
1.  Introduction
Synthetic Aperture Radar (SAR) being a prominent remote sensing instrument having all-weather, day-and-
night imaging capability, has gained unprecedented popularity in the recent trends of remote sensing. In 
addition, the polarimetric information in SAR data can be used to retrieve the geomorphological properties 
such as soil moisture and surface roughness (Skriver et al., 2003). SAR is an active microwave remote sens-
ing system which transmits polarized microwave pulse and measures the power of the backscattered signal 
from the target in the form of complex values (Moreira et al., 2013). The radar observation of each pixel is 
the coherent sum of the backscatter response from all the distributed targets within the spatial extent of 
that pixel (Doring et al., 2011). These measurements represent the geophysical and geometric properties of 
the corresponding targets. Also, the radar measurement of a specific target must be consistent irrespective 
of the sensors, given that the influences of other factors (frequency of the radar, viewing geometry, and so 
on) on the radar observation are compensated. In this regard, the calibration of SAR data is a mandatory 
pre-processing step to ensure data quality.

The polarization for a plane electromagnetic (EM) wave is done to forcefully orient the electric field vector 
toward one pole based on the propagation axis, thereby creating an ellipse in each and every cycle (known 
as polarization ellipse). Upon interacting with the Earth's surface, the EM wave gets its polarization broken 
into different components (mainly due to the surface roughness): most portion vibrates in horizontal di-
rection, some in vertical portion, and the rest remains unpolarized vibrating in all possible directions. The 
angle by which the polarization ellipse is mounted on its propagation axis is called polarization orientation 
angle (POA). The shape, size, structure, and orientation of features cause a shift in POA, which strongly in-
fluences the coherency matrix elements except for the first element (T11) and imaginary components (Shuk-
la & Kumar,  2018). Double bounce scattering (T22) and volume scattering (T33) are underestimated and 
overestimated respectively due to the POA shift (Lee & Ainsworth, 2011; Shukla & Kumar, 2018). Thus, it 
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is always recommended to compensate this de-orientation effect for reliable inferences to the model-based 
decomposition outputs like scattering property retrieval.

The ambiguities of the transmit-receive modules (TRMs) and other antenna elements make the horizontal 
component more sensitive to the vertical polarization (and vice-versa), thereby inducing crosstalk errors. 
These errors relatively contribute to an increased magnitude of cross-pol images resulting in overestimation 
of volume scattering properties (Chang et al., 2018). In addition, the amplitude or phase unconformity of 
different polarization channels cause imbalance in the transmission or reception of antenna gain (Babu 
et al., 2019). Coming to the influence of imbalance on the PolSAR images, there are two categories: (a) co-
pol channel imbalance and (b) cross-pol channel imbalance. The former causes the distortion between the 
HH and VV channels whereas the later causes the distortion between HV and VH channels, thereby result-
ing in the deformation of scattering reciprocity (Chang et al., 2018). Furthermore, the polarization plane of 
the EM wave is rotated about the radar line of sight due to the presence of an external magnetic field caused 
by charged particles in the ionosphere of the Earth's atmosphere. Such changes in the polarization state lead 
to Faraday rotation error. Because of this, it can be observed that there are ambiguities and induced errors 
in the band ratio of different channels. The performance of target detection algorithms and polarization 
characteristics show insensitive results when the isolation is less than −30 dB and the amplitude imbalance 
is larger than −0.6 dB (Liu et al., 2016).

In general, the term “calibration” refers to the process of establishing the relationship between the measure-
ments and the actual quantities with the proper estimation of measurement uncertainties (Clifford, 1985). 
This definition is equally applicable for Polarimetric SAR (PolSAR) calibration. PolSAR generally refers to 
the fully polarimetric or quad-pol acquisition mode of SAR unless specified otherwise. Theoretically, differ-
ent combinations of the polarization channels are known to be related to each other (Cloude, 2009). These 
relationships play pivotal roles in the retrieval of the geomorphological properties of the targets. Ideally, 
these relationships should be reflected in the corresponding measurements, however, in reality it has been 
observed that the measurements from the SAR sensor do not always hold these properties. There are several 
factors that corrupt the integrity of the PolSAR measurements (Freeman et al., 1992). The working principle 
of SAR dictates that the pixel spacing in the SAR image is smaller compared to the spatial resolution. Due to 
this reason, a typical point target occupies more than one pixel. This, in turn, leads to the error in the estima-
tion of the Radar Cross Section (RCS; Van Zyl & Kim, 2011). In addition to this, The anomaly which hinders 
this comparability of measurements from different polarization channels is known as channel imbalance 
representing the imbalance both in amplitude and phase (Van Zyl & Kim, 2011). Moreover, The anomalies 
introduced in PolSAR data due to improper channel isolation are commonly known as crosstalk (Baffelli 
et al., 2018). According to Freeman et al. (1992), the sensor calibration alone cannot entirely avoid all these 
issues. Therefore, PolSAR data calibration as an additional pre-processing step is necessary to reduce the 
effects of these anomalies.

Calibration of PolSAR data is a reasonably complex process which is mostly based on the statistical 
comparison of the data with the ideal theoretical models assuming the backscattering symmetry (Al-ka-
hachi, 2014). This typically involves several crucial steps (Fore et al., 2015). First, The antenna gain of 
the SAR sensor is appropriately estimated and the corresponding data set is corrected through the ab-
solute radiometric calibration minimizing error in the estimation of the RCS (Fore et al., 2009). Along 
with this, the phase calibration reduces the phase imbalance and partially corrects the channel imbalance 
(Fore et al., 2009). Finally, the rectification of channel imbalance ensures the cross-pol reciprocity and 
the crosstalk minimization reduces the error in the data due to imperfect isolation of the polarization 
channels (Fore et al., 2015). In addition, correction for Faraday rotation is required for the spaceborne 
SAR platforms working in the lower frequency bands. Moreover, The variation in the topography affects 
the polarization state of the signal (Lee et al., 2000). This shift in the POA which should also be rectified 
(Lee et al., 2018).

There are well established theoretical models for radiometric correction and corresponding phase calibra-
tion (Doring et al., 2011; El-Darymli et al., 2014; Gray et al., 1990; Van Zyl & Kim, 2011). However, cali-
bration techniques for crosstalk and channel imbalance minimization are still under active research. Cur-
rently, there are two widely popular methods for crosstalk calibration (Fore et al., 2015). The approach of 
Quegan (1994) is based upon the assumption of reciprocity of the cross polarized channels. In addition, it 
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also assumes azimuth symmetry, which means that the co-pol and cross-pol channels are truly uncorre-
lated in any scene dominated by distributed targets (Quegan, 1994). Kimura et al. (2004) further improved 
Quegan's algorithm by incorporating the cross-channel noise imbalance, this algorithm is popularly known 
as the improved Quegan's algorithm. However, the assumptions adopted by Quegan (1994) do not always 
hold in the raw SAR data set. Later on, Ainsworth et al. (2006) proposed a posteriori model to estimate the 
crosstalk which is only based upon the weak constraint of scattering reciprocity. In addition to this, Shima-
da  (2011) proposed a decomposition model-based approach where polarization distortion matrix can be 
alliteratively calculated from a system of nonlinear equations. These Iterative algorithms are observed to 
provide a distortion matrix with minimal residual noise compared to noniterative algorithms like Quegan's 
algorithm (Fore et al., 2015). However, iterative algorithms are computationally expensive than noniterative 
algorithms due to their iterative nature (Fore et al., 2009).

In this study, an improved approach has been proposed to calibrate PolSAR data preserving the calibration 
accuracy of the iterative algorithm while optimizing the computational cost. The proposed approach com-
bines both Quegan's algorithm and Ainsworth's algorithm and takes system noise into account. Moreover, 
correction of POA shift has been considered as an essential part of the PolSAR calibration itself instead of 
considering it as a separate process.

2.  Proposed Method
In this study, the process of PolSAR calibration has been divided into three important sequential steps, 
namely, radiometric and phase calibration, crosstalk and channel imbalance calibration and POA shift cor-
rection. In case of spaceborne SAR data, the correction for Faraday rotation has to be performed along with 
the POA shift correction step.

2.1.  Radiometric Calibration

Radiometric and phase calibrations are the crucial preceding steps of any polarimetric calibration (Fore 
et al., 2015). The phase calibration helps in minimizing the phase bias present in both co-pol channels and 
cross-pol channels whereas, the purpose of the radiometric correction is to correctly convert pixel values to 
corresponding normalized RCS (Freeman et al., 1992). Assuming that the correction for antenna pattern 
has already been applied and neglecting the crosstalk, the radiometric and phase calibration can be mod-
eled as given in Equation 1a (Fore et al., 2009).
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here, So is the uncalibrated scattering matrix, Sτ is radiometric, and phase calibrated scattering matrix. The 
notation str represents the backscattering from transmitted polarization t and received polarization r. The 
term A is the absolute calibration parameter whereas f and g are co-pol and cross-pol channel imbalance 
parameters respectively. The notation ϕx,y represents phase error in polarization channel y, where x signifies 
whether it corresponds to transmission (t) or reception (r). There are well-established methods to estimate 
the unknown radiometric and phase calibration parameters in the Equation 1a. Fore et al. (2009) and Fore 
et al. (2015) provide the detailed methodology of such an approach.

MAITI ET AL.

10.1029/2020EA001447

3 of 22



Earth and Space Science

2.2.  Crosstalk and Channel Imbalance Calibration

The radiometric and phase calibrated SAR data are considered to be partially calibrated because the chan-
nel imbalance is not entirely minimized and crosstalk is still present in the data set. Crosstalk and channel 
imbalance are generally modeled using distortion matrix and the respective parameters are estimated from 
the covariance matrix of the radiometric and phase calibrated PolSAR data.

When we talk about channel balancing, our focus is to preserve the orthogonality of the signals in the co-
pol and cross-pol channels i.e. the phase, amplitude, and delay differences need to be managed for precise 
measurements of the target properties (cf. pages 37–38, Section 3.1.5 of Doerry and Bickel [2018]). It is a 
system issue and needs to be dealt at the hardware scale. To be concise and clear, issues related to channel 
imbalances should not be an afterthought however should be incorporated during the hardware design. But 
in the situation, where the effects of residual channel imbalance are mitigated at later stages, we need to 
take care of it computationally by implementing data-driven techniques (cf. page 40, Section 4.3 of Doerry 
and Bickel [2018]).

On the other hand, the typical, and ideal, assumption is that each channel processes only its own desired in-
put. That is, the output of channel k is not influenced by the signal in channel l. Of course, this is ideal, and 
we are never quite so fortunate. The ability of a signal in one channel to leak, or couple, to another channel 
is termed “cross-talk.” As such, it can be considered a noise source that is highly correlated with a signal in 
another channel. Clearly, if signals in separate channels are expected to be orthogonal, cross-talk obviously 
diminishes that orthogonality” (cf. page 26, section 2.11.3 of Doerry and Bickel [2018]).

To conclude, these two errors are very interrelated but they occur due to different reasons and hence, need 
to be discussed separately before utilizing them in the calibration equation, as in the Equation (2).

Crosstalk and Channel Imbalance Model

According to Van Zyl and Kim (2011), the observed scattering matrix (S ó) can be modeled in terms of the 
true scattering matrix (S′τ) and the respective distortion (D) as shown in the Equation 2a. Here, Y represents 
complex absolute calibration gain, u, v, w, z are the complex crosstalk parameters, and α, k are the complex 
channel imbalance parameters. The term ntr represents the system noise of the backscattering from trans-
mitted polarization t and received polarization r. System noise (N) is extremely difficult to model and can 
be assumed to be negligible due to the appropriate sensor calibration.
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Estimation of Covariance Matrix

Both Quegan's algorithm and Ainsworth's algorithm estimate the crosstalk and channel imbalance param-
eters from the covariance matrix. The polarimetric covariance matrix is computed from the vector form of 
the scattering matrix of fully polarimetric SAR data using Equation 3a and it has the form shown in Equa-
tion 3c where S in the Equation 3b represents the vector form of the scattering matrix (Fore et al., 2015). As-
suming radiometric and phase calibration has already been applied to the data set, the channel imbalance 
parameters satisfy the Equation 2b (Fore et al., 2009).
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here,   operator signifies the ensemble average operation. In this regard, the choice of kernel size in 
covariance matrix computation is crucial as it can affect the estimation of crosstalk parameters. Ideally, 
the kernel size should not be too large as the covariance may deviate from expected value due to the high 
variation in sizable spatial extent, on the other hand, it should not be too small as the correct estimation of 
covariance requires an adequate number of samples (pixels) to be present in the kernel.

Quegan's Algorithm

Quegan (1994) presented an approach to estimate the crosstalk and channel imbalance parameters provid-
ed the 2.2 are satisfied.

Quegan's Preconditions

1.	 �The acquired data set is fully polarimetric and available in the form of the scattering matrix.
2.	 �The observed scattering matrix can be modeled as a linear system
3.	 �Scattering reciprocity is satisfied unless the target is physically altered
4.	 �In the case of distributed targets, cross-polarized channels are not correlated
5.	 �The off-diagonal terms of the distortion matrix are small compared to the diagonal terms

Accordingly, the crosstalk parameters can be estimated as shown in Equation (4). (Fore et al., 2009).
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similarly, the channel imbalance parameter (α) can be derived as presented in Equations 5a–5f.
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Quegan (1994) assumed that the random noises in cross polarized channels are equal, that is nvh = nhv, thus, 
effectively m = 1. However, Kimura et al. (2004) showed that the parameter m can be estimated according to 
Equation 5f when Quegan's assumption regarding system noise in cross polarized channels is not satisfied, 
that is nvh ≠ nhv.

Ainsworth's Algorithm

The assumptions of Quegan  (1994) imply that the algorithm is only applicable when there is no POA, 
and the helicity is effectively zero (Ainsworth & Lee, 2001). These stringent requirements may not always 
be satisfied, there Ainsworth et al. (2006) proposed an new algorithm with comparatively less restrictive 
constraints. Ainsworth's algorithm follows a posterior approach and does not require prior relationship 
between the distortion during signal transmission and distortion during signal reception. Fore et al. (2015) 
showed that, Ainsworth's crosstalk parameters can be estimated from δ in Equation 6g, by solving the sys-
tem of Equations 6a (Ainsworth et al., 2006). The initial value of channel imbalance parameter α can be 
estimated using the Equation 6h.
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However, Ainsworth's algorithm is an iterative approach, therefore, in ith iteration calibrated covariance 
matrix (Ci) is derived from the previous covariance matrix (Ci−1) and the current distortion matrix (Di) as 
shown in the Equation 7a.
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 1Σ Di i� (7b)

Accordingly, the crosstalk and channel imbalance parameters are adjusted using the Equations.  8a–8e. 
Here, u′i, v′i, w′i, z′i and α′i are corresponding residual crosstalk and channel imbalance parameters at iteration 
i, estimated by solving the system of Equation 6a based on the current covariance matrix Ci.
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Thus, the algorithm iteratively converges toward the solution until all crosstalk residuals are below the pre-
decided precision threshold or the predecided maximum number of iterations has been reached.

Proposed Algorithm

Ainsworth's algorithm adopted by Fore et al.  (2015) does not take into account the system noise. Ac-
cording to Ainsworth et al. (2006), the ideal covariance matrix (CA) has the form shown in the equation. 
The term q in Equation 9c represents system noise therefore it depicts data quality as well. When q > 1, 
the covariance matrix is not positive definite. Therefore, crosstalk parameters cannot be calculated in 
these cases. The proposed algorithm takes this factor into account thus skips the calculation of the 
crosstalk parameters whenever q > 1, thus it reduces the overall error in the estimation of the crosstalk 
parameters.
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Although the estimations of crosstalk parameters using Quegan's algorithm are no better than 
Ainsworth's algorithm, in some cases Quegan's crosstalk estimations are very close to the result of 
Ainsworth's algorithm (Fore et al., 2015). Therefore, in those cases, Ainsworth's iterative computations 
can be avoided by increasing the computational efficiency and saving execution time. Furthermore, in 
extreme cases, the crosstalk parameters may not converge to the expected precision within the maxi-
mum allowed iterations. In these cases, there is a possibility that estimations of Quegan's algorithm sat-
isfy the residual threshold criteria rather than Ainsworth's estimations. The Proposed Algorithm takes 
care of this aspect as well.

Correction of Crosstalk and Channel Imbalance

The crosstalk and channel imbalance parameters vary with respect to range (Fore et al.,  2009). Howev-
er, Fore et al. (2015) showed that these parameters can also be scene dependent. Therefore, crosstalk and 
channel imbalance parameters should be averaged using a sliding window ignoring the anomalous pixels. 
Ideally, the sliding window should be narrower along the range compared to its width along the azimuth. 
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Finally, for each pixel, the corrected scattering matrix S′τ is obtained from the respective radiometric and 
phase calibrated scattering matrix S′o and corresponding distortion matrix D using the Equation 10 ignoring 
the effect of system noise (N).


   1S D So� (10)

2.3.  Calibration Evaluation Metrics

There are several metrics to measure the effects of the calibration on 
PolSAR data. Some of these metrics are extremely useful for analyzing 
the data quality and estimating the residual noise and uncertainty. The 
metrics used in this study to evaluate the calibration are discussed below.

Any change in the residual noise in the data should be reflected in the 
crosstalk and channel imbalance parameters estimated before and af-
ter performing calibration respectively. Moreover, according to Wang 
et al. (2011), the maximum normalized error (MNE) is a generalized met-
ric to evaluate the proportion of noise present in the data. Furthermore, 
Villano and Papathanassiou (2013) suggested that the SNR of cross-pol 
channels of SAR data is crucial since the powers of the backscattered 
signal are comparatively very low with respect to backscatter powers of 
the co-pol channels.

In addition to these quantitative measures, the effect of calibration can 
be observed using a few qualitative measures also. In this regard, the 
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Figure 1.  HH intensity image of the data set (see Table 1). The corner 
reflectors are marked according to their size and visibility. The southern 
region of the lake appears in the upper portion of the image because of the 
north to south flight track.
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roll invariant parameters can reveal the scattering pattern through the 
H-α plane and this scattering pattern can be compared with the expected 
scattering pattern of the scene Cloude  (2009). The SAR decomposition 
models are also extremely useful for studying the scattering pattern. 
Sato et al.  (2013) showed that the Y4R decomposition is highly relia-
ble for the estimation of the true scattering pattern. Furthermore, the 
polarimetric signatures of the known targets such as corner reflectors 
can reveal the quality of PolSAR data when compared with the ideal 
theoretical response Cloude  (2009). Polarimetric signatures are par-
ticularly useful to evaluate the radiometric and phase calibration Fore 
et al. (2015).

3.  Study Area and Data Set
Rosamond dry lake is situated between Antelope Valley and the Mojave 
Desert in the southern part of California, United States of America. It 

is a naturally formed dry lake bed with a large flat surface of nearly 35 km2 (Meyer & Bowers, 2012). The 
area is characterized by a hard surface having less than 40 cm of variation in curvature over a distance of 
9 km and with the least amount of vegetation, thus making it suitable for a calibration validation (cal-val) 
site (Gibbs, 2017). At the southern part of the lake, an array of 38 triangular trihedral corner reflectors of 
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Attribute Value

Date and time of acquisition September 20, 2016, 22:31:22 UTC

Site Rosamond, California, USA

Acquisition mode Quad Pol

Flight line 35,012

Track ID 35

Average altitude 1.25 km

Look direction Left

Frequency band L (1.2575 GHz)

Radiometric calibration applied Yes

Table 1 
Details of the Data Set

Figure 2.  Polarimetric signatures of corner reflector 24. It is a triangular trihedral corner reflector with 4.8 m side length, co-pol signatures are shown in top 
row, cross-pol signatures are shown in the bottom row. Panels (a and d) are the signatures before calibration, (b and e) are signatures after calibration using 
Quegan' algorithm, (c and f) are the signatures after calibration using Ainsworth's algorithm.
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different sizes has been deployed and routinely maintained by NASA for the calibration of SAR instruments 
(Muellerschoen, 2018), as shown in Figure 1.

In this study, UAVSAR (Rosen et al., 2006) L band uncalibrated data set has been used. The slant range reso-
lution of this data set is 1.8 m and the azimuth resolution is 0.8 m. Since the data set is only radiometrically 
calibrated, it is suitable for crosstalk calibration and POA shift correction. Since this is airborne SAR data, 
the correction for Faraday rotation is not applicable. The specified dataset is freely accessible from UAVSAR 
data repository (2020).
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Figure 3.  Variation of crosstalk and channel imbalance parameters estimated using Quegan's algorithm. The subfigures show the variation of the parameters 
as follows: (a) abs(u), (b) abs(v), (c) abs(w), (d) abs(z), (e) abs(α), (f) arg(α) All the crosstalk parameters and the channel imbalance parameter have reduced after 
performing calibration.
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4.  Results
The computation of the covariance matrix with adequate accuracy and 
precision is crucial for the correct estimation of the calibration parame-
ters. However, the estimation of the covariance matrix depends upon the 
choice kernel size. In this study, all the covariance matrices have been 
computed using the 7 × 7 kernel. Furthermore, in each case, the cross-pol 
SNR has been estimated from a featureless area of 286 × 263 pixels with a 
7 × 7 window. For the iterative crosstalk estimation algorithms, the max-
imum allowed iterations are set to be 16. Similar to the computation of 
the covariance matrix, the 7 × 7 window has been used for the estimation 
of POA shift.

4.1.  Evaluation of Radiometric Calibration

The radiometric and phase calibration has already been applied in the 
data set. Therefore, the shapes of the polarimetric signatures at the cor-
ner reflector pixels should closely resemble the ideal shapes. The polar-
imetric signatures of CR24, a 4.8 m corner reflector is shown in the Fig-
ure 2. From Figures 2a and 2d it can be observed that, the response of this 
corner reflector closely depict the ideal shape of the triangular trihedral 
corner reflector. Although there are some visible distortions in the cross-
pol signature, the distortions are not high, that is phase offset is reason-
able. Therefore, it is safe to assume that the data set is radiometrically 
calibrated and the presence of phase imbalance is negligible.

4.2.  Estimates of Quegan's Algorithm

The variations of crosstalk parameters estimated using Quegan's algorithm have been observed before and 
after the crosstalk calibration. In Figures 3a–3d, crosstalk parameters are plotted for the range direction over 
2,750 range pixels. It can be observed that the parameter u varies roughly between −28 and −34 dB before 
the calibration and it varies roughly between −34 and −38 dB after the calibration. There are no anomalies 
in the estimation of u as the residual of u is less than the estimated u before the calibration in all the cases. 
The parameter v is estimated to be nearly −20 dB and it does not show many variations with respect to 
the range direction before the calibration. However, the residual of v varies between −35 and −43 dB and 
exhibits a similar pattern to that of residual u. The parameter w mostly varies around −35 dB before the 
calibration and it is estimated to be roughly between −35 and 42 dB after the calibration. The parameter z 
is estimated to be in the range of −34 to −36 dB before calibration and in the range of −35 to −39 dB after 
the calibration.

Similar to the crosstalk parameters, the estimated absolute value of channel imbalance parameter α and its 
phase is plotted against the range direction in Figures 3e and 3f respectively, both before and after the cali-
bration. The amplitude of α varied between 0.25 and 0.35 dB before the calibration which reduced to below 
0.07 dB after the calibration. On the other hand, the phase of α varied close to 27° before the calibration and 
it reduced to nearly 0° after performing the calibration. The residual amplitude and phase of α indicate that 
the channel imbalance has been substantially reduced.

Furthermore, the polarimetric signature of the corner reflector 24 after performing the crosstalk and chan-
nel imbalance calibration is shown in Figure 2. It is evident that the distortions present in Figure 2a and 2d 
have been significantly reduced in Figure 2b and 2d.

Accordingly, Figure 4a shows the variation of MNE before performing the crosstalk calibration. The MNE 
before performing the crosstalk varied between −18.41 dB and −21.63 dB. However, MNE has been re-
duced to the range of −26.69 to −33.81 dB after crosstalk calibration using Quegan's algorithm, as shown 
in Figure 4b. However, in Figure 4b it is also evident that a large number of range pixels do not satisfy the 
threshold of −30 dB.
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Figure 4.  Variation of MNE with respect to the range direction (a) before 
Calibration, (b) after Quegan's calibration.
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Similar to the MNE, the cross-pol SNR has been estimated before and after performing the crosstalk cali-
bration which is shown in 5. In both cases, the histograms resemble a normal distribution. The mode of 
the histogram improved to 6.89 dB after the calibration from 6.12 dB before the calibration. However, the 
distribution of SNR is more uniform after the calibration compared to the distribution of the SNR before.

The study area for this research mostly comprises of a relatively smooth flat surface. Therefore, surface 
scattering is expected to be dominating. The volume scattering from vegetation might be present due to the 
presence of light vegetation near the edge of the dry lake bed. However, the volume scattering should be 
comparatively low. The H-α planes before and after the calibration are presented in Figure 5.

Figure 5a shows that most of the pixels lie in the region of surface scattering with low and medium entropy. 
However, a relatively large number of pixels depict medium entropy scattering rather than low entropy 
surface scattering. Furthermore, the pixel densities indicate that there is a significant amount of volume 
scattering present despite being lesser than the surface scattering. Presence of double bounce scattering, 
multiple scattering and anisotropic scattering is negligible. In contrast, the surface scattering in Figure 5b 
has significantly increased after performing the calibration using Quegan's algorithm. The amount of vol-
ume scattering has been reduced but still significantly present. However, the amount of double bounce 
scattering has increased which might be attributed to the rocky patches near the edge of the lake bed. In 
addition, the anisotropic scattering slightly increased which is unexpected as no anisotropic medium is 
known to be present in the study area.

4.3.  Estimates of Ainsworth's Algorithm

The variation of crosstalk parameters in rage direction before and after the crosstalk calibration is shown in 
the Figures 6a–6d. Evidently, before calibration, in some cases, the crosstalk parameters are higher than the 
standard −35 dB threshold. However, all the crosstalk parameters have been reduced below −40 dB after 
the crosstalk calibration using Ainsworth's algorithm. Although the parameters u, w and z varied mostly 
below −45 dB, the parameter v gently varied between −40 and −45 dB. Furthermore, comparing Figures 3 
and 6, it can be observed that the estimations of crosstalk parameters using Ainsworth's algorithm are rela-
tively stable with respect to Quegan's algorithm.

The channel imbalance before and after performing Ainsworth crosstalk calibration is plotted with respect 
to range in the Figures 6e and 6f. The amplitude of α varied above 0.2 dB before the calibration which re-
duced below 0.05 dB after the calibration. The phase of α was stable around 26° before the calibration and 
it reduced to below 2° after performing the calibration. Unlike crosstalk parameters, the estimated value 
of α before the calibration shows a similar variation in the range direction to that of Quegan's estimation. 
The amplitude of α is lower after the calibration using Ainsworth's algorithm compared to the amplitude 
of α after performing calibration using Quegan's algorithm. However, the phase of α is more stable and lies 
closer to 0° in the case of Quegan's algorithm.
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Figure 5.  H-α Plane, (a) Before Crosstalk Calibration, (b) After calibration using Quegan's algorithm. Overall surface 
scattering has increased after calibration.
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The polarimetric signatures after the crosstalk and channel imbalance calibration have been shown in Fig-
ures 2c and 2f. It can be observed that the distortions of both co-pol and cross-pol signatures have been 
reduced. After performing the calibration, similar improvements have been observed in the signatures of 
other corner reflectors containing some distortions.
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Figure 6.  Variation of crosstalk and channel imbalance parameters estimated using Ainsworth's algorithm. The subfigures show the variation of the 
parameters as follows: (a) abs(u), (b) abs(v), (c) abs(w), (d) abs(z), (e) abs(α), (f) arg(α) All the crosstalk parameters and the channel imbalance parameter have 
reduced after performing calibration.
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The variation of MNE in range direction estimated after the crosstalk 
calibration is shown in Figure 7a. The MNE highly varied between −32 
and −42 dB and reaches maxima near range pixel 1,900. Except for the 
close neighborhood of the maxima, MNE is below −35 dB in the rest of 
the range bins.

The histogram of the cross-pol SNR is shown in Figure 8. The histogram 
of the cross-pol SNR closely follows the normal distribution. After the 
calibration, the mode has increased to slightly over 8 dB from 6 dB before 
the calibration.

From Figure 9, it can be observed that the surface scattering is the most 
dominant scattering having the maximum contribution from the low 
entropy surface scattering. Consequently, the medium entropy surface 
scattering and has been significantly reduced. The multiple scattering is 
higher than the scenario before the calibration which might be related to 
the rocky patches as discussed earlier. However, the double bounce scat-
tering in the case of Ainsworth's calibration is comparatively lower than 
that of Quegan's calibration. Interestingly, the anisotropic scattering, in 
this case, is nearly nonexistent which correctly depicts the characteristics 
of the surface. Thus, the quality of calibration by Ainsworth's algorithm 
is better than that of Quegan's algorithm.

4.4.  Estimates of Proposed Algorithm

The proposed algorithm adopts a hybrid approach using both Quegan's algorithm and Ainsworth's al-
gorithm to improve the computational efficiency while maintaining the quality of calibration similar to 
Ainsworth's algorithm. Hence the performance of this algorithm has been evaluated through the following 
results.

The MNE after the calibration using this method follows a similar pattern to that of Ainsworth's algorithm 
as it can be observed in Figure 7b. However, some minor differences can be observed approximately in the 
range of −36 to −39 dB which might be attributed to the cases where the solutions provided by Quegan's 
algorithm are acceptable. However, the trend is similar to Ainsworth's algorithm in the rest of the cases as 
the algorithm falls back to Ainsworth's algorithm in case Quegan's estimate is not adequate.

Similar to the MNE, the cross-pol SNR in Figure 10 does not differ significantly from the cross-pol SNR 
estimates of the data calibrated using Ainsworth's algorithm. Interestingly, the median of the SNR, in this 
case, has decreased by 0.003 dB from Ainsworth's algorithm. This minute reduction in cross-pol SNR might 
be attributed to the cases where Quegan's solution has been accepted.

The intended objective of the proposed algorithm is to reduce the high 
computational cost caused by the iterative construct of Ainsworth's algo-
rithm without harming the accuracy. Therefore, the computational costs 
of the proposed algorithm have been monitored in terms of the iterations 
computed for each pixel. The frequency of iterations observed for 1 mil-
lion pixels (1000 × 1000 subset image) has been shown in Figure 11. It-
eration 6 has the highest frequency, that is in most cases, Ainsworth's 
algorithm inside the proposed algorithm converges with six iterations. 
The frequencies of iterations steadily decrease after that. The frequency 
of the 16th iteration is not zero. It indicates that there might be a few 
instances where the algorithm did not converge up to the expected preci-
sion. The frequencies of the initial few iterations are comparatively low 
since Ainsworth's algorithm initializes with the crosstalk parameters set 
to zero, that is it is assumed that crosstalk is not present in the data set. 
Consequently, the algorithm requires a few iterations before it converges. 
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Figure 7.  Variation of MNE (a) after calibration using Ainsworth's 
algorithm, (b) after calibration using proposed algorithm. MNE, maximum 
normalized error.

Figure 8.  Histogram of cross-pol SNR before and after Ainsworth's 
crosstalk calibration.
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Here, zero iteration depicts the cases where the algorithm directly accepted Quegan's solutions. Evidently, 
in the case of 135.57 × 103 pixels out of 106 pixels, the algorithm found the solution of Quegan's estimations 
to be suitable. Therefore, the iterative computations have been avoided for nearly 13.6% cases.

4.5.  Effect of Calibration on Roll Invariant Parameters

The entropy (H) and scattering angle (α) from the H-α decomposition have been observed at the corner 
reflector points before and after the calibration as these parameters are influenced by the presence of cross-
talk. Theoretically, the triangular trihedral corner reflectors depict odd bounce scattering, therefore the val-
ue of entropy and scattering angle ideally should be very low in the corner reflector points. However, these 
two parameters potentially increase in the presence of crosstalk. Consequently, calibration should rectify 
these anomalies by reducing crosstalk. The changes observed in the value of H and before and after cross-
talk calibration for all algorithms are shown in Figure 12. Here, the improved Quegan's algorithm stands 
for Quegan's algorithm with the cross channel imbalance factor. It can be observed that both the entropy 
and scattering angle have consistently decreased after each method. Ainsworth's algorithm performs better 
in terms of reducing these parameters. Expectedly, Quegan's algorithm and Ainsworth's algorithm per-
forms nearly the same as the cross-channel noise imbalance is negligible as per the observations. Similarly, 
Ainsworth's algorithm and the proposed algorithm performs equally well.

5.  Discussion

Comparing the results in Sections 4.2 and 4.3, it is evident that Ainsworth's algorithm is better in terms of 
minimizing crosstalk than Quegan's algorithm since the residual crosstalk of Ainsworth's algorithm is sig-
nificantly lower than the residuals of Quegan's algorithm. In some cases, Quegan's algorithm fails to comply 
with the CEOS cal-val recommendation of maintaining the residual crosstalk below −35 dB (ESA, 2004). In 

this regard, Ainsworth's algorithm performs well by reducing the residual 
crosstalk parameters below −40 dB.

Looking at the polarimetric signatures after the calibrations, it cannot 
be implied that one algorithm is better at minimizing channel imbal-
ance than the other algorithm, the performance of both the algorithms 
seems nearly equal. Variations of channel imbalance, however, show that 
Ainsworth's algorithm is slightly better at minimizing the amplitude of 
the channel imbalance than Quegan's algorithm. On the contrary, Que-
gan's algorithm appears to perform better at reducing the phase of the 
channel imbalance. It can be observed in the plots showing the variations 
of the phase of the channel imbalance that the estimates by Quegan's 
algorithm are relatively stable and stays close to the ideal zero value com-
pared to the estimates by Ainsworth's algorithm. However, this difference 
is negligible.
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Figure 9.  H-α Plane, (a) Before Crosstalk Calibration, (b) After calibration using Ainsworth's algorithm.

Figure 10.  Histogram of cross-pol SNR before and after the crosstalk 
calibration using the proposed algorithm.
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The accuracies of these algorithms can be better compared in terms of 
MNE and cross-pol SNR as these metrics adequately represent the actual 
data quality. According to Wang et al. (2011), −20 dB of MNE translates 
into −26 dB of crosstalk and the recommended value of MNE is −25 dB. 
On the contrary, the recommended threshold for the crosstalk is −35 dB 
(ESA, 2004). Therefore, the threshold for MNE has been set to −30 dB 
for this study. After performing the calibrations, it is evident from the 
plots of MNE that the MNE of the data calibrated using Ainsworth's al-
gorithm is significantly lower than the MNE of the data calibrated using 
Quegan's algorithm. Since MNE is a metric of noise, it can be deduced 
that Ainsworth's algorithm is better at minimizing the noise present in 
the data than Quegan's algorithm. On the contrary, cross-pol SNR pro-
vides information regarding the useful information content relative to 
the noise present in the data, in brief, it signifies the quality of the data. 
The estimated cross-pol SNR after the calibration using Ainsworth's al-
gorithm is higher than the cross-pol SNR estimated after the calibration 

using Quegan's algorithm. Therefore, concerning the accuracy, Ainsworth's algorithm is better in terms of 
both the data quality metrics compared to Quegan's algorithm.

In contrast to Quegan's algorithm, the improved Quegan's algorithm considers the possibility of cross-chan-
nel noise imbalance. This imbalance is typically sensor-specific (Kimura et al., 2004). According to Hensley 
et al. (2008), the UAVSAR instrument is well calibrated at the hardware level, and the transceiver module 
for each band is different. Therefore, the presence of cross-channel noise imbalance is either not present or 
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Figure 11.  Computational costs of the proposed algorithm observed for 
106 pixels. Frequencies of each iteration has been shown on the top of each 
bar.

Figure 12.  Effect of crosstalk calibration using different algorithms on (a) entropy and (b) scattering angle. Both 
scattering angle and alpha have reduced due to calibration.
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negligible. The estimated value of cross-channel noise imbalance being close to the ideal value of 1 further 
supports the claim. Expectedly, in this case, hardly any improvements have been observed in case of the 
improved Quegan's algorithm in contrast to Quegan's algorithm.

POA shift is mainly caused by topographic variations. Referring to the discussion regarding the description 
of the study area in Section 3, the topographic variation in the study is known to be significantly low. Con-
sequently, the effect of POA shift is also expected to be low. However, small changes in the scattering pattern 
have been observed by means of decomposition modeling before and after POA shift correction. The volume 
scattering has been reduced in some places as presented in Section 6, which shows the effectiveness of POA 
shift compensation.

The proposed algorithm aims to address the high computational cost incurred by the intensive itera-
tive calculations of Ainsworth's algorithm while preserving its accuracy. As per the observations in Sec-
tion 4.4, the proposed algorithm has avoided iterative computation in 13.6% cases. However, it may vary 
depending upon the data. In the best-case scenario, the algorithm will accept Quegan's solution in all 
the cases. Consequently, the complexity of the algorithm will be exactly the same as Quegan's algorithm. 
Let's assume Tq represents the average time required to estimate the crosstalk parameters for a single pixel 
using Quegan's algorithm and Ta represents the average time required by a single iteration of Ainsworth's 
algorithm while estimating the crosstalk parameter for a single pixel. If T represents the average time 
required to estimate crosstalk parameters by the proposed algorithm for a single pixel then in the best-
case, Equation 11 is satisfied where c is the time taken to check whether the solutions meet the accuracy 
requirement.

 qT T c� (11)

In the worst-case, the algorithm accepts only Ainsworth's algorithm's solutions for all the cases. The con-
struct of the algorithm shows that it first computes Quegan's solution then proceeds to compute Ainsworth's 
solution only if the solutions of Quegan's algorithm do not satisfy the accuracy requirements. Consequently, 
in the worst-case, both the solutions for both the algorithms will be computed along with the additional 
checking for accuracy. Thus, in the worst case, T will change as shown in Equation 12 where μa is the av-
erage number of iterations required in order to obtain the solution of Ainsworth's algorithm. It should be 
noted that, at worse, μa can be equal to the maximum allowed iterations indicating the scenario where all 
pixels require the maximum number of iterations to converge or do not converge at all. For example, in this 
case, the maximum value of μ is 16.

  q a aT T T c� (12)

However, in the average case, the T will change depending upon the ratio of the pixels where Quegan's 
solution is accepted with respect to the number of pixels where the solution of Ainsworth's algorithm is 
accepted. If n is the total number of pixels present in the scene and k is the number of pixels where Quegan's 
solutions are accepted then T will change as shown in Equation 13.
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Therefore, the time saved per pixel (ΔT) with respect to Ainsworth's algorithm can be expressed as shown 
in the Equation 14.
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The term TA signifies the average time taken by Ainsworth's algorithm to estimate to crosstalk parameters 
for a single pixel. Clearly, the speedup (ΔT/TA) solely depends upon the factor  /k n . The term Tq can be 
ignored since it is constant and Ta ≫ Tq. Similarly, c is also constant and, it can be ignored as well. In this 
case, k ≈ 135.57 × 103 and n = 106, therefore, the speedup is nearly 13.6%. If the terms Tq and c are not 
ignored the effective speed is expected to be slightly below the 13.6%. It is worth mentioning that this effi-
ciency estimation assumes the Single Instruction Multiple Data (SIMD) computer architecture (Hennessy 
& Patterson, 2017).

6.  Conclusion and Recommendation

The primary objective of this study is to compare the performance of different PolSAR calibration algo-
rithms in terms of accuracy. The study focuses mainly on the two algorithms where the performance of 
both Quegan's and Ainsworth's algorithm has been assessed using suitable metrics and through different 
qualitative measures. In addition, the performance of the improved Quegan's algorithm has also been eval-
uated considering it to be an extension of Quegan's algorithm. Moreover, the effect of POA shift has been 
estimated and corrected. All the objectives have been completed, and all the research questions have been 
answered adequately. Furthermore, a modified calibration algorithm has been developed in order to reduce 
the computational cost.

Quegan's crosstalk algorithm is relatively simple and capable of providing crosstalk estimation quicker 
than Ainsworth's algorithm. However, in many instances, it fails to reduce the residual crosstalk under 
the CEOS recommended threshold of −35  dB. Although the cross-pol SNR has improved in case of 
Quegan's algorithm, the MNE has not been reduced below the limit of −30 dB in all the cases. In contrast, 
Ainsworth's algorithm not only complied with the CEOS standard and MNE limit but also performed 
significantly better at minimizing the crosstalk while improving the cross-pol SNR to a higher value 
than that of Quegan's. Since the cross-channel noise imbalance is negligible in this case, the improved 
Quegan's algorithm performed nearly the same as Quegan's algorithm. These results unambiguously 
indicate that Ainsworth's algorithm performs better than Quegan's algorithm in terms of accuracy. Con-
cerning the channel imbalance, both the algorithms perform nearly the same, Ainsworth's algorithm is 
slightly advantageous, as the reduction of the entropy and scattering angle is relatively higher for this 
algorithm.

POA shift compensation for this particular study area was not significantly effective due to lack of POA 
shift attributing to the low topographic variations in the area. However, this does not signify that POA shift 
correction is unnecessary in all possible scenarios. This procedure necessarily corrects the discrepancies in 
the scattering pattern incurred by the POA shift if any such anomaly exists. Moreover, the procedure is rel-
atively simple regarding the computation. Therefore, incorporating the POA shift with PolSAR calibration 
makes the entire process more robust and effective.

The modified algorithm aims to improve the computational efficiency without reducing the accuracy of the 
estimation. This study successfully demonstrated the gain in the computational efficiency of this algorithm. 
However, there is no strict lower bound for the improvement in efficiency, which implies that it should 
perform equally or better than Ainsworth's algorithm.

In essence, Ainsworth's algorithm is equivalent to or better than Quegan's algorithm in every metric with 
the cost of lower computational efficiency. The use of the proposed algorithm can partly address the higher 
computational cost. POA shift correction along with the PolSAR calibration reduces most of the potential 
discrepancies which might be present in the PolSAR data revealing right scattering pattern.

6.1.  Recommendation

Based on the results and the discussion, it is evident that this research is based on a single airborne quad-
pol SAR data set. Therefore, the findings of this research should be rigorously verified on more datasets to 
further improve the reliability of the findings. This study can be further extended for the spaceborne SAR 
data and data acquired in different polarization modes such as dual-pol data set.
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Also, we observed nonconvergent behavior in 53 pixels where the matrix is becoming singular. Moreover, 
for other 164 pixels, the matrix is becoming nearly singular. The solution is thus extremely slow to converge. 
Moreover, we found that these pixels are scattered throughout the data scene that is not concentrated at a 
particular region. Furthermore, the number of pixels where the algorithm stops or does not converge (due 
to the iteration limit) is very low. As an alternative, we strongly recommend that the occurrence of these 
anomalous pixels can be reduced by optimizing the window size during the computation of covariance ma-
trix. We also suggest another approximate solution in which the focus could be to calculate the calibration 
parameters of the pixels from the neighboring pixels as a future work.

Appendix A
Additional Corrections
After crosstalk and channel imbalance correction PolSAR data are generally considered to be sufficiently 
calibrated. However, discrepancies due other factors such as POA shift and Faraday rotation may still be 
present in the data set. Therefore, the data set should be further refined to reduce these effects. In case of 
the spaceborne SAR, Faraday rotation due to the presence of ionoshpere can distort the polarisation of 
transmitting and receiving radar signal. Freeman (2004) evaluated several well-known method to estimate 
and reduce the effect of Faraday rotation. However, this effect has not been considered in this study as the 
experiment has been performed on airborene SAR data as stated in Section 3.
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Figure A1.  The scattering patterns in the Y4R RGB composite of a small patch. (a) scattering pattern after applying 
Quegan's algorithm, (b) scattering pattern after applying POA shift correction on the patch calibrated using Quegan's 
algorithm, (c) scattering pattern after applying Ainsworth's algorithm, (d) scattering pattern after applying POA shift 
correction on the patch calibrated using Ainsworth's algorithm. Here, Red signifies double bounce scattering, Green 
signifies volume scattering and blue signifies surface scattering. The respective encircled areas in red are highlighting 
the changes in the scattering pattern.
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Correction of POA Shift
The variation in the azimuthal slope causes rotation of polarisation orientation with respect to the line of 
sight of the signal (Pottier et al., 1999). Lee et al. (2000) evaluated three major approaches to estimate and 
correct POA shift and found the circular polarisation based POA shift estimation method proposed by Pot-
tier et al. (1999) to be most reliable. Therefore, in this research, the circular polarisation based POA shift 
estimation method has been used. According to Lee et al. (2003), the polarisation orientation angle (ψ) can 
be estimated from the observed scattering matrix ( S ) using the Equations 15a and 15b. After POA shift 
compensation, the corrected scattering matrix (S) can obtained using the Equation 15c
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Figure B1.  Polarimetric signatures of corner reflector 24. Co-pol signatures are shown in top row, cross-pol signatures 
are shown in the bottom row. (a and c) are the signatures before calibration, (b and d) are signatures after calibration 
using our proposed algorithm.
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Effect of POA Shift Compensation
In general, the presence of POA shift causes overestimation of volume scattering and underestimation of 
even bounce scattering. POA shift correction has been performed after the crosstalk calibration by both 
Quegan's algorithm and Ainsworth's algorithm. In Figure A1, the scattering patterns of a patch calibrated 
using Quegan's algorithm have been shown before and after performing the POA shift compensation 
(Figure B1).

It can be observed that in the encircled areas volume scattering has decreased which indicates the changes 
regarding the POA shift correction. However, these changes are relatively small, which is justifiable as the 
topographic variations in the study area are negligible. Similar behavior can be observed in Figure 31 in the 
case of POA shift correction after the calibration using Ainsworth's algorithm. In Figure 12a, the presence 
of significant volume scattering can be observed which has been further reduced in Figure 12b as a result of 
POA shift compensation. However, in both cases, the changes in the double bounce scattering due to POA 
shift have not been observed since the calibrated scenes hardly show any double-bounce scattering.

Data Availability Statement
UAVSAR polarimetric data set (NASA/JPL, 2013) supporting this research are freely accessible at UAVSAR 
Data Repository (ASA/JPLNASA/JPL, 2020).
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