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Abstract: When imaging maneuvering targets with inverse synthetic aperture ladar (ISAL),
dispersion and Doppler frequency time-variation exist in the range and cross-range echo signal,
respectively. To solve this problem, an ISAL imaging algorithm based on integral cubic phase
function-fractional Fourier transform (ICPF-FRFT) is proposed in this paper. The accurate ISAL
echo signal model is established for a space maneuvering target that quickly approximates the
uniform acceleration motion. On this basis, the chirp rate of the echo signal is quickly estimated
by using the ICPF algorithm, which uses the non-uniform fast Fourier transform (NUFFT) method
for fast calculations. At the best rotation angle, the range compression is realized by FRFT and the
range dispersion is eliminated. After motion compensation, separation imaging of strong and weak
scattering points is realized by using ICPF-FRFT and CLEAN technique and the azimuth defocusing
problem is solved. The effectiveness of the proposed method is verified by a simulation experiment
of an aircraft scattering point model and real data.

Keywords: inverse synthetic aperture ladar (ISAL); maneuvering target; integral cubic phase
function (ICPF); fractional Fourier transform (FRFT); non-uniform fast Fourier transform (NUFFT);
CLEAN technique

1. Introduction

With the development of radar detection technology, high-precision target imaging has become
an important aspect of the detection task. Inverse synthetic aperture ladar (ISAL) combines coherent
laser technology and inverse synthetic aperture technology, overcoming the limitations of the actual
aperture and diffraction. ISAL also overcomes the shortfalls of traditional microwave imaging radars
that cannot provide enough range resolution for remote target and small target imaging and solves the
problem experienced by traditional laser imaging radar, which cannot perform the high-resolution
imaging of a moving target [1]. ISAL is the only optical means by which centimeter-level resolution
can be obtained at a range of thousands of kilometers [2]. Therefore, ISAL imaging can fulfil the
requirement for high precision imaging and quasi real-time imaging for target surveillance.

ISAL imaging is similar to the traditional inverse synthetic aperture radar (ISAR) imaging
principle but due to the use of laser as a radiation source, ISAL has an ultra-high carrier frequency,
ultra-large bandwidth and extremely short wavelength. Compared with ISAR, ISAL has higher
resolution, smaller imaging angle and shorter imaging time [3]. Research on ISAL has mainly focused
on principal analysis and algorithm simulation. Some close-range field tests have been reported [4–8].
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Research on space target imaging using the space-based platform ISAL is still in its infancy, so the
research in this area is important.

ISAL uses an ultra-high carrier frequency and ultra-large bandwidth signal and the existing
range compression method disperses and distorts the echo range profile. In addition, the ISAL
azimuth Doppler of the maneuvering target is time variant. If the conventional azimuth image
method is used, the imaging quality will be seriously defocused. Two kinds of methods are currently
available for imaging the maneuvering target in the microwave section ISAR: parameter estimation
and time-frequency analysis. The parameter estimation method models the signal echo into a
multi-component signal model, then uses the signal estimation method to estimate the maneuvering
parameters of the signal and then compensates the signal after the estimation. The commonly used
estimation methods include maximum likelihood (ML) estimation [9], high-order ambiguity function
(HAF) [10], discrete chirp Fourier transform (DCFT) [11] and a variety of improved algorithms [12].
The disadvantage with these methods is that it is generally required to search for parameters and
the computational complexity is considerable for high precision estimation. The time-frequency
analysis method involves the instantaneous Doppler, which obtains the signal using the time frequency
analysis method and then uses range instantaneous Doppler (RID) for imaging. The common RID
methods include short time Fourier transform (STFT) [13], wavelet transform, S transform, Wigner-Ville
distribution (WVD), the smoothed pseudo WVD (SPWVD) [14] and the adaptive time-frequency
decomposition method [15,16]. The disadvantage of these methods is that the time-frequency
resolution is low and cross terms exist, which affects the imaging quality. Given the high-resolution
capability of ISAL, a large amount of data is generated. Therefore, finding a fast and efficient imaging
method suitable for ISAL imaging is necessary.

In this study, to solve the above problems, we first analyzed the exact echo model of the
target. Secondly, given the problem of the one-dimensional (1D) range dispersion of the echo signal,
the frequency modulation rate of the echo signal was quickly estimated using the ICPF algorithm
and then used the modulation frequency to calculate the best rotation angle in the FRFT domain.
At this angle, the FRFT [17] method was used to achieve the range compression and eliminate the
range dispersion. Then, to address the problem of azimuth defocus, ICPF combined with the CLEAN
technique was proposed to estimate the frequency modulation rate of the strong and weak scattering
points and then the azimuth compression imaging was realized using FRFT. Finally, the effectiveness
of the method was verified by a simulation experiment of the plane scattering point model.

2. ISAL Signal Echo Model

The three-dimensional (3D) imaging geometry of the maneuvering target is shown in Figure 1a.
Where the coordinate origin O is the target turntable center, point P(xp, yp, zp) is any scattering point
on the target and rp is the scattering point P position vector starting from O. ω is the rotational
angular velocity vector of the target three-dimensional motion. The ISAL imaging projection plane
Γ is determined by the vector ω and the radar line-of-sight direction (LOS) unit vector R, ω can be
decomposed into the radial rotational component, ωr along the LOS and the rotational component,
ωe perpendicular to the LOS. ωr cannot cause the radial movement of the scattering point, that is,
it will not cause the phase change of the echo and ωe will cause the scattering point to move radially,
resulting in Doppler frequency variation, which can achieve high-resolution ISAL imaging of the
target, ωe is called effective rotation component. The three-dimensional motion velocity of the target
can be decomposed into a component v in the Γ plane and a component perpendicular to the Γ plane
and the vertical component does not affect the imaging of the target, so this component can be ignored.
For the parallel component v, it can be decomposed into the radial component vr along the LOS and
the component ve perpendicular to the LOS. vr causes the Doppler shift of the target echo which cause
phase change, while ve does not generate Doppler shift.

After the above analysis, the effective component in the three-dimensional (3D) imaging geometry
can be projected onto the imaging plane Γ to obtain a two-dimensional (2D) turntable imaging geometry
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as shown in Figure 1b [18]. In two-dimensional (2D) imaging geometry, only the relative motion
between radar and target is considered. Where O is the reference point and XOY is the rectangular
coordinate system fixed on the target, the Y axis is the direction of the radar LOS. The target moves
along the Y axis with the speed of vr and rotates around the O point at the angular velocity of ωe.
Suppose that at time t (t is full-time and satisfies the equation t = tk + tm, where tk is the range fast
time and tm is the azimuth slow time, m = 1, 2, . . . , M), the range between the target geometry center
and the radar is R0(t). The rotation angle of the target relative to the radar is θ(t). Then, the range
RP(t) between any point P(x, y) in the target and the radar is:

RP(t) =
√

R0(t)
2 + r2

p − 2R0rp cos[θ(t) +
π

2
] ≈ R0(t) + x sin θ(t) + y cos θ(t) (1)

Considering the inertia of the conventional target motion and the short imaging time of ISAL,
which is less than 1 s, maneuvering target motion can only approximate to the second-order motion
component. In other words, R0(t) and θ(t) can be approximated as the second-order function of t2:

R0(t) = R0 + v0t +
1
2!

at2 (2)

θ(t) = θ0 + ωt +
1
2!

Ωt2 (3)

where R0 is the initial range, v0 is the initial radial velocity, a is the radial acceleration, θ0 is the initial
rotation angle, ω is the rotation angular velocity and Ω is the rotation angular acceleration.
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Figure 1. Inverse synthetic aperture ladar (ISAL) turntable imaging geometry; (a) three-dimensional
(3D) imaging geometry; (b) two-dimensional (2D) imaging geometry.

Because wavelength of ISAL is on the micron scale, it is sensitive to the motion of the target,
so the effect of the fast time tk on the radial range cannot be ignored [19]. When the pulse duration is
short, the influence of tk on rotation components can be neglected. So, Equations (2) and (3) can be
resolved as:

R0(t) = R0 + v0(tm + tk) +
1
2 a(tm + tk)

2

= R0 + v0tm + 1
2 atm

2 + (v0 + atm)tk +
1
2 atk

2

= R0(tm) + v(tm)tk +
1
2 atk

2
(4)
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θ(t) ≈ θ(tm) = θ0 + ωtm +
1
2

Ωtm
2 (5)

where R0(tm) and v(tm) represent the radial range and velocity varies with the azimuth time
tm, respectively.

According to the above equation, Equation (1) can be rewritten as:

RP(t) ≈ R0(tm) + Rd(tm) + v(tm)tk +
1
2

atk
2 (6)

where Rd(tm) = x sin θ(tm) + y cos θ(tm).
ISAL usually uses ultra-bandwidth Linear Frequency Modulated (LFM) signals to achieve high

range resolution, the expression of the transmitted signal can be written as:

st(tk, tm) = rect
(

tk
Tp

)
exp

(
j2π fct + jπktk

2
)

(7)

rect
(

tk
Tp

)
=

{
1,
∣∣tk
∣∣≤ Tp/2

0,
∣∣tk
∣∣>Tp/2

(8)

where Tp is the width of the pulse, fc is the carrier frequency and k is the chirp-rate.
Considering c� vr + at, we ignore the effect of the target speed of the irradiating and receiving

radar signals. Suppose the radar receives the echo signal of point P after time delay τ = 2Rp(t)/c,
the radar receiving signal is:

sr(tk, tm) = σrect
(

tk − τ

Tp

)
exp

(
j2π fc(tk − τ) + jπk(tk − τ)2

)
(9)

To reduce the data rate, ISAL often uses optical heterodyne coherent detection [20] to handle the
echo signals. Suppose the reference delay of the coherent pulses is τre f = 2Rre f (tm)/c, the reference
signal is:

sre f (tk, tm) = rect
( tk − τre f

Tp

)
exp

(
j2π fc(t− τre f )+ jπk(tk − τre f )

2
)

(10)

Therefore, the output signal after optical heterodyne detection is:

so(tk, tm) = sr(tk, tm) · s∗ref(tk, tm)

= σprect
(

tk−τ
Tp

)
exp

[
j2π fc(τre f − τ)

]
· exp

[
−jπk(τ2

re f − τ2)
]
· exp

[
j2πk(τre f − τ)tk

] (11)

We substitute Equations (4) and (6) into Equation (11) to obtain a polynomial function about
time tk:

so(tk, tm) = σprect(
tk − τ

Tp
) · exp

[
j2π
(

P0 + P1tk + P2tk
2 + P3tk

3 + P4tk
4
)]

(12)

P0 = 2k
∆RmP(∆RmP + 2Rre f (tm))

c2 − 2 fc
∆RmP

c
(13)

P1 = v(tm)

(
4k

R0(tm) + Rd(tm)

c2 − 2 fc

c

)
− 2k

c
∆RmP (14)

P2 = − a fc

c
+ 2ak

R0(tm) + Rd(tm)

c2 + 2k
v(tm)

2

c2 − 2k
v(tm)

c
(15)

P3 = 2akr
v(tm)

c2 − akr

c
(16)

P4 =
kra2

2c2 (17)
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where ∆RmP = R0(tm)+ Rd(tm)− Rre f (tm). When Rre f (tm) is accurately estimated, it is approximately
equal to R0(tm), then ∆RmP = Rd(tm), which is only related to the scattering point on the target in
azimuth time. In practice, considering the impact of the target velocity on τ and τre f , the envelope
in the Equation (12) will cause a contraction in time. But the impact does not affect the analysis of
the range dispersion, which is ignored here [1]. P0 is the phase term related only to the azimuth
time tm, in which 2 fc∆RmP/c is a necessary term for azimuth compression and has no influence on
range compression. P1 is the first-order phase term. The first item in P1 is mainly affected by the
high carrier signal frequency, which produces the signal in the pulse Doppler. For the uniformly
accelerated moving target, the Doppler coupling time shift with azimuth time change is produced,
resulting in a range move. The second item contains the range information 2k∆RmP/c, which is key
to attaining range compression. P2 is the chirp-rate phase term, mainly influenced by the ultra-high
carrier frequency and large bandwidth. It is the root cause of the division and broadening of the peaks
of the range. The range dispersion effect occurs if the conventional DFT is used for the compression
processing of the range direction. From the expression P2, the chirp-rate term of all scattering points in
the single pulse echo is the same fixed value, whereas for different pulse echoes, the chirp-rate rate
varies with slow time tm. Therefore, processing the pulse echo sequence one at a time is necessary.
P3 and P4 are the high-order phase terms. Because in a pulse period c� av(tm), Tp

2 � c/2krTp and
Tp

3a2 � c2/2krTp, the influence of the P3 and P4 on the intra-pulse Doppler spectrum broadening can
be ignored.

According to the above analysis, in the imaging time, the second-order polynomial approximation
can appropriately reflect the motion state of the maneuvering target and meet the imaging needs.
The effect of the third- and fourth-order terms can be ignored. The range echo signals after
heterodyne detection can be approximated to multicomponent LFM signals with the same frequency
modulation slope:

so(tk, tm) = σprect(
tk − τ

Tp
) · exp

[
j2π
(

P0 + P1tk + P2tk
2
)]

(18)

3. Range Imaging Based on ICPF-FRFT

FRFT is a kind of generalized Fourier transform that better focuses LFM signals [21]. The FRFT of
the signal s(t) is defined as:

Sα(u) = Fp[s(t)] =
∫ ∞

−∞
s(t)Kα(t, u)dt (19)

where p is the order of the FRFT, which can be any real number and α is the rotation angle; α = pπ/2.
When α = π/2, FRFT becomes a traditional Fourier transform. Kα(t, u) is the transformation operator,
the expression is:

Kα(t, u) =



√
1− j cot α exp

(
jπ
(
(t2 + u2) cot α− 2ut csc α

))
,

α 6= nπ;
δ(t− u), α = 2nπ

δ(t + u) , α = (2n± 1)π
α 6= nπ;

(20)

FRFT is equivalent to projecting the signal on the frequency axis after the counterclockwise
rotation α of the signal in the time-frequency plane. When the u axis of the FRFT is rotated to the
time-frequency ridge of the signal, the amplitude of the signal projection to the fractional frequency u
axis is maximized and the rotation angle at this time is called the best angle αk of rotation. Therefore,
the projection of FRFT at the best angle of rotation can be used for range imaging and the imaging
principle is shown in Figure 2.
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Figure 2. Schematic diagram of range compression via Discrete Fourier transform (DFT) and fractional
Fourier transform (FRFT).

FRFT requires the peak search method in the two-dimensional (2D) plane (α, u) to obtain the
optimal rotation angle. Therefore, the effect of range image compression depends on the value of αk and
its precision is easily influenced by the resolution of the search angle. The computation requirement
is considerable in the high precision search. So, accuracy and computation are difficult to achieve.
Paper and colleagues [22–25] proposed that ICPF can quickly estimate the chirp rate of LFM signals.
The method only requires a 1D search and has good anti-noise performance and high estimation
accuracy without being affected by subjective factors such as search resolution. Therefore, in this paper,
ICPF was firstly used to estimate the modulation frequency of the optical heterodyne output signal
and then the optimal rotation angle and the order of the FRFT were calculated. Finally, the range
compression imaging was completed by FRFT at the optimal rotation angle. The ICPF definition of
signal x(t) is as follows:

ICPF(µ) =
1
T

∞∫
−∞

∣∣∣∣∣∣
∞∫
−∞

x(t + τ)x(t− τ) exp(−jµτ2)dτ

∣∣∣∣∣∣
2

dt (21)

From the definition, ICPF is a kind of transformation that detects the chirp-rate of the signal,
which can concentrate the signal energy on the chirp-rate of the signal, in line with the energy
distribution of the linear frequency modulation signal. Since ICPF needs to calculate the τ2 of the
signal, using FFT for fast calculations is not possible. Therefore, we used the non-uniform fast Fourier
transform (NUFFT) [26,27] to overcome the rigorous data sampling requirements of the FFT and to
improve the algorithm’s calculation speed. The NUFFT is defined as:

ẑk =
M

∑
l=1

zl exp(−j2πxl/N), k = −N/2, · · · , N/2 + 1 (22)

where zl is non-uniform sampling time and xl is the corresponding non-uniform sampling position.
Here, interpolation time domain non-uniform sampling data zl is replaced by an interpolation index
term to achieve fast non-uniform Fourier transform.

Suppose that ϕ̂(x) =
√

2
π

sinh(α
√

K2−x2)√
K2−x2 ,−K ≤ x ≤ K, ϕ̂(ξ) =

{
I0K
√

α2 − ξ2, |ξ| ≤ α

0, |ξ| > α
, where,

K is the length of interpolation kernel function. According to P. O’Shea [27], the exponential function
can be expanded as shown in Equation (23):

exp(−jxξ) =
1√

2πϕ(ξ)
∑

m∈Z
ϕ̂(x−m) exp(−jmξ) (23)
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where |ξ| ≤ π/c, c is the oversampling factor. Suppose x = cx1, ξ = 2πk/(cN), |k| ≤ N/2,
α = π(2− 1/c)− 0.01, ϕk = ϕ(2πk/(cN)) and ϕ̂lm = 1

2π ϕ̂(cxl − (µl + m)). Substituting Equation (23)
into Equation (22) yields a uniform frequency output:

ẑk =
1
ϕk

cN/2−1

∑
j=−cN/2

uj exp(−j2πkj/(cN)) (24)

where

uj =
M

∑
l=1

∑
m∈Z

zl ϕ̂l,j+cmN−µl
, j = −cN/2, · · · , cN/2− 1 (25)

The specific NUFFT implementation process is shown in Figure 3. First, the intermediate
parameters µl , ϕk, ϕ̂lm are calculated from the input non-uniform sampling data zl and the
corresponding position xl . Then, the intermediate variable uj is calculated according to Equations (25).
Finally, the corresponding frequency output value ẑk is calculated using Equation (24) with fast FFT.
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According to the above NUFFT principle, the non-uniform Fourier transform in the proposed
ICPF is quickly implemented with NUFFT to reduce the computational complexity of the algorithm,
so Equation (26) can be written as:

ICPF(µ) = FFTt[NUFFTτ2(ICPF(t, µτ2))] (26)

where NUFFTτ2 indicates the NUFFT operation on the variable τ2 and FFTt indicates FFT operation
on the variable t.

Assuming N is the sampling point of a single pulse echo and M is the number of DFT search
points, the complexity of the ICPF-based DFT direct calculation is O(N2M), whereas the complexity of
the non-uniform Fourier transform calculation method is O(Nlog2(N)) [28]. Assuming that K is the
number of scanning points in the FRFT transform domain α, which is determined by the step size
and range of α, the complexity of the discrete FRFT is O(NKlog2(N)). If we want an accurate αk, K
is usually large. The transformation and 2D search need to be coordinated [21,24], so the proposed
NUFFT-based ICPF-FRFT algorithm does not need to perform any parameter search and has high
anti-noise performance. These features enable the implementation of the ISAL imaging algorithm in
real time.

As a result, the ICPF transform of the optical heterodyne output signal results in spikes only at its
chirp-rate slope. The chirp-rate at the peak is µk:

µk = argmax
µ
|ICPF(µ)| (27)

Calculate the rotation angle αk and FRFT order pk corresponding to the tuning frequency, which are
the best FRFT rotation angle and order, respectively. When using discrete FRFT calculations, the signal
parameters need to be dimension normalized [29]. The relationship between the chirp-rate and the
rotation angle is provided in Equation (28) and the FRFT order is provided in Equation (29):

µk = − cot(αk) ×
f 2
s

N
(28)
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pk =
2αk
π

=
2
π

arc cot(−µk f 2
s

N
) (29)

The optical heterodyne signal in Equation (12) is subjected to pk order FRFT:

So(u, tm) = Fpk [so(tk, tm)]

= σp A(u) · exp(j2πP0)
∫ ∞
−∞ rect( tk−τ

Tp
) · exp[j2π(P1 − u csc α)tk] · exp

[
jπ(2P2 + cot α)tk

2]dtk
∣∣
α=αk

= σpTp A(u) exp(j2πP0) · sin c
[

Tp(
u

sin αk
− P1)

]
(30)

where A(u) =
√

1 + j2P2 exp(−j2πP2u2). From the result, the peak value of the signal is obtained at
u = P1 sin αk. That is, the range compression of the echo signal is achieved by one FRFT and the phase
exp(j2πP0) of the azimuth compression is retained.

4. Azimuth Imaging Based on ICPF-FRFT

4.1. Feature of Azimuth Echo Signal

In order to facilitate analysis, we assumed that the radar echo has completed range compression
and motion compensation, so the echo signal can be converted into a turntable model with centroid as
the reference point and the azimuth echo signal at the point can be expressed as:

sp(tm) = σ exp
[
−j

4π

λ

(
xp sin θ(tm) + yp cos θ(tm)

)]
(31)

where σ is the amplitude of the signal after the motion compensation.
When the target is maneuvering, θ(t) can be expanded into a function of time t according to

Taylor [30] due to the inertia of space targets. For a space target with certain inertia, the ISAL imaging
time is shorter and the cumulative rotation angle required by the imaging is smaller, so the motion of
the target and radar can approximate to the second-order component, meaning it approximates the
uniform acceleration motion.

θ(t) = θ0 + ωt +
1
2!

Ωt2 (32)

where θ0 is the initial rotation angle, ω is the rotation angular velocity and Ω is the rotation angular
acceleration.

As the ISAL wavelength is in the order of µm, to achieve the imaging resolution of mm magnitudes,
the required rotation accumulation angle is in the order of mrad, so the following small angle
approximation conditions are satisfied: sin θ(t) = sin

(
θ0 + ωt + 1

2 Ωt2
)
≈ θ0 + ωt + 1

2 Ωt2

cos θ(t) = cos
(

θ0 + ωt + 1
2 Ωt2

)
≈ 1−

(
θ0 + ωt + 1

2 Ωt2
)2 (33)

According to Equations (29) and (31), the P point azimuth echo can be approximated to a linear
frequency modulated signal.

sp(t) = σ exp
[
−j

4π

λ

(
φ0 + fat +

1
2

kat2
)]

(34)

where

φ0 = xpθ0 + yp

(
1− 1

2
θ2

0

)
(35)

fa = xpω− ypθ0ω (36)

ka =
1
2

(
xpΩ− ypω2 − ypθ0Ω

)
(37)
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In practice, multiple scattering points with different intensities are distributed in the same range
cell, so the azimuth echo becomes a multicomponent LFM signal with a different LFM rate:

ŝ(tm) =
I

∑
i=1

σi exp
(
−j

4π

λ

(
φ0i + faitm +

1
2

kaitm
2
))

(38)

where K is the number of scattered points and φ0i, kai and fai satisfy Equations (35)–(37), respectively.

4.2. Azimuth Compression Based on ICPF-FRFT

ICPF can effectively suppress the cross and pseudo peaks caused by the interference of
multicomponent signals, so the ICPF-FRFT can be used for imaging azimuth signals but the strong
signal components affect the detection of the weak signal components. Therefore, we combined the
CLEAN technique with ICPF-FRFT to estimate the strong to weak signals. The frequency modulation
slope of the signal was calculated and then FRFT was used to image the signal components of
different frequency modulation slopes. The imaging procedure for the azimuth compression based on
ICPF-FRFT is shown in Figure 4.
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Figure 4. The imaging procedure for the azimuth compression.

The concrete steps are as follows:
Step 1: Calculate the ICPF of a range cell of the echo signal and estimate the frequency modulation

rate of the strongest signal component:

ŝ(tm) = ŝ(φ0i, fai, kai, tm) +
I

∑
l=1,l 6=i

ŝ(φ0l , fal , kal , tm) (39)

kai = argmax
ka
|ICPF[ŝ(tm)]| = ICPF[ŝ(φ0i, fai, kai, tm)] (40)

where ŝ(φ0i, fai, kai, tm) is the ith signal component.
Step 2: Calculate the best rotation angle αi and the corresponding order pki, according to

Equations (28) and (29), respectively. Then, calculate FRFT of the range cell signal in the range
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[αi − ∆, αi + ∆] where ∆ is the calculation error of αi. Search the peak to obtain the corresponding
position ui:

Ŝα(u) = Fpki [ŝ(φ0i, fai, kai, tm)] +
I

∑
l=1,l 6=i

Fpki [ŝ(φ0l , fal , kal , tm)] = Ŝi
αi(u) +

I

∑
l=1,l 6=i

Ŝα,l(u) (41)

{ui} = argmax
u

[∣∣Ŝαi (u)
∣∣] (42)

Step 3: Separate the peak point by using the CLEAN technique to construct a narrowband filter
W(ui) centered on ui. Filter the strongest component and the peak value Ŝi

αi(u) is considered the
azimuth focusing image of the ith component.

Ŝi
αi
(u) = Ŝαi (u)W(ui) (43)

Ŝα,i(u) = A(u)σi exp(j2πφ0i) sin c[Tp(
u

sin α
− fai)] (44)

where A(u) =
√

1− j cot α exp(jπu2 cot α).
Step 4: Transform the rest of the signal to the time domain using FRFT with a rotation angle

of −αi.

ŝi+1(tm) =
∫ +∞

−∞
Ŝαi (u)(1−W(ui))K−αi (tm, u)du (45)

Step 5: Repeat the above steps until all the scattered points in the current range cell are separated.
This separation can be judged by when the residual signal component energy E of the ith range cell is
less than a certain energy threshold EH, which is usually 5% of the original signal [31,32].

Step 6: The target image is obtained by scaling the scattered images u′ = u/ sin α and stacking
them linearly.

Step 7: The 2D ISAL images can be obtained by using the above methods according to the
sequence numbers of the range cells.

5. Imaging Procedure

For a maneuvering target with approximately uniformly accelerated motion, the ISAL imaging
algorithm flow is shown in Figure 5.
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The detailed procedure is as follows: (1) Input the received echo signal; (2) Construct the
reference signal based on the reference range; (3) Perform the optical heterodyne detection of the echo
signal and the reference signal, with the output being the differential frequency signal; (4) Complete
range compression with the ICPF-FRFT outlined in Section 3; (5) Translational compensation for the
signal after range compression; (6) Azimuthal compression with the ICPF-FRFT-CLEAN outlined in
Section 4.2; (7) Output the 2D ISAL image.

6. Experimental Results of Simulation and Real Data

In order to verify the effectiveness of the proposed algorithm, simulation and real data experiments
were completed. Some other imaging algorithms were considered for comparison.

6.1. Experimental Simulation Results

The ladar and target simulation parameters used in the simulation experiment are provided in
Table 1, which refers to the scattering point model in Papers [1,11]. The simulation model shown
in Figure 6 is a plane model that contains 52 scattering points. The ladar parameters are typical
parameters that can be realized and the range resolution was 0.001 m. We assumed that the positional
relationship between the ladar and the target was as shown in Figure 1. The target motion parameters
were set as the turntable motion parameters as shown in Table 1.

Table 1. Simulation parameters.

Radar Parameter Value Target Parameter Value

Wavelength (µm) 1.55 Initial range (km) 100
bandwidth (Ghz) 150 Initial velocity (m/s) 100
Pulse width (µs) 100 Velocity acceleration (m/s2) 30

PRF () 3.3 Angular velocity (rad/s) 0.005
Range sampling number 256 Angular acceleration (rad/s2) 0.01

Pulse number 512 Angular acceleration rate (rad/s3) 0.006
Processing time (s) 0.155 - -

Figure 7 is the smooth pseudo Wigner distribution (SPWVD) time frequency graph of the 128th
pulse echo. The ISAL single echo signal is a multicomponent LFM signal with the same modulation
frequency, which confirms the analysis of the echo signal in Section 2. Therefore, the compression of all
scattering points can be accomplished through one compression of a range. Figure 8 shows the 128th
pulse range compression result using the DFT method. From the display results, the direct use of DFT
compression results in a serious dispersion effect of the range image and the scattering points of the
adjacent resolution units form. Serious mutual interference occurs for scattering points of adjacent
resolution units. Figure 9 shows the 128th pulse range compression result using the ICPF-FRFT method
proposed in this paper. As seen in the figure, the results show that a better compression effect was
achieved and the range dispersion was eliminated.
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Figure 6. Simulation model of aircraft.
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Figure 7. The 128th pulse’s smooth pseudo Wigner distribution (SPWVD).
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Figure 8. The 128th pulse’s range compression via Discrete Fourier transform (DFT).
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Figure 9. The 128th pulse’s range compression via integral cubic phase function-fractional Fourier
transform (ICPF-FRFT).

Figure 10 provides the SPWVD time frequency graph of the 79th (the lower edge of the aircraft)
and 128th (the aircraft range center) range cell. From the diagram, due to the short ISAL imaging time,
the target azimuth echo signals can be approximated as a multi-component LFM signal, even if there
is a third order rotational component (angle acceleration rate) in the target. This demonstrates a slope
with different slopes on the time frequency graph, which is the same as the previous theoretical analysis.
So, dividing the scattering imaging into scattering points on different range cells was necessary.
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Figure 10. Range cell’s SPWVD: (a) the 79th range cell and (b) the 128th range cell.

Figure 11a shows the result of traditional DFT azimuthal compression, which highlights that
the scattered points from the center of the azimuth were seriously defocused—a poor imaging result.
For comparison, we also provide three instantaneous Doppler (RID) imaging results based on STFT,
WVD and SPWVD, as shown in Figure 11b–d, respectively. The image results used the 24th frame,
which was t = 0.116 s. From the results of STFT in Figure 11b, the time-frequency resolution is
affected by the window function and the azimuth defocus was severe. From Figure 11c, WVD can
improve upon the time-frequency resolution but since the azimuth echo is a multi-component signal,
the imaging result produces a cross term, so the imaging results are poorly readable and cannot
identify the target. The SPWVD provides windowing and smoothing of WVD, so it weakens the
cross terms but the time-frequency resolution also decreases. From Figure 11d, we can verify that
the SPWVD has no cross-scattering point compared to the result of Figure 11c but the resolution is
reduced. From the four results in Figure 11, the direct imaging range-Doppler (RD) algorithm and the
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three range-instantaneous Doppler (RID) imaging methods cannot achieve better imaging results and
the azimuth defocus still exists.
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Figure 11. Azimuth compression via classical methods: (a) direct DFT, (b) RID image based on STFT,
(c) RID image based on WVD and (d) RID image based on SPWVD.

Figure 12 is the result of azimuth compression using ICPF-FRFT. In Figure 12a, the CLEAN
technique is not used, whereas it is applied in Figure 12b. Figure 12a shows that the imaging results of
a single scattering point on a certain range cell are good. With multiple scattering points, the strong
signal suppresses the separation of the weak signal due to the different signal intensities. Most of
the signal is strong and is the signal of its side lobe component, and the weak signal is missing.
Figure 12b shows that when the CLEAN technique was used to separate the scattering points on
different range cells from strong to weak separation imaging, a better focusing effect was achieved.
The diagram demonstrates that this method can effectively separate the scattering points of two range
cells from each other, proving the effectiveness of the square method and further illustrates that the
ISAL can be applied in real situations. High precision (millimeter level) imaging of space targets is
now being performed.

Figure 13a–c are schematic diagrams of the separation of the first three peaks of the 95 range cell
on the lower wing of the aircraft. The left image is the search process of the FRFT peak in the ICPF
estimation error, the right side is the Clean processing for the peak point, the red frame is a narrow
band filter and the frame content is the transverse focus image. Through this process, the azimuth
scattering points with different intensities were separated and appropriately imaged.
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Figure 12. Azimuth compression via ICPF-FRFT: (a) without the CLEAN technique and (b) with the
CLEAN technique.
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In order to quantitatively evaluate the effectiveness of the proposed ICPF-FRFT algorithm,
image entropy, contrast and running time were used to illustrate the imaging quality of the algorithm.
Suppose the acquired ISAL image is f (n, k), where n and k are the range and azimuth number of the
sampling unit, respectively. The definition of image entropy is:

E = −
K

∑
k=1

N

∑
n=1

| f (n, k)|2

F
ln
| f (n, k)|2

F
(46)

F =
K

∑
k=1

N

∑
n=1
| f (n, k)|2 (47)

where F is the total energy of the ISAL image. The image entropy is small when the image is
well-focused. Conversely, a large image entropy indicates that the compensation effect is worse.

The definition of image contrast is:

C =

√
E
{
[| f (n, k)| − E(| f (n, k)|)]2

}
E(| f (n, k)|) (48)

where E(·) represents the average operation. The image contrast is large when the image is well-focused.
Conversely, a small image entropy indicates that the compensation effect is worse.

The results of the proposed ICPF-FRFT algorithm compared with the RD algorithm,
FRFT algorithm, the ICPF-FRFT algorithm without CLEAN technique and three RID imaging methods
based on STFT, WVD and SPWVD (Table 2). From the table, the algorithm proposed in this paper has
smaller image entropy and a larger image contrast than the other algorithms, which shows that the
image quality of the algorithm proposed in this paper is better. Notably, although all the indexes of the
CLEAN technique are better, the loss of the scattering points cannot correctly reflect the distribution of
the target scattering point, so the imaging quality was not the best. When the FRFT imaging algorithm
with a small step size is performed directly, the result can reach an image entropy and contrast close
to that of the proposed ICPF-FRFT algorithm paper but considerable computation time is required,
indicating that the proposed algorithm is more efficient.

Table 2. Comparison of simulation aircraft imaging results.

Imaging Algorithm RD STFT WVD SPWVD FRFT No-CLEAN ICPF-FRFT

Image entropy 8.0546 9.2598 7.6822 6.0802 5.7540 4.1374 5.2629
Contrast ratio 1.6678 1.3632 3.4347 8.4177 10.8059 29.6294 13.0397

Running time (s) 0.2066 3.3042 4.9585 215.8427 77.0294 2.3453 3.8554

6.2. Experimental Results of Real Data

Since no ISAL data have been published to date, the research on ISAL at this stage is mainly
based on simulation data to verify algorithms. However, considering the problem of azimuth Doppler
time-varying when imaging a maneuvering target in ISAR, ISAR is consistent with ISAL imaging in
the pursuit of azimuth focusing. Therefore, the ISAL azimuth imaging algorithm based on ICPF-FRFT
is also suitable for imaging ISAR maneuvering targets but the radar signal bandwidth in ISAR is much
smaller than ISAL, so the spread over the range can be ignored. To further validate the effectiveness
of the algorithm, the publicly available Boeing B727 ISAR aircraft data from Victor C. Chen of the
U.S. Naval Research Laboratory (Washington, DC, USA) was used for experimental verification [33].
The data included 256 continuous pulses with a carrier frequency of 9 GHz, a bandwidth of 150 MHz
and a pulse repetition rate of 20 kHz. Range compression and the motion compensation for the data
were completed.
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The imaging results using the imaging method proposed in this paper and other comparison
methods described in the previous section are shown in Figure 14. The evaluation indexes of each
imaging result are shown in Table 3. As can be seen from Figure 14a, the azimuth defocusing that
occurred when using the RD algorithm was severe. From Figure 14b–d, the RID imaging results are
related to the time-frequency method used, in which the time-frequency resolution of STFT was the
worst and WVD had the highest time-frequency resolution but the cross-term was the most serious
and SPWVD was somewhere in between. The result of the notable time-frequency imaging method
shows that as the azimuth Doppler dynamically changes, the results displayed at different azimuths
are different. In addition, some weak scattering point energy loss occurs, as shown in the wing part
of the figure. Some scattering points are missing. It can be seen from Figure 14e–g that all three
imaging methods can effectively improve the azimuth focusing effect but the direct FRFT requires a
long computation time to achieve the same focusing effect as ICPF-FRFT. However, for the No-CLEAN
technique, although all the indicators are superior, this algorithm only focuses on the strong scattering
point, resulting in a lack of partial scattering points. Considering the minimum entropy, contrast and
running time, the ICPF-FRFT algorithm is optimal, which is consistent with the results of the previous
simulation analysis.
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Figure 14. Inverse synthetic aperture radar (ISAR) imaging results: (a) RD algorithm, (b) STFT algorithm,
(c) WVD, (d) SPWVD, (e) FRFT, (f) No-CLEAN technique and (g) ICPF-FRFT algorithm. The simulated
echo pulses of Boeing-727 shown in Figure 14 are available online at http://www.mdpi.com/2072-
4292/10/4/593/s1.

Table 3. Comparison results of the Boeing-727 images.

Imaging Algorithm RD STFT WVD SPWVD FRFT No-CLEAN ICPF-FRFT

Image entropy 6.6428 6.1032 5.7609 4.8711 5.5242 3.9852 4.2940
Contrast ratio 2.3968 2.8949 3.6200 6.4915 4.8906 12.7516 7.5289

Running time (s) 0.0014 0.2350 0.4022 9.6358 24.0325 1.0412 1.2939

7. Conclusions

ISAL can meet the high precision and quasi real-time imaging requirements for targets. However,
due to the use of ultra-high carrier frequency and large bandwidth signals, the ISAL radar’s target echo
signal produces distortion and a 1D dispersion profile. In addition, when the target moves, the radar
signal echo direction changes to Doppler. To address these issues, an ISAL imaging algorithm based on
ICPF-FRFT was proposed for space maneuvering targets, which was able to quickly image uniformly
accelerated motion. The algorithm first uses the ICPF algorithm based on NUFFT computing to quickly
estimate the frequency modulation rate of the echo signal and then uses FRFT to compress the range
image at the best rotation angle and eliminate the range dispersion. After motion compensation,
the ICPF-FRFT and CLEAN technique are used again to separate the strong and weak scattering points
and solve the azimuth defocusing problem. The validity of the method was verified with a simulation
experiment of an aircraft scatter point model and Boeing-727 data.
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