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Abstract: High-G MEMS accelerometers have been widely used in monitoring natural disasters and
other fields. In order to improve the performance of High-G MEMS accelerometers, a denoising
method based on the combination of empirical mode decomposition (EMD) and wavelet threshold
is proposed. Firstly, EMD decomposition is performed on the output of the main accelerometer to
obtain the intrinsic mode function (IMF). Then, the continuous mean square error rule is used to
find energy cut-off point, and then the corresponding high frequency IMF component is denoised
by wavelet threshold. Finally, the processed high-frequency IMF component is superposed with the
low-frequency IMF component, and the reconstructed signal is denoised signal. Experimental results
show that this method integrates the advantages of EMD and wavelet threshold and can retain useful
signals to the maximum extent. The impact peak and vibration characteristics are 0.003% and 0.135%
of the original signal, respectively, and it reduces the noise of the original signal by 96%.

Keywords: MEMS accelerometer; noise reduction; EMD; wavelet threshold; Hopkinson Bar;
High-G calibration

1. Introduction

The MEMS accelerometer is a new kind of sensor that is made by microelectronics and
micro-machining technology. Compared with the traditional sensor, it has the characteristics of
small volume, light weight, low power consumption, high reliability, high sensitivity, easy integration
and so on [1,2]. High-G MEMS accelerometers are mainly used for the measurement and control of
speed changes of high-speed moving carriers during their start-up and operation. They are widely
used in the aerospace field and the precise control of missiles and intelligent projectiles. Therefore,
it is important to improve the accuracy of such sensors [3]. As a sensitive source of input systems,
High-G MEMS accelerometers are the key to system accuracy. However, due to the influence of
the accelerometer itself and signal hardware acquisition circuit, a large number of noise signals will
be superimposed on the acquired accelerometer signals, which requires corresponding denoising
processing [4–10]. At present, the widely used Fourier transform and Kalman Filter [11] have many
defects. The Fourier Transform needs to extract the signal with all the information in the time domain,
which is a kind of integral transformation. It lacks the function of time domain positioning, and
the resolution is lower when applied in the time domain. Moreover, the Fourier Transform does
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not reflect the case where the instantaneous frequency of the signal changes over time. It is more
suitable for analyzing the stationary signal. For the non-stationary signal whose frequency changes
with time, the Fourier Transform can only give its overall effect and cannot fully grasp the essential
characteristics of the signal at a certain moment. However, Short-term Fourier Transform can be used
for non-stationary signals, and in fact is common in speech processing. The matrix operation used in the
denoising of Kalman Filter makes the calculation time longer and the waveform distortion more serious.
In recent years, many achievements have been made in the study of signal denoising method based
on EMD. Empirical mode decomposition (EMD) is a new method for nonlinear and non-stationary
data analysis proposed by Dr. Norden Huang. It allows any complex data set to be decomposed into a
finite number of intrinsic mode functions (IMF). Since the decomposition method is based on local
characteristics of data time scale, it can be applied to the processing of non-linear and non-stationary
signals [12,13]. Wang et al. [14–16] treated the functional components of each mode obtained by EMD
decomposition with threshold value, and then reconstructed them to achieve the purpose of noise
removal. However, they ignored that the high-frequency noise mode function components of low order
cannot be completely eliminated through the threshold processing. Boudraa et al. [17] determined the
demarcation point between signal area and noise area based on energy criteria, but there was a defect of
poor stability. Chen et al. [18] determined the demarcation point according to the correlation coefficient
criterion between the intrinsic mode function of each order and the original signal, and obtained good
analysis results, but ignored the noise of higher-order mode function components. As a relatively
mature signal analysis method, wavelet transform has been widely used in signal de-noising due to its
multi-scale, de-correlation and low entropy properties, especially in the suppression of random noises.
Xu et al. [19] proposed a threshold denoising method based on wavelet analysis, which can obtain the
best estimation value in Besov space. Bi et al. [20] combine EMD and wavelet transform for engine
blasting feature detection. This method is suitable for engine knock signals with non-stationary and
transient characteristics and can identify the tapping characteristics of vibration signals. More reliable,
faster and more efficient than previous signal processing methods. In this paper, EMD decomposition
is combined with wavelet threshold denoising method, and continuous mean square error criterion is
introduced to obtain energy demarcation points to determine the high-frequency IMF component that
needs noise reduction. Only the high-frequency IMF component is denoised by wavelet threshold, and
the low-frequency IMF component remains unchanged. The signal after noise reduction is obtained
through signal reconstruction. This is a new method of noise reduction, which avoids the disadvantage
of direct loss of useful information on high frequency components caused by EMD. Moreover, such
wavelet threshold denoising only acts on the high frequency IMF component, rather than on the
entire signal, largely overcoming the shortcomings of the direct wavelet threshold denoising method.
It is much more accurate than using EMD and wavelet thresholds singly. We use the continuous
mean square error criterion to determine the energy boundary point. The continuous mean square
error criterion is more accurate, stable and reliable than other boundary methods such as artificially
independent boundary, correlation coefficient criterion and energy criterion. This joint denoising
method is suitable for the removal of high overload MEMS accelerometer signals with shock and
vibration characteristics. Experimental results and discriminant results can verify the advantages of the
combined denoising method proposed in this paper. The impact peak and vibration characteristics are
0.003% and 0.135% of the original signal, respectively, and it reduces the noise of the original signal by
96%. In order to improve the performance of MEMS accelerometer during High-G calibration, a new
combined desensitization method based on EMD and wavelet threshold is proposed. The structure of
this paper is as follows: part 2 describes the proposed algorithm, part 3 introduces the accelerometer,
part 4 gives the experiment and verification, and the last part is the conclusion.
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2. Algorithm

2.1. Empirical Mode Decomposition (EMD)

Empirical mode decomposition is to decompose the signal into several intrinsic mode functions
and a residual component. The first step of the decomposition process [21] is to find all the maximum
points of the original data sequence x(t) and fit them using a cubic spline interpolation function to
form the upper envelope of the original data. Similarly, all the minimum points are found, and all the
minimum points are fitted by the cubic spline interpolation function to form the lower envelope of the
data. The average value of upper envelope line and lower envelope line is denoted as m1(t), and the
original data sequence x(t) is subtracted from this average envelope m1(t) to obtain new data sequence
h1(t), that’s:

x(t)−m1(t) = h1(t) (1)

If h1(t) is not an intrinsic mode function, then smoothing is required. In the second smoothing
process, h1(t) is the original data, that is:

h1(t)−m11(t) = h11(t) (2)

where m11(t) is the average of the upper and lower envelope of h1(t), repeat the above smoothing
process k times until h1k(t) is an intrinsic mode function, that is:

h1(k−1)(t)−m1k(t) = h1k(t) (3)

Then, h1k(t) is the first-order IMF classification, denoted by a1, and a1 is separated from the original
sequence to obtain the residual term r1:

r1 = x(t)− a1 (4)

After that, we use the residual item r1 as the new data, and smooth it with the same method as
before to get the new residual item r2 = r1 − a1. The above process is repeated until rn = rn−1 − an is less
than the given value, or the residual term becomes a monotonic function or has at most one maximum
point, that is, it is impossible to extract an IMF component from it, and then the model decomposition
process is terminated. Finally, the original signal x(t) can be composed of n IMF components and
residual rn:

x(t) =
n

∑
i=1

ai + rn (5)

2.2. Wavelet Threshold Denoising

Signal de-noising is essentially a process of suppressing the useless part of the signal and
enhancing the useful part of the signal. Generally, the process of wavelet threshold denoising can be
divided into the following three steps [22,23]:

(1) Wavelet decomposition. Select a wavelet and determine the level of decomposition, then the
decomposition calculation.

(2) Threshold quantization of wavelet decomposition high frequency coefficient. A threshold
value is selected for the high frequency coefficients of each decomposition scale to be quantized, and
the low frequency wavelet coefficient is kept unchanged.

(3) Wavelet reconstruction. The processed high frequency wavelet coefficients and low frequency
wavelet coefficients are reconstructed by inverse wavelet transformation, and the signal after noise
reduction is obtained.
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The wavelet threshold denoising method adopts different thresholds based on different scales,
that is, with the increase of scales, the threshold value gradually decreases, making the propagation
characteristics of noise in different scales of wavelet transform consistent. This method is also applicable
to the removal of relevant noise. In addition, the threshold can be changed with the change of the
position of the coefficient on the same scale, that is, the adaptive threshold denoising in the wavelet
domain. The wavelet threshold denoising algorithm needs to determine a threshold value. The effect
of wavelet threshold denoising [24] is closely related to the selection of threshold estimation and
threshold function, and there are a variety of determination criteria. Common threshold selection
methods include fixed threshold estimation (sqtwolog), maximal minimum threshold estimation
(minimaxi), unbiased risk estimation (rigsure), heuristic threshold estimation (heursure), etc. In this
paper, unbiased likelihood estimation (rigsure) suitable for high frequency components is selected.
The wavelet coefficients larger than this threshold value are considered to be generated by the effective
signal, while the wavelet coefficients smaller than this threshold value are considered to be generated
by noise. The algorithm is:

(1) The elements in the vector to be estimated are taken as absolute values, then sorted from small
to large, and then each element is squared to obtain a new vector NV to be estimated whose length n is
the length of the original estimated vector.

(2) Corresponding to the subscript k of each element, if the threshold is the square root of the k-th
element of the vector to be estimated, the risk algorithm is:

Risk(k) =

n− 2k +
k
∑

j=1
NV(j) + (n− k)NV(n− k)

n
(6)

(3) According to the above formula, the minimum risk point and the corresponding k value are
found, and the threshold is:

Thr =
√

NV(k) (7)

The threshold processing method includes a hard threshold and a soft threshold method. The
hard threshold method keeps the wavelet coefficients higher than the threshold unchanged and sets
the wavelet coefficients of each subspace below the threshold to zero; the soft threshold method is
to apply the wavelet coefficients to a fixed amount. Shrink to zero, reconstructed by new wavelet
coefficients to obtain denoised signals.

The hard threshold value is expressed as:

η(a, b) =

{
0 |a| < b
|a| |a| ≥ b

(8)

Soft threshold is expressed as:

η(a, b) =

{
0 |a| < b
sign(a)(|a| − b) |a| ≥ b

(9)

In the above two equations, a is the wavelet coefficient and b is the threshold. b = σ×
√

2lgN,

where σ is the noise standard value and N is the signal length. Noise standard value σ = Median(|a|)
0.6745 , of

which Median(|a|) is the median of wavelet multi-resolution decomposition coefficient [25].

2.3. Wavelet Thresholding Denoising Based on EMD

For the signals with small amplitude of the useful signal, which are overwhelmed by noise
signal to a large extent, the effect of using wavelet analysis to remove noise is not very good at this
time. Moreover, the EMD-based spatial-temporal filtering algorithm simply removes one or more
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IMF components to achieve filtering, resulting in the deletion of useful signals on corresponding
components together. Therefore, it is a very rough denoising method, which will lead to serious signal
distortion. In this paper, EMD and wavelet threshold denoising are combined. First, the original signal
is decomposed by EMD to obtain IMF components with frequency ranging from high to low. Then,
only high-frequency IMF components are denoised by wavelet threshold, while low-frequency IMF
components remain unchanged. Finally, the denoised signal is obtained by combining the denoised
high frequency IMF component with the untreated low frequency IMF component and the residual
amount. In order to define which IMF components need to be denoised by wavelet threshold and
which do not need to be processed, the cut-off point is determined by the continuous mean square
error criterion. Since IMF component satisfies the rule of distribution from high frequency to low
frequency, while IMF component of low frequency band is dominated by signal, noise mainly exists in
IMF of high frequency band. Therefore, there must be some component Aks, dividing IMF component
into two sets of high frequency band and low frequency band. This component can be calculated
explicitly and uniquely by the algorithm, which further improves the accuracy of the denoised result
compared to other methods. Define the reconstructed signal x̂i(t) as:

x̂i(t) =
n

∑
k=i

Ak(t) + rn(t) (10)

where, Ak(t) is the k-th IMF component of signal x(t) obtained by EMD. The continuous root mean
square error of the signal is defined as:

σCMSE(x̂i, x̂i+1) = 1
N

N
∑

i=1
[x̂i(t)− x̂i+1(t)]

2

= 1
N

N
∑

i=1
[Ai(t)]

2
(11)

where N is the length of signal x(t), and Ai(t) is the i-th IMF component of signal x(t) obtained by EMD
decomposition. Based on the above analysis, it can be determined that the signal energy demarcation
point is:

ks = argmin
1≤i≤n−1

[σCMSE(x̂i, x̂i+1)] (12)

After the cut-off point, Aks is determined, the IMF component is divided into two parts. In the
first part, IMF components in high frequency band are denoised by wavelet threshold, while in the
second part, IMF components in low frequency band are not processed. In this way, it can overcome
the shortcoming of the simple EMD denoising method in suppressing the effective information of high
frequency while removing the high frequency noise. Based on the above analysis, the specific steps of
the de-noising algorithm proposed in this paper are as follows:

(1) EMD decomposition is carried out on the original noise signal x(t), and each modal component
Ak is obtained;

(2) According to the continuous mean square error criterion, the value of ks is determined.
(3) The threshold determination criteria were selected to calculate the threshold of each mode

component A1–Ak, and wavelet threshold denoising was performed on the modal component A1–Ak,
to obtain each mode component Â1–Âk after denoising.

(4) Reconstructed signal, x(t) =
ks
∑

k=1
Ak(t) +

n−1
∑

k=ks+1
Ak(t) + rn(t).

The algorithm flow chart is shown in Figure 1:
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Figure 1. Block diagram based on empirical mode decomposition (EMD) wavelet threshold algorithm.

3. High-G MEMS Accelerometer

The original signal collected in this paper was from a newly designed and manufactured high-G
MEMS accelerometer (HGMA) [26,27]. It is a kind of accelerometer with high impact survival rate
and high range. The detection method of the HGMA is piezoelectric resistance, and output signal
is voltage.

Structure and Structural Parameters of the HGMA

HGMA adopts four beams and island structure [27]. The frame, four beams and the center mass
are all rectangular, which is conducive to processing. Its structure diagram and parameters are shown
in Figure 2.

The coordinate system is constructed with the cross-section of the accelerometer. The central
dividing line of the cross-section is Z axis, specify that the direction is positive to the downward. The
other middle line is the X axis, and the right direction is positive. The frame constructed is shown in
Figure 3. The beam’s length, width and thickness are a1, b1 and c1, respectively. The mass’s length,
width and thickness are a2, b2 and c2, respectively. The size values are shown in Table 1.

The first four orders are simulated and analyzed through ANSYS software (ANSYS, Inc.,
Southpointe, PA, USA) and are shown in Figure 3a–d are the first, second, third and fourth modes
respectively. The first mode mass moves along the Z axis and is the working mode; The second mode
mass rotates around the X-axis; The third mode mass rotates around the Y-axis; The fourth mode mass
and frame move along the Z axis. The resonant frequencies of the four modes are shown in Table 2,
which indicates that the 1st order is the working mode of HGMA and its resonant frequency is 408 kHz.
The 2nd order mode resonant frequency is 667 kHz and has 260 kHz gap with 1st mode, which means
the coupling movement between these two modes is tiny and is good for HGMA linearity.
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Table 1. Structural parameters of the HGMA.

Beam Mass

Parameters Length (a1) Width (b1) Height (c1) Length (a2) Width (b2) Height (c1)

Size (µm) 350 800 80 800 800 200
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Table 2. Resonant frequencies of the four modes.

Mode Shapes 1 2 3 4

Resonant
Frequency (kHz) 408 667 671 1119

The structure of HGMA is made of silicon and bonding on glass, and the main technological
process is mainly divided into 12 steps. And the SEM photos and confocal microscopy photos of the
accelerometer structure are shown in Figure 4 [27].
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4. Experiment and Verification

4.1. Experiment

The HGMA was calibrated in Hopkinson Bar calibration system as shown in Figure 5, and
its output signal was also collected, and the equipment is shown in Figure 5. A power supply was
employed to provide +5 V voltage to HGMA, and a high-speed data acquisition system and a computer
were employed to collect the HGMA output signal. The temperature was 25 ◦C (room temperature
value), and the sampling rate was 20 MHz.Micromachines 2018, 9, x FOR PEER REVIEW  9 of 16 
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4.2. Verification

(1) EMD Denoising

EMD decomposition was performed on the original signal data. The original signal data was
decomposed into IMF1–IMF13, a total of 13 components and 1 residual component res. The exploded
view is shown in Figure 6. It can be seen from the figure that noise mainly existed in the first three
components. According to the principle of EMD low-pass filtering de-noising method, the first three
high-frequency components were removed, and the remaining components were reconstituted as
signals. The reconstructed signal is shown in Figure 7. It can be seen from the figure that the signal
after denoising is clear and smooth, the noise is effectively removed, but the signal amplitude is
significantly reduced. This is because the first three components that were discarded contain both noise
and useful information. The direct EMD denoising method can reduce useful signals while removing
high frequency noises, resulting in information loss. Therefore, this method is relatively rough.Micromachines 2018, 9, x FOR PEER REVIEW  10 of 16 
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Figure 6. EMD decomposition of the original signal.
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(2) Wavelet Threshold Denoising

After comparing the effects of several wavelet functions and decomposition layers, finally chose
the ‘db4’ wavelet as the wavelet generating function and set the decomposition scale to 4. And the
corresponding soft threshold was applied to the high frequency coefficient. Figure 7 shows the result of
wavelet denoising directly to the original signal. It can be seen from Figure 7 that the wavelet threshold
denoising method can directly remove the noise of the high frequency part and restore the original
signal, and the decimation effect of the low frequency part is much better than the EMD. The denoising
effect is relatively ideal, but the signal amplitude after denoising is still reduced, indicating that there
are still useful signals removed.
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(3) Wavelet Threshold Denoising based on EMD

Since the EMD denoising method discards one or more high-frequency components, the
high-frequency noise was removed, and the effective information on the corresponding components
was also removed together, thereby causing severe distortion of the signal. The wavelet threshold
denoising method removes most of the noise and removed the small effective signal together, which
also caused certain errors. Therefore, the combination of EMD and wavelet threshold was used for
denoising. According to the continuous mean square error criterion, the cut-off point was IMF3.
Therefore, the first three components after EMD decomposition were processed by wavelet threshold,
while the rest components remained unchanged. The processed component was reconstructed with
other unprocessed components, and the result after denoising was obtained. The reconstruction signal
is shown in Figure 7. As can be seen from Figure 7, the noise is effectively removed, and the signal
after joint denoising is relatively smooth, substantially free of burrs, the amplitude is substantially
unchanged, and useful information is retained. The denoising effect is ideal.

The original signal data and denoising results are shown in Figure 7, it can be seen from the
original signal data that three main stages are divided:

1. Preparing stage: before the shock peak, and this part contains the noise signal and the bias
characteristic of HGMA. As can be seen from Figure 7, the noise of original signal data is large
(peak-peak value is near about 1000 g), and EMD, Wavelet and EMD + Wavelet methods all work
well, and which are proved by denoising results.

2. Shock stage: the main part of the calibration experiment, the peak value is about 28,030 g, and the
pulse wide is about 10 µs. During this stage, the original signal data, EMD and EMD + Wavelet
denoising signals almost overlapping, which indicates that these three curves contain the same
information. However, the Wavelet denoising signal amplitude is 25,240 g, which is not the real
peak value of original signal data, and the error is more than 10%. So, Wavelet method is not
suitable for the calibration denoising.

3. Vibration stage: after the shock peak, and this part mainly contains HGMA vibration information,
which reflects the dynamic characteristic of HGMA. In this stage, it can be seen that the EMD
denoising signal occurs distortion phenomenon and cannot reflect the frequency and amplitude
information of original data any more. Meanwhile, the amplitude information of original signal
data cannot be expressed after Wavelet denoising. Only EMD + Wavelet method follows the
original signal data.

The frequency characteristic of original signal data and denoising results are shown in Figure 8,
the “Shock Stage” and “Vibration Stage” are enlarged:

1. Shock stage: the frequency peak of this stage is about 27.1 kHz, the original signal data and
EMD + Wavelet denoising results have almost the same amplitude and shape (one amplitude is
2.8702 × 107, the other is 2.8701 × 107); the EMD denoising result amplitude is 2.7712 × 107; the
Wavelet denoising result amplitude is 1.9523 × 107, which shows that EMD + Wavelet denoising
method inherit the real amplitude and frequency information of original signal.

2. Vibration stage: the frequency peak of vibration stage is about 525.8 kHz, the original signal data
and EMD + Wavelet denoising results have almost the same amplitude and shape (one amplitude
is 4.4310× 107, the other is 4.4251× 107); the EMD denoising result amplitude is 1.3410× 105; the
Wavelet denoising result amplitude is 2.2503 × 107, which shows that EMD + Wavelet denoising
method inherit the real amplitude and frequency information of original signal.
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The Preparing Stage signals are analyzed by Allan Derivation (shown in Figure 9), which is widely
used in gyroscope experiment, and the curves can quantitate the equivalent value of the acceleration
random walking (which can express the noise characteristic of HGMA). The value of original signal,
EMD, Wavelet and EMD + Wavelet denoising signals in 10−7 s are 1.0591 × 106 g/h, 2.9241 × 104 g/h,
3.6162 × 104 g/h and 3.7970 × 104 g/h respectively.
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Table 3 lists the denoising results of the three methods, as can be seen from Table 3, compared
with the wavelet threshold denoising method and the traditional EMD decomposition denoising
method, the combined (EMD + Wavelet) denoising method is more effective in “Shock Stage” and
“Vibration Stage”. The EMD + Wavelet denoising method errors in these two stages are 0.003% and
0.135% respectively, which shows that the method does not destroy the original calibration data, and
can be employed during the calibration process data processing. Meanwhile, the denoising results
(the data is picked up in “Preparing Stage”) are also shown in Table 3, the results indicate that three
denoising methods achieve excellent results, and they cut more than 96% noise in original signal.

Table 3. Comparison of three denoising algorithms.

EMD Wavelet EMD + Wavelet Original

Preparing
Stage

Bias Stability
Value @10−7s (g/h) 2.9241 × 104 3.7970 × 104 3.6162 × 104 1.0591 × 106

Improves from
Original 97.2% 96.6% 96.4% -

Shock Stage Value 2.7712 × 107 1.9523 × 107 2.8701 × 107 2.8702 × 107

Error from Original 3.49% 32.1% 0.003% -

Vibration
Stage

Value 1.3410 × 105 2.2503 × 107 4.4251 × 107 4.4310 × 107

Error from Original 99.70% 49.22% 0.135% -

5. Conclusions

In this paper, an EMD-based wavelet threshold denoising method was adopted. The cut-off point
was determined by the continuous mean square error criterion. Only the IMF components of the
previous high frequency bands were selected for wavelet threshold denoising, and no processing was
done on the low frequency part. Experiments showed that this method can not only remove part of
high frequency noise (96.4% noise component in original signal data), but also retain the details of low
frequency (such as shock peak amplitude error is 0.003% and vibration characteristic amplitude error
is 0.135% from original signal data). The root mean square error and signal-to-noise ratio are much
better than the single method, which can improve the performance of High-G MEMS accelerometer
and make it more widely used.
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