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Abstract: This paper introduces a novel semi-supervised tri-training classification algorithm based
on regularized local discriminant embedding (RLDE) for hyperspectral imagery. In this algorithm,
the RLDE method is used for optimal feature information extraction, to solve the problems of singular
values and over-fitting, which are the main problems in the local discriminant embedding (LDE) and
local Fisher discriminant analysis (LFDA) methods. An active learning method is then used to select
the most useful and informative samples from the candidate set. In the experiments undertaken in this
study, the three base classifiers were multinomial logistic regression (MLR), k-nearest neighbor (KNN),
and random forest (RF). To confirm the effectiveness of the proposed RLDE method, experiments
were conducted on two real hyperspectral datasets (Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) and Reflective Optics System Imaging Spectrometer (ROSIS)), and the proposed RLDE
tri-training algorithm was compared with its counterparts of tri-training alone, LDE, and LFDA.
The experiments confirmed that the proposed approach can effectively improve the classification
accuracy for hyperspectral imagery.

Keywords: feature extraction; regularized local discriminant embedding (RLDE); semi-supervised
tri-training; hyperspectral imagery

1. Introduction

Hyperspectral sensors have hundreds of spectrally contiguous bands, which can provide
abundant spectral information [1]. Due to the high spectral resolution, hyperspectral images (HSIs)
have been widely used in applications such as agricultural mapping [2], water quality analysis [3],
and mineral identification [4]. The key component in these applications is the classification. Some of
the conventional supervised classifiers can offer satisfactory classification performances, but the
performance is dependent on both the quantity and quality of the training samples. However, labeled
training samples can be costly, difficult, and time-consuming to obtain, and it is difficult for the
traditional supervised classifiers to obtain good performances when the number of labeled training
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samples is limited [5]. Despite the fact that deep learning based methods have now been developed
for HSI classification, including convolutional neural networks (CNNs) [6–8], 3D convolutional
neural networks (3D-CNNs) [9,10], and long short-term memory (LSTM) networks [11,12], these
problems still exist. Therefore, how to use unlabeled samples to improve the classification performance
has become a hot research topic. The use of unlabeled samples to improve the classification
performance is known as semi-supervised learning [13]. Common semi-supervised learning algorithms
include multi-view learning algorithms [14], self-learning algorithms [15], tri-training algorithms [16],
graph-based approaches [17], and the transductive support vector machine (TSVM) algorithm [18].
High-dimensional data processing needs more storage and computation time [19,20]. In addition,
the spectral bands in an HSI are highly correlated, and the classification performance deteriorates
as the dimensionality increases (the Hughes phenomenon) with limited training samples [21,22].
Therefore, in order to reduce the time consumption and improve the classification performance, it is
necessary to extract the useful spectral information before performing classification.

The basic technique of spectral information extraction is dimension reduction, the goal of
which is to embed the high-dimensional data in a low-dimensional space containing the crucial
information [23,24]. Research into dimension reduction has experienced rapid development in recent
years. Linear dimension reduction methods obtain the spectral information in the low-dimensional
space by building a linear model. Typical methods include principal component analysis (PCA) [25],
linear discriminant analysis (LDA) [26], direct linear discriminant analysis (DLDA) [27], and the
maximum margin criterion (MMC) [28]. These methods are simple to operate, efficient, and have a
strong generalization ability for linear datasets. However, these methods cannot obtain satisfactory
performances in nonlinear datasets. Therefore, nonlinear dimension reduction methods have been
proposed for use with nonlinear datasets [29]. Common nonlinear dimension reduction methods
include kernel based approaches [30,31] and manifold learning algorithms [32]. In [33], kernel PCA
was first proposed to solve the sparsity and dimensionality problems of nonlinear datasets. In [34],
a new nonlinear dimension reduction method combining a kernel function with Fisher discriminant
analysis was used in the classification of HSIs. In [35,36], Song et al. proposed models to learn a set of
robust hash functions to map the high-dimensional data points into binary hash codes by effectively
utilizing the local structural information. However, how to select a suitable kernel function lacks a
theoretical basis.

The manifold learning algorithms depict the intrinsic structure of high-dimensional data by
constructing a representation of the data lying in a low-dimensional manifold [31]. Tenenbaum [37]
tried to preserve the geodesic distances based on multi-dimensional scaling, and proposed the isometric
feature mapping (Isomap) method. In [38], locally linear embedding (LLE) was used to embed data
points in a low-dimensional space by finding the optimal linear reconstruction in a small neighborhood.
He et al. [39] subsequently proposed the neighborhood preserving embedding algorithm based
on LLE, and regarded the error minimization as the objective function. In [40], the local discriminant
embedding (LDE) algorithm was used to extend global LDA to a local version, so as to perform
the local discriminant embedding in a graph embedding framework. However, the aforementioned
manifold learning algorithms have singularity and cannot preserve the data diversity in the case of
limited training samples.

Therefore, in this paper, we propose a new feature extraction method—regularized local
discriminant embedding (RLDE)—to preserve the local feature information and overcome the
singularity when training samples are limited. In order to make full use of the unlabeled samples,
we select the semi-supervised tri-training algorithm. We also use an active learning method to select
the unlabeled samples and use ensemble learning to improve the classification result.



Remote Sens. 2019, 11, 654 3 of 18

2. Spatial Mean Filtering and Feature Extraction

X = [x1, x2, · · · , xm] ∈ Rn×m denotes the training dataset with n-dimensional feature vectors;
Y = [y1, y2, · · · , ym] ∈ R represents the corresponding labels; m is the number of training samples;
and all the datasets are denoted as {x′ i}l

i=1 ∈ Rn, where l is the number of datasets.

2.1. Spatial Mean Filtering

To reduce noise and smooth the homogeneous regions, we first use spatial mean filtering to
preprocess the HSIs. The spatial mean filtering of a labeled pixel Xi is denoted as:

X′i =
Xi + ∑w2−1

k=1 vkXik

1 + ∑w2−1
k=1 vk

, (1)

where w is the width of the neighborhood window; s = w2 − 1 is the number of neighbors of Xi;
vk = exp

{
−γ0||Xi − Xik||2

}
stands for the spectral distance of the neighboring pixels to the central

pixel; and γ0 represents the degree of filtering.

2.2. Local Discriminant Embedding (LDE)

LDE is a nonlinear supervised dimension reduction method. The local information of
homogeneous and heterogeneous samples is preserved by defining inter-class graphs and within-class
graphs [41,42]. The basic idea is to simultaneously attain between-class separation and within-class
local structure preservation. The objective function of LDE is denoted as:

J(V) = argmax ∑
i,j
‖VTxi −VTxj‖2ω′i,j

s.t. ∑
i,j
‖VTxi −VTxj‖2ωi,j = 1

, (2)

where V is the optimal projection matrix; and ω′, ω are the weight matrix of the heterogeneous
neighboring sample points and the weight matrix of the nearest-neighbor sample points, which are
defined as:

ω′i,j =


exp
[
−‖xi − xj‖2/t

]
i f xi ∈ N

(
xj
)

or xj ∈ N(xi)

and yxi 6= yxj

0 otherwise
, (3)

ωi,j =


exp
[
−‖xi − xj‖2/t

]
i f xi ∈ N

(
xj
)

or xj ∈ N(xi)

and yxi = yxj

0 otherwise
, (4)

where t is a constant parameter, and the value of t is the square of the mean value of the Euclidean
distances between the sample points. N(x) is the k neighborhood samples of training sample x.

Equation (2) can be converted into:

J = ∑
i,j

tr
{

VT(xi − xj
)(

xi − xj
)TV

}
ω′i,j. (5)

After conversion, we can obtain:

J = 2tr
{

VTX
(

D′ −W′
)
XTV

}
. (6)
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Thus, the objective function can be written as follows:{
J(V) = 2tr

{
VTX(D′ −W′)XTV

}
s.t. 2tr

{
VTX(D−W)XTV

}
= 1

, (7)

where D′ and D are diagonal matrices, and the diagonal elements are D′ i,i = ∑ ω′i,j and Di,i = ∑ ωi,j.
W and W ′ are affinity weight matrices, which are sparse and symmetric, as computed by Equations (3)
and (4), respectively.

The optimal LDE projection is obtained by finding the eigenvectors corresponding to nonzero
small eigenvalues of the following generalized Eigen-decomposition problem:

X
(
D′ − W′

)
XTV = λX(D−W)XTV. (8)

2.3. Regularized Local Discriminant Embedding (RLDE)

The manifold structure of all the data can be obtained after simulating the manifold structure of
the training data through the LDE and local Fisher discriminant analysis (LFDA) algorithms [43,44].
These algorithms can not only detect the internal structure, but can also preserve the discriminative
structure of the data [45]. However, the LDE and LFDA algorithms have the following shortcomings:
(1) when the number of training samples is smaller than the spectral dimension, the singular value
problem occurs in the process of solving the projection vector and (2) in attempting to preserve the local
difference information, the over-fitting problem occurs [46]. Therefore, we propose the RLDE method
to solve the above problems. The objective function of this method is derived from Equation (2):

J(V) =

 argmax
{

α
∑i,j ‖VT Xi−VT Xj‖2ω′i,j
∑i,j ‖VT Xi−VT Xj‖2ωi,j

+ (1− α)Rreg f (x)
}

s.t. VVT = 1
, (9)

where

Rreg f (x) =
∑i,j ‖VTXi −VTXj‖2

∑i,j ‖VTXi −VTXj‖2ωi,j
(10)

is the added regular constraint, and α is a regularization parameter with a value of [0,1]. Equation (10)
is equivalent to: J(V) = argmax

{
2tr
{

αVTX(D′ −W ′)XTV + (1− α)VTXXTV
}

/
2tr
{

αVTX(D−W)XTV + (1− α)diag
(
VTX(D−W)XTV

)
XXT}

}
s.t. VVT = 1

. (11)

The optimized objective of LDE is to maximize ∑i,j ‖VTXi − VTXj‖2ω′i,j and minimize
∑i,j ‖VTXi −VTXj‖2ωi,j, where XXT is utilized to preserve the maximal data variance. The diagonal
regularization in the denominator improves the stability of the solution, without impacting the
local intra-class neighborhood preserving ability. RLDE is suitable for the small-sample-size HSI
classification problem. The item VTX(D−W)XTV is used to maintain the intra-class relationships.
The item XXT is used to keep the maximal data variance.

The optimal RLDE projection is obtained by finding the eigenvectors corresponding to nonzero
small eigenvalues of the following generalized Eigen-decomposition problem:(

αX(D′ −W ′)XT + (1− α)XXT)V = λ
(
α
(
X(D−W)XT)+ (1− α)

(
diag

(
X(D−W)XT)))V. (12)

2.4. Cooperative Training Strategy Combining Local Features

In [47], the optimal classifier combination selected by the diversity measures was multinomial
logistic regression (MLR), k-nearest neighbor (KNN), and extreme learning machine (ELM). In this
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study, the correlation coefficient, disagreement metric, and double-fault measure were implemented to
select the optimal classifier combination. It was found that the combination of MLR, KNN, and random
forest (RF) achieved the best performance. Hence, the base classifiers were selected as MLR, KNN,
and RF in this research. The procedure of the proposed method can be summarized as follows.

(1) A mean filtering process is employed to reduce the noise in the HSI.
(2) The local feature information of training samples Li is extracted by the RLDE method, and is

labeled L′i.
(3) The classifier hi is trained with L′i, to obtain the predicted classification result Si.
(4) For the classifier hi, another two classifiers are selected which agree on the labeling of these

samples to build the candidate set U′i.
(5) The active learning method is used to select the most useful and informative samples L′i from

the candidate sets Li = Li ∪ L′ i and Ui = Ui ∪U′ i.
(6) The process is terminated if the stopping condition is met; otherwise, go to Step (2).

The final classification result is obtained by the majority voting method.

Pseudo-code Describing the RLDE Tri-Training Algorithm

Algorithm: RLDE tri-training
Input: L: Original labeled sample set

U: Unlabeled sample set
BT: Breaking ties algorithm
MV: Majority voting algorithm

Process:
L←SMF(L); U←SMF(U)
L1←L; L2←L; L3←L
Repeat until none of hi(i∈{1,2,3}) changes

L1′←RLDE(L1); L2′←RLDE(L2); L3′←RLDE(L3)
h1 ←MLR(L1′); h2 ←KNN(L2′); h1 ←RF(L3′)
S1 ←h1(U1); S2 ←h2(U2); S3 ←h3(U3)

For i ∈ {1,2,3} do
S′i←Sj ∩ Sk(i 6= j 6= k)

L′′i ←BT(S′i)
Li ← Li ∪ L′′i ; Ui ←

(
Ui − L′′i

)
End of for

End of repeat
OUTPUT: S←MV(S1 + S2 + S3)

3. Experimental Results and Analysis

In the spatial mean filtering (SMF) operation, the parameters for the Airborne Visible/Infrared
Imaging Spectrometer (AVIRIS) dataset were set as follows: the degree of filtering γ0 = 0.9 and the
filtering window w = 9. The parameters for the Reflective Optics System Imaging Spectrometer (ROSIS)
dataset were set as γ0 = 0.9 and w = 7. These parameters can prevent over-filtering and increase the
similarity and consistency of the neighboring pixels. In the feature extraction, the parameter in RLDE
was selected as α = 0.5 for the AVIRIS dataset and 0.7 for the ROSIS dataset. We selected L = 5, 10,
and 15 samples per class as the initial labeled training sets. We set k = 3 for KNN, and the parameter
settings of MLR and RF were set as the default values. The number of most useful and informative
samples in each iteration was set as 100. All the experiments were carried out 10 times, and the average
results are reported. The initial training samples also have an impact on the accuracy (see Section 4).
The experiments were therefore performed with the optimal feature number for each dataset.
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3.1. Data Used in the Experiments

In the experiments, two real HSIs were used to evaluate the proposed approach. The HSI used in
the first experiment was collected by the AVIRIS sensor over the Indian Pines test site in Northwestern
Indiana in 1992. This dataset has a spatial size of 145 × 145 pixels and is made up of 224 spectral bands
in the wavelength range of 0.4–2.5 um at 10 nm intervals, with a spatial resolution of 20 m. In total,
202 bands were used in the experiment after the noisy and water absorption bands were removed.
For illustrative purposes, the image scene in pseudocolor is shown in Figure 1a. The ground-truth
map available for the scene with 16 mutually exclusive ground-truth classes is shown in Figure 1b.

The HSI used in the second experiment was collected by the ROSIS sensor over the urban area of
the University of Pavia, Italy. This dataset has a spatial size of 610 × 340 pixels and is made up of 115
spectral bands in the wavelength range of 0.43–0.68 um, with a spatial resolution of 1.3 m. In total,
103 bands were used in the experiment after the noisy and water absorption bands were removed.
For illustrative purposes, the image scene in pseudocolor is shown in Figure 2a. The ground-truth
map available for the scene with nine mutually exclusive ground-truth classes is shown in Figure 2b.
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3.2. The Effect of the Spatial Mean Filtering

Table 1 and Figure 3 show the classification results of the tri-training algorithm based on the
RLDE method, using spatial mean filtering (SMF) and non-spatial mean filtering (non-SMF). As the
unlabeled samples are continuously added, the classification accuracy increases. However, when the
iterations reach seven, the classification accuracy starts to level off. In the AVIRIS experiment, with 5,
10, and 15 initial training samples per class, the overall accuracy (OA) of SMF increases by 12.19%,
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11.39%, and 11.3% compared with non-SMF. In the ROSIS experiment, the OA of SMF increases by
7.56%, 6.45%, and 6.57% compared with non-SMF. Therefore, we used SMF to process the datasets in
the subsequent experiments.

Table 1. Results of cooperative training classification based on the regularized local discriminant
embedding (RLDE) local feature extraction method (%).

1 2 3 4 5 6 7 8 9 10

AVIRIS

Non- SMF

5 43.11 61.59 69.31 73.88 77.58 79.93 81.91 83.29 84.86 86.15

10 53.01 66.71 72.70 77.04 79.56 81.86 83.69 84.64 85.95 86.96

15 60.57 69.52 74.92 78.21 80.91 82.56 83.94 85.44 86.45 87.35

SMF
5 59.01 79.01 86.60 90.75 93.36 94.98 96.37 97.13 97.83 98.34

10 69.77 83.51 88.93 92.14 94.48 95.67 96.55 97.35 97.92 98.35

15 76.54 86.00 90.96 93.47 95.23 96.21 97.14 97.79 98.30 98.65

ROSIS

Non- SMF

5 62.45 79.98 84.83 86.53 87.51 88.43 89.10 89.78 90.19 90.58

10 69.83 83.35 86.68 88.72 89.61 90.36 90.87 91.27 91.63 91.94

15 75.36 84.35 87.65 88.88 89.86 90.54 90.88 91.38 91.70 92.05

SMF
5 71.70 89.71 93.24 95.21 96.43 96.92 97.36 97.75 97.96 98.14

10 80.11 92.52 94.33 95.91 96.73 97.27 97.63 97.96 98.29 98.39

15 85.94 93.41 95.63 96.69 97.23 97.68 97.97 98.26 98.49 98.62
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Figure 3. The results of cooperative training classification based on RLDE local feature extraction.

3.3. Comparison between the Different Feature Extraction Methods: AVIRIS Data

Figure 4 shows the classification results of the tri-training algorithm alone and the classification
results of the tri-training algorithm based on the RLDE, LDE, and LFDA methods with the AVIRIS data.
Specifically, the tri-training algorithm based on the LFDA method was proposed by Zhang and Jia in
2011 [48]. From Table 2 and Figures 4 and 5, we can see that the classification accuracy is not significantly
related to the number of initial samples when the number of unlabeled samples reaches 900 or more.
For example, the classification accuracy using the LDE feature extraction method is 92.03%, 93.09%,



Remote Sens. 2019, 11, 654 8 of 18

and 94.01% when the number of initial samples is 5, 10, and 15, respectively. This indicates that the
proposed algorithm is both reliable and robust. The proposed tri-training classification algorithm based on
RLDE feature extraction performs the best among all the methods with different initial training samples.
The OA is improved by 4.85%, 6.13%, and 2.42% compared with tri-training alone, LDE, and LFDA
when the initial samples are 5. The OA is 4.84 %, 5.75%, and 2.78% higher than that of tri-training
alone, LDE, and LFDA when the initial samples are 10. When the initial samples are 15, the classification
accuracy is 4.53 %, 4.97%, and 2.48% higher than that of tri-training alone, LDE, and LFDA. Meanwhile,
the classification accuracy based on the RLDE feature extraction method reaches 98.98%, which indicates
that the proposed tri-training classification algorithm is superior to the other methods.

Table 2. Tri-training classification results based on the different feature extraction methods (%).

1 2 3 4 5 6 7 8 9 10

L = 5

Tri-training
OA 59.83 75.76 82.46 86.13 88.80 90.38 91.44 92.21 92.93 93.31

Kappa 55.41 72.38 79.96 84.15 87.21 89.01 90.23 91.11 91.93 92.36

LDE
OA 57.69 74.65 80.88 83.99 86.36 88.47 89.51 90.67 91.42 92.03

Kappa 56.65 71.93 78.50 81.93 84.57 86.97 88.12 89.44 90.30 90.99

LFDA
OA 52.34 61.83 74.61 81.84 86.56 89.95 92.01 93.74 94.92 95.74

Kappa 61.09 70.80 79.20 84.25 88.23 90.97 92.56 94.08 95.02 95.67

RLDE
OA 56.86 74.96 85.29 88.82 92.14 94.56 95.99 97.19 98.16 98.16

Kappa 52.78 71.87 83.37 87.34 91.07 93.81 95.44 96.80 97.90 97.90

L = 10

Tri-training
OA 70.07 80.29 85.21 88.17 90.07 91.47 92.49 93.25 93.81 94.00

Kappa 66.56 77.51 83.10 86.51 88.68 90.27 91.43 92.31 92.94 93.16

LDE
OA 67.93 78.95 84.48 87.06 89.22 90.46 91.37 92.04 92.54 93.09

Kappa 67.32 77.15 82.80 85.48 87.89 89.28 90.30 91.01 91.58 92.18

LFDA
OA 57.09 70.36 79.51 85.31 88.42 91.00 93.07 94.16 95.28 96.06

Kappa 69.07 75.21 82.21 87.06 89.50 91.70 93.53 94.32 95.25 96.00

RLDE
OA 68.85 80.45 88.48 91.53 93.32 95.32 96.96 97.54 98.26 98.84

Kappa 65.59 78.11 86.95 90.41 92.42 94.67 96.53 97.20 98.02 98.68

L = 15

Tri-training
OA 73.75 82.56 86.25 89.17 90.55 91.93 93.04 93.57 93.92 94.45

Kappa 70.60 80.12 84.31 87.64 89.22 90.80 92.07 92.67 93.07 93.68

LDE
OA 73.43 81.61 85.83 88.15 89.97 91.43 92.36 93.03 93.48 94.01

Kappa 72.68 79.82 84.21 86.70 88.66 90.29 91.32 92.07 92.59 93.21

LFDA
OA 62.32 76.62 83.36 87.31 90.11 92.17 93.62 94.85 95.74 96.50

Kappa 68.91 80.68 85.36 88.31 90.62 92.39 93.62 94.80 95.60 96.36

RLDE
OA 71.89 82.96 89.29 92.57 94.77 96.34 97.28 98.08 98.63 98.98

Kappa 68.92 80.82 87.88 91.57 94.05 95.83 96.90 97.82 98.44 98.84
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under different initial training samples.

Remote Sens. 2018, 10, x FOR PEER REVIEW  9 of 18 

 

 
（b） L=10 

 
（c） L=15 

Figure 4. AVIRIS data classification accuracy, as obtained by the different feature extraction methods 

under different initial training samples. 

 

   

(a) tri-training (L = 5) (b) tri-training (L = 10) (c) tri-training (L = 15) 

   

(d) LDE (L = 5) (e) LDE (L = 10) (f) LDE (L = 15) 

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0 100 200 300 400 500 600 700 800 900 100011001200

O
v
er

al
l

A
cc

u
ra

cy
（

%
）

the number of unlabeled samples

tri_training

LDE

LFDA

RLDE

50.00

55.00

60.00

65.00

70.00

75.00

80.00

85.00

90.00

95.00

100.00

0 100 200 300 400 500 600 700 800 900 100011001200

O
v
er

al
l

A
cc

u
ra

cy
（

%
）

the number of unlabeled samples

tri_training

LDE

LFDA

RLDE

Figure 5. Cont.



Remote Sens. 2019, 11, 654 10 of 18
Remote Sens. 2018, 10, x FOR PEER REVIEW  10 of 18 

 

   

(g) LFDA (L = 5) (h) LFDA (L = 10) (i) LFDA (L = 15) 

   

(j) RLDE (L = 5) (k) RLDE (L = 10) (l) RLDE (L = 15) 

Figure 5. Co-training classification results based on the different feature extraction methods. 

3.4. Comparison between the Different Feature Extraction Methods: ROSIS Data 

Figure 6 shows the classification results of the tri-training algorithm alone and the classification 

results of the tri-training algorithm based on the RLDE, LDE, and LFDA methods with the ROSIS 

data. From Table 3 and Figures 6 and 7, we can see that, as the unlabeled samples are continuously 

added, the classification accuracy increases. However, when the unlabeled samples reach 700, the 

OA becomes stable. The classification accuracy is not significantly related to the number of initial 

samples when the number of unlabeled samples reaches 900 or more. For example, the classification 

accuracy using the LDE feature extraction method is 96.16%, 96.66%, and 96.66% when the number 

of initial samples is 5, 10, and 15, respectively. This indicates that the proposed algorithm is both 

reliable and robust. The proposed tri-training classification algorithm based on RLDE feature 

extraction performs the best among all the methods under the different initial training samples. The 

OA is improved by 10.79%, 1.73%, and 2.06% compared with tri-training alone, LDE, and LFDA when 

the initial samples are five. The OA is 10.97%, 1.73%, and 2.06% higher than that of tri-training alone, 

LDE, and LFDA when the initial samples are 10. When the initial samples are 15, the OA is 11.36%, 

1.96%, and 2.08% higher than that of tri-training alone, LDE, and LFDA, respectively. Meanwhile, the 

classification accuracy based on the RLDE feature extraction method reaches 98.62%. 

Table 3. Tri-training classification results based on the different feature extraction methods (%). 

   1 2 3 4 5 6 7 8 9 10 

L=5 

tri-training 
OA 64.05  78.30  81.71  85.13  86.47  86.91  87.16  87.35  87.14  87.26  

Kappa 55.62  71.67  76.05  80.25  82.07  82.75  83.09  83.35  83.11  83.26  

LDE 
OA 70.15  83.80  89.63  92.29  93.72  94.56  95.37  95.92  96.26  96.16  

Kappa 62.78  78.42  86.14  89.67  91.61  92.75  93.82  94.56  95.02  94.89  

LFDA 
OA 68.54  85.61  90.40  92.30  93.70  94.33  94.88  95.31  95.60  95.90  

Kappa 65.16  81.62  87.14  89.53  91.40  92.22  92.99  93.57  93.97  94.36  

RLDE 
OA 71.70  89.71  93.24  95.21  96.43  96.92  97.36  97.75  97.96  98.14  

Kappa 67.16  87.22  91.24  93.68  95.22  95.84  96.41  96.93  97.21  97.44  

L=10 

tri-training 
OA 70.12  82.27  85.78  86.59  87.42  87.39  87.23  87.22  86.75  87.30  

Kappa 63.03  76.53  80.98  82.21  83.34  83.39  83.25  83.24  82.70  83.37  

LDE 
OA 77.92  88.64  92.10  93.76  95.03  95.40  95.84  96.19  96.50  96.66  

Kappa 72.27  84.81  89.38  91.64  93.37  93.86  94.45  94.92  95.34  95.55  

Figure 5. Co-training classification results based on the different feature extraction methods.

3.4. Comparison between the Different Feature Extraction Methods: ROSIS Data

Figure 6 shows the classification results of the tri-training algorithm alone and the classification
results of the tri-training algorithm based on the RLDE, LDE, and LFDA methods with the ROSIS data.
From Table 3 and Figures 6 and 7, we can see that, as the unlabeled samples are continuously added,
the classification accuracy increases. However, when the unlabeled samples reach 700, the OA becomes
stable. The classification accuracy is not significantly related to the number of initial samples when
the number of unlabeled samples reaches 900 or more. For example, the classification accuracy using
the LDE feature extraction method is 96.16%, 96.66%, and 96.66% when the number of initial samples
is 5, 10, and 15, respectively. This indicates that the proposed algorithm is both reliable and robust.
The proposed tri-training classification algorithm based on RLDE feature extraction performs the best
among all the methods under the different initial training samples. The OA is improved by 10.79%,
1.73%, and 2.06% compared with tri-training alone, LDE, and LFDA when the initial samples are five.
The OA is 10.97%, 1.73%, and 2.06% higher than that of tri-training alone, LDE, and LFDA when the
initial samples are 10. When the initial samples are 15, the OA is 11.36%, 1.96%, and 2.08% higher than
that of tri-training alone, LDE, and LFDA, respectively. Meanwhile, the classification accuracy based
on the RLDE feature extraction method reaches 98.62%.

Table 3. Tri-training classification results based on the different feature extraction methods (%).

1 2 3 4 5 6 7 8 9 10

L = 5

tri-training
OA 64.05 78.30 81.71 85.13 86.47 86.91 87.16 87.35 87.14 87.26

Kappa 55.62 71.67 76.05 80.25 82.07 82.75 83.09 83.35 83.11 83.26

LDE
OA 70.15 83.80 89.63 92.29 93.72 94.56 95.37 95.92 96.26 96.16

Kappa 62.78 78.42 86.14 89.67 91.61 92.75 93.82 94.56 95.02 94.89

LFDA
OA 68.54 85.61 90.40 92.30 93.70 94.33 94.88 95.31 95.60 95.90

Kappa 65.16 81.62 87.14 89.53 91.40 92.22 92.99 93.57 93.97 94.36

RLDE
OA 71.70 89.71 93.24 95.21 96.43 96.92 97.36 97.75 97.96 98.14

Kappa 67.16 87.22 91.24 93.68 95.22 95.84 96.41 96.93 97.21 97.44
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Table 3. Cont.

1 2 3 4 5 6 7 8 9 10

L = 10

tri-training
OA 70.12 82.27 85.78 86.59 87.42 87.39 87.23 87.22 86.75 87.30

Kappa 63.03 76.53 80.98 82.21 83.34 83.39 83.25 83.24 82.70 83.37

LDE
OA 77.92 88.64 92.10 93.76 95.03 95.40 95.84 96.19 96.50 96.66

Kappa 72.27 84.81 89.38 91.64 93.37 93.86 94.45 94.92 95.34 95.55

LFDA
OA 76.41 88.52 91.59 93.18 94.07 94.73 95.32 95.65 95.98 96.33

Kappa 73.85 86.09 89.41 91.24 92.24 93.02 93.76 94.17 94.57 95.04

RLDE
OA 80.11 92.52 94.33 95.91 96.73 97.27 97.63 97.96 98.29 98.39

Kappa 76.45 90.38 92.53 94.51 95.58 96.30 96.78 97.21 97.66 97.80

L = 15

tri-training
OA 73.58 83.70 85.85 86.70 86.64 86.62 86.84 86.89 86.75 87.26

Kappa 66.94 78.41 81.24 82.46 82.44 82.48 82.81 82.88 82.74 83.37

LDE
OA 82.54 89.98 92.71 94.20 95.02 95.58 95.81 96.21 96.45 96.66

Kappa 77.72 86.66 90.24 92.24 93.35 94.10 94.41 94.95 95.28 95.55

LFDA
OA 81.94 90.59 92.99 94.12 94.82 95.38 95.75 96.09 96.30 96.54

Kappa 79.61 87.84 90.56 92.01 92.97 93.70 94.20 94.64 94.92 95.26

RLDE
OA 85.94 93.41 95.63 96.69 97.23 97.68 97.97 98.26 98.49 98.62

Kappa 83.61 91.45 94.21 95.56 96.25 96.85 97.22 97.62 97.94 98.10
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4. Discussion

In this section, the hyperparameters, w, γ0, and α are experimentally analyzed. In the SMF, both
w and γ0 affect the final precision. Hence, parameter w was chosen from the range of {1, 3, 5, 7, 9,
11}, and parameter γ0 was chosen from the range of {0.1, 0.2, 0.3, . . . , 0.9}. In this parameter analysis,
α was always set to 0.1. In the RLDE feature extraction method, α is the essential parameter, and was
chosen from the range of {0, 0.1, 0.2, . . . , 1}. Parameter w was set to 3, and γ0 was set to 0.2. Fifteen
samples in each class were selected as the training set, and no addition operation was conducted with
the training samples.

Figure 8 shows the OA versus w and γ0 for the AVIRIS and ROSIS datasets, where it is shown
that γ0 has less impact on the classification accuracy than w. The optimal value of w is 9 for the AVIRIS
dataset and 7 for the ROSIS dataset. The classification accuracy tends to be stable with parameter
w within a range from 5 to 9. Figure 9 shows the OA versus α for the AVIRIS and ROSIS datasets.
The optimal value of parameter α is 0.5 for the AVIRIS dataset and 0.7 for the ROSIS dataset.
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The initial training sample conditions has an impact on the accuracy. In this section, optimal
feature selection is discussed. In this analysis, the range of the spectral information dimension was
set from 1 to 30. With 5, 10, and 15 initial training samples per class, and different feature extraction
methods, we selected the optimal feature information for all the dimensions, as shown in Table 4 and
Figure 10.

For the AVIRIS data, when the number of initial training samples per class is 5, the maximum OA
and the dimension of LDE are 64.35% and 20, respectively. RLDE and LFDA can obtain the maximum
OA when the feature information dimension is 12 and 30, respectively. When the number of initial
training samples per class is 10, the maximum OA is obtained (75.16%) and the dimension of LDE
is 26. RLDE and LFDA can obtain the maximum OA when the feature information dimension is 10
and 30, respectively. When the number of initial training samples per class is 15, the maximum OA
is obtained (78.35%) and the dimension of PCA is 30. RLDE and LFDA can obtain the maximum
OA when the feature information dimension is 10 and 24, respectively. Among the four different
feature extraction methods, RLDE can obtain the highest classification accuracy and requires the
smallest feature information dimension. With 5, 10, and 15 initial training samples per class, the feature
information dimensions of all the methods were set as shown in Table 2 in the experiments.

Table 4. The optimal feature number and classification accuracy of the different feature extraction
methods under different initial training sample conditions.

Feature Extraction Method
Training Samples

L = 5 L = 10 L = 15

AVIRIS

LDE 64.35%(20) 75.16%(26) 78.35%(30)

LFDA 59.72%(30) 59.48%(30) 66.90%(24)

RLDE 66.54%(12) 77.23%(10) 81.20%(11)

ROSIS

LDE 70.20%(21) 77.93%(24) 82.61%(24)

RLDE 72.76%(8) 80.95%(11) 86.62%(12)

LFDA 71.09%(24) 76.43%(28) 82.50%(8)

For the ROSIS data, when the number of initial training samples per class is 5, the maximum OA
and the dimension of LDE are 70.20% and 21, respectively. RLDE and LFDA can obtain the maximum
OA when the feature information dimension is 8 and 24, respectively. When the number of initial
training samples per class is 10, the maximum OA and the dimension of LDE are 77.93% and 24,
respectively. RLDE and LFDA can obtain the maximum OA when the feature information dimension
is 11 and 38, respectively. When the number of initial training samples per class is 15, the maximum
OA and the dimension of LDE are 82.61% and 24, respectively. RLDE and LFDA can obtain the
maximum OA when the feature information dimension is 12 and 8, respectively. Among the four
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different feature extraction methods, RLDE can obtain the highest classification accuracy and requires
the smallest feature information dimension. With 5, 10, and 15 initial training samples per class,
the feature information dimensions of all the methods were set based on Table 1 in the experiments.

Remote Sens. 2018, 10, x FOR PEER REVIEW  15 of 18 

 

RLDE 72.76%（8） 80.95%（11） 86.62%（12） 

LFDA 71.09%（24） 76.43%（28） 82.50%（8） 

 

 

  

(a) L = 5, AVIRIS (b) L = 5, ROSIS 

  

(c) L = 10, AVIRIS (d) L = 10, ROSIS 

  

(e) L = 15, AVIRIS (f) L = 15, ROSIS 

Figure 10. AVIRIS data and ROSIS data classification accuracy for different feature dimension, as 

obtained by the different feature extraction methods under different initial training samples. 

Finally, we compared the proposed method with the other state-of-the-art deep learning 

methods of 1D-CNN, the CNN classifier proposed by Hu et al. [7], the five-layer CNN classifier 

proposed by Mei et al. [49], and the M3D-DCNN classifier proposed by He et al. [50]. All the methods, 

were compared under the same experimental settings (number of training samples, patch size, etc.) 

The OAs achieved by the different methods with the different HSI datasets are listed in Table 5. As 

can be seen, the proposed method shows a performance that is better than or comparable to the 

performance of the other four methods. 

  

0

10

20

30

40

50

60

70

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

O
v
er

al
l

A
cc

u
ra

cy
（

%
）

Feature Dimension

LDE

LFDA

RLDE

30

35

40

45

50

55

60

65

70

75

80

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

O
v
er

al
l

A
cc

u
ra

cy
（

%
）

Feature Dimension

LDE

LFDA

RLDE

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

O
v
er

al
l

A
cc

u
ra

cy
（

%
）

Feature Dimension

LDE

LFDA

RLDE

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

O
v
er

al
l

A
cc

u
ra

cy
（

%
）

Feature Dimension

LDE

LFDA

RLDE

0

10

20

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

O
v
er

al
l

A
cc

u
ra

cy
（

%
）

Feature Dimension

LDE

LFDA

RLDE

30

40

50

60

70

80

90

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

O
v
er

al
l

A
cc

u
ra

cy
（

%
）

Feature Dimension

LDE

LFDA

RLDE

Figure 10. AVIRIS data and ROSIS data classification accuracy for different feature dimension,
as obtained by the different feature extraction methods under different initial training samples.

Finally, we compared the proposed method with the other state-of-the-art deep learning
methods of 1D-CNN, the CNN classifier proposed by Hu et al. [7], the five-layer CNN classifier
proposed by Mei et al. [49], and the M3D-DCNN classifier proposed by He et al. [50]. All the methods,
were compared under the same experimental settings (number of training samples, patch size, etc.)
The OAs achieved by the different methods with the different HSI datasets are listed in Table 5.
As can be seen, the proposed method shows a performance that is better than or comparable to the
performance of the other four methods.
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Table 5. The classification OA of the different deep learning methods with the different hyperspectral
image (HSI) datasets.

Dataset 1D-CNN Hu et al. [7] Mei et al. [49] M3D-DCNN [50] Proposed Method

Indian Pines 82.39% 90.07% 95.70% 97.61% 98.98%
Pavia Univ. 93.29% 92.74% 98.00% 98.49% 98.62%

5. Conclusions

Hyperspectral sensors acquire hundreds of spectrally contiguous bands and provide abundant
(but redundant) spectral information. In order to reduce the time consumption and improve the
classification performance, it is necessary to extract the discriminant information before performing
classification. In this paper, a novel semi-supervised tri-training algorithm for HSI classification has
been proposed in conjunction with RLDE. The RLDE algorithm finds the optimal feature information,
preserves the local information, and overcomes the singularity in the case of limited training samples.
In the proposed algorithm, active learning is used to select the unlabeled samples, and ensemble
learning is used to improve the classification result. In a comparison with other state-of-the-art deep
learning methods, the proposed method achieved the highest classification accuracy with the least
feature information.
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