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Abstract: The software defined networking (SDN) paradigm separates the control plane from the data
plane, where an SDN controller receives requests from its connected switches and manages the operation
of the switches under its control. Reassignments between switches and their controllers are performed
dynamically, in order to balance the load over SDN controllers. In order to perform load balancing,
most dynamic assignment solutions use a central element to gather information requests for reassignment
of switches. Increasing the number of controllers causes a scalability problem, when one super controller
is used for all controllers and gathers information from all switches. In a large network, the distances
between the controllers is sometimes a constraint for assigning them switches. In this paper, a new
approach is presented to solve the well-known load balancing problem in the SDN control plane.
This approach implies less load on the central element and meeting the maximum distance constraint
allowed between controllers. An architecture with two levels of load balancing is defined. At the top
level, the main component called Super Controller, arranges the controllers in clusters, so that there is
a balance between the loads of the clusters. At the bottom level, in each cluster there is a dedicated
controller called Master Controller, which performs a reassignment of the switches in order to balance the
loads between the controllers. We provide a two-phase algorithm, called Dynamic Controllers Clustering
algorithm, for the top level of load balancing operation. The load balancing operation takes place at
regular intervals. The length of the cycle in which the operation is performed can be shorter, since the
top-level operation can run independently of the bottom level operation. Shortening cycle time allows for
more accurate results of load balancing. Theoretical analysis demonstrates that our algorithm provides a
near-optimal solution. Simulation results show that our dynamic clustering improves fixed clustering by
a multiplicative factor of 5.

Keywords: multi controllers; architecture; SDN; load balancing

1. Introduction

In a software defined network (SDN) architecture [1], the logical separation between control
plane and data plane, in the architecture and functional behavior of network nodes, is dissociated,
allowing for centralization of all the logic related to control plane procedures in a so-called SDN
Controller. In turn, this allows for simplified network nodes designed and streamlined for data plane
performance. Such an architecture enables developers to devise new algorithms to be collocated at the
SDN controller, which are able to manage the network and change its functionality [2,3]. Even though
only one controller may handle the traffic for a small network [4], this is not realistic when we deal with
large network at the internet scale since each controller has limited processing power, therefore multiple
controllers are required to respond to all requests on large networks [5–7]. One approach to achieve
this goal is to use multiple same instantiations of a single controller [8], where each instantiation of
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the SDN controller does basically the same work as the others, each switch being linked to one SDN
controller. Handling multiple controllers gave rise to some important questions, namely: where to
place the controllers and how to match each control to a switch. These questions are not only relevant
during the network deployment based on static’s information [9,10] but should also be considered
regularly due to the network dynamic nature [11]. In this paper we dealt with the matching problem
aforementioned. We proposed a novel multi-tier architecture for SDN control plane which can adapt
itself to dynamic traffic load and therefore provide a dynamic load balancing.

The rest of this paper is organized as follows. In Section 2 we present the state of the art in dealing
with load balancing at the control plane level in SDN. Then in Section 3 we present the updated DCF
architecture used to develop our clustering algorithm. In Section 4, the problem is formulated and
its hardness explained. The two-phase Dynamic Controllers Clustering (DCC) algorithm, with the
running time analysis and optimality analysis, is provided in Section 5. Simulations results are
discussed in Section 6. Finally, our conclusions are provided in Section 7.

2. Related Works

The problems of how to provide enough controllers to satisfy the traffic demand, and where to
place them, were studied in [4,12,13]. The controllers can be organized hierarchically, where each
controller has its own network sections that determine the flows it can serve [14–16], or in a flat manner
where each controller can serve all types of incoming requests [17–19]. In any case, every switch needs
a primary controller (it can also have more, as secondary/redundant). In most networks N >> M,
where N is the number of switches and M is the number of controllers, each controller has a set of
switches that are linked to it. The dynamic requests rate from switches can create a bottleneck at some
controllers because each controller has limited processing capabilities. Therefore, if the number of
switches requested is too large, the requests will have to wait in the queue before being processed by
the controller which will cause long response times for the switches. To prevent the aforementioned
issue, switches are dynamically reassigned to controllers according to their request rates [18,20,21].
This achieves a balance between the loads that the controllers have.

In general, these load-balancing methods split the timeline into multiple time slots (TSs) in which
the load balancing methods are executed. At the beginning of each TS, these methods propose to run a
load balancing algorithm based on the input gathered in the previous TS. Therefore, these methods
assume the input is also relevant for the current TS. The load-balancing algorithm is executed by a
central element called the Super Controller (SC).

Some of the methods presented in the literature are adapted to dynamic traffics [18,19].
They suggest changing the number of controllers and their locations, turning them on and off in
each cycle according to the dynamic traffic. In addition to load balancing, some other methods [6,18]
deal with additional objectives such as minimal set-up time and maximal utilization, which indirectly
help to balance loads between controllers. (The reassignment protocol between switches and controllers
is out of the scope of this paper. Here we focus on the optimization and algorithmic aspects of the
reassignment process. More details on reassignment protocol can be found in [22]. For instance, switch
migration protocol [22] is used for enabling such load shifting between controllers and conforms
with the Openflow standard. The reassignment has no impact on flow table entries.) Changing the
controller location causes reassignment of all its switches, thus, such approaches are designed for
networks where time complexity is not a critical issue.

However, in our work, we do consider time sensitive networks, and therefore, we adopted a
different approach that causes less noise in the network, whereby the controllers remain fixed and
the reassignment of switches is performed only if necessary in the ongoing TS (as detailed further in
this paper).

In [18,20,21] the SC runs the algorithm that reassigns switches according to the dynamic
information (e.g., switch requests per second) it gathers each time cycle (finding the optimal time
cycle duration is the goal of our future works and is not considered in this paper) from all controllers,
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and changes the default controllers of switches. Note that each controller should publish its load
information periodically to allow SC to partition the loads properly.

In [20] a load balancing strategy called “Balance flow” focuses on controller load balancing such
that (1) the flow-requests are dynamically distributed among controllers to achieve quick response,
(2) the load on an overloaded controller is automatically transferred to appropriate low-loaded
controllers to maximize controller utilization. This approach requires each switch to enable to get
service from some controllers for different flow. The accuracy of the algorithm is achieved by splitting
the switch load between some controllers according to the source and destination of each flow.

DCP-GK and DCP-SA are greedy algorithms for Dynamic Controller Placement (DCP) from [18],
which employ for the reassignment phase, Greedy Knapsack (GK) and Simulated Annealing (SA)
respectively, dynamically changing the number of controllers and their locations under different
conditions, then, reassign switches to controllers.

Contrary to the methods in [18,20], the algorithm suggested by [21], called Switches Matching
Transfer (SMT), takes into account the overhead derived from the switch-to-controller and
controller-to-switch messages. This method achieves good results as shown in [21].

In the approaches mentioned earlier in this section, all the balancing work is performed in the SC,
thus, the load on the super controller can cause a scalability problem. This motivated the architecture
defined in [23] called “Hybrid Flow”, where controllers are grouped into fixed clusters. In order to
reduce the load on the SC, the reassignment process is performed by the controllers in each cluster,
where the SC is used only to gather load data and send it to/from the controllers. “Hybrid Flow”
suffers from long run time caused by the dependency that exists between the SC operation and other
controllers operations.

When the number of controllers or switches increases, the time required for the balancing
operation increases as well. Table 1 summarizes the time complexity of the methods mentioned above.

Table 1. Time complexity comparison.

Approach Balance Flow SMT DCP-Assignment Phase Hybrid Flow

Time Complexity O(max((N2) · log(N2), N2 ·M)) O(M · N · logN) O(M · N · logN) O(N ·M2)

The running time of the central element algorithm defines the bound on the time-cycle length.
Thus, the bigger the increase of the run time in the central element (i.e., causing a larger time cycle),
the lower is the accuracy achieved in the load balancing operation. This is crucial in dynamic networks
that need to react to frequent changes in loads [24].

In a previous work [25,26], a new architecture called Dynamic Cluster Flow (DCF) [25] was
presented. DCF facilitates a decrease in the running time of the balance algorithm. The DCF architecture
partitions controllers into clusters. The architecture defines two levels of load balancing: A high level
called “Clustering”, and an operational level called “Reassignment”. A super controller performs the
“Clustering”, by re-clustering the controllers in order to balance their global loads. The “Reassignment”
level is under the responsibility of each cluster that balances the load between its controllers by
reassigning switches according to their request rate. For communication between the two levels,
each controller has a Cluster Vector (CV), which contains the addresses of all the controllers in its
cluster. This CV, which is updated by the SC each time cycle, allows the two levels to run in different
independent elements, where the “Clustering” operation runs at the start time of each unit.

In [26] we presented a heuristic for the “Clustering” operation which balances between clusters
according to the loads with a time complexity of O(M2), and suggest to use the method presented
in [23] for the “Reassignment” level. In this initial architecture, the “Reassignment” level is not
sufficiently flexible for various algorithms, which served as a motivation for us to extend it.

In this paper, the target is to leverage previous work [25,26] and achieve load balancing among
controllers. This is done by taking into account: network scalability, algorithm flexibility, minor
complexity, better optimization and overhead reduction. To achieve the above objectives, we use
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the DCF architecture, and considered distance and load at the “Clustering” level that influence the
overhead and response time at the “Reassignment” level, respectively.

Towards that target, the DCF architecture has been updated to enable the application of existing
algorithms [18,20,21,23] in the “Reassignment” process in each cluster. Furthermore, a clustering
algorithm has been developed that takes into account the controller-to-controller distances in the
load balancing operation. The problem has been formulated as an optimization problem, aiming
at minimizing the difference between cluster loads with constraints on the controller-to-controller
distance. This is a challenging problem due to these opposite objectives. We assume that each controller
has the same limit capacity in terms of requests per second that it can manage. The controllers are
dynamically mapped to clusters when traffic changes. The challenge is to develop an efficient algorithm
for the above-mentioned problem i.e., re-clustering in response to variations of network conditions,
even in large-scale SDN networks. We propose a novel Dynamic Controllers Clustering (further
denoted as DCC) algorithm by defining our problem as a K-Center problem at the first phase and
developing, in a second phase, a replacement rule to swap controllers between clusters. The idea for
the second phase is inspired by Game Theory. The replacements shrink the gap between cluster loads
while not exceeding the constraint of controller-to-controller distances within the cluster. We assume
that M controllers are sufficient for handling the maximal request rate in the network (as mentioned
earlier, there are already many works that found the optimal number of controllers).

Our architecture and model are different from aforementioned existing works since we enable not
only dynamicity inside the cluster but also between clusters which did not exist before.

3. Network Architecture

3.1. Dynamic Cluster Flow Architecture

In the architecture we presented in [25,26], we considered always only one controller called
Super Controller (SC) that is connected to all other controllers in the control plane. In this sense,
we considered a two-tier hierarchy where the SC is in the top tier and all other controllers are in the
lower tier. The SC gathers load information from all controllers and is responsible for grouping the
controllers into clusters according to their load. For each cluster, the SC handles a Cluster Vector (CV),
which includes the addresses of all the controllers inside the given cluster. The CV provides each
controller inside a cluster the ability to identify to which controller it can transfer part of its overload.
In order for each controller to intelligently decide where to transfer its load, an efficient communication
scheme between the controllers is necessary. This is because each overloaded controller that requires
the help of another controller becomes dependent on the other controller which itself can be also
overloaded, etc. This whole interdependency requires a complete and synchronized coordination
between all the controllers.

3.2. Three Level Load Balancing Architecture

In this paper, we consider the architecture, presented in [25,26] as briefly presented in the previous
section but we add a new, additional intermediate tier.

Thus we consider a three-tier hierarchy, where the SC is in the top tier, some Master Controllers are
in the intermediate tier and all other controllers are in the lower tier. In Figure 1 we show an illustration
of our proposed architecture with an example of reclustering process where in green we see the master
of each cluster and SC denotes the super controller. In this three-tier architecture, we observe two
levels of load operations: “Clustering” and “Reassignments”. In the top level of “Clustering”, the SC
organizes the controllers into clusters. In the lower level of “Reassignments”, for each cluster, there is a
Master Controller (MC) responsible for the load balancing inside the cluster by reassigned switches to
controllers dynamically. In order to define the problem of the “Clustering” for the high level of the
load balancing operation, two aspects are considered: first, the minimal differences between clusters’
loads are set as targets, and second, the minimal distances between controllers in each cluster.
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Figure 1. Three-tier control plane.

In this paper, we do not propose a new method for performing load balancing inside each
cluster since many efficient algorithms already exist, for instance see [18,20,21]. However, the method
employed, which is designed for the top level in which clusters are rearranged (as described in the next
section), is sufficiently generic that it will operate with any of the existing load-balancing algorithms.

At the start of each time cycle, the MC sends to the SC the Cluster Vector Loads (CVL), which
includes the load of each controller inside the cluster. Then the SC may update the CV of each cluster
in order to balance the load of some overloaded clusters, and may also update who is the new MC
of some cluster. In parallel to the “Clustering” operation performed by the SC, the “Reassignments”
operations of the load balancing are performed by the MS independently.

Due to the three level DCF architecture, the load balancing runtime of both the SC and MC is
very low, and enables a reduction in the TS duration accordingly. Thus the greater the reduction in the
timeline, the greater the accuracy achieved [25].

4. DCC Problem Formulation

In this section, the assignment problem of controllers to clusters is presented. This problem is
considered here as a minimization problem with constraints.

4.1. Notations

We consider a control plane C with M controllers, denoted by C = {C1, C2, ..., CM} where Ci is a
single controller. We assume that the processing power of each controller is the same and equal to P,
which stands for the number of requests per second that it can handle. Let dij be the distance (number
of hops) between Ci and Cj. We denote by Gi the ith cluster and by G = {G1, G2, ..., GK}, the set of all
clusters. We assume that M

K is an integer and is actually the number of controllers per cluster. Thus,
the size of the CV is M

K , i.e., we assume that each cluster consists of the same number of controllers.
Y denotes a matrix, handled by SC, which consists of the matching of each controller to a single cluster.
Each column of Y represents a cluster and each row a controller.

Figure 2 shows an example of such a matrix Y(9X3) corresponding to nine controllers split into
three clusters. On the left part we see Y matrix before re-clustering process and on the right after it is
completed. Thanks to Y one can know which controller is in which cluster as follows. If a controller is
included in a cluster then in the corresponding row of the controller and corresponding column of
the cluster the value will be 1, otherwise it will be 0. For instance, we see that before re-clustering,
controller number 5 is in cluster b. After re-clustering (on the right matrix), we see that controller 5 is
no longer in b but has been moved to cluster c.
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Figure 2. Y matrix examples before and after re-clustering.

Therefore, Y is a binary MXK matrix as follows:

Y(t)ij =

{
0 Cj ∈ Gi
1 else

}
(1)

∀1≤j≤M

K

∑
i=1

Y(t)ij = 1 and ∀1≤j≤K

M

∑
i=1

Y(t)ij = K (2)

The load of controller j in time slot t is denoted l (t)j. This information arrives to the SC from
the controllers. Its value is the average of requests per second from all the switches associated to
the controller, in time slot t. CVLi denotes the Cluster Vector Load of Masteri. The SC contains the
addresses of the masters for each cycle in the Master Vector (MV). Table 2 summarizes the key notations
for ease of reference.

Table 2. Key notations.

Symbol Semantics

Cj jth controller
Gi ith cluster
P the number of requests a controller can handle per second
dij Minimal hop distance between Ci and Cj

Y (t)ji Y (t)ji = 1 if jth controller is in cluster i in time slot t, else Y (t)ji = 1
l (t)j Controller load—Average flow request of jth controller per second in time slot t
SC Super Controller—collects controllers’ loads from masters and re-clustering

4.2. Clusters’ Load Differences

As we mentioned in Section 3, the first aspect of the high-level load balancing is to achieve
balanced clusters (in this paper we assume that all controllers have the same processing capabilities,
therefore balanced clusters is the overall optimal allocation). For this purpose, the gaps between their
loads must be narrowed. A cluster load is defined as the sum of the controllers’ average loads included
in it, as follows:

θ (t)i =
M

∑
j=1

l (t)j Y (t)ji (3)
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where i is the cluster number and M is the number of controllers in the cluster.
To measure how far a cluster load is from other clusters’ loads, we derive the global cluster’s

load average:

Avg =
∑M

j l (t)j

K
(4)

where, k is the number of clusters.
Then, we define the distance of a cluster’s load from the global average’s load (denoted above

Avg) as:
ϑ (t)i = |θ (t)i − Avg| (5)

In a second step, we define a metric that measures the total load difference between clusters’ load
as follows:

ς (t) =
∑k

i=1 ϑ (t)i
K

(6)

4.3. Distances between Controllers within Same Cluster

In this section, we focus on the second aspect of the high level load balancing (mentioned in
Section 3.2). The rationale behind this distance optimization is as follows. Since in the initialization
phase, switches are matched to the closest controller, we then perform load balancing inside the same
cluster; we want the other controllers to also be close to each other, otherwise this would imply that the
switch might now be matched to a new controller far from it. For that purpose we define the maximal
distance between controllers within the same cluster (over all the clusters) as follows:

η (t) = max1≤c≤K max1≤i,j≤M dijY (t)ic Y (t)jc (7)

where c is the cluster number, and i, j are the controllers in cluster c.
Obviously, the best result would be to reach the minimum n(t) possible. Because if the controllers

are close to each other, then the overhead consisting of the message exchanged between them will be
less significant whereas if they are far from each other, then a multihop path will be required which
will clearly impact the traffic on the control plane. However, if the constraint on n(t) is too strict this
might not allow us enough flexibility to perform load balancing. Therefore, we propose to define the
minimum distance required to provide enough flexibility for the load balancing operation, denoted as
“minMaxDistance”. If the value of minMaxDistance is not large enough, it is possible to adjust it by
adding an offset to it. Finally, we denote by Cnt the constraint on the maximal distance as follows:

Cnt = maxDistance + offset (8)

4.4. Optimization Problem: Dynamic Controllers’ Clustering

Our goal is to find the best clustering assignment as defined by Y(t) which minimize ς (t)
(Equation (6)) and at the same time fulfills the distance constraint (Equation (8)). Therefore, the problem
can be formulated as follows:

Minimize ς (t) (9)

subject to:
M

∑
j

Y (t)ji =
M
K

, ∀i (10)

K

∑
j

Y (t)ji = 1 , ∀j (11)

η (t) < Cnt (12)
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Y (t)ij ∈ 0, 1 , ∀i,j

Equation (10) ensures that each cluster has exactly M/K controllers at a given time while
Equation (11) ensures that each controller is assigned to exactly one cluster at a time. Equation (12)
puts a constraint on the maximum distance between controllers within the same cluster.

Regarding the distance constraint, the problem is a variant of a k-Center problem [27].
On the other hand, the load balancing problem is a variant of a coalition-formation game

problem [28], where the network structure and the cost of cooperation play major roles.
These two general problems are NP-Complete because finding an optimal partition requires

iterating over all the partitions of the player set, where the number of these partitions grows
exponentially with the number of players, and is given by a value known as the Bell Number [29].
Hence, finding an optimal partition in general is computationally intractable and impractical
(unless P = NP).

In this paper, we propose an approximation algorithm to solve these problems. We adapt the
K-Center problem solution for initial clustering, and use game theoretic techniques to satisfy our
objective function with the distance constraint.

5. DCC Two Phase Algorithm

In this section, we divide the DCC problem into two phases and present our solutions for each of
them. In the first phase, we define the initial clusters. We show some possibilities for the initialization
that refer to distances between controllers and load differences between clusters. In the second phase,
we improve the results. We further reduce the differences of cluster loads without violating the distance
constraint by means of our replacement algorithm. We also discuss the connections between these two
phases, and the advantages of using this two-phase approach for optimizing the overall performance.

5.1. Phase 1: Initial Clustering

The aim of initial clustering is to enable the best start that provides the best result for the second
phase. There are two possibilities for the initialization. The first possibility is to focus on the distance,
that is, seeking an initial clustering which satisfies the distance constraint while the second possibility
is to focus on minimizing load difference between clusters.

5.1.1. Initial Clustering with the Distance Constraint

Most of the control messages concerning the cluster load balancing operation are generated due
to the communication between the controllers and their MC. Thus, we use the K-Center problem
solution to find the closer MC [27,30]. In this problem, C = {C1, C2, ..., CK} is the center’s set and
P = {P1, P2, ..., PM} contains M controllers. We define PC = (d (p1, C) , d (p2, C) , . . . , d (pM, C)),
where the ith coordinate of PC is the distance of pi to its closest center in C. The k-Center inputs
are: a set P of M points and an integer number K, where M ∈ N, K < M. The goal is to find a set
of k points C ⊆ P such that the maximum distance between a point in P and its closest point in C
is minimized. The network is a complete graph, and the distance definition [see Table 2] satisfies
the triangle inequality. Thus, we can use an approximate solution to the k-Center problem to find
MCs. Given a set of centers, C, the k-center clustering price of P by C is ‖PC‖∞ = maxp∈Pd (p, C).
Algorithm 1 is an algorithm similar to the one used in [31]. This algorithm computes a set of k centers,
with a 2-approximation to the optimal k-center clustering of P, i.e., ‖PK‖∞ ≤ 2opt∞ (P, K) with O(MK)
time and O(M) space complexity [31].

In Line 2 the algorithm chooses a random controller as the first master. In Lines 4–6 the algorithm
computes the distances of all other controllers from the masters chosen in the previous iteration. In each
iteration, in line 9, another master is added to the collection, after calculating the controller located
in the farthest radius of all controllers already included in the master group, in line 8. After (K− 1)
iterations in line 11 the set of masters is ready.
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Algorithm 1 Find Masters by 2-Approximation Greedy k-Center Solution
input: P = {p1, p2, ..., pM} controllers set, controller-to-controller matrix distances
output: C = {c1, c2, ..., cK}masters set
procedure:

1: C ← ∅
2: c1 ← pi // an arbitrary point pi from
3: C ← C ∪ c1
4: for i = 1 : K do
5: for all p ∈ P do
6: di[p]← minc∈C d(p, c)
7: end for
8: ci ← maxp∈P di[p]
9: C ← C ∪ ci

10: end for
11: return C // The master set

After Algorithm 1 finds K masters, we partition controllers between the masters by keeping the
number of controllers in each group under M/K as illustrated in Heuristic 1.

As depicted in Heuristic 1, lines 1–2 prepare set S that contains the list of controllers to assign.
Lines 3–5 define the initial empty clusters with one master for each one. Lines 7–15 (while loop) are the
candidate clusters which have less than M/K controllers, and each controller is assigned to the nearest
master of these candidates. After the controllers are organized into clusters, we check the maximal
distance between any two controllers in lines 16–19; this value is used for the “maxDistance” (that was
used for Equation (8)).

Heuristic 1 Distance initialization
input:
C = {c1, c2, ..., cM} Controller list
M = {m1, m2, ..., mk}masters list
controller-to-controller matrix distances
output:
CL = {cl1, cl2, ..., clk} Clusters list, where CLi = {cli1, cli2, ..., cli(m/k)}
maxDistance-maximum distance between controllers in a cluster.
procedure:

1: S← C
2: S← S−M
3: for i = 1 : K do
4: CLi ← Mi
5: end for
6: Candidates← CL
7: while S 6= ∅ do
8: Cnext ← The next controller in S
9: CLnear ← Find the nearest master from Candidates list

10: CLnear ← CLnext ∪ CLnear
11: S← S− Cnext
12: if | CLnear |= M/K then
13: Candidates← Candidates− CLnear
14: end if
15: end while
16: for all CLi ∈ CL do
17: maxDistanceCLi ←max distance between two controllers in CLi
18: end for
19: maxDistance←maximum of all maxDistanceCLi
20: return CL, maxDistance

Regarding the time complexity, Lines 1–6 take O(K) time. For each controller Line 8–12 checks
the distance of a controller from all candidates, which takes O(M ∗ K) time. In lines 16–18 for each
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cluster the heuristic checks the maximum distance between any two controllers in the cluster. There are
M/K2 different distances for all clusters, thus taking O(M2) time. Line 19 takes O(K) time (K < M).
The initial process with Heuristic 1 entails an O(M2) time complexity.

Heuristic 1 is based on the distances between the controllers. When the controllers’ position
is fixed, the distances do not change. Consequently, Heuristic 1 can be calculated only one time
(i.e., before the first cycle) and the results are used for the remaining cycles.

5.1.2. Initial Clustering Based on Load Only

If the overhead generated by additional traffic to distant controllers is not an issue (for example
due to broadband link) then we should consider this type of initialization, which put an emphasis on
the controllers’ load. In this case, we must arrange the controllers into clusters according to their loads.
To achieve a well-distributed load for all the clusters we want to reach a “min-max”, i.e., we would like
to minimize the load in the most loaded cluster. As mentioned earlier (in Section 4.1) we assume the
same number of controllers in each cluster. We enforce this via a constraint on the size of each cluster
(see further Heuristic 2).

In the following, we present a greedy technique to partition the controllers into clusters
(Heuristic 2). The basic idea is that in each iteration it fills the less loaded clusters with the most
loaded controller.

In Heuristic 2, Line 1 sorts the controllers by loads. In Line 2–9, each controller, starting with the
heaviest one, is matched to the group with the minimum cost function, Costg(C), if the group size is
less than K, where

Costg(C) = CurrentClusterSum + Cload. (13)

The ”CurrentClusterSum” is the sum of the controllers’ loads already handled by cluster g,
and Cload is the controller’s load that will be handled by that cluster. Regarding the time complexity,
sorting M controllers takes O(M · log2M) time. Adding each controller to the current smallest group
takes M · K operations. Therefore, Heuristic 2 has O(max(M · K, M · lgM)) time complexity.

Heuristic 2 Load initialization
input:
C = {c1, c2, ..., cM} Controller list
Masters CVLi’s (average flow-request number (loads) for each controller)
integer K for number of clusters
output:
P = {p1, p2, ..., pK} Clusters list, where Pi = {ci1, ci2, ..., ci(M/K)}
procedure:

1: SortedListC ← descending order of controllers list according to their loads
2: Candidates← P
3: for all c ∈ SortedListC do
4: Pmin ← the cluster with minimal Costg(C) from candidates
5: Pmin ← Pmin cupC
6: if | Pmin |= M/K then
7: Candidates← Candidates− Pmin
8: end if
9: end for

10: return P

5.2. Initial Clustering as Input to the Second Phase

The outcomes of the two types of initialization, namely “distance” and “load”, presented so far
(Section 5.1) are used as an input for the second phase.

It should be noted that since the “maxDistance” constraint is an output of the initialization based
on the distance (Heuristic 1), the first phase is mandatory in case the distance constraint is tight.
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On the other hand, the initialization based on the load (Heuristic 2) is not essential to performing load
balancing in the second phase, but it can accelerate convergence in the second phase.

5.3. Phase 2: Decreasing Load Differences Using a Replacement Rule

In the second phase, we apply the coalition game theory [28]. We can define a rule to transfer
participants from one coalition to another. The outcome of the initial clustering process is a partition
denoted Θ defined on a set C that divides C into K clusters with M/K controllers for each cluster.
Each controller is associated with one cluster. Hence, the controllers that are connected to the same
cluster can be considered participants in a given coalition.

We now leverage the coalition game-theory in order to minimize the load differences between
clusters or to improve it if an initial load balancing clustering has been performed such as in
Section 5.1.2.

A coalition structure is defined by a sequence B = {B1, B2, . . . , Bl} where each Bi is a coalition.
In general, a coalition game is defined by the triplet (N, v, B), where v is a characteristic function,
N are the elements to be grouped and B is a coalition structure that partitions the N elements [28].
In our problem, the M controllers are the elements, G is the coalition structure, where each group of
controllers Gi is a coalition. Therefore, in our problem we can define the coalition game by the triplet
(M, v, G) where v = ς (t). The second phase can be considered as a coalition formation game. In a
coalition formation game each element can change its coalition providing this can increase its benefit
as we will define in the following. For this purpose, we define the Replacement Value (RV) as follows:

RV(Ci, Cj, a, b, Cnt) =


0 n(t)new ≥ Cnt
0 belowAverage is true
0 aboveAverage is true

sumnew − sumold else

 (14)

where sumnew = ϑ(t)anew + ϑ(t)bnew and sumold = ϑ(t)aold + ϑ(t)bold . belowAverage is true where
(ϑ(t)aold ≤ Avg)&(ϑ(t)bold ≤ Avg) and aboveAverage is true where (ϑ(t)aold ≥ Avg)&(ϑ(t)bold ≥ Avg).
Each replacement involves two controllers Ci and Cj with loads Cl (t)i and l (t)j, respectively, and two
clusters a and b with loads La and Lb, respectively. We use the notations ”old” and ”new” to indicate a
value before and after the replacement.

When n (t)new ≥ Cnt (see Equations (7) and (8)), the controllers, after the replacement, are organized
into clusters such that the maximum distance between controllers within a particular cluster exceeds the
distance constraint Cnt. In this case, the value of the RV is set to zero, because the replacement is not
relevant at all.

When (ϑ(t)aold ≤ Avg)&(ϑ(t)bold ≤ Avg) or (ϑ(t)aold ≥ Avg)&(ϑ(t)bold ≥ Avg)
(see Equations (4) and (5)), ς(t)old = ς(t)new (see Equation (6)). When one of the cluster’s load
moves to another side of the global average then we have ς (t)new ≥ ς (t)old. With both options, ς (t)old
do not improve and therefore the RV is set to zero.

Figures 3 and 4 provide an illustration of these two options. The dotted line denotes the average
of all clusters.

In Figure 3, the sum of the loads’ distances from the global average, before the replacement is
x + y. After the replacement the sum is (x− (l(t)i + l(t)j) + y + (l(t)i + l(t)j) = x + y. In the other
symmetrical options, the result is the same.

In Figure 4 the sum of distances from the global average, before the replacement is x + y, and this
sum after the replacement is (x + (l(t)i + l(t)j) + (l(t)i + l(t)j)− y > x + y. In the other symmetrical
options, the result is the same.
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Figure 3. Clusters loads after replacement on the same side with reference to the average.

Figure 4. Clusters’ loads after replacement on different sides with reference to the average.

In Equation (14), if none of the first three conditions are met, RV is calculated by
(ϑ (t)anew + ϑ (t)bnew) − (ϑ (t)aold + ϑ (t)bold), a value that can be greater than or less than zero.
Using the RV, we define the following “ReplacementRule”:

Definition 1. Replacement Rule. In a partition Θ, a controller ci has incentive to replace its coalition a with
controller cj from coalition b (forming the new coalitions anew =

(
aold\ci

)
∪ cj and bnew =

(
bold\cj

)
∪ ci if it

satisfies both of the following conditions: (1) The two clusters anew and bnew that participate in the replacement
do not exceed their capacity K · P. (2) The RV satisfies: RV

(
Ci, Cj, a, b, Cnt

)
< 0 RV defined in Equation (14)).

In order to minimize the load difference between the clusters, we find iteratively a pair of
controllers with minimum RV, which then implement the corresponding replacement. This is repeated
until all RV’s are larger than or equal to zero: RV

(
Ci, Cj, a, b, Cnt

)
> 0. Procedure 1 describes the

replacement procedure.
Regarding the time complexity of Line 1 in Procedure 1, i.e., find the best replacement, it takes:

M
k (k− 1) + M

k (k− 2) + ... + M
k (k− (k− 1)) = M2

k2 ·
k(k−1)

2 = M2(k−1)
2k = o

(
M2) time.

Line 3 invokes the replacement within O(1) time. Since in each iteration the algorithm chooses
the best solution, there will be a maximum of M/2 iterations in the loop of Lines 2–5. Thus, in the
worst case Procedure 1 takes an O(M3) time complexity. In practice, the number of iterations is much
smaller, as can be seen in the simulation section.
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Procedure 1 Replacements
input:
CL = {cl1, cl2, ..., clK} Clusters list, where CLi = {cli1, cli2, ..., cli(M/K)}
distance constraint Cnt
output:
CL = {cl1, cl2, ..., clK} Clusters list after replacements
procedure:

1: bestVal ← minci∈CLx ,cj∈CLy ,x 6=y,1≤x,y,≤k RV(ci, cj, CLx, CLy, Cnt)
2: while bestVal < 0 do
3: invoke replacement RV
4: bestVal ← minci∈CLx ,cj∈CLy ,x 6=y,1≤x,y,≤k RV(ci, cj, CLx, CLy, Cnt)
5: end while
6: return CL

5.4. Dynamic Controller Clustering Full Algorithm

Now we present the algorithm that includes the two stages of initialization and replacement,
in order to obtain clusters in which the loads are balanced (Algorithm 2).

Algorithm 2 DCC Algorithm
input:
nt Network contain C = {c1, c2, ..., cM} Controller list, and distances between controllers.
K and M for the number of clusters and controllers, respectively
constaintActive to indicate that it meets the controller-to-controller distance constraint
o f f set to calculate the distance constraint (optional).
output:
P = {p1, p2, ..., pk} Clusters list, where Pi = {ci1, ci2, ..., ci(m/k)}
procedure:

1: if constaintActive = true then
2: Masters← Algorithm 1(nt)
3: (initialDistanceClusters,maxDistance)← Heuristic 1(C,Masters)
4: Cnt← maxDistance + o f f set
5: f inalPartition← Procedure 1(initialDistanceClusters,true,Cnt)
6: else
7: initialStructure← Cluster structure from the previous cycle
8: initialLoadsOnly← Heuristic 2(c)
9: initialWithReplacement← Procedure 1(initialLoadsOnly, f alse)

10: ReplacementOnly← Procedure 1(initialStructure, f alse)
11: f inalPartition ← best solution from(initialLoadsOnly, initialWithReplacement,

ReplacementOnly)
12: end if
13: return f inalPartition

The DCC Algorithm runs the appropriate initial clustering, according to a Boolean flag called
“constraintActive”, indicating whether the distance between the controllers should be considered or
not (Line 1). If the flag is true, the distance initialization procedure (Heuristic 1) is called (Line 3).
Using the “maxDistance” output from Heuristic 1, the DCC calculates the Cnt = maxDistance+ o f f set
(Line 4). Using the partition and Cnt outputs, the DCC runs the “replacementprocedure” (Procedure 1)
(Line 5).

The DCC can run the second option without any distance constraint (Line 6). In Line 11 it chooses
the best solution in such cases, (referring to the minimal load differences) from the following three
options: (1) Partition by loads only (Line 8); (2) Start partition by loads and improve with replacements
(Line 9) (3) Partition by replacements only (using the previous cycle partition) (Line 10).

Regarding the time complexity, DCC uses Heuristics 1 and 2, Algorithm 1 and Procedure 1, thus it
has a O

(
M3) time complexity.
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5.5. Optimality Analysis

In this section, our aim is to prove how close our algorithm is to the optimum. Because the capacity
of controllers is identical, the minimal difference between clusters is achieved when the controllers’
loads are equally distributed among the clusters, where the clusters’ loads are equal to the global
average, namely ς (t) = 0. Since in the second phase, i.e., in the replacements, the DCC full algorithm
is the one that sets the final partition and therefore determines the optimality, it is enough to provide
proof of this.

As mentioned before, the replacement process is finished when all RV′s are 0, at which time any
replacement of any two controllers will not improve the result. Figure 5 shows the situation for each of
the two clusters at the end of the algorithm.

Figure 5. The loads of each of the two clusters at the end of all replacements.

For each two clusters, where the load of one cluster is above the general average and the load of
the second cluster is below the general average, the following formula holds:

ϑ(t)a + ϑ(t)b = La − Lb ≤ l(t)i − l(t)j, ∀ci ∈ a, cj ∈ b (15)

We begin by considering the most loaded cluster and the most under-loaded cluster. When the
cluster size is g, we define X1 to contain the lowest g/2 controllers, and X2 to contain the next lowest
g/2 controllers. In the same way, we define Y1 to contain the highest g/2 controllers and Y2 to contain
the next highest g/2 controllers.

In the worst case, the upper cluster has the controllers from the Y1 group and the lower cluster
has the controllers from the X1 group. Since the loads of the clusters are balanced, one half of the
controllers in the upper cluster are from X1, and the other half of controllers in the lower cluster are
controllers from Y1.

According to Formula (15), we can take the lowest difference between a controller in the upper
cluster and a controller in the lower cluster to obtain a bound on the sum of the distance of loads of
these two clusters from the overall average. The sum of distances from the overall average of these
two clusters is equal to or smaller than the difference between the two controllers, i.e., between the
one with the lowest load of the g most loaded controller and the one with the highest load of the g
lowest controllers.

ϑ (t)most_loaded + ϑ (t)most_under_loaded ≤ l (t)g_th_bigger − l (t)g_th_smaller (16)

The bound derived in (Equation (16)) is for the two most distant clusters. Since a bound for the
whole network (i.e., for all the clusters is needed) we just have to multiply this bound by the number
of cluster pairs we have in the network. There are k clusters in the networks so k/2 pairs of clusters,
therefore the bound in (Equation (16)) is multiplied by K/2 in order to determine a bound. However,
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to obtain a more stringent bound, we can consider bounds of other cluster pairs, and summarize all
bounds as follows:

di f f erenceBound ≤
M
2g

∑
i=1

(
sortList(M−ig) − sortListig

)
(17)

The sortList indicates the load list of the controllers sorted in ascending order, M. In Table 3
we show a summary of the time complexity of each of the algorithms we developed in this paper.
Explanation on how each time complexity has been derived can be found in the corresponding sections.

Table 3. Time Complexity of heuristics and algorithm used for Dynamic Controllers Clustering (DCC).

Algorithm 1 Find Masters O(M · K)

Heuristic 1 Distance Initialization O(M2)

Heuristic 2 Load Initialization O(max(M · lg M, M · K))

Procedure 1 Replacements O(M2)

Algorithm 2 General DCC O(M3)

6. Simulations

We simulated a network, with several clusters and one super controller. The controllers are
randomly deployed over the network. The number of flows (the controller load) of each controller is
also randomly chosen. The purpose of the simulation is to show that our DCC algorithm (see Section 5.4)
meets the difference bound (defined in Section 5.5), and the number of replacements bound while
providing better results than the fixed clustering method. The simulator we used has been developed
with Visual Studio environment in .Net. This simulator enables to choose the number of controllers,
the distance between each of them and the loads on each controller. In order to consider a global
topology, the simulator enables also to perform a random deployment of the controllers and to
allocate random load on each controller. We used this latter option to generate each scenario in the
following figures.

First we begin by showing that the bound for the s(t) function is met. We used 30 controllers
divided into five clusters. We ran 60 different scenarios. In each scenario, we used a random topology,
and random controllers’ loads. Figure 6 shows the optimality bound (Equation (15)), which appears
as a dashed line, and the actual results for the differences achieved after all replacements. For each
cluster, we chose randomly a minimalNumber in the range [20,10,000], and set the controllers’ loads
for this cluster randomly in a range of [minimalNumber, innerBalance]. We set the innerBalance to 40.
X In such a way, we get unbalance between clusters, and a balance in each cluster. The balance in
each cluster simulated the master operation. The innerBalance set the quality of the balance inside
the cluster. Our algorithm balanced the load between clusters and showed the different results that
indicate the quality of the balance. The distances between controllers were randomly chosen in a range
of [1,100].

We ran these simulations with different clusters size of: 2, 3, 5, 10 and 15. The results showed
that when the cluster size increases, the distance of the different bound from the actual bound also
increases. We can also see that when the cluster size is too big (15) or too small (2), the final results
are less balanced. The reason is because too small of cluster size does not contain enough controllers
for flexible balancing, and too big a cluster size does not allow flexibility between clusters since it
decreases the number of clusters.

We got similar results when running 50 controllers with cluster sizes: 2, 5, 10, 25.
As the number of controllers increases, the distance between the difference bound and the actual

difference increases. This is because the bound is calculated according to the worst case scenario.
Figure 7 shows the increase in distance between the actual difference distance from the difference
bound when the number of controllers increases. The results are for five controllers in a cluster with
50 network scenarios.
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Figure 6. Difference bound and the final difference results.

Figure 7. Distance between the difference bound and actual difference.

We now refer to the number of replacements required. As shown in Figure 8, the actual
replacement number is lower than the bound. The results are for 30 controllers and 10 clusters
over 40 different network scenarios (as explained above for Figure 6).

Figure 8. Replacements bound and actual number of replacements.

The number of clusters affects the number of replacements. As the number of clusters increases,
the number of replacements increases. Figure 9 shows the average number of replacements over the
30 network configurations, with 100 controllers, where the number of clusters increases.
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Figure 9. Increase in the number of replacements with an increase in the number of clusters.

As noted, the initialization of step 1 in the DCC algorithm reduces the number of replacements
required in step 2. Figure 10 depicts the number of replacements required, with and without
initialization of step 1. The results are for 75 controllers and 15 clusters over 50 different
network scenarios.

As mentioned previously in Section 5.1.1, during the initialization we can also consider the
constraint on the distance (although it is not mandatory and in Section 5.1.2 we presented an
initialization based on load only). Thus, if a controller-to-controller maximal distance constraint is
important, we have to compute the lower bound on the maximal distance. By adding this lower bound
to the offset defined by the user, an upper bound called “Cnt” is calculated (Equation (8)). Figure 11
shows the final maximal distance that remains within the upper and lower bounds. The results are for
30 controllers and 10 clusters with offset 20 over 30 network scenarios.

Figure 10. Number of replacements with and without initialization.
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Figure 11. Maximal distance between lower and upper bounds.

Finally, we compare our method of dynamic clusters with another method of fixed clusters.
As a starting point, the controllers are divided into clusters according to the distances between them
(Heuristic 1). In each time cycle, the clusters are rearranged according to the controllers’ loads of the
previous time cycle. The change in the load status from cycle to cycle is defined by the following
transition function:

f (n) =
{

max(l(t)i + random(range), P) random(0, 1) = 1
max(l(t)i + random(range), 0) else

}
where P is the number of requests per second a controller can handle. The load in each controller
increases or decreases randomly. We set the range at 20, and P at 1000. Figure 12 depicts the results
with 50 controllers partitioned into 10 clusters. The results show that the differences between the
clusters’ loads are lower when the clusters are dynamic.

Figure 12. Comparison results of dynamic clusters vs. fixed clusters.

Following Figure 12, we ran simulation (see Table 4) for different configuration than the one in
Figure 12, where 50 controllers were considered. Here, we simulated the comparison on different
random topologies, with a different number of controllers and clusters in each topology. The number of
cycles we run is also randomly chosen. The simulation results indicate that the difference is improved
fivefold by the dynamic clusters in comparison to the fixed clusters.
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Table 4. Dynamic vs. Fixed Clustering in different network topologies.

No. of Controllers No. of Clusters Cycles Fixed Clustering Dynamic Clustering Improvement Factor

16 4 20 319.81 61.64 5.2
44 11 29 999.09 185.33 5.3
70 14 18 1501.95 267.33 5.6
42 14 28 1044.48 209.15 4.9
30 6 22 610 109 5.6

7. Conclusions

In this paper, an improved approach to reduce the time complexity of the load balancing in the
SDN control plane is presented. The goal is to split the requests (from the switches to controllers)
among different controllers in order to avoid overload on some of them. For this purpose, we leverage
a three-tier control plane architecture with a super controller and master controllers, which can perform
load-balancing action independently. Therefore, the whole load balancing process can be executed in
parallel and reduce the time complexity.

We propose a system (made of multiple algorithms) that assigns controllers to clusters with an
optimization and the maximal distance between two controllers in the same clusters.

We show that using dynamic clusters provides better results than fixed clustering.
In future research, we plan to explore the optimal cluster size, and allow clusters of different sizes.

An interesting direction concerns overlapping clusters. Another direction is to examine the required
ratio between the runtime of the load balancing algorithm and the length of the unit on the timeline.
Finally, optimal placement of the master controllers in each cluster is also an important open issue.
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