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Abstract

Dynamic pricing and learning is a research topic that has received a considerable amount

of attention in recent years, from different scientific communities: operations research and

management science, marketing, economics, econometrics, and computer science. We survey

these literature streams: we provide a brief introduction to the historical origins of quantitative

research on pricing and demand estimation, point to different subfields in the area of dynamic

pricing, and provide an in-depth overview of the available literature on dynamic pricing and

learning. We discuss relations with methodologically related research areas, and identify

several important directions for future research.

1 Introduction

Dynamic pricing is the study of determining optimal selling prices of products or services, in

a setting where prices can easily and frequently be adjusted. This applies to vendors selling

their products via Internet, or to brick-and-mortar stores that make use of digital price tags.

In both cases, digital technology has made it possible to continuously adjust prices to changing

circumstances, without any costs or efforts. Dynamic pricing techniques are nowadays widely used

in various businesses, and in some cases considered to be an indispensable part of pricing policies.

Digital sales environments generally provide firms with an abundance of sales data. This data

may contain important insights on consumer behavior, in particular on how consumers respond

to different selling prices. Exploiting the knowledge contained in the data and applying this to

dynamic pricing policies may provide key competitive advantages, and knowledge how this should

be done is of highly practical relevance and theoretical interest. This consideration is a main driver

of research on dynamic pricing and learning : the study of optimal dynamic pricing in an uncertain

environment where characteristics of consumer behavior can be learned from accumulating sales

data.

The literature on dynamic pricing and learning has grown fast in recent years, with contributions
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from different scientific communities: operations research and management science (OR/MS),

marketing, computer science, and economics / econometrics. This survey aims at bringing together

the literature from these different fields, and at highlighting some of the older (and sometimes

forgotten) literature where many important results and ideas already can be found.

A few literature reviews on dynamic pricing and learning do already exist. Araman and Caldentey

(2011) and Aviv and Vulcano (2012, Section 4) review in detail a number of recent studies, mostly

from the OR/MS community, and Christ (2011, Section 3.2.1) contains an elaborate discussion of

a selection of demand learning studies. Our survey complements these publications by aiming at

a larger scope, and, although our main focus is on the OR/MS literature, we also address relevant

contributions from computer science, marketing, economics and econometrics.

This survey reviews the literature on dynamic pricing with demand uncertainty. We discuss how

this is embedded in the literature on dynamic pricing in general, but do not review all relevant

research topics associated with dynamic pricing; for this we refer to Bitran and Caldentey (2003),

Elmaghraby and Keskinocak (2003), Talluri and van Ryzin (2004), Phillips (2005), Heching and

Leung (2005), Gönsch et al. (2009), Rao (2009), Chenavaz et al. (2011), Deksnyte and Lydeka

(2012) and Özer and Phillips (2012). We focus on studies where selling price is a control variable;

we only scarcely discuss learning in capacity-based revenue management (Talluri and van Ryzin,

2004) or learning in newsvendor/inventory control problems. Neither do we consider mechanism

design (Harris and Raviv, 1981, Maskin and Riley, 1984) or auction theory with incomplete in-

formation (see e.g. Segal (2003), Babaioff et al. (2011) and the references therein), although there

are some similarities with dynamic pricing and learning. Most of the studies that we discuss are

written from an (online) retailer perspective. We do not dive into specific details associated with

particular application area such as pricing in queueing or telecommunication environments (Mutlu

et al., 2012), road pricing (de Palma et al., 2006, Tsekeris and Voß, 2009, Lou, 2013), or electricity

pricing (Garcia et al., 2005, Roozbehani et al., 2010), to name a few. Finally, this survey focuses

on studies where the seller learns about the demand function, and not on studies where buyers

are learning (Bergemann and Välimäki, 1997, Ottaviani, 1999, Caminal and Vives, 1999, Schlee,

2001, Bose et al., 2006, Bhalla, 2012, Ifrach et al., 2012).

This survey is organized as follows. We review in Section 2 some of the pioneering historical work

on pricing and demand estimation, and discuss how this work initially was difficult to apply in

practice. In Section 3 we sketch important references and developments for dynamic pricing in

general, and in Section 4 we focus on the literature that specifically deals with dynamic pricing

and learning. Connections between dynamic pricing and related research areas are addressed in

Section 5, and related new research directions are discussed in Section 6.

2 Historical Origins of Pricing and Demand Estimation

Dynamic pricing with learning can be regarded as the combined application of two research fields:

(1) statistical learning, specifically applied to the problem of estimating demand functions, and

(2) price optimization. Both these fields are already quite old, dating back more than a century.
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In this section we briefly describe the historical fundaments out of which dynamic pricing and

learning has emerged, by pointing to some key references on static pricing and estimating demand

functions that have been important in the progress of the field.

2.1 Demand functions in pricing problems

Cournot (1838) is generally acknowledged as the first to use a mathematical function to describe

the price-demand relation of products, and subsequently solve the mathematical problem of de-

termining the optimal selling price. As vividly described by Fisher (1898), such an application of

mathematical methods to study an economical problem was quite new and controversial at the

time, and the work was neglected for several decades. Cournot showed that if F (p) denotes the

demand as a function of price p, where F (p) is continuous, decreasing in p, and pF (p) is unimodal,

then the price that maximizes the revenue pF (p) can be found by equating the derivative of pF (p)

to zero. If F (p) is concave there is a unique solution, which is the optimal price (this is contained

in Chapter IV of Cournot (1838)). In this way, Cournot was the first to solve a “static pricing”

problem by mathematical methods.

2.2 Demand estimation

To make theoretical knowledge on optimal pricing theory applicable in practical problems, one

needs to have an estimate of the demand function. The first known empirical work on demand

curves is the so-called King-Davenant Law (Davenant, 1699) which relates the supply and price

of corn (see Creedy, 1986, for an exposition on the origins of this work). More advanced research

on estimating demand curves, by means of statistical techniques such as correlation and linear

regression, took off in the beginning of the 20st century. Benini (1907), Gini (1910) and Lehfeldt

(1914) estimate demand curves for various goods as coffee, tea, salt, and wheat, using various

curve-fitting methods. Further progress on methodology was made, among others, by Moore

(1914, 1917), Wright (1928) and Tinbergen (1930); the monumental work of Schultz (1938) gives a

thorough overview of the state-of-the-art of demand estimation in his time, accompanied by many

examples. Further references and more information on the historical progress of demand estimation

can be found in Stigler (1954, section II), Stigler (1962, particularly section iii), Brown and Deaton

(1972), Christ (1985), and Farebrother (2006). A small sample of the many contemporary studies

on demand estimation in different contexts is Berry et al. (1995), McFadden and Train (2000) and

Bajari and Benkard (2005).

2.3 Practical applicability

Estimating demand curves of various products was in first instance not aimed at profit optimization

of commercial firms, but rather used to support macro-economic theories on price, supply, and

demand. Application of the developed methods in practical problems was initially far away.

An illustrative quote is from Hicks (1935), who doubted the possibilities of applying the theory of
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monopoly pricing on practical problems, exactly because of the difficulty of estimating the demand

curve:

It is evidently the opinion of some of the writers under discussion that the modern

theory of monopoly is not only capable of throwing considerable light on the general

principles underlying an individualistic economic structure, but that it is also capable

of extensive use in the analysis of particular practical economic problems, that is to say,

in applied economics. Personally, I cannot but feel sceptical about this. [...] There does

not seem to be any reason why a monopolist should not make a mistake in estimating

the slope of the demand curve confronting him, and should maintain a certain output,

thinking it was the position which maximized his profit, although he could actually

have increased his profit by expanding or contracting. (Hicks, 1935, page 18,19).

Hawkins (1957) reviews some of the attempts made by commercial firms to estimate the demand

for their products. Most of these attempts were not successful, and suffered from difficulties of

obtaining sufficiently many data for reliable estimates, and of changes in the quality of the product

and the prices of competitors. Even a very detailed study of General Motors on automobile demand

ends, somewhat ironically, with:

The most important conclusion from these analyses of the elasticity of demand for

automobiles with respect to price is that no exact answer to the question has been

obtained. (Horner et al., 1939, p. 137).

In view of these quotations, it is rather remarkable that dynamic pricing and learning has nowadays

found its way in practice; many applications have been reported in various branches such as

airline companies, the hospitality sector, car rental, retail stores, internet advertisement, and

many more. A main cause for this is the fact that nowadays historical sales data is typically

digitally available. This significantly reduces the efforts required to obtain sufficiently accurate

estimates of the demand function. In addition, whenever products are sold via the Internet or

using digital price tags, the costs associated with adjusting the prices in response to updated

information or changed circumstances are practically zero. In contrast, a price-change in the pre-

digital era would often induce costs, for example because a new catalog had to be printed or price

tags had to be replaced. For a detailed study on such price-adjustment costs we refer to Zbaracki

et al. (2004) and the references therein. Slade (1998) and Netessine (2006) are two studies that

consider dynamic pricing with costly price adjustments.

3 Dynamic Pricing

In this section we discuss the literature on dynamic pricing. Because of the huge amount of

literature on this subject, we can not give a complete overview of the field. Instead, we briefly

describe some of the major research streams and key references, in order to provide a context in

which one can position the literature on dynamic pricing with learning discussed in Section 4. For

a more elaborate overview of the vast literature on dynamic pricing, we refer to the books Talluri

and van Ryzin (2004), Phillips (2005), Rao (2009), Özer and Phillips (2012), and the reviews
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by Bitran and Caldentey (2003), Elmaghraby and Keskinocak (2003), Heching and Leung (2005),

Gönsch et al. (2009), Seetharaman (2009), Chenavaz et al. (2011) and Deksnyte and Lydeka (2012).

The literature on dynamic pricing by a monopolist firm can roughly be classified as follows:

• Models where the demand function is dynamically changing over time.

• Models where the demand function is static, but where pricing dynamics are caused by the

inventory level.

In the first class of models, reviewed in Section 3.1, the demand function changes according to

changing circumstances: for example, the demand function may depend on the time-derivative

of price, on the current inventory level, on the amount of cumulative sales, on the firm’s pricing

history, et cetera. In the second class of models, reviewed in Section 3.2, it is not the demand

function itself that causes the price dynamics: a product offered in two different time periods

against the same selling price is expected to generate the same amount of average demand. Instead,

the price dynamics are caused by inventory effects, more concretely by changes in the marginal

value of inventory. Naturally, it is also possible to study models that fall both in classes, where

both the demand function is dynamically changing and the price dynamics are influenced by

inventory effects; some of this literature is also reviewed in Section 3.2.

3.1 Dynamic pricing with dynamic demand

3.1.1 Demand depends on price-derivatives

Evans (1924) is one of the first to depart from the static pricing setting introduced by Cournot

(1838). In a study on optimal monopoly pricing, he assumes that the (deterministic) demand is

not only a function of price, but also of the time-derivative of price. This models the fact that

buyers do not only consider the current selling price in their decision to buy a product, but also

anticipated price changes. The purpose of the firm is to calculate a price function, on a continuous

time interval, that maximizes the profit. The problem is solved explicitly using techniques from

calculus of variations. Various extensions to this model are made by Evans (1925), Roos (1925,

1927a,b, 1934), Tintner (1937), and Smithies (1939). Thompson et al. (1971) study an extended

version of the model of Evans (1924), where optimal production level, investment level, and output

price have to be determined. Closely connected to this work is Simaan and Takayama (1976), who

consider a model where supply is the control variable, and where the time-derivative of price is a

function of the current supply and current price. Methods from control theory are used to derive

properties of the optimal supply path.

3.1.2 Demand depends on price history

A related set of literature considers the effect of reference prices on the demand function. Reference

prices are perceptions of customers about the price that the firm has been charging in the past;

see Mazumdar et al. (2005) for a review on the subject. A difference between the reference price
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and the actual selling price influences the demand, and, as a result, each posted selling price does

not only affect the current demand but also the future demand. Dynamic pricing models and

properties of optimal pricing strategies in such settings are studied, among others, by Greenleaf

(1995), Kopalle et al. (1996), Fibich et al. (2003), Heidhues and Köszegi (2005), Popescu and Wu

(2007) and Ahn et al. (2007).

3.1.3 Demand depends on amount of sales

Another stream of literature on dynamic pricing emerged from diffusion and adoption models

for new products. A key reference is Bass (1969), and reviews of diffusion models are given by

Mahajan et al. (1990), Baptista (1999), and Meade and Islam (2006). In these models, the demand

for products does not only depend on the selling price, but also on the amount of cumulative sales.

This allows modeling several phenomena related to market saturation, advertisement, word-of-

mouth effects, and product diffusion. Robinson and Lakhani (1975) study dynamic pricing in

such a model, and numerically compare the performance of several pricing policies with each

other. Their work stimulated much further research on optimal dynamic pricing policies, see e.g.

Clarke et al. (1982), Kalish (1983), Clarke and Dolan (1984), and the references therein. The

models studied in these papers are deterministic, and somewhat related to the literature following

Evans (1924): both types of pricing problems are solved by principles from optimal control theory,

and the optimal pricing strategy is often given by the solution of a differential equation.

Chen and Jain (1992), Raman and Chatterjee (1995), and Kamrad et al. (2005) extend these

models by incorporating randomness in the demand. In Chen and Jain (1992), the demand is

determined by a finite-state Markov chain for which each state corresponds to a deterministic

demand function that depends on price and cumulative sales. The optimal price path is charac-

terized in terms of a stochastic differential equation, and compared with the optimal policy in a

fully deterministic setting. Raman and Chatterjee (1995) model uncertainty by adding a Wiener

process to the (known) deterministic component of the demand function. They characterize the

pricing policy that maximizes discounted cumulative profit, and compare it with the optimal price

path in the fully deterministic case. Under some specific assumptions, closed form solutions are

derived. Similar models that incorporate demand uncertainty are analyzed by Kamrad et al.

(2005). For various settings they provide closed-form solutions of the optimal pricing policies.

3.2 Dynamic pricing with inventory effects

There are two important research streams on dynamic pricing models where the dynamics of

the optimal pricing policy are caused by the inventory level: (i) “revenue management” type of

problems, where a finite amount of perishable inventory is sold during a finite time period, and

(ii) joint pricing and inventory-procurement problems.
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3.2.1 Selling a fixed, finite inventory during a finite time period

In this stream of literature, a firm is assumed to have a certain number of products at its disposal,

which are sold during a finite time period. There is no replenishment: inventory that is unsold

at the end of the selling horizon is lost, and can not be transferred to another selling season. In

these problems, the dynamic nature of optimal prices is not caused by changes in the demand

function, but by the fact that the marginal value of remaining inventory is changing over time. As

a result, the optimal selling price is not a fixed quantity, but depends on the remaining amount

of inventory and the remaining duration of the selling season.

Kincaid and Darling (1963) may be the first to characterize and analyze the optimal pricing policy

in such a setting. A more recent key reference is Gallego and van Ryzin (1994). They consider

a continuous-time setting where demand is modeled as a Poisson process, with arrival rate that

depends on the posted selling price. The pricing problem is formulated as a stochastic optimal

control problem, and the optimal solution is characterized using the Hamilton-Jacobi-Bellman

equation. A closed-form solution may in general not exist, but for a specific demand function a

closed-form optimal solution is derived. The authors furthermore propose two heuristic pricing

policies, provide bounds on their performance, and discuss various extensions to the model.

Numerous extensions and variations of the model by Gallego and van Ryzin (1994) have been

studied: for example, settings with restrictions on the number of allowable prices or price changes

(Feng and Gallego, 1995, Bitran and Mondschein, 1997, Feng and Xiao, 2000a,b), extensions

to multiple products that share the same finite set of resources (Gallego and van Ryzin, 1997,

Kleywegt, 2001) or multiple stores (Bitran et al., 1998).

Feng and Gallego (2000) and Zhao and Zheng (2000) characterize the optimal pricing policy in

case of time dependent demand intensities; in these models, the price dynamics are caused both

by inventory effects and by dynamic demand behavior.

The same holds for models that study strategically behaving customers: customers who, when

arriving at the (online) store, do not immediately decide whether to buy the product, but instead

wait for a while to anticipate possible decreases in the selling price. In contrast, so-called myopic

customers instantly decide whether to buy the product at the moment they arrive at the store. In

such settings, the demand at a certain moment depends on the past, present, and future selling

prices. Dynamic pricing in view of strategic customers has received a considerable amount of

research attention in recent years; a representative sample is Su (2007), Aviv and Pazgal (2008),

Elmaghraby et al. (2008), Liu and van Ryzin (2008), Levin et al. (2009), Cachon and Swinney

(2009) and Su (2010). Reviews of these literature are given by Shen and Su (2007) and Gönsch

et al. (2012). These studies typically have a game-theoretic flavor, since both the firm and the

strategic customers have a decision problem to solve, with contradicting interests.

3.2.2 Jointly determining selling prices and inventory procurement

A main assumption of the literature discussed above is that the initial capacity level is fixed. In

many situations in practice this is a natural condition: the number of seats in an aircraft, rooms in
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a hotel, tables in a restaurant, or seats in a concert hall are all fixed for a considerable time period,

and modifications in the capacity occur at a completely different time scale than dynamic price

changes. In many other settings, however, the initial capacity is a decision variable to the firm; in

particular, when the firm can decide how many items of inventory should be produced or purchased.

Pricing and inventory management can then be considered as a simultaneous optimization problem.

This research field bridges the gap between the pricing and inventory management literature. Many

different settings and models are subject to study, with different types of production, holding and

ordering costs, different replenishment policies (periodic or continuous), finite or infinite production

capacity, different models for the demand function, et cetera. Extensive reviews of the literature

on simultaneous optimization of price and inventory decisions can be found in Eliashberg and

Steinberg (1993), Federgruen and Heching (1999), Elmaghraby and Keskinocak (2003, Section

4.1), Yano and Gilbert (2005), Chan et al. (2004), and Chen and Simchi-Levi (2012).

4 Dynamic Pricing and Learning

In the static monopoly pricing problem considered by Cournot (1838), the demand function is

deterministic and completely known to the firm. These assumptions are somewhat unrealistic in

practice, and eventually it was realized that demand uncertainty should be incorporated into the

problem. One of the first to pursue this direction is Mills (1959), who assumes that the demand is

the sum of a random term with zero mean and a deterministic function of price. He studies how

a monopolist firm that sells finitely many products in a single time period should optimally set

its production level and selling price. Further extensions of this model and properties of pricing

problems with random demand are studied by Karlin and Carr (1962), Nevins (1966), Zabel (1970),

Baron (1970, 1971), Sandmo (1971) and Leland (1972). An important research question in these

studies is how the firm’s optimal decisions are influenced by the demand uncertainty and by the

firms’ attitude towards risk (risk-neutral, risk-averse, or risk-preferred).

In the models mentioned above, the expected demand as a function of the selling price is still

assumed to be completely known by the firm, which makes these models somewhat unrealistic and

not usable in practice. The common goal of the literature on dynamic pricing and learning is to

develop pricing policies that take the intrinsic uncertainty about the relation between price and

expected demand into account.

In the next two sections we discuss the literature on dynamic pricing and learning. Section 4.1

considers the literature on the problem of a price-setting firm with infinite inventory and unknown

demand function. This basically is the monopoly pricing problem described in Section 2.1, with

uncertainty about the demand function. The full-information case of this problem is static; the

price dynamics are completely caused by the fact that the firm learns about the price-demand

relation through accumulating sales data. Section 4.2 discusses literature on pricing policies for

firms selling a fixed, finite amount of inventory, with unknown demand function. For this problem,

the full-information case is already dynamic by itself, as discussed in Section 3.2, and the learning

aspect of the problem provides an additional source of the price dynamics.

8



4.1 No inventory restrictions

4.1.1 Early work

The first analytical work on dynamic monopoly pricing with unknown demand curve seems to

have been presented on August 2, 1954, at the 16th European meeting of the Econometric Society

(Hansen, 1955), by F. Billström, H. Laadi, and S.A.O. Thore, with contributions from L.O. Friberg,

O. Johansson, and H.O.A. Wold. A mimeographed report Billström et al. (1954) of the presented

work has not been published in a journal, but an English reprint has appeared in Billström and

Thore (1964) and Thore (1964). These two works discuss the problem of a monopolist facing a

linear demand curve that depends on two unknown parameters. Thore (1964) proposes to use a

dynamic pricing rules that satisfies sign(pt − pt−1) = sign((pt−1 − pt−2)(rt−1 − rt−2)), where pt,

rt denote the price and revenue in period t. This models the following intuition: if a previous

price increase led to an increase in revenue, the price will again be increased; otherwise it will

be decreased. Similarly, if a previous price decrease led to an increase in revenue, the price will

again be decreased; otherwise, it will be increased. In addition, Thore (1964) proposes to let

the magnitude of the price adjustment depend on the difference between the last two revenue

observations. He specifies two pricing rules in detail, and analyzes convergence properties of the

resulting dynamical systems. Billström and Thore (1964) perform simulation experiments for one

of these pricing rules, both in a deterministic demand setting and in a setting where a normally

distributed disturbance term is added to the demand. They also extend the model to incorporate

inventory replenishment, and provide a rule of thumb for the optimal choice of a constant appearing

in the pricing rule.

These studies emerging from the Uppsala Econometrics Seminar have not received much research

attention in subsequent years. Clower (1959) studies a monopolist firm facing a linear, deter-

ministic demand function whose parameters may change over time. He discusses several price-

adjustment mechanisms that may be applied by the firm to adapt its prices to changing situations.

Baumol and Quandt (1964) propose rules of thumb for the monopolist pricing problem, and assess

their performance by a set of numerical experiments. In their Appendix A they propose a pricing

rule equal to one of the rules proposed by Thore (1964), although they are apparently unaware

of that work. The authors investigate some convergence and stability properties of the resulting

dynamical system, both in a discrete-time and continuous-time framework. Baetge et al. (1977)

extend the simulation results of Billström and Thore (1964) to non-linear demand curves, and

study the optimal choice of a constant appearing in the pricing rules. A final study in this line

of research is from Witt (1986). He studies a model where a monopolist has to decide on price,

output level in the current period and maximum output in the next period. Three decision rules

are compared with each other via a computer simulation. In addition, their performance is com-

pared with a laboratory experiment, where test subjects had to determine their optimal pricing

strategy.
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4.1.2 Bayesian approaches

Several authors study the dynamic pricing and learning problem within a Bayesian framework.

On of the first is Aoki (1973), who applies methods from stochastic adaptive control theory.

He considers a setting where the demand function depends on unknown parameters, which are

learned by the decision maker in a Bayesian fashion. The purpose is to minimize (a function of)

the excess demand. He shows how the optimal Bayesian policy can, in theory, be computed via

dynamic programming, but that in many situations no closed-form analytical expression of the

solution exists. He then proposes two approximation policies. In the first, certainty equivalent

pricing (CEP), at each decision moment the price is chosen that would be optimal if the current

parameter estimates were correct. In the second, called an approximation under static price

expectation, the firm acts at each decision moments as if the chosen price will be maintained

throughout the remainder of the selling period. Aoki (1974) shows that the prices generated by

these policies converge a.s. to the optimal price.

Similar work is done by Chong and Cheng (1975), under more restrictive assumptions of a linear

demand function with two unknown parameters and normally distributed disturbance terms. They

show how to calculate the optimal pricing policy using a dynamic programming approach. If the

intercept is known, the optimal price is of the certainty equivalent type, but this is not the case

if both the intercept and slope are unknown. Three algorithms are proposed to approximate the

optimal price, and the performance of two of these - CEP, and a policy based on adaptive dual

control theory - are compared with each other by means of simulations.

Closely related Bayesian studies are Nguyen (1984, 1997), Lobo and Boyd (2003) and Qu et al.

(2013). Nguyen (1984) considers a quantity-setting monopolist firm facing random demand in

multiple periods, where the demand function depends on an unknown parameter which is learned

by the firm in a Bayesian fashion. Structural properties of the optimal policy are derived, and

its performance is compared with a myopic one-period policy. Nguyen (1997, Section 5) discusses

these questions in the context of a price-setting monopolist. Lobo and Boyd (2003) consider the

same setting as Chong and Cheng (1975), and compare by means of a computer simulation the

performance of four pricing policies with each other. Qu et al. (2013) assume Bernoulli distributed

demand with expectation a logit function of price, with a normal prior on the unknown param-

eters. Because this distributional form hampers exact calculation of posterior distributions, the

authors discuss how to calculate an approximation. They propose a Bayesian-greedy price policy

which cannot be computed exactly either, and show how an approximation can be calculated. A

numerical study focusing on performance on a short time horizon compares the pricing policies

with a number of alternatives.

Cope (2007) assumes that the firm only picks prices from a finite set of predetermined selling

prices. This allows for a discretization of the reservation-price distribution of customers, and the

construction of a general Dirichlet prior. In theory an optimal price strategy can be calculated by

dynamic programming, but in practice this is computationally intractable. The author develops

approximations for the value function in the dynamic program, and numerically compares the

performance of the resulting pricing heuristics with CEP. In addition, he shows that his pricing
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heuristics converge to the optimal price if an average-reward criterion is used, and that their

performance do not suffer much from a misspecified prior distribution. Leloup and Deveaux

(2001) also assume that the firm chooses from a finite set of prices. They formulate the pricing-

and-learning problem as a multi-armed bandit problem with Bernoulli distributed arms, and use

approximations to Gittins index policies to circumvent the computational problems associated

with solving the full Bayesian dynamic program.

Manning (1979) and Venezia (1984) are two related studies that focus on optimal design of market

research. Manning (1979) considers a monopolist firm facing a finite number of customers. By

doing market research, the firm can ask n potential customers about their demand at some price

p. Such market research is not for free, and the main question of the paper is to determine the

optimal amount of market research. This setting is closely related to pricing rules that split the

selling season in two parts (e.g. the first pricing rule proposed by Witt (1986)): in the first phase,

price experimentation takes place in order to learn the unknown parameters, and in the second

phase of the selling season, the myopic price is used. Venezia (1984) considers a linear demand

model with unknown parameters, one of which behaves like a random walk. The firm learns about

these parameters using Bayes’ rule. In addition, the firm can learn the true current value of this

random walk by performing market research (which costs money). The author shows how the

optimal market-research policy can be obtained from a dynamic program.

A common theme in the references mentioned above is that it is often intractable to compute the

optimal Bayesian policy, and that therefore approximations are necessary. Rothschild (1974) points

to a more fundamental problem of the Bayesian framework. He assumes that there are only two

prices the firm can choose, with demand for each price Bernoulli distributed with unknown mean.

The dynamic pricing problem is thus viewed as a two-armed bandit problem. The optimal Bayesian

policy can be computed via the corresponding dynamic programming formulation. The key result

of Rothschild (1974) is that, under the optimal Bayesian strategy, with positive probability the

price sequences converges to a price that (with hindsight) is not the optimal price. McLennan

(1984) derives a similar conclusion in a related setting: the set of admissible prices is continuous,

and the relation between price and expected demand is one of two known linear demand curves. It

turns out that, under an optimal Bayesian policy, the sequence of prices may converge with positive

probability to a price different from the optimal price. This work is extended by Harrison et al.

(2012), who show that in several instances a myopic Bayesian policy may lead to such ”incomplete

learning”. They propose two modifications of the myopic Bayesian policy that avoid incomplete

learning, and prove bounds on their performance. Afèche and Ata (2013) derive incomplete-

learning results of similar flavor in the context of pricing different types of customers in an M/M/1

queue.

All studies mentioned above assume that the firm is risk-neutral and optimizes the expected rev-

enue. Sun and Abbas (2013) depart from this assumption by studying the optimal price in a

Bayesian dynamic-pricing-and-learning problem with a risk-averse seller. Another variant is con-

sidered by Wang et al. (2013), whose study departs from the stationary demand assumption and

is related to the papers discussed in Section 3.1.3. The authors consider pricing of subscription-

based information goods, and assume that the demand intensity over the life cycle of the product
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behaves as the density function of a Weibull distribution. The parameters of this Weibull distri-

bution are unknown, and learned in a Bayesian fashion using a dynamic-programming formulation

and application of Monte Carlo simulation techniques. Choi et al. (2012) study a family of simple

pricing policies, in a Bayesian setting, based on separating the finite time horizon in an exploration

and exploitation phase. They calculate the optimal risk-averse price with respect to a number of

risk measures, and provide numerical examples.

The economics and econometrics literature also contains several studies on joint pricing and

Bayesian learning. Prescott (1972), Grossman et al. (1977), Mirman et al. (1993a) consider two-

period models and study the necessity and effects of price experimentation. Trefler (1993) focuses

on the direction of experimentation, and applies his results on several pricing problems. Rustichini

and Wolinsky (1995) and Keller and Rady (1999) consider a setting where the market environment

changes in a Markovian fashion between two known demand functions, and study properties of op-

timal experimentation. Balvers and Cosimano (1990) consider a dynamic pricing model where the

coefficients of a linear demand model change over time. Willems (2012) aims to explain observed

discreteness in price data. The author considers a model where the expected demand depends

linearly on price via two time-varying parameters with known expectation. The author elaborates

a Bayesian learning approach via dynamic programming, and discusses the differences between

active and passive learning. Easley and Kiefer (1988), Kiefer and Nyarko (1989), Aghion et al.

(1991) are concerned with Bayesian learning in general stochastic control problems with uncer-

tainty. They study the possible limits of Bayesian belief vectors, and show that in some cases

these limits may differ from the true value. This implies that active experimentation is necessary

to obtain strongly consistent control policies.

4.1.3 Non-Bayesian approaches

Despite the disadvantages of the Bayesian framework outlined above (computational intractability

of the optimal solution, the results by Rothschild (1974) and McLennan (1984) on incomplete

learning), it has taken several decades before pricing policies in a non-Bayesian setting where

studied. An early exception is Aoki (1974), who proposes a pricing scheme based on stochastic

approximation in a non-Bayesian framework. He proves that the prices converge almost surely

to the optimal price, and compares the policy with Bayesian pricing schemes introduced in Aoki

(1973).

More recent work in a non-Bayesian context is Carvalho and Puterman (2005a,b). They propose

a so-called one-step ahead pricing policy: based on a Taylor expansion of the expected revenue

for the next period, the price is chosen that approximately maximizes the sum of the revenues in

the next two periods. This is in contrast to certainty equivalent pricing, where only the expected

revenue of the next period is maximized. In Carvalho and Puterman (2005a), this idea is applied

to a binomial demand distribution with expectation a logit function of the price. By means of a

simulation, the performance of the policy is compared with CEP, and with a variant of CEP where

each period with a certain time-dependent probability a random price is chosen. In Carvalho and

Puterman (2005b), a log-normal demand distribution is assumed, and three more pricing policies

are considered in the simulation. Morales-Enciso and Branke (2012) consider a similar setting for
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a multimodal market, propose two new pricing heuristics, and compare these numerically with

some of the policies in Carvalho and Puterman (2005a,b).

A disadvantage of the many pricing heuristics that have been proposed in the literature, both

in a Bayesian and a non-Bayesian setting, is that a qualitative statement of their performance is

often missing. In many studies the performance of pricing policies is only evaluated numerically,

without any analytical results. This changes with the work of Kleinberg and Leighton (2003), who

quantify the performance of a pricing policy by Regret(T ): the expected loss in T time periods

incurred by not choosing optimal prices. They consider a setting where buyers arrive sequentially

to the firm, and buy only if their willingness-to-pay (WtP) exceeds the posted price. Under some

additional assumptions, they show that if the WtP of the individual buyers is an i.i.d. sample

of a common distribution, then there is no pricing policy that achieves Regret(T ) = o(
√
T ); in

addition, there is a pricing policy that achieves Regret(T ) = O(
√

T log(T ))1. In an adversarial

or worst-case setting, where the WtP of individual buyers is not assumed to be i.i.d., they show

that no pricing policy can achieve Regret(T ) = o(T 2/3), and that there is a pricing policy with

Regret(T ) = O(T 2/3 log(T )1/3).

The proof that no policy can achieve regret o(
√
T ) is quite involved and requires many assump-

tions on the demand function. Broder and Rusmevichientong (2012) show a
√
T lower bound on

the regret in a different setting, with Bernoulli distributed demand depending on two unknown

parameters. The proof makes use of information-theoretic inequalities and techniques found in

Besbes and Zeevi (2011). They also provide a pricing policy that exactly achieves regret
√
T

growth rate. Their policy separates the time horizon in ’exploration periods’, during which two

fixed experimentation prices are used, and ’exploitation periods’, during which the price is used

that is optimal w.r.t. parameter estimates derived from data from the exploration periods. If

there is only a single unknown parameter, and in addition the demand curve satisfies a certain

“well-separated assumption”, they show that there is a policy with Regret(T ) = O(log(T )). The

intuition behind this well-separated condition is that it excludes uninformative prices: prices at

which the expected demand given a certain parameter estimate is equal to the true expected de-

mand. The existence of such prices appear to play an important role in the best achievable growth

rate of the regret; see also the discussion on the subject (in a Bayesian setting) in Harrison et al.

(2012).

den Boer and Zwart (2010) study dynamic pricing and learning for a broad class of demand func-

tions and distributions, where unknown parameters are estimated with quasi-likelihood estimation.

They show that a certainty equivalent pricing policy is not strongly consistent, by showing in an

example that the limit of the price sequence is with positive probability different from the optimal

price. They propose a pricing policy that always chooses the price closest to the certainty equiva-

lent price, but such that a certain amount of price dispersion is guaranteed. The price dispersion,

measured by the sample variance of the selling prices, influences the quality of the parameter

estimates, and by carefully tuning the growth rate of the price dispersion, they achieve a price

policy with Regret(T ) = O(T 1/2+δ), for arbitrary small δ > 0. In a multi-product setting this is

improved by den Boer (2011) to Regret(T ) = O(
√
T log T ).

1Here f(T ) = O(g(T )) means sup
T∈N f(T )/g(T ) < ∞, and f(T ) = o(g(t)) means lim sup

T→∞
f(T )/g(T ) = 0,

when f and g are functions on N.
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Assuming a linear demand function with normally distributed disturbance terms, Keskin and

Zeevi (2013) show a
√
T lower bound on the regret, using other proof techniques than Broder and

Rusmevichientong (2012). In addition, generalizing Broder and Rusmevichientong (2012) and

den Boer and Zwart (2010), they formulate sufficient conditions for any pricing policy to achieve

Regret(T ) = O(
√
T log T ). They furthermore study a setting where the expected demand at a

certain price is exactly known to the seller, and prove performance bounds on pricing policies.

Tehrani et al. (2012) assume that the demand model lies in a finite set of known demand func-

tions. This enables them to formulate the dynamic pricing problem as a multi-armed bandit with

dependent arms. They propose a pricing policy based on the likelihood-ratio test, and show that

its regret is bounded assuming that there are no uninformative prices.

A closely related pricing problem is studied by Jia et al. (2013), who consider dynamic pricing

and learning in an electricity market. A retailer controls the price of electricity for customers

who participate in a demand response program, and tries to determine the price that minimizes

the difference between real and anticipated demand. The expected consumer demand is a linear

function of price, with unknown parameters that are learned using a stochastic-approximation

type policy inspired by Lai and Robbins (1982). The authors show a O(log T ) bound on the

regret, and show that no policy can achieve sub-logarithmic regret. The fact that logarithmic

instead of
√
T regret can be achieved seems to be caused by the similarities with the multi-period

control problem (Taylor, 1974, Anderson and Taylor, 1976). The objective in this latter problem

is to steer the expected output of a linear function to a desired level. Although closely related to

optimal pricing, there are some subtle differences discussed in den Boer and Zwart (2010, Remark

1), that cause the different attainable regret rates.

Eren and Maglaras (2010) study dynamic pricing in a robust optimization setting. They show

that if an infinite number of goods can be sold during a finite time interval, it is optimal to use a

price-skimming strategy. They also study settings where learning of the demand function occurs,

but under the rather strong assumption that observed demand realizations are without noise.

Bergemann and Schlag (2008, 2011) and Handel et al. (2013) also consider pricing in a robust

framework, but their setting is static instead of dynamic. Handel and Misra (2013) consider a

two-period model where a monopolist sets prices based on a non-parametric set of demand curves

feasible with acquired sales data. The authors describe and analyze the optimal two-period pricing

policy that minimizes a dynamic version of the minimax regret, and show that dynamic learning

will lead to smaller introductory price relative to a static environment.

Pricing without demand information in a queueing model is studied by Haviv and Randhawa

(2012). They consider the problem of pricing delay-sensitive customers in an unobservable M/M/1

queue. The purpose of the paper is to study the impact of ignoring arrival-rate information on the

optimal pricing strategy. The authors find that a policy that ignores this information performs

surprisingly well, and in some cases can still capture 99% of the optimal revenue.
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4.2 Finite inventory

We here discuss the literature on dynamic pricing and learning in the presence of a finite inventory

that cannot be replenished. Most of the studies assume a finite selling season, corresponding to

the models discussed in Section 3.2.1. Some studies however assume an infinite time horizon, and

consider the objective of maximizing total discounted reward.

4.2.1 Early work

Lazear (1986) considers a simple model where a firm sells one item during at most two periods.

In the first period a number of customers visit the store; if none of them buys the item, the firm

adapts its prior belief on the value of the product, updates the selling price, and tries to sell the

item in the second period. The author shows that the expected profit increases by having two

selling periods instead of one. He extends his model in several directions, notably by allowing

strategic behavior of customers who may postpone their purchase decision if they anticipate a

price decrease. Sass (1988) extends the model of Lazear and studies the relation between the

optimal price strategy and the number of potential buyers.

4.2.2 Bayesian approaches

Aviv and Pazgal (2005b) start a research stream on Bayesian learning in dynamic pricing with

finite inventory. Customers arrive according to a Poisson process; once arrived, the probability of

purchasing an item is determined by a reservation price distribution. For reasons of tractability

this distribution is assumed to be known and exponentially decreasing in the selling price. The

unknown arrival rate is learned via Bayesian updates of a prior belief. After explicitly stating the

optimal pricing policy in the full information case, the authors characterize the optimal pricing

scheme in the incomplete-information case by means of a differential equation. This equation

does not always admit an explicit analytical solution, and therefore three pricing heuristics are

proposed: a certainty equivalent pricing (CEP) heuristic, a fixed price policy, and a naive pricing

policy that ignores uncertainty on the market. Numerical experiments suggest that CEP performs

quite well. An almost identical setting is studied by Lin (2006), who proposes a pricing policy and

evaluates its performance via simulations.

Sen and Zhang (2009) extend the model of Aviv and Pazgal (2005b) by assuming that the purchase

probabilities of arriving customers are not known to the firm. They assume that the demand

distribution is an element of a finite known set, and consider a discrete-time setting with Bayesian

learning and a gamma prior on the arrival rate. The optimal pricing policy can be explicitly

calculated, and, in an extensive computational study, its performance is compared with both a

full information setting and a setting where no learning occurs.

Araman and Caldentey (2009) and Farias and van Roy (2010) study a closely related problem

where a firm sells a finite amount of non-perishable inventory during an infinite time horizon.

The purpose is to maximize cumulative expected discounted revenues. Similar to Aviv and Pazgal
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(2005b), they both assume that customers arrive according to a Poisson process with unknown rate,

and that arriving customers buy a product according to their reservation price, the distribution

of which is known to the firm. The unknown arrival rate is learned via Bayesian updates of the

prior distribution. Araman and Caldentey (2009) consider a two-point prior distribution, whereas

Farias and van Roy (2010) assume that the prior is a finite mixture of gamma distributions; in

both settings, the posterior distributions are in the same parametric family as the prior, which

makes the problem tractable. Araman and Caldentey (2009) propose a pricing heuristic based on

an asymptotic approximation of the value function of the corresponding intensity control problem.

They compare its performance numerically with CEP, static pricing, and a two-price policy. Farias

and van Roy (2010) propose another heuristic, called decay balancing, and show several numerical

experiments that suggest that it often performs better than both the heuristic proposed by Araman

and Caldentey (2009) and CEP. In addition they prove a performance bound on decay balancing,

showing that the resulting expected discounted revenue is always at least one third of the optimal

value. They also discuss an extension to a setting with multiple stores that may use different

selling prices. Mason and Välimäki (2011) consider a seller of a single item in an infinite time

horizon, with maximizing the expected discounted reward as objective criterion. Potential buyers

arrive as a Poisson process with either high or low intensity; the seller learns the true value of the

arrival intensity in a Bayesian fashion. The authors study structural properties of the price path.

A slightly different but related setting is studied by Aviv and Pazgal (2005a). They consider

a seller of finite inventory during a finite selling season, where the demand function changes

according to an underlying Markov chain. Both the finite state space of this Markov chain and

the demand functions associated with each state are known to the firm. The current state of

the system is unknown to the seller, but it is learned via Bayesian learning based on observed

demand realizations. By including this Bayesian belief vector into the state space of the dynamic

pricing problem, the authors obtain a Markov decision problem with full information, which can

in theory be solved. Computationally it is intractable, however, and therefore several approximate

solutions are discussed. Chen (2012) considers a similar partially observable Markov decision

process (POMDP) as Aviv and Pazgal (2005a). In his setting, the seller estimates the willingness-

to-pay distribution of customers based on two-sided censored observations. Three near-optimal

price heuristics are proposed and their performance is assessed by numerical experiments. For

exponentially or Weibull distributed demand, more refined results on the behavior of the heuristics

are obtained.

4.2.3 Non-Bayesian approaches

Bertsimas and Perakis (2006) consider dynamic pricing and learning of a finite inventory in a

non-Bayesian setting. They assume a linear demand model with normally distributed noise terms

and unknown slope, intercept and variance. These parameters are estimated using least-squares

linear regression. The authors formulate a dynamic program that, in theory, can provide the

optimal pricing policy. The large size of the state space makes the problem computationally

intractable, however, and the authors study different approximate solutions. They also consider

dynamic pricing and learning in a oligopolistic environment, where in addition the price elasticity
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of demand is slowly varying over time. They discuss methods for estimating the demand of the

firm and of its competitors, mention several methods of determining the selling prices, and provide

a small computational study.

Besbes and Zeevi (2009) propose a pricing algorithm for both a parametric and non-parametric

setting, and consider the objective of optimizing the minimax regret. They consider an asymptotic

regime, where both initial inventory and demand go to infinity at equal speed. In both a parametric

and non-parametric setting they provide an upper bound on the minimax regret attained by their

proposed pricing policy, and a lower bound on the minimax regret that is attained by any policy.

Wang et al. (2011) improve some of these bounds, and Besbes and Zeevi (2012) extend Besbes

and Zeevi (2009) to a setting where multiple products share the same finite resources. Another

variant of the problem is studied by Besbes and Maglaras (2012), who study the situation where

certain financial milestone constraints in terms of sales and revenues targets are imposed. They

formulate a pricing policy and study its performance in an asymptotic regime, where inventory,

sales horizon, and revenue and sales target grow to infinity at equal speed.

den Boer and Zwart (2011b) do not consider this asymptotic regime where inventory and demand

grow to infinity, but instead study a setting with multiple, consecutive, finite selling seasons. They

show that the system satisfies a certain endogenous learning property, which causes certainty

equivalent pricing to be a consistent policy. This means that no active price experimentation is

necessary to learn the demand function - except possibly finitely many times at the beginning

of the time horizon. The authors prove upper and lower bounds on the achievable regret, and

illustrate their results by several numerical experiments.

In Babaioff et al. (2012), a firm tries to sell k items to n potential customers. The authors propose

an online pricing-and-learning policy that does not require parametric assumptions on the demand

distribution, and that exploits the fact that the problem is closely related to multi-armed bandit

problems (despite the finite inventory, which means that the optimal price depends on the current

inventory level). They show a regret bound of O((k log n)2/3), and provide a matching lower bound

on the regret. If the ratio k/n is sufficiently small this bound is improved to O(
√
k log n).

A number of studies take a robust approach, where the demand function is not learned over time

but assumed to lie in some known uncertainty set. Lim and Shanthikumar (2007) and Thiele

(2006) study this in a single-product setting, and Lim et al. (2008), Thiele (2009) in a multi-

product setting. A potential drawback of these robust approaches is that no learning takes place,

despite the accumulation of sales data. Lobel and Perakis (2011) attempt to bridge the gap

between robust and data-driven approaches to dynamic pricing, by considering a setting where

the uncertainty set is deduced from data samples. A robust extension of Araman and Caldentey

(2009) and Farias and van Roy (2010), where finite inventory is sold during an infinite time horizon,

is studied by Li et al. (2009). Another approach that does not rely on historical demand data is

Xiong et al. (2010) (see also Li and Li, 2010, Li et al., 2013). They model demand uncertainty

using fuzzy set theory, propose different fuzzy programming models, and present an algorithm

based on fuzzy simulation and a genetic algorithm to solve these problems. Finally, Ferrer et al.

(2012) assume that demand is a non-random function of price, and lies in an uncertainty set of

demand functions known to the decision maker. The authors introduce a measure of risk aversion,
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and study the relation between risk-aversion and properties of the optimal pricing policy, both

theoretically and by numerical simulations.

4.3 Machine-learning approaches

A considerable stream of literature on dynamic pricing and learning has emerged from the com-

puter science community. In general, the focus of these papers is not to provide a mathematical

analysis of the performance of pricing policies, but rather to design a realistic model for electronic

markets and subsequently apply machine learning techniques. An advantage of this approach is

that one can model many phenomena that influence the demand, such as competition, fluctuating

demand, and strategic buyer behavior. A drawback is that these models are often too complex to

analyze analytically, and insights on the behavior of various pricing strategies can only be obtained

by performing numerical experiments.

Machine-learning techniques that have been applied to dynamic pricing problems include evolu-

tionary algorithms (Ramezani et al., 2011), particle swarm optimization (Mullen et al., 2006),

reinforcement learning and Q-learning (Kutschinski et al., 2003, Raju et al., 2006, Könönen, 2006,

Chinthalapati et al., 2006, Schwind, 2007, Cheng, 2008, Han et al., Vengerov, 2008, Cheng, 2009,

Jintian and Lei, 2009, Han, 2010, Collins and Thomas, 2012), simulated annealing (Xia and Dube,

2007), Markov chain Monte Carlo methods (Chung et al., 2012), the aggregating algorithm (Lev-

ina et al., 2009) by Vovk (1990), goal-directed and derivative-following strategies in simulation

(DiMicco et al., 2003), neural networks (Brooks et al., 1999, Kong, 2004, Ghose and Tran, 2009,

Liu and Wang, 2013), and direct search methods (Brooks et al., 1999, 2001, Kephart et al., 2001,

Brooks et al., 2002).

4.4 Joint pricing and inventory problems

A few studies consider the problem of simultaneously determining an optimal pricing and inventory

replenishment policy while learning about the demand.

Most of them consider learning in a Bayesian framework. Subrahmanyan and Shoemaker (1996)

assume that the unknown demand function lies in a finite known set of demand functions, and

is learned in a Bayesian fashion. The optimal policy is determined by solving a dynamic pro-

gram. Several numerical experiments are provided to offer insight in the properties of the pricing

policy. Bitran and Wadhwa (1996) and Bisi and Dada (2007) study a similar type of problem,

where an unknown parameter is learned in a Bayesian manner, and where the optimal decisions

are determined by solving a dynamic program. Bitran and Wadhwa (1996) perform extensive

computational experiments, and Bisi and Dada (2007) derive several structural properties of the

optimal policy. Lariviere and Porteus (1995) consider the situation of a manufacturer that sells to

a retailer. The manufacturer decides on a wholesale price offered to the retailer, and the retailer

has to choose an optimal inventory replenishment policy. Both learn about a parametrized demand

function in a Bayesian fashion. Properties of the optimal policy, both for the manufacturer and

the retailer, are studied. Gaul and Azizi (2010) assume that a product is sold in different stores.
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The problem is to determine optimal prices in a finite number of periods, as well as to decide if

and how inventory should be reallocated between stores. Parameters of the demand function are

learned by Bayesian updating, and numerical experiments are provided to illustrate the method.

Burnetas and Smith (2000) consider a joint pricing and inventory problem in a non-parametric

setting. They propose an adaptive stochastic-approximation policy, and show that the expected

profit per period converges to the optimal profit under complete information. A robust approach

to the dynamic pricing and inventory control problem with multiple products is studied by Adida

and Perakis (2006). The focus of that paper is the formulation of the robust optimization problem,

and to study its complexity properties. Related is the work of Petruzzi and Dada (2002). These

authors assume that there is no demand noise, which means that the unknown parameters that

determine the demand function are completely known once a demand realization is observed

that does not lead to stock-out. Adida and Perakis (2010a) discuss several robust and stochastic

optimization approaches to joint pricing and procurement under demand uncertainty, and compare

these approaches with each other in a numerical study.

5 Methodologically Related Areas

Dynamic pricing under uncertainty is closely related to multi-armed bandit problems. This is a

class of problems that capture many essential features of optimization problems under uncertainty,

including the well-known exploration-exploitation trade-off: the decision maker should properly

balance the two objectives of maximizing instant reward (exploitation of current knowledge) and

learning the unknown properties of the system (exploration). This trade-off between learning

and instant optimization is also frequently observed in dynamic pricing problems. The literature

on multi-armed bandit problems is large; some key references are Thompson (1933), Robbins

(1952), Lai and Robbins (1985), Gittins (1989), Auer et al. (2002); see further Vermorel and

Mohri (2005), Cesa-Bianchi and Lugosi (2006), Powell (2010). If in a dynamic pricing problem

the number of admissible selling prices is finite, the problem can be modeled as a classical multi-

armed bandit problem. This approach is e.g. taken by Rothschild (1974), Xia and Dube (2007),

and Cope (2007). If the set of admissible selling prices is a continuum, then the dynamic pricing

problem is closely related to the continuum-armed bandit problem. This problem has recently

been studied, among others, by Kleinberg (2005), Auer et al. (2007), Cope (2009), Wang et al.

(2009), Rusmevichientong and Tsitsiklis (2010), Filippi et al. (2010), Abbasi-Yadkori et al. (2011),

and Yu and Mannor (2011). Pricing and learning in a time-varying market, as discussed in Section

6.4, is related to the non-stationary multi-armed bandit problem (Garivier and Moulines, 2011).

Another important area related to dynamic pricing and learning is the study of convergence rates of

statistical estimates. Lai and Wei (1982) study how the speed of convergence of least-squares linear

regression estimates depend on the amount of dispersion in the explanatory variables. Their results

are applied in several dynamic pricing problems with linear demand functions, such as Le Guen

(2008) and Cooper et al. (2012). Similarly, results on the convergence rate of maximum-likelihood

estimators, as in Borovkov (1998) and den Boer and Zwart (2011a), are crucial in the analysis of

pricing policies by Besbes and Zeevi (2011), Broder and Rusmevichientong (2012) and den Boer
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and Zwart (2010).

Dynamic pricing and learning can also be put in a general framework of stochastic control problems

with parametric uncertainty. For various dynamic economic models, such problems have been by

considered by Easley and Kiefer (1988), Kiefer and Nyarko (1989), Marcet and Sargent (1989),

Wieland (2000a,b), Beck and Wieland (2002), Han et al. (2006), amongst many others. Kendrick

et al. (2008) review some of this literature, focussing on continuous-time optimal control problems

with linear system equations, quadratic cost functions, and Gaussian additive noise terms.

Clearly, many sequential optimization problems in operations research that are studied in an

online-learning setting have methodological similarities with dynamic pricing and learning: in-

ventory control (Scarf, 1959, Azoury, 1985, Huh et al., 2011, is just a small sample of the vast

literature), online advertisement (e.g. Nazerzadeh et al., 2013), assortment planning (e.g. Caro and

Gallien, 2007, Rusmevichientong et al., 2010, Sauré and Zeevi, 2013), et cetera. These problems

can also be studied in conjunction with optimal pricing. For example, Talebian et al. (2013) study

simultaneous pricing and assortment optimization with Bayesian demand learning, and Section 4.4

lists a number of studies that combine pricing and inventory control in an incomplete-information

setting.

6 Extensions and New Directions

Most of the literature discussed above studies dynamic pricing and learning for a monopolist firm

that sells a single product to nonstrategic customers in a stationary market environment. Many

extensions to this setting are possible, and we here list a number of them.

6.1 Multiple products

A number of recent papers depart from the single-product setting, and study pricing and learning

for multiple types of products. The demand for each product does not only depend on its own

selling price, but also on the selling prices of substitute or complementary products.

Models with infinite inventory are studied by Le Guen (2008), den Boer (2011), and Keskin and

Zeevi (2013). The master’s thesis by Le Guen (2008) considers a linear demand model, where the

unknown parameter matrices are of a particular structure. He proposes a pricing algorithm that is

equal to certainty equivalent pricing, except that at certain predetermined exploration periods a

small discount of the certainty equivalent price is offered. The prices are shown to converge to the

optimal prices. For non-linear demand functions, a pricing heuristic is proposed. den Boer (2011)

considers multi-product pricing for a broad class of demand functions. The unknown parameters

of the demand function can be estimated with quasi-likelihood estimation. He proposes a pricing

policy that at each time period chooses the perceived optimal price, but with a constraint that

guarantees a lower bound on a measure of price dispersion. By carefully tuning the growth rate

of the price dispersion the policy is shown to achieve Regret(T ) = O(T 2/3). For a specific class

of demand functions (so-called canonical link functions), this bound is improved to Regret(T ) =
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O(
√

T log(T )). Keskin and Zeevi (2013) prove a
√
T lower bound on the regret achievable by any

policy in a multi-product setting. In addition they consider a class of so-called orthogonal price

policies, and provide conditions under which they satisfy Regret(T ) = O(
√
T log T ).

Models with finite inventory are considered by Besbes and Zeevi (2012), Gallego and Talebian

(2012) and Lim et al. (2008). Besbes and Zeevi (2012) extend Besbes and Zeevi (2009) to a

setting where multiple products share the same finite resources. Their algorithm divides the

sales horizon in an exploration period and an exploitation period. During the exploration period

different equally spread prices are tried; during the exploitation periods, selling prices are used

that are optimal w.r.t. estimates based on the exploration periods. They show in an asymptotic

regime where demand and inventory grow to infinity how to balance the length of the exploration

and exploitation periods, and derive corresponding bounds on the regret. Gallego and Talebian

(2012) consider a setting where during a finite sales horizon a finite number of products is offered

in multiple versions. Demand is modeled by a customer choice model. The different product-

versions share an unknown ’core value’, which is estimated by maximum likelihood estimation

based on accumulating sales data. The possible time-varying arrival rate of customers is learned

in a Bayesian fashion. The authors develop a pricing rule in a rolling horizon framework, and

illustrate its behavior by a computational study. Finally, a robust optimization approach to

multi-product pricing under demand uncertainty is studied by Lim et al. (2008).

6.2 Strategic consumer behavior

The importance of incorporating the effect of strategically behaving customers on the dynamic

pricing policy has been recognized by many studies; cf. the papers on dynamic pricing with strate-

gic customer behavior mentioned in Section 3.2.1. The study of optimal pricing with both strategic

customer behavior and demand learning by the seller, however, is not that well developed. (Learn-

ing by consumers in these type of models is considered, e.g., by Liu and van Ryzin, 2011, Swinney,

2011).

Loginova and Taylor (2008) consider a stylized two-period model where a seller tries to sell a single

item to a single, strategically behaving buyer. The seller has a prior belief on the willingness-to-

pay of the buyer, assumed to be either “high” or “low”, and this belief is updated via Bayes’

rule after observing the outcome of the first period. The authors characterize game-theoretic

equilibria, and study what happens if a buyer strategically decides not to buy in the first period

in order to anticipate a lower price in the second period. Taylor (2004) considers a model closely

related to Loginova and Taylor (2008), but focuses on questions regarding consumer privacy and

the value of customer information. Mersereau and Zhang (2012) also consider a two-period model

in which a fraction of the customers acts strategically. The seller knows the aggregate demand

distribution, but not the fraction of strategically behaving customers. The authors propose a

robust pricing policy and prove bounds on its performance. These results suggest that good

performance of pricing policies may be possible without knowing all characteristics of the strategic

behavior of customers. In Levina et al. (2009), a seller learns about a complicated demand process

that incorporates strategic customer behavior. This behavior is described using a game-theoretic
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consumer choice model. The focus of the paper is on properties and numerical performance of an

online-learning algorithm suitable for the complicated process considered by the authors.

6.3 Competition

Several studies address dynamic pricing and learning in a competitive environment.

Fishman and Gandal (1994) consider a simple two-period duopoly model, building forth on Roth-

schild (1974). The unknown reservation price of customers is one of two known values, which are

learned by the firms in a Bayesian framework. Unsuccessful price experiments in the first time

period may negatively influence the profit in the second time period. The authors show that, for

some problem instances, the unique subgame-perfect equilibrium strategy is for both firms not to

experiment, whereas some amount of price experimentation would be optimal in the monopolist

setting. Coughlan and Mantrala (1994), elaborating upon Coughlan and Mantrala (1992), con-

sider an alternating-moves duopoly where a firm learns the pricing policy of the competitor in a

Bayesian fashion. The authors analyze properties of the equilibria resulting from this repeated

game, and compare these with a full-information setting and to the equilibria resulting from col-

lusive behavior. Choi and Jagpal (2004) consider a duopoly-pricing model with a linear demand

model and unknown parameters, and in addition assume that firms are risk-averse. They study by

a computer simulation the effect of risk aversion and parameter uncertainty on the firms’ pricing

behavior, and on the difference between a Stackelberg game and a Nash game.

Bertsimas and Perakis (2006) consider an oligopolistic market with a finite selling season. Several

firms compete for a single, perishable product, with finite or infinite capacities. The true demand

function is a linear function of the selling prices of all firms, with unknown parameters that

are slowly varying over time, and with Gaussian noise terms added. The unknown parameters

are estimated using data from a finite number of recent observations; based on these estimates,

a firm predicts the competitors’ prices in the next period by solving an optimization problem

which assumes that all firms price optimally. The firm then determines its next selling price by

maximizing expected revenue over the remaining time horizon, assuming its parameter estimates

are correct. Some computational examples are provided to illustrate the results. A related study

is Kachani et al. (2007). They consider multiple quantity-setting firms selling the same type

of products. The price-demand relation is linear, with unknown parameters that are allowed

to slowly vary over time, and firms have a finite amount of inventory. The authors formulate

the optimization problem as a mathematical program with equilibrium constraints, provide some

computational results, and derive a closed-form expression of a limiting Nash equilibrium in case

of two firms and a selling horizon of two time periods.

Cooper et al. (2012) focus on the question what happens if firms wrongly assume that they are

monopolistic, while in fact competitors are present. The authors study the dynamics of selling

prices and parameter estimates in repeated pricing games, and identify settings under which the

price sequence converge to a Nash equilibrium. They also consider situations where the selling

prices do neither converge to the Nash equilibrum nor to the cooperative solution, and where in

addition the limit depends on the initial prices.
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Kwon et al. (2009) formulate a finite-time finite-capacity oligopolistic pricing problem in the

language of differential variational inequalities. They consider a demand model where the time-

derivative of demand is proportional to the difference between a firm’s price and a moving average

of prices used in the past. Unknown model parameters are estimated with a Kalman filter, which

is recalculated at several moments in the sales horizon. The authors propose an algorithm to

solve the resulting differential variational inequalities, and illustrate their method by a numerical

example. Related to the set-up of Kwon et al. (2009) is the recent study by Chung et al. (2012),

who consider a state-space model for dynamic pricing and learning in an oligopoly. They also

assume that expected demand depends on the difference between a posted price and a reference

price, which is computed as a weighted moving average of historical prices. The time-derivative of

the expected demand is proportional to this difference, and depends furthermore on a parameter

which evolves as a time-series and which is estimated using a non-parametric functional-coefficient

autoregressive model, making use of a Markov chain Monte Carlo algorithm. Numerical examples

are provided to show the efficiency and robustness of the algorithm.

A robust optimization approach to dynamic pricing in an oligopolistic environment with demand

uncertainty is taken by Perakis and Sood (2006) (see also the closely related recent study Friesz

et al., 2012). They consider a multi-period setting with fixed, finite inventory levels, and study

Nash equilibrium price policies. Adida and Perakis (2010b) consider a joint pricing-and-inventory

control problem with duopolistic competition and demand uncertainty, and formulate it as a robust

optimization problem. The authors discuss existence and uniqueness of a Nash equilibrium and

address various computational aspects of the problem.

A large stream of economics literature is concerned with the long-term behavior of price adjustment

processes in oligopolistic settings, cf. Kirman (1975), Aghion et al. (1993), Mirman et al. (1993b),

Harrington (1995), Bergemann and Valimaki (1996), Alepuz and Urbano (1999), Rassenti et al.

(2000), Belleflamme and Bloch (2001), Schinkel et al. (2002), Keller and Rady (2003), Dimitrova

and Schlee (2003), Tuinstra (2004). One usually assumes that firms are using a certain specific

learning scheme, and then studies whether the selling prices converge to a Nash equilibrium. While

these papers are interesting from a perspective of understanding price formation, application in

business practice is hampered by the fact that one generally does not know which learning scheme

competing firms are using. A remarkable early study on pricing and learning in a competitive

environment is Barta and Varaiva (1976), who study convergence properties of various stochastic-

approximation based price-adjustment rules.

Contributions from the computer science community to dynamic pricing with demand uncertainty

in a competitive environment include Greenwald and Kephart (1999) and Dasgupta and Das (2000)

(in a setting with pricebots and shopbots). These studies consider a particular model, propose

pricing policies, and study their performance via numerical simulations.

6.4 Time-varying market parameters

Recently some studies are appearing that depart from the strong assumption of unchanging market

conditions.
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Besbes and Zeevi (2011) study a pricing problem where the willingness-to-pay (WtP) distribution

of the customers changes at some unknown point in time. The WtP distribution before and after

the change is assumed to be known, only the time of change is unknown to the seller. Lower

bounds on the worst-case regret are derived, and pricing strategies are developed that achieve the

order of these bounds. Besbes and Sauré (2012) is a recent study on the classical finite-inventory

pricing model that allows for changes in the demand function. The authors prove structural

properties of the problem of optimally hedging against abrupt changes in the demand function.

Chen and Farias (2013) also study pricing in a finite-inventory setting where the market process

is fluctuating over time. They propose a pricing heuristic which is based on the idea of frequently

re-calculating the optimal fixed price. The authors prove bounds on the performance loss relative

to an optimal clairvoyant pricing strategy in an asymptotic regime where inventory and demand

grows large.

Infinite-inventory settings are studied by Braouezec (2008) and den Boer (2012). Braouezec (2008)

considers a non-stationary multi-armed bandit as model for a monopoly pricing problem, where

the non-stationarity is caused by the fact that not only the firm but also consumers are learning

about the product on sale. For different assumptions on the knowledge available to the monop-

olist, different learning rules are proposed and evaluated by numerical simulations. In den Boer

(2012), the firm estimates a fluctuating market process by a weighted least-squares estimator, and

optimizes the weight in a min-max optimal sense with respect to certain assumptions made in ad-

vance by the seller. Tight upper bounds on the average regret are provided, and the methodology

is illustrated by two examples: pricing in the Bass model of a product life-cycle, and pricing in a

competitive environment.

Some of the economics / econometrics papers mentioned at the end of Section 4.1.2 also assume

time-varying demand parameters.

7 Conclusion

Dynamic pricing with incomplete demand information is a topic that has received considerable

research attention in recent years. Different scientific communities have studied characteristics of

pricing policies, usually with different aims in mind: the operations research / management science

literature typically focuses on finding an optimal pricing policy from the perspective of a seller,

and on proving optimality properties in tractable models; the economics literature is generally

more concerned with explaining price behavior and price formation observed in markets; and the

computer science literature is typically not afraid to consider complicated demand models that

are not tractable for mathematical analysis, but that can be handled using appropriate machine

learning techniques. In spite of these different aims, there is much in overlap in the studied demand

models, proposed pricing policies, and the techniques deployed to analyze the behavior of these

policies. In this survey we aim at providing a comprehensive overview of the many studies on this

topic arising from these different scientific communities.
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The Oxford Handbook of Pricing Management, chapter 30. Oxford University Press, London, 2012.

Y. Chen and V. F. Farias. Simple policies for dynamic pricing with imperfect forecasts. Operations
Research, 61(3):612–624, 2013.

Y. M. Chen and D. C. Jain. Dynamic monopoly pricing under a Poisson-type uncertain demand. The
Journal of Business, 65(4):593–614, 1992.

R. Chenavaz, L. P. Carrier, L. Etienne, and C. Paraschiv. Dynamic pricing in management science.

Journal of Economics Studies and Research, 2011, 2011.

Y. Cheng. Dynamic pricing decision for perishable goods: a Q-learning approach. In Wireless Communi-

cations, Networking and Mobile Computing, 2008. WiCOM’08. 4th International Conference on, pages
1–5. IEEE, 2008.

Y. Cheng. Real time demand learning-based Q-learning approach for dynamic pricing in E-retailing
setting. In Information Engineering and Electronic Commerce IEEC ’09. International Symposium on,

pages 594–598, 2009.

V. L. R. Chinthalapati, N. Yadati, and R. Karumanchi. Learning dynamic prices in MultiSeller electronic
retail markets with price sensitive customers, stochastic demands, and inventory replenishments. Sys-
tems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 36(1):92–106,

2006.

28



S. Chan Choi and S. Jagpal. Duopoly pricing under risk aversion and parameter uncertainty. Journal of
Product & Brand Management, 13(5):359–368, 2004.

T. M. Choi, P. S. Chow, and T. Xiao. Electronic price-testing scheme for fashion retailing with information
updating. International Journal of Production Economics, 140(1):396–406, 2012.

C. Y. Chong and D. Cheng. Multistage pricing under uncertain demand. In S. V. Berg, editor, Annals of
Economic and Social Measurement, volume 4(2), pages 311–323. NBER, 1975.

C. F. Christ. Early progress in estimating quantitative economic relationships in America. The American
Economic Review, 75(6):39–52, 1985.

S. Christ. Operationalizing Dynamic Pricing Models: Bayesian Demand Forecasting and Customer Choice
Modeling for Low Cost Carriers. PhD thesis, 2011.

B. D. Chung, J. Li, T. Yao, C. Kwon, and T. L. Friesz. Demand learning and dynamic pricing under
competition in a state-space framework. Engineering Management, IEEE Transactions on, 59(2):240–

249, 2012.

D. G. Clarke and R. J. Dolan. A simulation analysis of alternative pricing strategies for dynamic environ-

ments. The Journal of Business, 57(1):S179–S200, 1984.

F. Clarke, M. N. Darrough, and J. Heineke. Optimal pricing policy in the presence of experience effects.

The Journal of Business, 55(4):517–530, 1982.

R. W. Clower. Some theory of an ignorant monopolist. The Economic Journal, 69(276):705–716, 1959.

A. Collins and L. Thomas. Comparing reinforcement learning approaches for solving game theoretic
models: a dynamic airline pricing game example. Journal of the Operational Research Society, 63:

1165–1173, 2012.

W. L. Cooper, T. Homem de Mello, and A. J. Kleywegt. Learning and pricing with models that do not

explicitly incorporate competition. Working paper, 2012.

E. Cope. Bayesian strategies for dynamic pricing in e-commerce. Naval Research Logistics, 54(3):265–281,

2007.

E. W. Cope. Regret and convergence bounds for a class of continuum-armed bandit problems. IEEE

Transactions on Automatic Control, 54(6):1243–1253, 2009.

A. T. Coughlan and M. K. Mantrala. Dynamic competitive pricing strategies. International Journal of

Research in Marketing, 9(1):91–108, 1992.

A. T. Coughlan and M. K. Mantrala. Dynamic competitive retail pricing behavior with uncertainty and

learning. Managerial and Decision Economics, 15(1):3–20, 1994.

A. A. Cournot. Researches into the Mathematical Principles of the Theory of Wealth. Translated in

1897 by N.T. Bacon, with a bibliography of Mathematical Economics by Irving Fisher. The Macmillan
Company, New York, 1838.

J. Creedy. On the King-Davenant ”law” of demand. Scottish Journal of Political Economy, 33(3):193–212,
1986.

P. Dasgupta and R. Das. Dynamic pricing with limited competitor information in a multi-agent economy,
volume 1901 of Lecture Notes in Computer Science, pages 299–310. Springer Berlin Heidelberg, 2000.

C. Davenant. An essay upon the probable methods of making a people gainers in the balance of trade.
James Knapton, London, 1699.

A. de Palma, R. Lindsey, and S. Proost. Research challenges in modelling urban road pricing: an overview.
Transport Policy, 13(2):97–105, 2006.

I. Deksnyte and Z. Lydeka. Dynamic pricing and its forming factors. International Journal of Business
and Social Science, 3(23):213–220, 2012.

29



A. V. den Boer. Dynamic pricing with multiple products and partially specified demand distribution.
Submitted for publication, 2011.

A. V. den Boer. Tracking the market: Dynamic pricing and learning in a changing environment. Submitted
for publication, 2012.

A. V. den Boer. Dynamic Pricing and Learning. PhD thesis, Vrije Universiteit Amsterdam, 2013.

A. V. den Boer and B. Zwart. Simultaneously learning and optimizing using controlled variance pricing.

Management Science, Accepted for publication, 2010.

A. V. den Boer and B. Zwart. Mean square convergence rates for maximum quasi-likelihood estimators.
Submitted for publication, 2011a.

A. V. den Boer and B. Zwart. Dynamic pricing and learning with finite inventories. Submitted for
publication, 2011b.

J. M. DiMicco, P. Maes, and A. Greenwald. Learning curve: a simulation-based approach to dynamic
pricing. Electronic Commerce Research, 3(3-4):245–276, 2003.

M. Dimitrova and E. E. Schlee. Monopoly, competition and information acquisition. International Journal
of Industrial Organization, 21(10):1623–1642, 2003.

D. Easley and N. M. Kiefer. Controlling a stochastic process with unknown parameters. Econometrica,

56(5):1045–1064, 1988.

J. Eliashberg and R. Steinberg. Marketing-production joint decision-making. In J. Eliashberg and J. D.

Lilien, editors, Management Science in Marketing, Handbooks in Operations Research and Management
Science, volume 5, pages 827–880. North Holland Publishing Co., Amsterdam, 1993.

W. Elmaghraby and P. Keskinocak. Dynamic pricing in the presence of inventory considerations: research

overview, current practices, and future directions. Management Science, 49(10):1287–1309, 2003.
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