taking, slower reaction and responses; 

 Misjudging traffic situations. 

1.1.6 Driver Fatigue Assistance Systems 
A general overview of a fatigued driving assisting system could be as the followings: The 

driver assistance system includes two major components as presented in Figure 3. The first 

component is a driver state sensor that gathers and processes information from multiple 

variables including driving performance and infers the drowsiness level. The second 

component is a countermeasure system that delivers an alert to the driver based on the 

current drowsiness level. Feeling the warnings, the driver will make certain decisions, such 

as taking a short nap, to return to the normal alert state. The driver assistance system will 

continuously monitor the driver drowsiness level. The higher the detected level of 

drowsiness, the more aggressive the delivered warnings.  

Both components are critical to the success of driver assistance systems. Assistance would 

be impossible without a reliable and valid assessment of driver drowsiness levels from the 

driver state sensor. Similarly, drowsiness problem cannot be mitigated if effective 

countermeasures are not provided to the driver. Moreover, if the alert signal is confusing 

or annoying, the drivers will not comprehend it.  

Individual differences could be a challenge in this process making several drowsiness 

measures capable of detecting a high level of drowsiness in some individuals, but fail to do 

so in other individuals. Human factor researchers, in this regard, try to identify measures 

that can reliably detect driver drowsiness in a vast majority of individuals.  
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Figure 3: A closed-loop driver assistance system for driver drowsiness mitigation 

 

1.2 Research Problems and Objectives 

Deciding whether the driver is paying sufficient attention to traffic is a complicated study. 

In the last decade, monitoring systems based on various techniques have been developed 

for fatigued driving detection followed by alarm signals to alert the driver. However, 

finding an efficient way to constantly detect fatigue has been one of the most important 

issues to find out. 
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Visual cues resulted from changes in facial expressions are of significant importance in 

reflecting one’s level of fatigue. In fact, there are limited but specific facial expressions 

particularly around the mouth and eye regions representing the fatigue state. How to 

efficiently extract and track these features for a real-time decision making on fatigue is 

challenging though. Eye closure data obtained from eye state detection is an example 

method suggested for fatigue estimation. However, besides the challenge of various 

shapes of eyes, the two main problems of the previous eye state detection methods are 

the high computational time and the initialization procedure. 

In the next stage, how to translate the measured fatigue data to the warning signals is a 

major design challenge. It should not be too sensitive to slight changes causing nuisance 

nor too insensitive resulting in lack of information. In that context, setting the correct 

warning threshold to trigger the warning signal can be complicated. If too many warning 

signals go off, they will cause annoyance and information overload.  

Warning effectiveness is another challenge in developing an acceptable collision avoidance 

warning systems. Warning modality based on the selected communication channel (audio, 

visual or touch) is one of the aspects contributing to this concept. Another contributing 

factor is the warning strategy in continuously controlling driver’s state. To date, the 

majority of research on tactile collision warnings has considered the sudden single-state 

issuance of warning signals. However, this warning strategy may conversely lead to an 

unwanted hazardous situation after startling the sleepy driver. Furthermore, previous 

studies attempted to present warning signals when the driver is already in a critical driving 

condition such as approaching the edge of roadway, lane departure or about to hit the 

lead vehicle. Thus, the driver cannot take an early action to resolve the problem. 

The objective of this thesis is to develop an amenable, noninvasive driver assisting system 

to both make a valid assessment of driver’s fatigue levels based on the extracted visual 

cues and to immediately provide the driver with specific haptic warning types before a 

dangerous situation arises.  
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Specifically, the goal of the proposed system is to locate and track driver’s face and eyes to 

compute a drowsiness index using an existing reliable ocular measure that would model 

fatigue progression and then taking it as the system’s warning parameter to translate 

fatigue data to warning signals. 

This research objective applies the haptic warning modality and continuously conveys 

graded signals to responsive body parts according to the detected fatigue level. Drivers 

would have their own preferred signal perception type and the system does not dictate 

any warning setting.  

1.3 Research Contributions 

This thesis presents a real-time, nonintrusive method as a feasible solution to detect driver 

fatigue levels and produce timely warning that could prevent accidents. Some 

contributions are included in the proposed system, which are as follows: 

 Adaptation of the LBP Histogram feature extraction method followed by SVM 

classification for an efficient, computationally simple eye state recognition used for 

PERCLOS calculation. 

 Developing a fatigue analysis algorithm to estimate gradual fatigue progression 

over time from early stages. A fatigue episode is, therefore, quantized into   levels 

based on PERCLOS thresholds, resulting in a more accurate inference of fatigue 

criticality. 

 Incorporation of a previously developed Haptic Jacket scheme as the warning 

interface which is equipped with vibrotactile actuators in specific portions 

corresponding to responsive body parts for perfectly conveying different criticality 

levels made by the aforementioned fatigue analysis algorithm.  

 Driver’s preference and control is embedded in the system through haptic jacket 

customization to support both what they want and what they need. 

1.4 Research Publications 

The following two papers have been published during working on thesis experiments: 
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N. Azmi, A.S.M.M. Rahman, S. Shirmohammadi, and A. El Saddik, "LBP-based driver 

fatigue monitoring system with the adoption of haptic warning scheme, "in IEEE 

International Conference on Virtual Environments Human-Computer Interfaces and 

Measurement Systems (VECIMS '2011), Ottawa, Canada, September 2011, pp. 24-

27. [95]  

A.S.M.M. Rahman, N. Azmi, S. Shirmohammadi, and A. El Saddik, "A novel haptic 

jacket based alerting scheme in a driver fatigue monitoring system, "in IEEE 

International Workshop on Haptic Audio Visual Environments and Games (HAVE 

'2011), Jiangxi, China, October 2011, pp.112-117. [94] 

1.5 Thesis Outline 

The remainder of this thesis is organized as follows: 

Chapter 2 – Overview of Fatigue Detection and Warning Methods presents an overview 

of approaches taken by a variety of driver fatigue detection and warning systems including 

types of warning information to better understand the research motivation.  

Chapter 3 – Vision-Based Fatigue Detection Techniques focuses on the existing 

methodologies for fatigue detection through ocular measures and face monitoring. Some 

selected techniques are also further explained. 

Chapter 4 – Proposed System specifies the implementation of different modules involved 

with real-time fatigue detection and warning stimulation, specifically regarding feature 

extraction to train the SVM classifier for eye state recognition, accurate fatigue level 

estimation from eye closure data, haptic jacket adaptation for haptic stimulation, and the 

haptic jacket features. 

Chapter 5 – System Validation details conducted validations and experiments to evaluate 

performance, accuracy and user acceptance of the system. 

Chapter 6 – Conclusion & Future Work summarizes and concludes the thesis, while 

outlining some hints for future research.  
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Chapter 2 - Overview of Fatigue Detection and 

Warning Methods 

To increase traffic safety and to reduce the number of traffic accidents, numerous 

universities, research centers, and governments (Europe Union, etc.) are contributing to 

the development of driver assisting systems by driver state analysis using different 

technologies. Generally, driver state refers to overall physical and functional characteristics 

indicating features such as distraction, fatigue, attentional capacity, and mental workload. 

Figure 4 shows possible inputs to a driver state measurement system based on both overt 

and covert measures [12].  

 

 

Figure 4:  Domains from which inputs for an integrated driver state detection system 

might be drawn [12] 
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2.1 Fatigue Detection and Prediction Technologies 

Drowsiness detection methods can be classified in terms of their specific techniques [13]. 

These techniques mainly focus on changes of physiological signals, driver performance and 

ocular measures. These approaches are presented and discussed in detail in the followings.  

2.1.1 Detection by Physiological Signals 
This method is based on the fact that such physiological signals as pulse rate, EEG 

(electroencephalography), ECG/EKG (electrocardiogram) and electrodermal activity show 

different patterns at different human-vigilance levels. With the onset of fatigue, body 

temperature, heart rate, blood pressure, respiration rate and adrenalin production are 

lowered. 

One of the most valid indexes of driver alertness is electroencephalography (EEG). The 

spectral analysis of an EEG that shows the transition from wakefulness to sleep can be 

described as a shift toward slower EEG frequencies. In other words, changes in theta, 

alpha, and beta frequencies are associated with brief periods of sleepiness (microsleep) 

and the onset of sleep [1] [14] [15] [16] [17] [18].  

2.1.1.1 EEG of Sleep 

EEG is a neurophysiologic measurement of the electrical activity of the brain by recording 

from electrodes placed on the scalp. The resulting traces are known as an EEG and 

represent an electrical signal (postsynaptic potentials) from a large number of neurons. 

The EEG is capable of detecting changes of an electrical activity in the brain on a 

millisecond-level, and measures brainwaves of different frequencies within the brain. EEG 

signals are categorized by their frequency ranges, and each range is named by Greek 

letters [1] [14]. Beta rhythms are the fastest, greater than      , and represent an 

activated cortex. Alpha rhythms are about         and are associated with quiet, 

waking states. Theta rhythms are about        and occur during some sleep state. Delta 

rhythms are quite slow, less than     , often large in amplitude, and are a sign of deep 

sleep. Table 1 summarizes these EEG signals.  
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Table 1: Characteristics of EEG Signals 

EEG signal Signal frequency Characteristics 

Delta        deep sleep 

Theta        NREM Stage   

Alpha         quite, waking states 

Beta        an activated cortex 

 

Sleep can be categorized into distinct states according to the EEG signals. Rapid eye 

movement (REM) sleep and non-REM (NREM) sleep are two types of sleep [1] [14]. 

Although the progression of EEG waves has been divided into discrete stages, it is actually 

gradual and continuous. During a normal night, we slide through the stages of NREM, into 

REM, then back through the NREM stages, repeating the cycle about every 90 minutes. 

REM sleep is an active period of sleep marked by intense brain activity. This stage is also 

referred to as paradoxical sleep since brain activities during REM are comparable to those 

during wakefulness. Brain waves are fast desynchronized, similar to those in the waking 

state. Most dreams occur in REM sleep. NREM sleep is characterized by a reduction in 

physiological activity. As it gets deeper, the brain waves measured by EEG get slower with 

greater amplitude, breathing and heart rate slow down, and blood pressure drops.  

The changes in EEG during fatigue progression are distinct enough to reliably identify 

sleepiness, although the simultaneous use of EOG (electrooculogram) is strongly 

recommended. The followings are some examples of detection devices based on 

physiological measures [18]. 

The ABM Drowsiness Monitoring Device (DMD) records EEG via telemetry to detect 

drowsiness. The system requires an operator to wear a baseball cap containing disposable 

electrodes. It gives an auditory alert when EEG-determined drowsiness indicator exceeds a 

threshold. The EEG Based Algorithm to Detect Different Levels of Driver Fatigue uses delta, 

theta, and alpha activity of the EEG to detect “early, medium, and late” sleepiness.  The 
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Engine Driver Vigilance Telemetric Control System 3rd Generation (EDVTCS) measures 

electrodermal activities and reactions. Operators are required to wear watch-type sensors. 

The system activates an auditory alarm when alertness falls below the critical level.  

The most accurate technique for monitoring human vigilance level is based on 

physiological features. However, the biggest drawback associated with the EEG, as an on-

road drowsiness detection device, is the difficulty in obtaining recordings under natural 

driving conditions, which makes it an unrealistic option for detection of fatigue. Electrode-

based collection of these parameters while driving is intrusive and causes annoyance to 

the driver. 

2.1.2 Detection by Driver-Vehicle Data 
A change in the mental state can induce a change in driving performance. Driver-vehicle 

data including steering angle, brake input, and speed can be chosen to help drowsiness 

detection of drivers [19] [20]. The most frequently measured parameter is the frequency of 

steering wheel movements, which decreases as the driving period grows. Conversely, 

when a subject is distracted by a rich environment, steering wheel movements are often 

frequent. SWRR (Steering Wheel Reversal Rate) can be obtained by continuing on 

oscillation numbers of the steering wheel when the amplitude is lower or equal to a 

certain maximum value from 5 to 10 degrees. On high vigilance periods small amplitudes 

of steering wheel movements are frequent, whereas great corrections happen during low 

vigilance states [21]. The underlying presumption is that an alert driver makes a 

comparatively large number of fine-steering adjustments to cope with the driving task and 

makes a relatively few number of large-steering ones, except when deliberately changing 

lanes to pass other vehicles.  

SDLP (standard deviation of lateral position) or standard deviation of steering wheel 

movements increases rapidly after the first 30 minutes of driving. Standard deviation of 

the steering wheel is more affected by road curvature [22]. Lane tracking variability is 

increased in prolonged wakefulness [23]. Drivers who lose alertness will, due to lapses in 

information processing, cause their vehicle to wander somewhat within the traffic lane, 
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possibly to leave the lane or to go off onto the road shoulder. A fatigued driver permits 

himself to face situations requiring changes in speed more frequently. Standard deviation 

of vehicle speed increases after   hours of driving [21] [23]. In another case, drivers 

suffering from loss of alertness will more likely follow a vehicle ahead in a risky short 

distance and in high closure rates. 

A task focusing on measuring operator’s reaction time called Psychomotor Vigilance Task 

(PVT) shows noticeable differences between alert and drowsy drivers [24] [25]. PVT 

measures the latency between a visual stimulus and a motor response (e.g., pressing a 

button) and is a very sensitive measure of fatigue based on night work and sleep loss 

studies.  

In [26], the pressure distribution on the seat of male subjects was measured during 

simulated long-term driving, and the results showed that there was a relationship between 

changes in the load center position (LCP) and driver reported subjective fatigue. The 

algorithm for deriving a fatigue index was calculated on a time interval of    minutes, 

which was a considerable delay.  

Attentive and inattentive driving in car-following situations is distinguished in [27] by 

analyzing the vehicle following distance and steering angle. Localized energy analysis of the 

steering-wheel angle dynamics and vehicle tracking is performed in [28] to detect driver 

fatigue. A trend of localized energy increase is then found with driving time. The chaos 

theory is used in [29] to describe the dynamics of steering-wheel motion and estimate 

driver fatigue.  An energy analysis in addition to a Gaussian mixture model was adopted in 

[30] to identify the driver state based on two driving behavior signals: 1) forces on the 

pedals and 2) vehicle velocity. Steering-wheel position, accelerator pedal position, lane 

boundaries, and upcoming road curvature are adopted in [31] to infer driver status. 

Vehicle dynamics and driving performance data such as vehicle position, velocity, and 

acceleration, as well as throttle and brake pedal positions were considered to model 

normal driving. The results showed that the accuracy varied among individuals.  

Table 2 shows some sleep detection devices based on driver-vehicles performances. 
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Table 2: Sleep Detection Devices Based on Driver-Vehicle Performance [18] 

Name of device Description 

APRB / ACARP Device for 
Monitoring Haul Truck 

Operator Alertness 

Uses secondary tasks to estimate alertness via an auditory 
and visual reaction time task. Used in mining industry trucks. 

DAS 2000 Road Alert System 
Measures drivers’ acceleration, braking, gear-changing, lane 
deviation and distances between vehicles. 

FMD-Fatigue Monitoring 
Device 

Auditory and visual reaction time test. Response pads on 
steering wheel. Used in mining trucks. 

Roadguard 
Is a secondary task comprising a reaction task. 
Only operates when vehicle is in top-gear. 

Safety Driver Advisor 

Learns normal driver steering movements and detects 
deviations from normal. Comprise a driving time measure, a 
dashboard display of recommended rest-break times and a 
monitor of erratic steering behavior. Recommended driving 
time is 2h for day, 1h for night. 

SAMG-3Steer Monitors normal corrective movements of steering wheel. 

Stay-A-Wake Monitors speed and steering behavior. 

SAFETRAC 
Uses measurement of lane deviation and steering 
movements. 

 

These techniques characterize the vigilance states of drivers by comparing the reactions of 

the drive-vehicle system with a pre-determined threshold. However, this threshold is 

difficult to define because of the considerable inconsistency in the reactions of driver-

vehicle systems in the beginning stage of drowsiness. Another limiting factor on 

performance-based measures is that decline in performance capacity may occur prior to 

changes in driver performance. This phenomenon can be attributed to drivers’ skills and 

the ability of more experienced drivers to compensate during a routine driving task, 

despite their diminished capacity. 

2.1.3 Computer Vision-Based Methods 
Computer vision is a prominent technology in monitoring the human behaviour. In recent 

years machine learning applications to computer vision had a revolutionary effect in 
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building automatic behavior monitoring systems. Drowsiness, fatigue and sleepiness cause 

changes in facial appearance. The visual cues that typically reflect a person’s level of 

fatigue include slow eyelid movement, smaller degree of eye openness, yawning, and 

frequent nodding. By taking advantage of these visual characteristics, as fatigue symptoms, 

computer vision is the most feasible and appropriate technology available to supervise 

fatigued drivers faces.  

Most of the existing vision-based methods followed by the techniques employed in the 

proposed system are explained in detail in the next chapter.  

2.2 Fatigued Driving Warning 

Alerting the drowsy driver is the most critical issue in an automatic driver assisting system. 

Alert signals should be as non-intrusive as possible in order not to startle the operator 

causing an accident. An overview of currently available countermeasures techniques for 

fatigue mitigation is provided in this section.  

2.2.1 Modalities of Information Presentation 
There are three possible sensory modalities through which the continuous warning 

feedback could be offered to the drowsy driver: the visual channel, the auditory channel, 

and the haptic channel. Driving is predominately a visual task that requires constant 

scanning of the roadway. It has been acknowledged that drivers normally suffer from 

visual overload [79]. Even smallest notifications could distract the driver, taking their 

attention from the road at the wrong time. Nevertheless, one solution could be designing 

enhanced displays to present enhanced continuous feedbacks through the visual channel. 

For example, ambient lighting is a good suggestion as a continuous peripheral indication of 

the danger that the driver is encountering. However, the direction from where the hazard 

is coming may still be unclear and may cause nuisance and distrust. Furthermore, visual 

signals are not perceived when driver’s eyes are closed. Researchers, instead, have 

thought of potential use of a variety of non-visual displays. The majority of works have 

focused on the development of in-vehicle auditory signals and displays [80] [81]. Auditory 

alerts possess an attention taking quality. They also perform well at conveying urgency to 
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the driver so that they can decrease reaction time to crash threats. On the other hand, 

auditory warnings must be presented loud enough to be distinguished with the 

background noise. In addition, for the fatigued driving warning application, a suddenly 

issued auditory signal could surprise the driver leading to a more dangerous situation. 

Therefore, the haptic channel seems to be the least intrusive one in providing continuous 

signals.  

2.2.1.1 Types of Haptic Feedback 

Haptic feedback can be broadly divided into two modalities: vibrotactile and kinaesthetic. 

Vibrotactile feedback stimulates human subcutaneous tissue, while kinaesthetic feedback 

concentrates on the gross movement of the human body. An acceptable silent mode of 

alerting a drowsy driver is tactile vibration feedbacks.  

2.2.1.1.1 Advantages of Tactile Feedbacks 

Skin constitute the largest portion of our senses, while is little used during driving [79]. 

Accordingly, tactile warning signals have a number of potential advantages compared to 

other warning modalities:  

 First, skin stimulation is a potential communication channel for warning signals 

delivery without overloading limited cognitive resources of the driver [82]. Indeed, 

it has been claimed that a person does not need to “look out” for tactile warning 

signals since the tactile stimuli are automatically attention capturing, resulting in a 

faster response.  

 Second, tactile signals have the advantage of being unaffected by the background 

noise level. This is in contrast with the auditory warning signals, where ensuring 

their correct audibility over any possible background road noise and/or the sound 

of car stereo is a real challenge.  

 Thirdly, in contrast to the more commonly used auditory warning signals, tactile 

displays allow information delivery specifically at the operator. With this 

advantage, in terms of privacy, passengers are not required to be aware of or 

distracted by any tactile warning being delivered to driver’s body.  
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 Finally, tactile warning signals are much easier to localize in the spatially confined 

car interior rather than auditory warning signals [83] [84] [85].  

Thus, tactile cues are capable of effectively interacting with drivers by presenting 

directional signals. Some studies have considered the application of tactile displays and 

warning signals (e.g. [86]). As an example of potential tactile influences over other types of 

warning signals, we can refer to [87] in which presenting a counterforce (consisting of an 

increase of     ) on the gas pedal when drivers were too close to the vehicle ahead of 

them could lead to a safer driving compared to using visual or auditory warning signal for 

communicating the same warning information. 

2.2.2 Vibrotactile Safety Drowsy Driver Warning Systems 
While research interest in the adoption of tactile warning signals in vehicles emerged more 

recently, there are already a number of commercial vibrotactile safety systems available in 

the market, such as the lane departure warning systems designed in certain models of 

Citroen and BMW cars [88][89]. Moreover, according to the Denso Corp., one of the 

world’s largest automobile parts manufacturers, all new cars will be equipped with some 

sort of tactile generating device as a standard by the year 2020.  

In the context of awakening the drowsy driver, the most successful commercial 

implementation of a tactile display in vehicles is their use in warning drivers when they 

cross a lane boundary.   In 2004, Citroen started to offer a Lane Departure Warning System 

(LDWS) as an optional extra in its C4 hatchback and C5 saloon cars [88][89]. This device 

alerted potentially drowsy drivers by sending vibrations to their buttocks should they begin 

to slowly cross a lane boundary. The implemented vibrotactile signals in these LDWSs are 

spatially informative, mimicking the effect of rumble strips impact: if the car veers to the 

right, the right side of the seat base vibrates and vice versa. Another driving study [90] 

showed that steering wheel vibration could also be effective in warning drivers of their 

lane departure situation. Vibrating the steering wheel or delivering a pulse-like steering 

torque signal to the steering wheel [91] was found to be more effective than an auditory 

alert, especially in case where no advance training about the meaning of the warning 
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signals was provided for drivers. Practically, drivers could react more than half a second 

faster following either the vibrotactile or torque warning signals than following the 

auditory alerts, when the warnings were unexpected.  

Capturing the attention of the distracted driver is another area for which tactile warning 

signals have been developed. Intelligent collision warning systems particularly were 

designed to avoid front-to-rear-end (FTRE) collisions [86] [92] [93]. FTRE collisions are one 

of the most common causes of crashes among drivers; especially among those who are 

distracted for example because of using their cell phones while driving. 

Our proposed warning style is based on vibrotactile interactions through a previously 

developed haptic jacket interface [99] [94]. Previously, by calculating various fatigue levels 

of the operator, we leveraged armband-based multi-level haptic feedback scheme [95]. 

However, it was not possible to have the customizing option to wear the armband in 

different manners and users often forgot to wear it during the experiments.   
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Chapter 3 - Vision-Based Fatigue Detection 

Techniques 

To identify drowsiness through ocular measures, it is necessary to follow three main steps: 

 Face localization, 

 Tracking the face and its components in the subsequent frames, 

 Estimating the cues, and then the state of the driver.   

In the field of computer vision, detecting a specific object in an image is a computationally 

expensive task. Fatigue monitoring systems track the changes in visual cues by face 

detection and facial features extraction as the major steps. 

3.1 Face Detection and Facial Feature Extraction 

Face detection and its feature extraction could be addressed using either feature-based 

approaches, without machine learning, or appearance-based approaches, with machine-

learning inside. These approaches are further explained bellow. 

3.1.1 Feature-Based Approaches 
The advantage of feature-based approaches is that they make an explicit use of face 

knowledge: local face features and their structural relationship. For example, the 

geometric positions of 34 fiducial points are used as facial features in [32] to represent 

facial images. Then, the facial movements in image sequences can be evaluated by 

measuring the geometrical displacements of facial feature points between the current 

frame and the initial frame. In another approach, shapes and locations of facial 

components such as eyes, mouth and eyebrows are extracted to represent face images 

through facial geometry analysis [33] [34]. Another study for face representation suggests 

Action Unit (AU) detection through tracking facial fiducial points and then classifying 

calculated features [35]. It has been concluded that the facial representation based on 
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tracked facial points is well suited for facial expression analysis. Recently, that study is 

extended to a fully automatic AU detection system in which feature points are 

automatically localized in the first frame. Afterwards, AdaBoost is applied to select a 

subset of most informative spatiotemporal features to recognize AU temporal segments. In 

some existing works [36] [37], optical flow analysis has been used to model muscle 

activities or estimate displacement of feature points. Flow estimates are, however, 

sensitive to non-rigid motion, motion discontinuities and varying lighting.  

The feature-based approaches are usually applied for one single face detection. However, 

good quality images are required and algorithms are computationally expensive. 

Furthermore, the disadvantage of geometrical feature-based representation is the 

dependency on accurate and reliable facial feature detection and tracking, which is not 

easily accomplished in many situations.  

3.1.2 Appearance-Based Approaches 
On the other hand, appearance-based approaches extract features to follow facial 

appearance changes mainly based on texture analysis. In practice, these approaches have 

proven to be more efficient and robust than feature-based approaches. Many appearance-

based approaches have been proposed to deal with facial expression recognition (FER) 

problems. A survey of this body of research can be found in [38]. Generally, image filters 

such as Gabor wavelets are applied either to the whole face area or specific face regions to 

extract appearance changes of the face. With these methods, multiple faces can be 

detected in even low resolution images.  

Related works have mostly focused on using Gabor-wavelet representations [39] [40] [41] 

due to their superior performance resulted in high recognition rate for facial actions. 

However, convolving face images with a bank of Gabor filters for extracting multi-scale and 

multi-orientational coefficients is both time and memory intensive, and demands heavy 

computations. Compared to Gabor wavelets, Local Binary Pattern (LBP) features can be 

extracted faster in a single scan through the raw image. Time and memory costs of the two 

feature extraction processes are compared in [42] as presented in Table 3. The results 
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show that a facial expression recognition (FER) system using LBP histograms allows for very 

fast feature extraction whereas the other method requires a high computational cost in 

extracting a large set of Gabor wavelet coefficients. 

Table 3: Comparison of Time and Memory for Extracting Features [42] 

Methods 
Memory  

(feature dimension) 

Time  

(feature extraction time) 

LBP             

Gabor             

 

Furthermore, extensive experiments on the Cohn-Kanade database show the efficiency 

and effectiveness of the LBP features for facial expression discrimination. Additionally, 

experiments on face images with different resolutions prove the robustness of LBP 

features to low-resolution images, which is critical for real-world applications where only 

low-resolution input is available. This texture descriptor is further explained in section 3.5.  

3.1.3 Viola Jones General Object Detection Framework 
Recent progresses in face detection are mostly made based on the cascade detector 

framework proposed by Viola and Jones [43], which provides a fast and robust face 

detection system. Its OpenCV implementation allows researchers to train their own 

classifiers. Three major components contributing to the cascade face detector are: 1) an 

over-complete set of local features that can be evaluated quickly, 2) an AdaBoost-based 

method to build strong nonlinear classifiers from weak local features, and 3) a cascade 

detector architecture that satisfies the real-time detection speed.   

Haar-like features are widely used in face searching along with AdaBoost learning 

algorithm for training purposes to have accurate face detection. Some of these training 

data are available in the Intel Open Source Computer Vision (OpenCV) library [44], where it 

is possible to find XML descriptions of the cascades of classifiers for frontal or partially 

rotated faces.   
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Besides face detection, the Viola  Jones algorithm and the relative trained classifiers from 

OpenCV library could be applied to detect any object such as face components, more 

importantly eyes and mouth, as those reflecting changes in facial expressions. In this 

thesis, the algorithm is applied for face and eyes localization using the already trained 

classifiers from OpenCV library.  

Many studies using image processing approach and computer vision techniques to detect 

fatigued driving have been reported in the literature. It is believed that monitoring eyes 

and mouth obtains fatigue symptoms early enough to prevent an accident. 

3.2 Mouth Detection 

Estimating the position of the mouth is one of the approaches in fatigue detection 

research. Mouth opening degree varies in different driving states of normal, talking or 

dozing. Accordingly, Fisher classifier has been used in [45] to extract the mouth shape and 

position. Then, the mouth region’s geometry character is considered as the feature value, 

and all these features are put together to make up an eigenvector as the input of a three-

level back-propagation (BP) network, then the output is obtained among three different 

spirit states. In another attempt [46], a gravity center template is used to extract the 

mouth area. Then, they used Gabor wavelet to get the corners of the mouth. Linear 

discriminant analysis (LDA) was also used to classify mouth into two states: 1) normal and 

2) yawning. In another work [47], a back-propagation artificial neural network (BP ANN) is 

used to estimate the following three mouth states from lip features: 1) normal; 2) 

yawning; and 3) talking. They used a facial action coding system (FACS) to code facial 

expressions and then employed machine learning to discover which facial configurations 

were suitable for fatigue detection, with    facial actions applied to predict drowsiness. 

Yawning could be detected by the openness of the mouth represented by the ratio of 

mouth height to width. The ratio is used to represent mouth openness in [48], and 

yawning is detected when the ratio is above     in more than    frames.  

Mouth features and yawning frequency are important cues of drowsiness. However, it 

appears that drivers yawn less often in critical moments before falling asleep, not more 
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often [49]. In addition, most people are used to hide their mouths opened during yawning, 

which negatively affect detecting and tracking the mouth in consecutive frames.  

3.3 Head Position 

Head-nodding frequency, slouching frequency, and posture adjustment frequency have 

been derived from changes in head position in [50]. Facial orientations are divided into five 

clusters in [51] as frontal, left, right, up, and down, depending on eyes position and the 

center of the face. In a similar approach in [52], a coarse estimation of 3D face pose is 

obtained based on positions of pupil and nostril. Face orientation is determined in [53] 

using an eigenspace algorithm to map seven pupil features (inter-pupil distance, sizes of 

the left and right pupils, intensities of the left and right pupils, and ellipse ratios of the left 

and right pupils). The face orientation is then quantized into the following seven angles: 

        
        
        
       
        
        
        
 

A headband with IR reflective markers is employed in another study [54] to estimate the 6-

degree-of-freedom head pose with an average error of       The head position sensor 

system MINDS (Micro-Nod Detection System) proposed by ASCI is conceptually designed 

to detect microsleep events occurring in association with head nodding by assessing 

the  ,   and   coordinated of the head through conductivity measurements [55]. Driver’s 

head is tracked in real time. The signal is correlated with head position of the driver, and 

the software detector extracts head motion behavior associated with driving while drowsy. 

However, microsleeps could also occur without any obvious head nodding event.  
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3.4 Why Eyes?  

Among all visual cues, most of the fatigue-related information can be directly obtained 

from driver’s eyes. Actually, the shape of eyes changes under fatigue state: eyes become 

bigger when the spirit is vigorous; smaller while dozing and completely closed when the 

driver is sleeping. The eye blink frequency increases beyond the normal rate in the 

fatigued state. In addition, microsleeps as short periods of sleep lasting for   to   seconds 

are the good indicator of fatigue. When the eyes are closed due to drowsiness, visual 

inputs to the driver are temporarily halted. Therefore, designing a system only based on 

eye features is reliable enough to properly detect driver’s sleep onset.  

3.4.1 PERCLOS 
PERCLOS (PERcent eye ClOSure) is a measure of driver alertness as reliable as EEG [59]. The 

measure is the percentage of eyelid closure over the pupil over time and reflects slow 

eyelid closures rather than blinks. In a 1994 driving simulator study, the PERCLOS 

drowsiness metric was established as the proportion of time (%) in a minute when the 

eyelids are 80% or more closed [60]. For instance, if the eyelids are         closed for 

a total of 6 seconds within a one-minute time window, PERCLOS would be      or    . 

The metric was highly correlated with other physiological signs of drowsiness and was an 

effective criterion for drowsiness prediction algorithms. PERCLOS was found as an 

indicator of sleepiness onset and was connected to poor performance in visual tasks. The 

authors point out “...it seems obvious that if a driver’s eyelids are closed, the ability to 

operate a vehicle would be greatly hampered” [60]. Based on this research, the US NHTSA 

and FHWA consider PERCLOS to be among the most promising real-time measures of 

alertness for in-vehicle drowsiness-detection systems.  

In terms of video coding, eye closures with a duration over            are typically 

coded as slow eyelid closures and entered in the PERCLOS calculation. Normal eye blinks 

are eye closures with duration under           . PERCLOS values do not seem to vary 

significantly with a different closure value in this range and human factor researchers may 

pick a value as threshold anywhere between           . 
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High PERCLOS values appear to be directly linked with crashes. Thresholds for decision 

making about drowsiness, are usually set at PERCLOS values between      and     . As an 

example, in [61], two PERCLOS thresholds have been defined for driver drowsiness:    

and    . For a PERCLOS measurement of over    , the driver is considered as “drowsy”, 

and if PERCLOS is between      , the driver is declared as “likely drowsy”. Subsequent 

research works have adopted the same threshold values.  

Main technologies that have been used to driver sleepiness are the analysis of video 

imagery during daylight illumination and infrared reflectance devices during driving at 

night.  

3.4.2 Systems for Daylight Illumination 
Video imagery systems for driver fatigue detection rely on calculating ocular measures 

such as PERCLOS from captured video frames. One commercial example of these systems 

is Driver State Sensor (DSS) device developed by SeeingMachines [62]. DSS is a robust, 

automatic and nonintrusive sensor platform that uses face tracking techniques to deliver 

information on driver fatigue and distraction. DSS is located on the dashboard in cars and 

measures the drowsiness state using eyelid opening and PERCLOS. A snapshot of the 

system is displayed in Figure 5.   

 

Figure 5: Driver State Sensor (DSS) device developed by SeeingMachines [62]. 
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Another system developed by the SeeingMachines company is called FaceLAB. In this 

system, the 3D pose of the head and the eye-gaze direction are exactly calculated. FaceLAB 

can also monitor eyelids and output eye open state and blink rates and accordingly 

estimate driver’s fatigue level.  

PERCLOS, blink frequency, eye closure duration (ECD), nodding frequency, fixed gaze, and 

frontal face pose were normalized and used as inputs to fuzzy inference system (FIS) for 

fatigue detection in [52]. Various linguistic terms and their corresponding fuzzy sets were 

distributed in each of the inputs using induced knowledge based on the hierarchical fuzzy 

partitioning (HFP) method. Then consistent, less redundant and interpretable fuzzy rules 

were automatically generated based on a fast prototyping algorithm. Fixed gaze, PERCLOS 

and ECD were determined to be the three crucial cues for driver fatigue detection with 

98% accuracy.  

Some other methods have also been used for fatigue detection. Gabor features 

representation of the face is used in [63] for fatigue detection. After the face is located, 

Gabor wavelets are applied to the face area to obtain different scale and orientation 

features of the face. Then, features on the same scale were fused into a single one to 

reduce the dimension. Finally, the AdaBoost algorithm was used to extract the most critical 

features from the dynamic feature set and construct a strong classifier for fatigue 

detection.   

A real time tracking kernel for stereo cameras is developed in [68] to estimate face pose 

and face animation, including the movement of the eyelid, eyeball, eyebrow, and mouth, 

for driver inattention detection. 

A Bayesian Network (BN) was employed in [57] to infer fatigue from gaze information. 

Mixture Gaussian model is used in [58] to model the “normal behavior” statistics from the 

eye closure duration (ECD) and frequency of eye closure (FEC) for each subject to identify 

anomalous behaviors. The blinking waveform is analyzed in [65] to obtain three factors as 

fatigue signs: 1) the length of a blink; 2) the closure rate; and 3) the blink rate. These 

factors were then weighted using a multiple regression analysis for each individual to 
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calculate the drowsiness level. Driver fatigue is detected in [50] using fuzzy logic to fuse 

four cues: 1) PERCLOS; 2) head-nodding frequency; 3) slouching frequency; 4) posture 

adjustment frequency. 

3.4.3 Systems Using Infrared Illumination 
A popular method for locating eyes involves the use of the “bright-pupil” effect produced 

by near-IR light. Many researchers have applied IR illumination techniques in image 

acquisition systems for three purposes: to minimize the impact of different ambient 

lighting conditions, to allow the bright-pupil effect to be produced, and finally due to the 

invisibility of the near-IR illumination to the driver causing no interference with driving. A 

camera equipped with a two-ring IR illuminator was first adopted in [52], [53] and [54] to 

acquire a driver image. The ring sizes were calculated such that turning on the inner ring 

would obtain a bright-pupil image, while turning on the outer ring would result in a dark-

pupil image. To ensure that images with and without bright pupils were interlaced, a 

controller was designed to synchronize the IR illuminator with the image frame rate. 

Digitally subtracting a dark-pupil image from a bright-pupil image yielded a difference 

image in which pupils appeared to be the brightest regions in the image. By searching the 

entire image, the pupils were detected as the two located bright blobs that satisfied 

certain constrains. The need for the synchronizer was eliminated in [66] by obtaining the 

pupil location from a single image. First, pupil candidates were obtained through Sobel 

edge detection, and then, SVM classifier with Gaussian Kernel identified them. In another 

work [67], a round-template two-value matching algorithm was proposed for locating 

bright pupils, which had an accuracy of       but consumed         on a          

     computer. 

The “bright pupil” effect benefits the eye extraction and tracking process. However, it is 

only useful under some limited lighting conditions that cannot be satisfied in real driving 

scenarios where sunlight can interfere with IR illumination causing the “bright pupil” effect 

not appear clearly. 
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In an attempt [52], the following three main illumination challenges were investigated, as 

shown in Figure 6: 1) artificial light from elements outside the road (such as street lights); 

2) vehicle lights; and 3) sunlight. The “bright pupil” effect will disappear under these 

conditions leading to eye detection failure. Sunlight and reflections from glasses, for 

instance, could cause     drop in inattention detection performance.  

 

Figure 6: Effects of external lights on the acquisition system. (a) Out-of-the-road lights effect. (b) 

Vehicle lights effect. (c) Sunlight effect. (d) Sunlight effect with filter [52]. 

 

Generally, the “bright pupil” effect is not robust, regardless of how the hardware is 

adjusted, specially in daytime or when wearing glasses. Even under constrained conditions, 

the IR reflection in pupils varies by individual. Even with the same driver, the intensity 

depends on head position, gaze point, and openings of the eye. Pupils are also occluded 

when the eyes are closed. Therefore, more reliable real-time eye detection algorithms are 

preferred over the “bright-pupil” effect.  

As described in the previous sections, possible solutions are eye tracking approaches 

without relying on “bright pupil” effect. Many studies have concentrated on image 

processing approaches to estimate driver’s physical parameters such as gaze, face pose, 

and mouth activity. In recent years, the most successful ones have been texture-based 

methods and machine learning. These appearance (texture)-based methods perform well 

in situations where the IR-based system does not, such as where the driver is wearing 

glasses, and is also able to work with sunlight and track the eyes under fast illumination 

changes. In addition, the system would clearly understand the difference between open 

and closed eyes instead of loosing tracking.  
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Overall, a majority of drowsy driver detection systems are based on indices of eye activity. 

Table 4 summarizes these sleep detection devices [18].  
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Table 4: Sleep Detection Devices Based on Eye Activity [18] 

Name of device Description 

Alert driver 
Monitors eye droop, pupil occlusion and eye closure via a 
camera. Uses image neural nets, fuzzy logic to locate 
subject’s eyes. Is also model-based. 

CoPilot 
Detects percentage of time eyes are closed over a specified 
time interval (PERCLOS systems) via infrared camera 

Expresseye 
Measures fixation, gaze control, and saccadic eye 
movement to a target. Uses infrared light corneal reflection 
technique 

EyeHead 
Measures eye position, head position, and eye to point of 
fixation distance. Uses a magnetic head tracker 

Eye-Gaze System 
Measures gaze-direction via corneal reflection technique. 
Also measures pupil diameter, blinking, and eye fixation 

Eyeputer Records eye movements via corneal reflection technique 

FaceLAB 4.5 
Measures eye-gaze and closure. Uses PERCLOS fatigue 
assessment scale 

IM-Blinkometer 
Detects blinks using a piezoelectric adhesive disk attached 
to canthus of the eye 

MTI AM eye 
Detects eye blinks. Measures ratio of closed to open eyes to 
detect sleepiness. Uses infrared reflectance 

Nissan Drowsy/Inattentive 
Driver Warning 

Uses image processing to monitor eyelid movements 

OptalertTM 
Uses infrared oculography to detect eyelid movements 
during blinking and eye closure. The system is being further 
developed to measure intersaccade interval 

PERCLOS 
Detects eye closure using infrared, retinal-reflectance 
device. Measures duration of blinks and eye closures, and 
proportion of time eyes closed over a specified time interval 

Photo Driven Alert System Worn on ear and measures blink rate 

SafetyScopeTM Ocular system in quantifying sleepiness 

SmartEye 
Detects head position and point of gaze via image 
processing 

Toyota Driver Drowsiness 
Detection and Warning System 

Detects eyelid movement using camera mounted on rear-
view mirror 

Vehicle Driver Anti-Dozing Aid 
(VDAD) 

Measures eye closure and head movement via infrared 
reflectance. Developed by US military 
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Most of the previous approaches detect eyes in their open state, while for the fatigued 

driving case a method is required for eye detection in different eye states during both alert 

and drowsy states. 

Eye closure behavior and its impact on appearance changes during a fatigue episode could 

also be extracted through feature extraction methods explained in section 3.1. More 

recently, local binary pattern (LBP) was proposed as a powerful images texture descriptor, 

and was applied for facial expression representation. This operator is further described in 

the following section. 

3.5 Local Binary Patterns (LBP) 

Ojala et al. introduced LBP as a means of encoding local gray-level structure for texture 

description [69]. LBP features were then introduced to represent faces in facial image 

analysis. The idea of using LBP for face description is motivated by the fact that LBP can 

efficiently encode texture features of the face micro-patterns which has been effective 

information for both face recognition and facial expression recognition applications [70] 

[71]. A comprehensive study on using LBP for facial expression recognition can be found in 

[42]. 

The derived binary numbers, called LBP codes, codify local primitives including different 

types of curved edges, spots, flat areas, etc, as shown in Figure 7. 

 

Figure 7: Examples of texture primitives which can be detected by LBP (white circles represent 

ones and black circles represent zeros) [42]. 
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The LBP operator is defined as an ordered set of binary comparisons of pixel intensities 

between the central pixel and its surrounding pixels. Basically, LBP applies a     mask 

over the entire image. In each step of sliding and shifting, the value of the central pixel is 

set as threshold for neighbour pixels changing them to a binary unit:   or  . Then, binary 

units are arranged clockwise resulting in an 8 bit integer LBP code on the 8 pixels around 

the central one. An illustration of the basic LBP operator is shown in Figure 8 and the 

corresponding equation is shown below. 

                     

 

   

   (4.1) 

Where    corresponds to the grey value of the center pixel,    to the grey value of the 8 

surrounding pixels and function       is defined as: 

      
             
             

  

 

Figure 8: LBP labelling: binary label is read clockwise starting from top left neighbour 

The binary-valued image patch, called LBP map, is used as a local image descriptor.  

The LBP has been extended to multiresolution analysis [72], color texture analysis [73] and 

spatio-temporal texture analysis [74]. Some of the applications for the LBP and its 

extensions include visual analysis, image retrieval, motion detection, remote sensing, 

biomedical image analysis, and outdoor scene analysis.  
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3.5.1 LBP Histogram 
A descriptor for texture analysis is a    -bin histogram,   , of the local binary pattern. 

After labelling an image with the LBP operator, a histogram of the labelled image         

could be calculated as in Equation 4.2. 

                               

  

 (4.2) 

Where   is the number of different labels produced by the LBP operator and         

when   is      and similarly,         as   is      . The LBP histogram, calculated over 

the entire LBP image, is consisted of bins each of which accumulates the total number of 

corresponding codes and hence represents image characteristics by its micro patterns such 

as edges, spots and flat areas.  

The basic histogram, computed over the entire LBP map image, can be extended into a 

spatially enhanced histogram which is capable of encoding both appearance and spatial 

relations of face regions. As the   face regions have been determined, a histogram is 

computed independently for each of the regions. The resulting histograms are combined 

to form a spatial enhanced histogram. The size of the enhanced histogram is    , where 

  is the length of a single LBP histogram. This histogram provides an effective face 

description on three different levels of localization: the labels for the histogram contain 

patterns information at the pixel level, the labels summed over a small region provide 

information at the regional level, and the regional histograms are concatenated to build a 

global texture feature of the face. It should be noted that when extracting the facial 

features using the histogram-based methods, despite the example in Figure 8, the regions 

are not restricted to be rectangular, of the same size or shape, and it is not necessary to 

cover the entire image either. They could be, for instance, circular regions located at the 

fiducial points.  

3.5.2 LBP Properties 
Facial appearance of the same person can vary largely due to illumination variation. 

Especially, driver’s face is exposed to frequent illumination variations during daylight 
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driving. Conversely, LBP features are invariant to monotonic gray-level transformations 

caused by illumination variation. In this context, a related study has investigated face 

recognition rates for faces under varying illuminations before and after applying the LBP 

operator [75]. Figure 9 displays one person’s images taken in different illumination 

conditions and the resulted LBP texture patterns. Also, Figure 10 shows the same idea for 

faces of three persons under two example illuminations.    

 

Figure 9:  Applying LBP on one person’s face images under various illuminations [75] 
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Figure 10:  Applying LBP on three person’s face images under various illuminations [75] 

The database in [75] is created based on images of    persons with    images under 

different illumination conditions per person. Experiments confirm that the LBP operator 

can improve the recognition rate significantly when used to smooth the various 

illumination conditions. 

Another important property of LBP features is their computational simplicity and the 

ability to codify all image pixels through a single scan. This key property would allow 

researchers to implement simpler feature extraction algorithms with faster processing 

time which is helpful in real-time applications. LBP features have been proved to be robust 

to low-resolution images, which is critical in real-world applications. Additionally, it has 

shown excellent performance in comparative studies in terms of both speed and 

discrimination performance.  
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3.6 Classification 

The goal of a classifier is to compare the extracted features of a face image with those of 

the template and report the match degree in terms of some match or similarity measure. 

Basically, the last part of an expression recognition system involves the classification task. 

In this stage, the extracted facial features are used for classification. In this thesis, the 

output of the LBP feature extraction module, representing eye behavior, is considered as 

the input to the classification module that would identify eye states in each frame.  

3.6.1 Dataset  
Classification task is dependent on a dataset created from a portion of the extracted 

features. This dataset is then used to train the classifier so that it would be able to 

recognize the desired expressions in other images, both in the same dataset with which it 

was trained and the new ones. Computer vision-based expression analysis systems can 

extract the data in several formats, ranging from low-level inputs such as raw pixels to 

higher level inputs such as facial action units or basic facial expressions. If the database is 

large enough, low-level inputs are suitable to detect a particular expression or a particular 

state, and it actually helps to avoid intermediate representations such as Facial Action 

Coding System (FACS) [76]. On the other hand, when the dataset is relatively small, higher 

level representation of the image is beneficial. For the fatigue detection purpose, large sets 

of data from different subjects are not easily accessible since capturing spontaneous 

fatigue behaviour is a challenging task. Hence, using higher-level inputs might increase the 

system performance. Therefore, in this thesis local binary pattern histograms (LBPHs) are 

selected as the feature vectors representing eye region expressions and used as the input 

to the automated fatigue detector.  

3.6.2 Support Vector Machines (SVM) 
SVM is a pattern classification algorithm that finds the optimal linear decision surface 

between two hypotheses based on the concept of structural risk minimization. The 

decision surface is a weighted combination of elements of training samples, namely 

support vectors. These elements characterize the boundary between two classes. 
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Therefore, this classifier is naturally defined as a two-class discriminant classification. A 

considerable advantage of SVM over the traditional neural networks is its better 

generalization performance even with a small dataset [77]. In this context, maximal margin 

decision boundary can achieve optimal worst-case generalization performance. SVM is 

originally designed to solve problems where data is separable by a linear decision 

boundary. Nevertheless, using kernel functions, it is also potential to deal with problems 

that are not linearly separable in the original space (e.g. [78]). Some commonly used 

kernels are Gaussian Radial Basis Functions (RBFs), polynomial functions, and sigmoid 

polynomials.  

Since eye state recognition is a two-class problem, SVM is selected in this thesis as the 

classifying function. The classification problem in this thesis is deciding about the eye state 

either as open or closed among a dataset consisted of eye features representing various 

eye states, which is not linearly separable. Therefore, the RBF kernel is selected due to its 

better boundary response allowing for extrapolation and an overall better performance.  
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Chapter 4 - Proposed System 

4.1 Requirements 

Developing automatic driver drowsiness detection and warning system by means of facial 

expression tracking requires solving four questions: 

1. How to define features of drowsy expression, 

2. How to capture the features from the driver’s recorded face video, 

3. How to estimate driver’s drowsiness index from the features, and 

4. How to re-alert the sleepy driver based on the estimated fatigue level. 

Our approach to solving these problems is explained in this chapter. 

4.2 Architecture Overview 

We propose a collision avoidance driver assisting system for both driver fatigue detection 

and fatigue driving warning. The main idea behind our approach is to automatically detect 

eye states specially during fatigue driving conditions and to re-alert the driver. A video 

camera monitors driver’s face continuously. Captured video frames are then provided to 

the image processing module to extract certain facial features. Corresponding warning 

signals will re-alert the driver in case these features confirm driver’s fatigue state. The 

general architecture of the system is shown in Figure 11. The main stages are: face 

detection, eye localization and tracking, eyes region feature extraction, eye state 

recognition, fatigue estimation through fatigue level analysis and finally warning feedback 

generation. 
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Figure 11:  A flowchart based overview of the warning system to the fatigue driver. 

 

4.3 Image Processing Functional Requirements 

The image processing part of the system, dealing with monitoring driver’s eyes to estimate 

fatigue levels, must essentially perform the following functions: 

 Detecting driver’s face in all input frames, 

 Provide the eye location for both eyes, 

 Representing eye state using a feature extraction method.   

4.3.1 Face Detection 
The first part of the fatigue monitoring system is the module for face detection. Face 

detection unit receives a video frame from the video capture unit and uses a cascade of 

classifiers that work with haar-like features to detect the face with the idea of Viola-Jones 
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face detector [43]. The implementation is done using OpenCV library with decision tree 

classifiers that were trained with human faces.  

OpenCV provides a number of object detection functions. In detail, a dataset in the form of 

XML file called haarcascade_frontalface_alt2.xml is loaded in the memory. This file 

contains information about human faces. After the file is loaded, a function named 

cvHaarDetectObject is called to find rectangular regions that are most likely faces in each 

frame coming in real time, and the function returns those regions as a sequence of 

rectangles. The size of rectangles that represent faces is measured, and the largest one is 

considered as the user’s face. Based on this technique, OpenCV detects images that 

contain faces.  

The main advantage of the Viola-Jones face detector algorithm is its very high detection 

rate for faces in the frontal orientation considering that the nominal face orientation while 

driving is frontal. If the face orientation is in other directions (e.g., down or sideways) for 

an extended period of time, the driver is either fatigued or inattentive. Moreover, the 

algorithm is so efficient and quick, as mentioned before, that could be used for real-time 

applications. During the face detection procedure, the classifier trained for face detection 

searches for a face in the image. In case no face is found, further processing is cancelled 

and system returns related error message.  

The implemented face detection algorithm comes in the Appendix in Algorithm 1 and the 

obtained result is displayed and Figure 12. 
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Figure 12:  Face detection and cropping 

If there are more faces detected in an image, the biggest one is taken by the algorithm for 

further processing.  

A sample of the extracted faces can be seen in Figure 13.   

     

Figure 13:  Output images from the face detection unit 

4.3.2 Eye Detection 
After successfully locating the face, parts of that containing more related fatigue 

expression information will be separated and investigated. Based on a previous discussion, 

tracking eye behavior is reliable enough for early drowsiness detection. First, regions of 

interest (ROI) are set and cropped based on coordinates of the face boundary box.  Half of 

face width and two third of its height are considered as the width and height of each eye 

region. The eye detection classifiers for both left and right eyes are then adopted from the 

OpenCV library only on the left and right upper face parts to detect left and right eyes 

separately.  
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In this procedure, both XML files haarcascade_mcs_lefteye.xml and 

haarcascade_mcs_righteye.xml are loaded from the memory, including information about 

the left eye and right eyes. Then, the cvHaarDetectObject function is called twice to search 

for each eye in its cropped region. The search area of facial elements detectors is 

narrowed for improving the time efficiency of the algorithm. The face image with its 

cropped features is shown in Figure 14. 

 

 

 

 

  

 

 

 

 

Figure 14: ROI and face components localization. 

Eye detection and localization procedure is represented in Algorithm 2 in the Appendix. 

Different eye states, with or without glasses, with different face distances from the 

camera, and with a bit face rotation were successfully detected using this algorithm (Figure 

15). 

    

 

 

  

        

Figure 15: eye detection for open/closed, with/without glasses eyes. 

After the eyes are detected, their boundaries are available, but are required to be drawn 

by assigning their boundary box coordinates and the corresponding width and height to a 

CvRect variable, as shown in Algorithm 3 in the Appendix.  

The face ROI in this system is the face upper part which is obtained based on eye 

rectangles. Actually, a resized rectangle including both eye locations is considered as the 

face upper part for further processing. 
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Having locations of the face and facial landmarks, the face representation can be formed. 

In this work, fatigue or drowsiness is considered as a facial expression causing unique 

changes in the face appearance, mostly occurring in eyes region. Therefore, a facial feature 

extraction technique could be applied to represent these observable signs.  

4.3.3 LBP Feature Representation 
In order to capture fatigue expressions from driver’s eyes, LBP feature extraction method 

is employed with its advantages in facial texture encoding. Face images can be seen as a 

composition of micro-patterns that can be well described by LBP texture operator. LBP can 

encode fine details of facial appearance by capturing small appearance details, making it 

suitable enough for fatigue detection through eye region expressions.  

Applying the LBP operator, the input image is converted into its corresponding LBP map by 

sliding window technique where value of each pixel in the neighborhood is thresholded 

with the central pixel value. Central pixel is then encoded with LBP code (binary or 

decimal) and is replaced in the corresponding LBP image pixel. These binary codes are so 

called micro-textons, representing texture primitives such as curved edges, flat or convex 

areas. The LBP encoding process for the upper face part, resulting in pixel-level binary 

pattern descriptors, is illustrated in Figure 16. 

 

Figure 16: Face upper part LBP image. 
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Relying on the fact that eyes are in the upper half of the face, the search domain is limited 

to the upper part of the face image for fatigue detection from eyes behavior.  

Based on the operator, each pixel of the region is labeled with an LBP code. The     bin 

histogram of the labels contains the density of the region from which it is extracted, and is 

used as a texture descriptor of that region. Expressions are extracted from the eye region 

through LBP Histogram formation. 

4.3.4 Eye Region Feature Extraction 
Before features can be extracted, the desired face region needs to be normalized to have 

the same size for all input images. All upper face regions are rescaled to the same size with 

resolution of       . In this thesis, the basic        operator is used which has        

LBP patterns. Then each block in the region is scanned to obtain its LBP histogram. Feature 

extraction procedure from the eye region could be explained in three steps: 

 Dividing the cropped upper face part into smaller sub-blocks, 

 Calculating local LBP Histograms as the feature vector for each block, and 

 Creating a single feature vector as the representative of the whole upper face part. 

The upper part of the face is further divided into    smaller non-overlapping sub-blocks, 

considering the fact that applying the LBP operator on the whole selected part of the face 

would result in loosing spatial information of the texture. Another reason is that this 

division would enhance the region shape information. Figure 17 shows      grids of the 

normalized upper face region.  

 

Figure 17: upper face region grids 
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Each sub-block is independently encoded with the basic LBP operator and subsequently 

the cvCreateHist function is called to obtain Local LBP Histograms separately from each 

region. These local histograms are then concatenated to each other to form the enhanced 

global feature vector representing the whole eye region. The shape of the global histogram 

is used as the feature in our system. For an eye region with    sub-regions, this vector 

consists of    histograms (Figure 18), each of which including     bins and so an eye state, 

or a fatigue expression, is described by      features.  

 

Figure 18: LBP histograms are extracted and concatenated into a single, spatially enhanced 

feature histogram 

The one-step procedure is also illustrated in Figure 19. 

 

  

 

Figure 19: Feature extraction from face image using LBP operator 

Consequently, every input frame would have an LBP Histogram (LBPH) as the feature 

vector of the eye state. These vectors are the classifier training data in the next stage.  
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The advantage of the proposed system over conventional methods, in the domain of facial 

expression recognition, is that it requires no manual operation, whereas conventional 

approaches require some manual operations for face cropping and selection of fiducial 

points on face images.  

4.3.5 Eye State Recognition 
In this module of the system, the method that connects the desired extracted features to 

the current driver’s fatigue level is described. To identify fatigue through eye behavior 

analysis it is necessary to know its state over time and to develop an algorithm to measure 

the time spent in each state.   

4.3.5.1 Eye States Definition 

Two default eye states are considered in this work: open and closed. Eye state is defined as 

open if the iris and sclera of the eye (both black and white regions of an eye) can be 

observed. Otherwise, if the iris and sclera are not visible or even difficult to distinguish, the 

eye is assumed as closed. This definition matches the criteria for PERCLOS calculation 

where the eye closed for more than     is considered as closed. The defined eye states 

are shown in Figure 20. 

  

  

  

Figure 20: Open and closed states of an eye 

Furthermore, we found out that states of both eyes may not be completely similar in a 

sense that one of the eyes is more closed than the other one in the same frame. In this 

case, the eye state is judged based on the more closed eye state.  

4.3.5.2 SVM Classification 

After obtaining feature vectors of the desired regions of the face, highly involved with 

fatigue expressions, eyes are ready for the relative state recognition. A binary classification 

on LBP feature vectors of input frames would yield an efficient real-time determination of 

the current eye state. Therefore, and according to the previously described advantages, 
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SVM classifier with RBF kernel is applied on the test images to distinguish between the 

open and closed eye states. The greatest advantage of SVM is its good performance in 

generalization even with small set of training data. This property is certainly helpful in the 

area of driver drowsiness detection, where collecting natural fatigue expressions is a 

challenging task. Other reasons for implementing the current module using an SVM were 

the binary nature of the proposed classification problem and the efficiency of SVM in 

working with high dimensional feature vectors. 

4.3.5.3 Training and Testing sets of SVM 

Training the SVM classifier requires a set of face images showing drowsiness expressions. 

Since there is not any facial drowsiness dataset available for the research community, we 

created our own dataset. To construct this training set, videos of    persons were 

collected. In each of these videos, the participants were asked to naturally express both 

alert and fatigue driving states. Alert state is known as open eyes with normal blinking and 

eye movements, while the drowsy state is consisted of higher blink frequency, longer blink 

durations, and micro sleeps, lasting for at least   to   seconds, as well as a small head 

nodding at the end. Figure 21 shows some sample images of the training data. 

Eyes 

Open 
     

Eyes 

Closed 
     

Figure 21: The sample fatigue expression images from the training dataset 

The trained classifier matches the input histogram with the closest state and outputs the 

corresponding class label (0 for open and 1 for closed).  

System’s performance is verified by measuring the accuracy rate, which is the proportion 

of the properly classified images to all images in the test set. For this purpose, an integer 

variable called true prediction counter (TP) is used during the test phase, which increments 
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immediately after a test image state is classified as true. Then, accuracy (ACC), as the 

output of this phase, is calculated by dividing TP over the accumulating train data, loading 

from the dataset. The SVM, trained with both open and closed eye states, resulted in a 

successful eye state recognition rate of over     , after being tested with the two 

datasets. 

4.4 Real-time Fatigue Detection 

Having repeated the eye state recognition procedure continuously for all image sequences, 

the number of consecutive frames in which eyes are closed are visually known. Therefore, 

over a period of time, the simple static eye state data is converted to at least two dynamic 

fatigue parameters: blink duration or PERCLOS and blink rate or blink frequency. 

4.4.1 Fatigue Index 
As mentioned earlier in the previous chapter, PERCLOS determines the percentage of time 

the driver’s eyes are closed. To calculate the value of PERCLOS at time   for the current 

frame, the following steps are considered: 

1. Select a time window         of a predefined length,  , in which the eye position 

has been tracked (i.e. in each input frame, the eye region is located and extracted). 

2. Count the number of time intervals,  , and their durations (   for the     one), 

during which the eyes are detected as closed. This time is equivalent to the 

duration of eyelid closure or the continuous closed state in the time window. 

3. Evaluate the following equation (Eq. (3.1)) 

         
  
 

 

   

      
 

(3.1) 

 
It is necessary to remove blinking time from the accumulator to make the measurement 

more accurate. As mentioned before, the duration of normal blinking is under the range 

of          , whereas above this range, the driver is at least experiencing slow eye 

closures. The processing time of our algorithm is      , allowing us to be aware of the eye 

state every      . Consequently, if the eyes are detected as closed for at least   
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consecutive frames, the driver is not in a normal alert state anymore, and hence this 

duration should enter the cumulative PERCLOS calculation.  

Subsequently, driver fatigue decision is made by applying fatigue threshold on PERCLOS.  

4.4.2 Fatigue Levels Analysis 
Three PERCLOS thresholds are set for fatigue analysis. In case the driver 

shows           ,            or          continuous eye closure over a          

time window, the PERCLOS score crosses the defined    ,     and     thresholds 

respectively. Taking into account the algorithm frame rate,     , if, for example, the 

computed PERCLOS is greater than   , eyes have been recognized as closed for   

consecutive frames and hence the system has reached the first safety driving limit and 

immediately issues a warning. The procedure for various levels of fatigue detection based 

on PERCLOS calculation is detailed in the following algorithm: 

Various Fatigue Level Analysis 

Require: Video stream from the camera monitoring the operator/* 
the system can proces   frames in each second in its online 
surveillance. */ 
1. Compute the PERCLOS score    of the operator using equation 

3.1 
2. if     , where   is the average PERCLOS score of the operator 

in normal condition then  
3.                   Flush previous PERCLOS score list. Go to step 8. 
4. end if 
5. Retrieve and update the vector score list     for the past    

seconds.  
6. Compute the cumulative PERCLOS score of the operator    

    
     
   , where   is the tolerance constant, and   is the 

number of frames that the system can process in each 
successive seconds. 

7. return     Approximated haptic feedback level,           
 

 
    

where           . 
8. return      /* Eye state open, reset warning levels.  */ 
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It has to be noted that if, for instance, the driver makes          eye closure in   

different times over the time window, it is equivalent to crossing the first level of fatigue 

threshold (  )   times separately. In comparison, the case of           consecutive eye 

closure over the same time window obtains a different fatigue level (   ). 

In order to quantify driver’s fatigue state for a more accurate estimation, four fatigue 

levels are suggested, matching the ranges of the mentioned PERCLOS thresholds. These 

states are called as “alert”, “potentially fatigued”, “fatigued”, and “much more fatigued”. 

Accordingly, the driver is considered as “alert” if his/her cumulative PERCLOS score over 

time is below    . For the score range of         the driver is estimated as 

“potentially fatigued”. If the driver is in the range of          s/he is “fatigued” and 

finally in the most dangerous case, when the driver makes a score of over    , the state 

of the driver is “much more fatigued”. This PERCLOS Score Driver State relationship, 

leading to fatigue level quantization, is displayed in Figure 22.  

 

Figure 22: PERCLOS – Fatigue level relationship 

We have tried to trigger an alerting feedback based on the detected fatigue severity and to 

make the driver aware of his/her inability to continue driving. 
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4.5 Feedback Generation 

The second part of the proposed driver fatigue assisting systems is setting up a prototype 

for alarm signal deliveries. That is where the main design problem lies in related studies:  

 How to present continuous warning information in an unobtrusive way? 

This question could be better answered if divided into two more accurate ones: 

 How to use the measured fatigue index to describe a critical warning level? 

 What type of warning interface and signals to use to convey that critical level? 

We suggested a practical solution for sending warning signals to the driver during fatigued 

or drowsy state: 

 First, graded warning levels are defined to match the quantized fatigue levels in 

order to deliver the warning signals in a progressive manner. In fact, the obtained 

fatigue level is translated to the corresponding warning level. 

 Second, to effectively communicate that warning level, specific portion of a 

previously developed haptic jacket device is taken into account to vibrate and 

present the corresponding haptic feedback as the warning signal. 

Consequently, applying the suggested haptic feedback types, the driver is safely alerted 

after the fatigue state is detected.  

4.5.1 Haptic Signals 
Haptic alerts warn the driver approaching a crash by applying forces or generating 

vibrations. According to the fact that visual and auditory perceptual channels are more 

engaged during the driving task, warnings in the tactile modality should help the driver to 

have a faster reaction time. In fact, by controlling the displacement of vibrotactile stimulus 

on the skin, more information can be displayed to the human. More importantly, simple 

haptic signals would not have any negative impact on driving safety i.e. not interfering 

driver’s attention during driving. 
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Considering the ability of haptic feedbacks to effectively interact with the user for warning 

signals delivery, a haptic prototype is adopted in our driver assisting system as the 

followings. 

4.5.2 Haptic Jacket 
The haptic jacket [99] is a suit consisting of an array of vibrotactile actuators positioned in 

certain locations of the jacket. Vibrotactile actuators communicate sound waves and 

create funnelling illusion when it comes to physical contacts with skin. A series of small 

actuator motors are placed in a 2D plane in the jacket and are controlled by an ATMEL 

MEGA128 AVR Micro-controller. The actuators are activated in a defined manner to 

produce touch feeling [99][100]. Configuring the Micro-controller, vibrotactile warning 

signals could be sent in different frequencies and intensities, corresponding to the 

estimated levels of fatigue.  

In order to translate fatigue criticality to haptic signals, Bluetooth is considered as the 

communication method between the fatigue detection module and the Bluetooth-enabled 

haptic jacket device. The haptic interaction controller uses the Bluetooth communication 

channel for command transmissions. Based on this method, fatigue data, more precisely 

the PERCLOS threshold, is presented as the vibrotactile stimuli through the haptic jacket. 

Figure 23 depicts the components of the jacket in more detail. 
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Figure 23: Haptic jacket hardware components 

Perhaps, one might worry that these vibration cues would be ineffective should a driver 

wear thick cloths. However, recent studies have proven that tactile warning signals are 

transferrable through various daily clothing and even through the soles of a driver’s shoes, 

for the idea of presenting vibration stimuli on the gas pedal [92] [97] [87].  

4.5.3 Haptic Rendering Customization 
Regarding what drivers would find helpful to do with the warning interface, we attempted 

on embedding driver’s preference and control in the system. Promoting driver acceptance 

is presented through haptic jacket features. 

4.5.3.1 Haptic Jacket Features 

 The driver can select the locations on the interface from where the feedback is 

received. 

 The driver can adjust the intensity of vibrations for corresponding fatigue levels. 

 The driver is also given the option to disable the warning system should he/she find 

it bothersome. 
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4.5.3.1.1 Locations for Haptic Perception 

As the default setting, three specific portions of the haptic jacket interface are equipped 

with actuators to signal feedbacks corresponding to the three described PERCLOS 

thresholds. Shoulder area is selected to express the “mild” warning type. The reason for 

this choice is that shoulders are less irritating for the users. In addition, since the operator 

would be alerted with the mild level feedback more likely compared to other levels, 

selection of shoulders makes vibration transfers more comfortable. As a more sensitive 

location, chest area is chosen for the “average” level haptic perception. Finally, taking into 

account the sensitive spinal reflexes and its effectiveness in conveying more urgent 

warnings for the sleepy driver, the backbone area is preferred for receiving the “danger” 

level of haptic alerts. Figure 24 illustrates the selected locations and their corresponding 

feedback types on both front and back view. 

 

Figure 24: Depending on warning levels, different portion of haptic jacket is selected for haptic 

warnings delivery. Here, a) Area defined by the triangular shapes is used to provide 

warning        , b) Area defined by circular shapes on the chest and back is leveraged for 

warning        , and c) Spinal area with rectangular shapes is used to generate 

warning        . 

Besides the default settings, there is an option offered to select preferred locations for 

specific stimuli perception, based on individual differences in reaction. For example, the 

driver is able to choose just shoulder areas but with different intensities for corresponding 
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fatigue levels, or the three defined areas with the same vibration intensity. In the former 

case, the intensity of warnings determine the severity of fatigue, while in the latter case 

warning importance would be recognized through the signalling location.   

4.5.3.1.2 Warnings Intensity  

The intensity of haptic feedbacks is also customizable. During the “potentially fatigued” 

state, where PERCLOS ranges from       , shoulders receive the “mild” vibrotactile 

warnings. If the driver is detected to have an eye closure duration equivalent to the 

“fatigued” state, where PERCLOS ranges from        , alert perception is through the 

chest area with the “average” haptic warning signals. Crossing the     threshold and 

staying above that, the driver is “much more fatigued” experiencing microsleeps and is 

highly potential to fall asleep at the wheel. For this fatigue state “danger” level warnings 

are selected to be sent to the backbone area. 

Once the initial warning is triggered, the driver may either respond to that or not. In case 

of response, which is when the eye state is switched to open, the driver drowsiness level is 

back below the first threshold. System waits for the next eye closure to emit a haptic 

warning. Otherwise, in case of continuous eye closure, driver would exceed higher 

PERCLOS thresholds, corresponding to higher drowsiness levels, and therefore more 

intense warnings are issued until returning to the alert state.  

4.5.4 Warning logic 
A graded warning would present a degree of warning based on the severity of danger. This 

setting for warning delivery could be reflected in the smooth vibration transition between 

body parts from less sensitive to more sensitive. This is in contrast with the single-stage 

warning setting that produces the signal only when a certain threshold has been crossed. 

Graded warning allows the driver to be aware of fatigue progression from early stages of a 

fatigue episode rather than sensing a sudden awakening signal. Therefore, the driver 

would find enough time for a safe reaction or a countermeasure to mitigate the effects of 

fatigue. Furthermore, graded warning signals are trusted more, increasing system’s 

acceptance, compared to single-stage abrupt warnings. 



59 
 

4.5.5 Additional Specifications 
There are some other characteristics associated with the haptic jacket that enhance its 

performance. 

4.5.5.1 Integration 

From the integration point of view, the proposed warning scheme in the form of haptic 

jacket is practically beneficial; compared to other in-vehicle driver assisting devices, no 

special method is required to add the haptic jacket to the vehicle. The wearability property 

of the haptic jacket, which makes it independent of the test environment, also helps to 

conduct the in-laboratory usability study completely close to the real in-vehicle driving 

situation. Other studies on driver drowsiness warnings are limited to the laboratory 

environment in order to have access to signal generating equipments rather than 

integrating them in real vehicle.  

4.5.5.2 Vibration Severity Settings 

In our previous work [95], a previously developed armband with an array of actuators was 

employed as the interface for warning signal delivery. Three different alert levels were 

chosen to warn the driver about various fatigue levels, mimicking the sounds of Clap, 

Chopper and Ambulance respectively. The vibrotactile warning signals that were applied in 

that work for the armband interface could be also adapted to the haptic jacket. These 

three levels and their durations are shown in Figure25.  
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(a) 

 

(b) 

 

 

(c) 

Figure 25: Haptic data type for various warning levels: (a) Clap, (b) Chopper, (c) Ambulance 
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For the haptic jacket, certain places of the jacket (chest, spine and shoulders) that are 

chosen for haptic feedbacks are of different importance in the context of fatigue severity 

and the driver is subsequently notified of that. For example, in order to signify very 

dangerous feedback, the spinal area is chosen to signal the vibrations. Nevertheless, the 

Clap, Chopper and Ambulance vibration alerts could be augmented with this scheme as 

well. As a result, not only the haptic feedback locations would inform the driver of his/her 

state, but the type of feedbacks also help to better infer the current situation leading to a 

faster reaction. This configuration is preferred for drivers who are more confident in their 

abilities, while more cautious drivers prefer to react sooner. 

4.6 Summary 

Figure 26 shows a block diagram of the overall operation of the system. 

 

Figure 26: Schematic diagram of the proposed system 
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Finally, Table 5 summarizes the relationship between all defined parameters for fatigue 

detection and warning in one glance. 

Table 5: A Summary of Defined System Variables and Their Relations 

Parameters Variations 

PERCLOS Score (   )            
 

Quantized Fatigue State Alert 
Potentially 

fatigued 
Fatigued 

Much more 

fatigued 
 

Haptic Jacket Warning 

Locations 
Shoulders Chest area Spinal area 

 

Intensity and Frequency Mild Average Danger 
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Chapter 5 - System Validation 

Experimental results were acquired using a Sony digital video camera and a          CPU 

with      RAM memory as the hardware. Video sequences were acquired at    frames 

per second with the resolution of        . The proposed approach was implemented in 

Microsoft Visual Studio C++.  

The validation consists of three parts. First part involves validating the performance 

accuracy of applied computer vision techniques. The second part studies validity of fatigue 

parameters resulting in the computed fatigue index, and finally the third part evaluates the 

validity of the haptic warning presentation through the suggested haptic interface. 

5.1 Measurement Accuracy 

In this section, some quantitative results are presented to characterize the accuracy of 

employed computer vision and pattern recognition techniques.  

5.1.1 Test Sequences 
First, recorded videos captured from    participants in the laboratory environment are 

converted into image sequences. There was no limitation on wearing glasses while 

recording videos. Alert and fatigue intervals are then separated for each one of the 

sequences followed by selection of image frames for both open and closed eyes. 

5.1.2 Eye Localization 
Our face and eye detectors are implemented in OpenCV using the already trained 

classifiers with human faces and eyes based on the Viola and Jones approach that uses 

haar-like features. This method of face and eye detection has been proved to be fast and 

effective enough for real-time eye states detection system. Various states in an image 

sequence of the fatigue state (open, mid-open and closed) could be successfully detected, 

as illustrated before.  
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For the eye localization study, an image sequence containing      frames is randomly 

selected, and the eyes are manually localized in each frame. The manually extracted data 

serves as the ground-truth data, and is compared with eye detection results of the 

algorithm. The study shows that the implemented algorithm is quite accurate in detecting 

eye position in all frames regardless of its state as open or closed, with or without wearing 

glasses and matches very well with manually detected eye positions. Figure 27 shows an 

example of eye detection and localization result during a fatigue state episode. 

     

Figure 27: An image sequence during fatigue progression output from the eye detection 

module 

Thus, the next experimental results on eye-state detection rely on the assumption that eye 

regions are located correctly in each frame.  

5.1.3 Eye State Recognition  
After accurately detection of eye regions, we apply our presented method to detect 

open/closed state of the eye. Eye state recognition performance using SVM is validated by 

measuring the classification accuracy. SVM is first trained with the created dataset 

obtained from captured videos of participants. Video frames are processed and then the 

classifier is trained with extracted LBPH vectors for the open and closed eye states 

separately. Training data consists of     images of each class (open and closed) per 

person. Afterwards, the classification accuracy is validated by measuring the recognition 

rate.  

Two different sources were selected as the SVM test images. 1) Some of the image 

sequences from the captured video frames that were used to train the classifier, 2) Some 

of the sadness expression sequences of the FG NET Facial Expression database that 
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contained the same slow eyelid closure behavior as the real fatigue image sequences. We 

wanted to make sure that SVM was tested on faces of persons that were never seen 

before during training.  Therefore, we requested to have access to the FG NET Facial 

Expression and Emotion Database [96]. This password-protected database contains 

spontaneous emotions of seven expressions (neutral, surprise, fear, disgust, sadness, 

happiness and anger) gathered from    subjects. In order to test SVM with proper states, 

the sadness expression which includes faces with both open and closed eye states, 

resembling fatigue expression, is selected. The test data consists of 250 images of the two 

eye states (open and closed). Sample test images are shown in Figure 28. 

 

Figure 28: The sample sadness expression images from the FG NET database 

In the experiments, one video from our own created dataset including faces with alternate 

eye states is selected to test the eye state classification. The video is taken by the color 

video camera and lasts for one minute, containing    frames per second. Thus, 1500 

frames are obtained after converting the video to an image sequence. The results of the 

test frames are summarized in Table 6, which are       and        for open and closed 

states respectively.   
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Table 6: recognition accuracy of the video test 

Eye state  

Recognition 

rate 

Open Closed 

Frame Recognized Frame Recognized 

                      

 

The experimental results show that the proposed fatigue detection system using LBP 

features for facial information representation and SVM for classification provides 95.43 % 

recognition accuracy. 

5.2 Validation of Fatigue Parameters  

5.2.1 Fatigue Level Detection 
During the experiments, users’ PERCLOS score, as the most valid ocular parameter for 

monitoring fatigue, is evaluated when they are emulating either the alert or fatigue driving 

states. The subjects were asked to maintain short-period eye-closures as indicating the 

alert state with normal eye blinks, while longer blinks (more than          ) to simulate 

fatigue progression and the sleep onset. Continuous measurement of driver’s PERCLOS 

score     over time    would then obtain the real-time fatigue analysis (Algorithm 5).  

5.2.2 Parameter Measurement for a Test Sequence 
Figure 29 depicts the parameter measured for one of the sequences. Figure 29 (a) 

represents the average PERCLOS score for alert state, and the scores defining different 

fatigue levels are depicted in Figure 29 (b). This is a representative test example with a 

duration of       where the user simulated both fatigue and alertness behavior. As 

illustrated, for the alert state, the graph is more stable and much lower than the fatigue 

one. Following the fatigue graph, at time           the score crosses the minimum score 

boundary and remains at that level for           continuously. At this instance, we 

constantly flag our first haptic warning at the shoulder area of the “potentially fatigued” 

driver. Subsequently, at time          , the calculated score continues to increase 
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beyond     tolerance and remains at that for         . Here, the average haptic 

warning signal is sent to the “fatigued” driver, which is the vibrotactile response at the 

chest area. Similarly, at the time instance           the score crosses the     threshold 

for         . At this hazardous fatigue level, corresponding to the “much more fatigued” 

state, the maximum haptic signal is stimulated. The driver is immediately notified by 

vibrotactile stimulation at the backbone area of the haptic jacket.  

 

Figure 29: Eye closure monitoring over time (seconds). 

Results obtained for PERCLOS were quite acceptable indicating a high correlation with 

detected fatigue levels. In fact, the PERCLOS score was about its respective thresholds 

more frequently in the “fatigued” and “much more fatigued” time interval samples than in 

the “potentially fatigued” and “alert” samples.  
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The performance was measured by comparing the system performance to results gathered 

by manually analyzing the recorded sequences on a frame-by-frame basis. This not only 

proves the validity of PERCLOS to characterize fatigue state but also proves the accuracy of 

the system in eye state detection and PERCLOS measurement. 

5.3 Validation of Haptic Warnings 

5.3.1 Haptic Feedback Perception 
Performance of vibrotactile perception from the haptic jacket is evaluated through 

psychophysical experiments. Three different locations were empirically defined to express 

the urgent nature of the alarms to participants. Besides, the haptic-enabled armband that 

was suggested before as the warning delivery interface to alert the driver is evaluated in 

another run. Compared with the armband haptic feedbacks, the users have the benefit to 

easily distinguish the haptic feedback levels and immediately their fatigue level from haptic 

jacket based on particular locations of the stimuli. In the proposed system,       of the 

users are able to successfully distinguish between the three haptic levels. Similarly,       

of them were a lot more comfortable to wear the haptic jacket instead of the haptic 

armband, and expressed     approval that this type of haptic feedback scheme is helpful 

in alerting the drowsy or fatigued operators.  

5.3.2 User’s Discomfort on the Haptic Feedback 
Another attempt during the psychophysical experiment is to determine whether users are 

satisfied with the default haptic levels provided in the system. The evaluation consists of 

three trials during each participants are sent vibrotactile feedbacks from the predefined 

haptic jacket portions. An advantage of our vibrotactile warning scheme is that it only 

involves a minimal period of familiarization for users prior to testing, making them use it 

efficiently. 

Most complaints with the default haptic feedbacks are that they sometimes cause tickles 

to the users. Results show that     of the users are not comfortable with the average 

haptic feedback type, perceived on their chest, due to its tickling effects. The percentage 

of tickle complaints from users for each type of the defined haptic rendering setups is 
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displayed in Figure 31. According to the described default setting, the higher the warning 

level, the more responsive upper body part receives the haptic feedbacks. Figure 30 shows 

that         feedback type which stimulates the spinal area is more acceptable among 

users due to its ability in quick warning delivery. 

 

 
Figure 30: Number of users who are uncomfortable with the default haptic level setups 

Due to tickle issues, users are provided with the option to make changes in the locations of 

haptic stimuli perception using the feedback controller. Accordingly, the driver is allowed 

to choose the jacket portion with which they feel more comfortable for tactile feedback 

perception. Drivers would have the chance to test various options of the location on body 

where they feel more responsive to the warning signals. This facility not only provides a 
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more comfortable experience during fatigue warning deliveries, preventing driver shock 

and  worse consequences,  but it also helps the driver not to get used to a familiar 

feedback type; instead be surprised the next time the haptic signal is sent to a new upper 

body part, resulting in a more effective warning solution. Figure 31 outlines haptic 

rendering customization steps in a loop. First, user’s preferences are taken into account by 

changing the settings of the MicroController (Figure 25). In the next step, haptic jacket 

which is updated with the new settings (2a) is ready to issue user’s desired feedback type 

as soon as being triggered with the warning parameter (PERCLOS) (2b).  

 

 

Figure 31: User customization of haptic rendering feedback loaded during the warning 

scheme 

After performing several trails with each type of feedbacks, participants were asked about 

their preferences regarding the presence or absence of feedback as well as the preferred 
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type. Results showed that users not only preferred the presence of haptic feedbacks 

overall, but a majority of them felt more in control when actively guided by it. 

5.3.3 Usability Study 
Usability tests were conducted to evaluate user’s quality of experience of the proposed 

system. The usability tests take place at the university laboratory in a controlled 

environment with eight volunteers, of different age groups and academic backgrounds. 

The users are requested to sit in two different arrangements in front of a video camera 

and emulate both alert and fatigue facial behaviours separately. During the experiment, 

participants wear the haptic jacket that is controlled through Bluetooth communications in 

order to receive and experience the default haptic feedback types corresponding to 

expressed fatigue levels. Users’ activities are monitored and noted throughout the 

experiment for later analysis. Afterwards, based on their interaction experience, the users 

are asked to rate three assertions in Likert Scale [98], with the rating range of    . The 

higher the rating number, the stronger the agreement is with the provided assertions. 

Figure 33 shows users’ responses for each given assertion. The results are displayed in 

Figure 32. 
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Figure 32: User responses in Likert scale. 

In general, majority of the users agreed that the proposed system was responsive and 

performed efficiently in measuring warning levels. Amongst the participants,   persons are 

successfully able to perceive different levels of haptic feedback, and the two others 

confirmed that they would have no problem after getting used to it.  

We are, therefore, able to conclude that haptic feedbacks, especially when customizable 

individually, are not intrusive or startling to the users. Overall, our user study shows that 

people have a good tendency of accommodating such haptic-based warning system in 

their driving practicing.  
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Chapter 6 - Conclusion & Future Work 

6.1 Conclusion 

Sleep deprivation while driving is a major cause of traffic accidents. To make an 

assessment of a driver’s level of fatigue and provide a timely fashioned warning for action 

to be taken before the crash situation arises, an unobtrusive, automatic driver fatigue 

monitoring system is proposed that is capable of detecting unusual, continuous, repetitive 

eye closures followed by perfectly warning the driver of the dangerous situation. 

To infer the fatigue state, a real-time approach for tracking eye state changes and fatigue 

levels over time is implemented. First, eye region is converted to feature vectors 

representing the eye state using an illumination invariant texture descriptor called Local 

Binary Pattern (LBP). Afterwards, Eye closure is determined through using the SVM 

classifier to distinguish between the corresponding open and closed eye states by 

classifying extracted feature vectors. Once the state of the eyes is collected over a period 

of time, it is shown how PERCLOS calculation and threshold definition is used to evaluate 

fatigue severity. Accordingly, driver fatigue is quantized into four levels namely “alert”, 

“potentially fatigued”, “fatigued” and “much more fatigued” during a fatigue episode. To 

this end, an accurate fatigue state assessment is proposed relying on the quantized fatigue 

levels.   

The second part of the system focuses on perfectly alerting the sleepy driver through 

wearing the haptic jacket equipped with vibrotactile actuators. In this stage, system’s 

warning parameter, PERCLOS, will translate fatigue levels to warning levels using the 

Bluetooth communication channel. In order for continuously communicating the situation 

criticality without causing annoyance, graded warning strategy is provided through sending 

haptic feedbacks to more sensitive body parts. The three selected alert locations are 

“shoulder”, “chest” and “backbone (spinal)” areas that are stimulated in case of 

crossing   ,     and     warning thresholds respectively. The logic of conveying the 
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higher criticality level to a more reflexive upper body area would ensure less need for 

cognition (situation assessment and short-term planning), faster response and more 

corrective actions.    

In order to enhance system usability, drivers’ preferences are embedded in the system. 

Specifically, drivers would have options on selecting warning perception locations as well 

as adjusting the intensity (mild, average and dangerous) of vibrations for different fatigue 

levels. Thus, taking into account the individual differences factor through offering warning 

perception options, system reliability and driver trust is achieved.       

Experimental results show that under laboratory conditions, the proposed system can 

accurately detect fatigue levels, and it can issue a warning according to detected state of 

eyes' open and closed, so that it meets the requirements of fatigue correction and collision 

avoidance systems. 

6.2 Future work 

This area appears promising in terms of future research due to the common everyday 

crashes caused by fatigued drivers, and hence automatic driver assisting systems makes 

them less likely to occur.   

In order for monitoring driver’s face at night, IR illuminations using infrared LEDs could be 

added to the video capturing part of the system to brighten driver’s face and create the 

“bright pupil” effect. External sources that are the main source of noise for IR-based image 

acquisition systems are much limited at night, and hence their impacts are effectively 

minimized using the IR illuminator. Therefore, the system would work based on the 

proposed texture-based LBP method during day time driving and based on the “bright 

pupil” effect at night using a camera with the compact IR illuminator.  LBP operator has 

been proved to improve the face and facial expressions recognition rate significantly when 

used to smooth the various illumination conditions. Besides applying the robust 

appearance-based solution, we can take advantage of IR illumination to minimize ambient 

lighting effects in daylight driving.  For alleviating interference from light sources beyond IR 
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light, a narrow band-pass filter, centered at the LED wavelength, could be attached 

between the camera and the lens. In addition, to overcome the intense sun light 

interference, when the power emitted by sun in the filter band hides the inner 

illumination, IR filters could be integrated in the car glasses. 

Furthermore, a more accurate condition on direction of the driver’s face would make the 

proposed system more suitable for real in-vehicle driver state monitoring. Camera is fixed 

in the central part of the dashboard to focus on driver’s head for detecting visual 

behaviours. The proposed system is trained with the frontal face database available in 

OpenCV. Experiments show that faces with a little rotation degree are still detected. 

Hence, when the face is not detected, it is not frontal, and the driver is not following what 

is happening on the road. This situation could be added to the system as a sign of 

inattentiveness or head nodding. The criticality level is then conveyed by applying 

thresholds on the time duration when the driver is inattentive. Therefore, if the number of 

frames with not-faces is greater than a fixed threshold, an alarm signal is set off to redirect 

driver’s eyes to the road ahead. This threshold is set such that the normal time for looking 

at the side view mirror is excluded. To communicate inattentiveness warning with the 

driver, another portion of the haptic jacket, for example arms, could be equipped with 

vibrotactile actuators.  

Another objective for future work will be to reduce the percentage error or to improve 

system’s recognition rate during the eye classification step. To achieve this, additional 

experiments will be developed, using additional drivers and incorporating new analysis 

modules, for example, facial expressions representing yawning and eyebrow movement 

analysis. Furthermore, when building real-time systems, it is also preferred to have LBP – 

based representation with reduced feature length. Existing LBP feature selection 

techniques have limitations either in feature selection ability or the computational cost. 

Reducing the feature vectors dimension would help to increase the algorithm’s processing 

time up to      ,       and higher and hence to achieve more accurate fatigue state 

analysis. 
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As a new objective, haptic jacket can be utilized as a smart cloth, a combination of 

electronics and clothing textiles, equipped with both fatigue data measuring sensors and 

vibrotactile actuators. Consequently, physiological signals such as heartbeat, EEG, body 

temperature and ECG and their variations (known as the most accurate fatigue signs) could 

be captured via the sensors inside the jacket. Haptic jacket would then serve as an 

integrated in-vehicle driver fatigue detection and warning interface. 

Taking fatigue driving as serious as drunk driving, the haptic jacket could be set up to be 

worn mandatory before starting driving, just the same as the seat belt. As an idea, it could 

be connected to the belt, so that the driver has to wear the jacket first and then closes the 

belt before start driving. Therefore, the chance to forget to wear the jacket before getting 

into the car or leave it somewhere is reduced.  

Again with the idea of smart clothing and taking different weather conditions into 

consideration, active character systems including heating, cooling and active drying (in 

case of humidity increase) could be integrated to the haptic jacket to maintain driving 

quality. Haptic jacket has a great advantage over other haptic warning modalities which is 

interaction with the upper body part. When the driver is fatigue, muscles are relaxed and 

the driver tends to bend and fall asleep on the wheel. Haptic jacket is always attached to 

the driver and hence is able to warn the driver in any inattentiveness state.   
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Appendix A – 

Viola-Jones Object Detection Algorithm 

The three algorithms mentioned in Chapter 3 for face and eye detection are detailed here.  
 
 

Algorithm 1: Face Detection 

 
FaceDetection::FaceDetection(IplImage *image) 
{ 
char *face = "C:\\opencv\\haarcascades\\haarcascade_frontalface_default.xml"; 
this->faceCascade = ( CvHaarClassifierCascade* )cvLoad( face, 0, 0, 0); 
 
bool FaceDetection::detectFace() 
{ 
CvSeq *faces = cvHaarDetectObjects(this->image, faceCascade, buffer, 1.1, 3, 0, 
cvSize(30,30)); 
if(!faces->total) return false; 
else 
{ 
/**get the biggest detected face**/ 
cvSeqSort(faces, comp_func, 0); 
CvRect *r = (CvRect*) cvGetSeqElem(faces, 0); 
this->face.bbox = *r; 
cvClearMemStorage(this->buffer); 
 
if(r->width>0) printf("Detected face at (%d, %d)", r->x, r->y); 
 
} return true; 

 } 

Algorithm 2: Left and Right Eyes Detection 

char *eye_left= "C:\\opencv\\haarcascades\\haarcascade_mcs_lefteye.xml"; 
char *eye_right = "C:\\opencv\\haarcascades\\haarcascade_mcs_righteye.xml"; 
this->leyeCascade = ( CvHaarClassifierCascade* )cvLoad( eye_left, 0, 0, 0); 
this->reyeCascade = ( CvHaarClassifierCascade* )cvLoad( eye_right, 0, 0, 0); 
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void FaceDetection::detectEyes() 
{ 

/*left eye*/ 
cvSetImageROI (this->image, cvRect (this->face.bbox.x, this->face.bbox.y, this-
>face.bbox.width/2,  (this->face.bbox.height*2/3))); 
this->setCurrentROIlocation (this->face.bbox.x, this->face.bbox.y); 
CvSeq *eyes = cvHaarDetectObjects (this->image, this->leyeCascade, this->buffer, 
1.1, 3,0, cvSize (5,5)); 
cvSeqSort (eyes, comp_func, 0); 
if ( eyes->total != 0) 
{ 
CvRect *left = (CvRect*) cvGetSeqElem ( eyes, 0); 
this->setAbsoluteCoordinates (*left); 
this->face.lefteye.bbox = *left; 
 
if (face.lefteye.bbox.width>0) printf ("\nLeft eye at (%d, %d)", face.lefteye.bbox.x, 
face.lefteye.bbox.y); 
 
}  
 
cvClearMemStorage (this->buffer); 
cvResetImageROI (this->image); 
/*right eye*/ 
cvSetImageROI (this->image, cvRect (this->face.bbox.x+ (this->face.bbox.width/2), 
this->face.bbox.y, this->face.bbox.width/2, (this->face.bbox.height*2/3))); 
this->setCurrentROIlocation (this->face.bbox.x+ (this->face.bbox.width/2), this-
>face.bbox.y); 
CvSeq *reyes = cvHaarDetectObjects (this->image, this->reyeCascade, this->buffer, 
1.1, 3,0, cvSize (5,5)); 
cvSeqSort (reyes, comp_func, 0); 
if ( reyes->total != 0) 
{ 
CvRect *right = (CvRect*) cvGetSeqElem ( reyes, 0); 
this->setAbsoluteCoordinates (*right); 
this->face.righteye.bbox = *right; 
 
if (face.righteye.bbox.width>0) printf ("\nRight eye at (%d, %d)", 

face.righteye.bbox.x, face.righteye.bbox.y); 

} cvClearMemStorage (this->buffer); 
cvResetImageROI (this->image); 
} 
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Algorithm 3: Drawing the Detected Eyes Boundaries 

// Draw eye rectanngles 
 CvRect leftEyeBB=objFD.face.lefteye.bbox; 
 CvPoint pt3, pt4;  
 pt3.x = leftEyeBB.x; pt3.y = leftEyeBB.y; 
 pt4.x=leftEyeBB.x+leftEyeBB.width; pt4.y=leftEyeBB.y+leftEyeBB.height; 
 
 cvRectangle(img, pt3, pt4, cvScalar(255,120,255), 2,8,0); 
 
 CvRect rightEyeBB=objFD.face.righteye.bbox; 
 pt3.x = rightEyeBB.x; pt3.y = rightEyeBB.y; 
 pt4.x=rightEyeBB.x+rightEyeBB.width; pt4.y=rightEyeBB.y+rightEyeBB.height; 
 
 cvRectangle(img, pt3, pt4, cvScalar(255,120,255), 2,8,0);  

 
cvShowImage("Nilufar Window", img); 

 cvWaitKey(0);  

cvReleaseImage(&img);  

 


