
International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 11, June 2014

12

Automatic Testing of AJAX Applications through
Dynamic Analysis of User Interface State Change

Swapnil S. Mane
Research Scholar

Annasaheb Dange College

 of Engineering & Technology,

 Ashta, Tal-Walwa Dist-Sangli.

Amol B. Rajmane
Assistant Professor

Ashokrao Mane Group of Institutions,

Vathar tarf Vadgaon, Tal-Hatkanangale,

Dist- Kolhapur.

ABSTRACT

The growing popularity and importance of web applications

have been increasing continuously in recent years. Use of

JAVASCRIPT and dynamic DOM (Document Object Model)

manipulation on the client side of web applications is

becoming a widespread approach for achieving rich

interactivity and responsiveness in modern web applications.

AJAX (Asynchronous JAVASCRIPT and XML) based web

applications rely on asynchronous client-server

communication and client-side runtime manipulation of the

DOM tree. This not only makes them fundamentally different

from traditional web applications but also make them more

error prone and harder to test. The proposed method for

testing automatically AJAX application is based on a crawler

to infer a state-flow graph for all client-side user interface

states of an AJAX application. Focus is on obtaining a model

by “crawling” an AJAX application, automatically clicking

buttons and other user interface elements. In order to

recognize failures in executions, use of invariants are

proposed [1]. These invariants can be generic (e.g., after any

client-side change the DOM should remain W3C-compliant

valid HTML) or application-specific (e.g., the home-button in

any state should lead back to the starting state).

General Terms
AJAX, JAVASCRIPT, XML, DOM

Keywords

Crawler, event, traditional, modern, testing

1. INTRODUCTION
For today’s web applications, one of the key facilitating

technologies includes AJAX. With AJAX the web browsers

not only offer the user navigation through a sequence of

HTML pages, but also provide dynamic rich interaction via

graphical user interface (GUI) components. Over the last three

decades, the internet has become an essential part of everyday

life. Users rely on the internet for tasks related to

communication, information and commerce. In addition, the

popularity of web-based applications is increasing with

hundred millions of people. There is a need to crawl web

applications (automatically discover all states of applications)

and process them in various ways.

The web is undergoing a significant change. A technology

that has lately gained a prominent position under the AJAX

(Asynchronous JAVASCRIPT and XML) in which the

combination of JAVASCRIPT and Document Object Model

(DOM) manipulation along with asynchronous server

communication is used to achieve a high level of user

interactivity. Highly visible examples include Gmail and

Google Docs. Following are the new challenges.

 Searchability -Searchability ensures that AJAX sites

are crawled and indexed by the general search

engines.

 Testability-Testability involves systematically

dynamic user interface (UI) elements

One way to address these challenges is through the use of a

crawler that can automatically crawl different states of a

highly dynamic AJAX site and create a model of the

navigational paths and states.

General web search engines, such as Google and Bing, cover

only a portion of the web called the publicly indexable web

that consists of the set of web pages reachable using hypertext

links, ignoring forms [7] and client-side scripting. The web

content behind forms and client-side scripting is referred to as

the hidden web, which is estimated to comprise several

millions of pages. Although there has been extensive research

on crawling and exposing the data behind forms, [8] crawling

the hidden web is induced as a result of client-side scripting.

Crawling AJAX-based applications is fundamentally more

difficult than crawling classical multi-page web applications.

In traditional web applications, states are explicit and

correspond to pages that have a unique URL assigned to them.

In AJAX applications, the state of the user interface is

determined dynamically through changes in the DOM that are

only visible after executing the corresponding JAVASCRIPT

code.

2. LITERATURE SURVEY
Modern web interfaces incorporate client-side scripting and

user interface manipulation which is increasingly separated

from server-side application logic. Although the field of rich

web interface testing is mainly unexplored, much knowledge

may be derived from two closely related fields traditional web

testing and GUI application testing.

 a) Authors Ali Mesbah and Arie van Deursen [1] [2][3]

have suggested model for performining automatic testing of

web application through invariant. It is based on invariants

which does not give better result. Also it is more vulnerable

for various attacks and does not provide mechanism for it.

 b) Benedikt et al. [4] have presented a model for

automatically exploring paths of multipage websites

through a crawler and detector for abnormalities such as

navigation and page errors (which are configurable through

plugins). This model uses smart profiles to extract candidate

input values for form-based pages. Although the crawling

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 11, June 2014

13

algorithm has some support for client-side scripting execution

and provides insufficient detail to determine whether it would

be able to deal with modern AJAX web applications

c) Author Y.W. Huang, C.H. Tsai, T.P. Lin, S.K.

Huang, D.T. Lee, and S.Y. Kuo [9] have been proposed for

automatically assessing web application security. The general

approach is based on a crawler capable of detecting data entry

points which can be seen as possible points of security attack.

Malicious patterns, e.g., SQL and XSS vulnerabilities, are

then injected into these entry points and the response from the

server is analyzed to determine vulnerable parts of the web

application

d) A model-based testing approach for web

applications is proposed by Ricca and Tonella [10]. They

introduced ReWeb, a tool for creating a model of the web

application in UML, which is used along with defined

coverage criteria to generate test cases, which rely on a finite

state machine together with constraints defined by the tester.

All such model-based testing techniques focus on classical

multipage web applications. They mostly use a crawler to

infer a navigational model of the web. Unfortunately,

traditional web crawlers are not able to crawl AJAX

applications.

3. COMMENTS
From the above survey we can comment that,

 In traditional web applications, states are explicit

and correspond to pages having a unique URL

(Uniform Recourse Locator).

 It does not handle browsers DOM tree.

 Reloading of whole page is occurred instead of

reloading of specific content on the page. so it takes

more times for generating response.

 Response to a client-side event can be injected into

the single-page interface and therefore faults are

propagating at the DOM level.

 It is more vulnerable to possible attacks.

4. NEED OF WORK
The work carried out in literature survey is based on

traditional web application which having number of

limitations. To overcome these limitations, we proposed

automatic testing of web application by implementing AJAX

crawler. In this AJAX crawler crawl the requested web page

through the embedded web browser and find out clickable

element before and after firing event on the clickable element.

Based on the result we have generated DOM structure and

compare it to analyze proposed system.

5. PROPOSED WORK
Here focus is to implement the AJAX Crawler and event

generation for testing of modern web application which solves

the boundaries of the traditional web application. Emphasis is

given on analyzing browsers DOM tree for finding out

clickable element on the application and generating different

events on them for representing state flow graph of

application. This provides all the possible transitions between

different user interface states.

6. SYSTEM ARCHITECTURE

Figure 1: System Architecture

Figure 1 shows architecture of proposed system, in which

crawler crawls the web pages that are to be opened through

embedded browser. The crawler controller controls the

execution of AJAX crawler by using different plug-ins with

access of state machine, and based on the plug-ins execution

DOM structure generated with validation.

7. THE MODULES OF THE PROPOSED

WORK
7.1 Devising a mechanism to detect clickable element

from web applications:

 A crawling is more efficient for finding out clickable element

from web application. The idea is to explore all the possible

elements from web applications and those unexplored

elements that are terminated left. We provide backtracking

technique which is responsible for exploring unexplored

element.

7.2 Devising a mechanism to find out the states and

possible transitions before firing event on clickable

element:

In this module we can open web application in the browser

and analyze browsers DOM tree before firing event. This

DOM tree gives states of user and possible transitions.

7.3 Devising a mechanism to find out the states and

possible transitions after firing event on clickable

elements:

In this module we can analyze browsers DOM tree after firing

event and represent states and possible Transitions between

them and infere a state flow graph for all possible transitions.

7.4 Devising a mechanism for analyze proposed system:

In this module we can provide new plugins for DOM

validation and post-crawling for spotting out development

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 11, June 2014

14

errors and generation of validation report for web applications

and compare the results.

8. EXPERIMENTAL SETUP
The proposed work is carried out by using Eclipse Kepler IDE

with supported JDK 1.6 on Windows XP operating system.

Initially we have used Eclipse Hellos with JDK 1.5 but, it is

not supported for advanced libraries. We have configured

AJAX application by adding external libraries that are to be

supported for execution. To generate DOM structure of

resulted web page, we have used DOM viewer and for

comparison between two DOM structures used Wincompare

tool is used.

9. RESULTS
Here, we have shown the result of proposed work, which

implement a crawler for dynamic analysis of user interface

state change on the given web application. In this, we have

compared traditional web application with AJAX web

application and it shows that AJAX web application is faster

than traditional web application and also AJAX application

having more functionality as compared to the traditional

application.

Table 1. Experimental benchmarks with different

parameters

Sr.

No.

Attribute Traditional

Application

AJAX

Application

1 user

request

synchronous

execution

asynchronous

execution

2 content not updated

dynamically

dynamically

updated

3 response “click, wait and

page refresh”

no more “click,

wait and

page refresh”,

4 code plain html Javascript/Dhtml

Table 1 indicates comparison analysis between traditional

web application and AJAX web application by considering

different parameters.

Work is carried out on each and every module separately. The

step by step execution of work is mentioned below.

Step 1:

 Open the web application through the embedded

browser.

 After opening the web page crawler is to be

initialized to crawl the requested web page.

Figure 2: Loading First Web Page

Step 2:

 After loading the web page crawler start to crawls

the web page and find outs clickable elements and

generate DOM tree.

Figure 3: DOM Structure

Step 3:

 In third step crawler again load the web page and

find outs clickable elements and generate DOM

tree.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 11, June 2014

15

Figure 4: Loading Second Web Page

Step 4:

 In fourth after loading the second web page crawler

start to find out clickable elements.

Figure 5: DOM Structure

Step 5:

 We compare the resulted DOM tree of first web

page and second web page and based on the

comparison generate the final result.

Figure 5: DOM Comparison

It shows the result of DOM structure before executing event

on clickable element and after executing event on clickable

element. Here we clearly identified changes made in the

browsers DOM structure.

10. CONCLUSION
In this paper, we have proposed a method for testing AJAX

application automatically. Our current work consists

extending the crawler functionality for supporting automated

testing of modern web applications. We implement the

plugins for automatic testing. Our future work will include

development of more testing plug-ins.

11. ACKNOWLEDGEMENT
I would like to thanks my guide Prof.A.B.Rajmane for his

valuable and constructive comments. I would also like to

thanks Prof. Mrs. A.N. Mulla, HOD Computer Science &

Engineering Department, Annasaheb Dange College of

Engineering & Technology, Ashta for her valuable support.

12. REFERENCES
[1] Ali Mesbah, Member, IEEE Computer Society,Arie van

Deursen, Member, IEEE Computer Society, and Danny

Roest “ Invariant-Based Automatic Testing of Modern

Web Applications“ IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING, VOL. 38, NO. 1,

JANUARY/FEBRUARY 2012.

[2] A. Mesbah and A. van Deursen, “Invariant-Based

Automatic Testing of Ajax User Interfaces,” Proc. IEEE

31st Int’l Conf. Software Eng., pp. 210-220, 2009.

[3] A. Mesbah, E. Bozdag, and A. van Deursen, “Crawling

Ajax by Inferring User Interface State Changes,” Proc.

Eighth Int’l Conf. WebEng., pp. 122-134, 2008.

[4] M. Benedikt, J. Freire, and P. Godefroid, “VeriWeb:

Automatically Testing Dynamic WebSites,” Proc. 11th

Int’l Conf. World Wide Web, pp. 654-668, 2002.

[5] Ali Mesbah, Arie van Deursen, and Stefan Lenselink

“Crawling Ajax-based Web Applications through

Dynamic Analysis of User Interface State Changes”

Report TUD-SERG-2011-033.

International Journal of Computer Applications (0975 – 8887)

Volume 95– No. 11, June 2014

16

[6] Cristian Duda , Gianni Frey, Donald Kossmann , Reto

Matter, Chong Zhou ,

ETH Zurich, Switzerland “AJAX Crawl: Making AJAX

Applications Searchable” IEEE International Conference

on Data Engineering 2009. Web Information and Data

Management (WIDM’04). ACM Press, New York, NY,

9–15.

[8] LAGE, J. P., DA SILVA, A. S., GOLGHER, P. B., AND

LAENDER, A. H. F. 2004. Automatic generation of

agents for collecting hidden Webpages for data

extraction. Data Knowl. Eng. 49, 2, 177–196.

[9] Y.W. Huang, C.H. Tsai, T.P. Lin, S.K. Huang, D.T. Lee,

and S.Y.Kuo, “A Testing Framework for Web

Application Security Assessment,” J. Computer

Networks, vol. 48, no. 5, pp. 739-761,2005.

[10] A. Marchetto, P. Tonella, and F. Ricca, “State-Based

Testing of Ajax Web Applications,” Proc. IEEE First

Int’l Conf. Software Testing Verification and Validation,

pp. 121-130, 2008.

IJCATM : www.ijcaonline.org

