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Abstract: As the high productive efficiency of sprinkler irrigation is largely based on balanced soil 
moisture distribution, it is essential to study the exact effectiveness of water droplet infiltration, 
which provides a theoretical basis for rationally scheduling the circulation efficiency of groundwa-
ter in agricultural irrigation performance. This research carried out adaptive prediction of the drop-
let infiltration effectiveness of sprinkler irrigation by using a novel approach of a regularized sparse 
autoencoder–adaptive network-based fuzzy inference system (RSAE–ANFIS), for the purpose of 
quantifying actual water droplet infiltration and effectiveness results of precision irrigation in var-
ious environmental conditions. The intelligent prediction experiment we implemented could be 
phased as: the demonstration of governing equations of droplet infiltration for sprinkler irrigation 
modeling; the measurement and computation of probability densities in water droplet infiltration; 
innovative establishment and working analysis of RSAE–ANFIS; and the adaptive prediction of 
infiltration effectiveness indexes, such as average soil moisture depth increment (θ, mm), irrigation 
infiltration efficiency (ea, %), irrigation turn duration efficiency (et, mm/min), and the uniformity 
coefficient of soil moisture infiltration (Cu, %), which were implemented to provide a comprehen-
sive illustration for the effective scheduling of sprinkler irrigation. Result comparisons indicated 
that when jetting pressure (Pw) was 255.2 kPa, the impinge angle (Wa) was 42.5°, the water flow rate 

(Fa) was 0.67 kg/min, and continuous irrigation time (Tc) was 32.4 min (error tolerance = ±5%, the 
same as follows), thereby an optimum and stable effectiveness quality of sprinkler irrigation could 
be achieved, whereas average soil moisture depth increment (θ) was 57.6 mm, irrigation infiltration 
efficiency (ea) was 62.5%, irrigation turn duration efficiency (et) was 34.5 mm/min, and the uni-
formity coefficient of soil moisture infiltration (Cu) was 53.6%, accordingly. It could be concluded 
that the proposed approach of the regularized sparse autoencoder–adaptive network-based fuzzy 
inference system has outstanding predictive capability and possesses much better working superi-
ority for infiltration effectiveness in accuracy and efficiency; meanwhile, a high agreement between 
the adaptive predicted and actual measured values of infiltration effectiveness could be obtained. 
This novel intelligent prediction system has been promoted constructively to improve the quality 
uniformity of sprinkler irrigation and, consequently, to facilitate the productive management of 
sprinkler irrigated agriculture. 
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1. Introduction 
It is well known that sprinkler irrigated agriculture uses most of the water resources 

in the world, and it has already been investigated for several decades due to the remark-
able population increment, extreme environmental climate, and excessive water resource 
demands. Since the high performance of sprinkler irrigated agriculture is largely based 
upon appropriate droplet infiltration, this makes it important to study the exact effective-
ness of water infiltration in the interests of understanding balanced water resource distri-
bution and providing a theoretical basis for rationally scheduling the circulation efficiency 
of groundwater in precision irrigation. Therefore, the adaptive prediction of droplet infil-
tration effectiveness is necessary to improve irrigation monitoring and ensure crop 
growth. Here, sprinkler irrigation can be described as an efficient collaboration and pre-
cise application of water spraying in tiny droplets on plants, soil or grass, meeting specific 
requirements of individual plants or management units, and minimizing the related ad-
verse environmental impacts simultaneously. As a holistic collaborative performance, 
sprinkler irrigation not only enables the emergence of more flexible crop cultivation sys-
tems, but also involves the optimal management of agricultural irrigation systems, so that 
it has been widely employed to solve the growing problem of water scarcity and the need 
for more effective irrigation practices. Accordingly, the droplet infiltration effectiveness 
of sprinkler irrigation could be defined here as the working quality of liquid water slowly 
passing through the filtering soil medium, for the purpose of evaluating the balanced dis-
tributive capability of droplet infiltration in soil fields and facilitating the cultivation equi-
librium of plants and crops. Mostly, the quantitative calibration of droplet infiltration ef-
fectiveness depends upon the complicated inter-relation mechanism among experimental 
irrigation conditions, water flow properties, and practical implementations of sprinkler 
irrigation, etc. Theoretical research and working characteristics discussed on this topic can 
be found from the literature [1,2]. Unfortunately, the adaptive prediction of infiltration 
effectiveness has rarely been thoroughly investigated. Prompted by the rapid progress of 
sprinkler irrigation and flow mechanics, the mechanism complexity and investigation 
depth of droplet infiltration already have traditional process simulations and pure physi-
cal comparisons beyond original knowledge scopes [3]. It is regrettable that most current 
studies cannot solve the existing problems of infiltration effectiveness prediction accu-
rately. 

With respect to droplet infiltration quantification, controlled drainage has already 
been promoted to boost crop yields and reduce subsurface drainage flows or leaching 
nutrients in the irrigated farm fields [4]. Since uneven water distribution, the misuse of 
water, and inefficient watering techniques are some of major causes wreaking devastation 
on water security, Mostafa et al. managed drip irrigation as an effective tool for increasing 
crop yield, enlarging water productivity, and saving irrigation water for newly reclaimed 
areas [5]. Recently, a new promising approach integrating soil moisture content measure-
ments with the Community Land Model (CLM) using sequential data assimilation (DA) 
has been presented to improve the prediction quality of soil water status and efficiently 
design irrigation strategies [6]. Although the control model of mobile predictive provides 
novel analysis tools for droplet infiltration, which calibrates the cooperative performance 
of precision irrigation [7], more comprehensive evaluation approaches concerning droplet 
infiltration effectiveness are urgently needed for sprinkler irrigation to promote its work-
ing efficiency and prediction reliability. 

For the purpose of infiltration effectiveness evaluation, Smith et al. used artificial 
neural networks to estimate the furrow irrigation duration on clay soils [8]. Oker et al. 
focused on maize production under mobile drip irrigation, and the monitoring of adap-
tive irrigation efficiency [9]. Meanwhile, an integrated hydrological irrigation optimiza-
tion modeling system could be learned from the literature [10]. Salem et al. have employed 
artificial neural network and regression models to calibrate the complicated impact of cli-
mate change on groundwater infiltration and irrigation effectiveness [11]. Thereafter, a 
novel prediction model has been proposed for supplemental irrigation water rights and 
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climate change adaptation in the literature [12]. In the past several years, it is an obvious 
tendency that more and more intelligent computation system and fuzzy decision-making 
approaches have been introduced into this field, for instance, the ant colony algorithm, 
genetic optimization, the simulated annealing-genetic algorithm, Taguchi estimation, ar-
tificial neural network-simulated annealing prediction, and the genetically optimized 
neural network, etc. They have been applied to reach an inspiring goal of high-efficient 
scheduling and accurate prediction of precision irrigation performance [10–14]. From the 
above mentioned publications, it could be learned that all these investigations and en-
deavors give us reliable knowledge to assess the actual effects of soil-moisture interaction 
and the distribution properties of infiltration rate. Moreover, their inherent superiorities 
of quantifying the working efficiency of soil moisture infiltration could also be confirmed. 
The accurate prediction of water droplet infiltration effectiveness should be the priority 
of our research efforts. 

Here in this research, adaptive prediction of the water droplet infiltration effective-
ness of sprinkler irrigation has been investigated to give an effective benchmark of soil 
moisture evaluation and solve the challenges of the accurate calibration of water droplet 
infiltration infield. To achieve this goal, this paper presents a set of novel methodologies 
in the following sections. 

2. Calibration of Droplet Infiltration Effectiveness 
During the actual process of sprinkler irrigation, the moisture infiltration rate de-

creases when irrigated soil becomes water-saturated, thus the traditional calibration of 
irrigation infiltration cannot reveal the complicated correlation between the droplet infil-
tration mechanism and soil moisture conditions, especially in such domains as moisture 
distribution and flow filtering. Then, the effectiveness of water droplet infiltration was 
introduced for the calibration of soil humidity, and it could be determined by a completed 
setup of a moisture sensor array. Figure 1 demonstrates the water droplet infiltration of 
sprinkler irrigation and the planar meshed grid zone on the soil field, being used for the 
moisture gauging and position calibration of droplet infiltration effectiveness. According 
to this setup arrangement, the coordinate positions of droplet infiltration points, conform-
ing to the normal distribution of N(μ,σ), were presented as: 
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where xk and yk are the horizontal and vertical coordinates of specific positions on the 
ground where water droplet infiltration happens, being denoted as the (xk,yk)th meshed 
grid zone. Mk and Nk denote the number of meshed grids in length and width directions, 
presupposed as 200 and 400, respectively: 1 ≤ xk ≤ Mk, and 1 ≤ yk ≤ Nk. N(μ,σ) denotes the 
normal coordinate distribution of droplet infiltration positions, while μ is the mean value 
of the infiltration position coordinate, and σ stands for its corresponding distribution var-
iance. The probability density of water droplet infiltration at the investigated area can be 
defined as: 
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In order to calibrate the working performance of sprinkler irrigation, the following 
infiltration effectiveness indexes have been proposed accordingly. Here, the average soil 
moisture depth increment (θ, mm) due to sprinkler irrigation or net infiltrated moisture 
depth is calculated as: 

θ = θend − θantecedent, (4)

where θantecedent and θend denote average antecedent and achieved soil moisture depths 
(mm), respectively, which propose an accurate calibration of the infiltration rate from the 
novel perspective of spatial moisture distribution. Although soil moisture depth is fre-
quently acknowledged as an important contributing factor to infiltration effectiveness, the 
complex link between deep water drainage and soil infiltration efficiency has not been 
fully recognized. More particularly, they do not indicate the key role of irrigation infiltra-
tion in controlling the working efficiency of water drainage. In order to solve this problem, 
irrigation infiltration efficiency (ea) is proposed to evaluate the working efficiency of soil 
moisture infiltration into the soil field. This mathematical parameter is defined as the ratio 
of the net moisture infiltrated depth to the cumulative volume of water consumption, in-
cluding the parametric variables of cumulative irrigation flow depth (Cf, mm) and cumu-
lative evaporated water flow depth (Ev, mm), in total: 

 
Figure 1. Water droplet infiltration of sprinkler irrigation and the planar meshed grid on soil field, used for the moisture 
gauging and position calibration of droplet infiltration effectiveness. 

ea = [θ/(Cf+Ev)] × 100%, (5)

where Ev denotes the cumulative water flow depth evaporated at the end of irrigation turn 
(mm), and θ denotes the average soil moisture depth increment being determined by 
Equation (4). Based on these preparations, the index of irrigation infiltration efficiency (ea) 
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could be determined by measuring the moisture infiltration depth, the cumulative irriga-
tion flow depth, and the consumed volume of sprinkler irrigation water added to the in-
field zone. The ratio between them could be defined as the % of irrigation infiltration effi-
ciency during the sprinkler irrigation process. 

Meanwhile, the concept of irrigation turn duration efficiency, or the ratio of net infil-
trated moisture depth per unit of irrigation time (et, mm/min), can be obtained as: 

et = θ/t, (6)

where θ is the average soil moisture depth increment (mm) and t is the irrigation turn 
duration time (min). Water infiltration uniformity refers to the appropriate spatial distri-
bution of infiltrated moisture, and the uniformity coefficient of soil moisture infiltration 
(Cu, %) could be proposed here and calculated as: 
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where θxk,yk(%) stands for the soil moisture mass proportion at one infiltration measure-
ment grid zone coordinated by (xk,yk), and endθ  stands for the average value of soil-mois-
ture mass proportion concerning all infiltration measurement grid zones (%), so that Cu 

provides a useful tool to evaluate the uniformity state of soil moisture infiltration from 
novel perspectives. Since the ideal situation regarding infiltration uniformity occurs when 
all field plants receive the same amount of sprinkling water, we could determine the nec-
essary water supply that produces optimal uniformity coefficients with high computation 
efficiency. The uniformity coefficient of soil moisture infiltration (Cu, %) is typically ex-
pressed in terms of the mathematical difference between the measured and averaged soil 
moisture mass proportion, and then divided by the area of the objective meshed grid zone, 
which accurately illustrates the spatial distribution of sprinkler irrigation water infield. 

As all these parametric indexes demonstrate the inherent characteristics of soil mois-
ture infiltration from a series of novel effectiveness perspectives of sprinkler irrigation 
infiltration, they could be applied effectively in the following adaptive prediction of drop-
let infiltration effectiveness. 

3. Experimental Environment of Sprinkler Irrigation 
This sprinkler irrigation experiment was carried out at the irrigation field of Guang-

zhou University (23°03′1.23″ N, 113°24′3.92″ E) with an area of 20 ha, from 5 September 
2019 to 4 September in 2020 and from 8:00 to 18:00 every day. Figure 2 gives the exact 
location of the experimental field where this irrigation experiment was conducted. The 
soil of the experimental site has a pH value range of 6.62–6.78. Since the electrical conduc-
tivity of soil (ECe) provides a standard benchmark to evaluate soil salinity, it could be 
measured by using a mobile SUP-TDS210-B electromagnetic induction type soil electrical 
conductivity meter, which is manufactured by Supmea Automation Co., LTD (Hangzhou 
City, Zhejiang Province, China). In this research, we analyze 20 soil samples collected 
from 20 reclaimed grid positions, thus the measurement of ECe can be realized as 0.14–
0.18 dS/m for experimental soil fields of different textures and salinity levels, which en-
hances the interpretation of soil electrical conductivity maps and improves the scheduling 
of site-specific sprinkler irrigation. Next, the average volumetric soil moisture content at 
field capacity is 40%, and the wilting point of the root zone is 30%. Here, the organic con-
tent of the soil field is 22.60 g/kg, the nitrogen content is 1.68 mg/kg, the field capacity is 
26.3%, and its mean bulk density varies from 1.35 g/cm3 to 1.55 g/cm3. Guangzhou has a 
subtropical climate where drought is rarely seen, with a mean annual temperature of 21.5–
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22.6 °C, precipitation of 1623.6–1899.8 mm, and evapotranspiration of 1603.5 mm, accord-
ing to the past 60 years of weather records referenced from a local meteorological agency. 
After detailed considerations and plant comparisons, Zoysia matrella was selected as the 
experimented plant for sprinkler irrigation, attributed to its robust climate and environ-
mental adaptation capability, making it ideal for irrigation infiltration prediction and 
growth control in our soil field. 

 
Figure 2. Location of Guangzhou University where sprinkler irrigation experiment was conducted. 

4. Regularized Sparse Autoencoder–Adaptive Network-Based Fuzzy Inference System 
4.1. Working Mechanism of Regularized Sparse Autoencoder (RSAE) 

RSAE (Regularized Sparse Autoencoder) is an excellent autoencoder that can be used 
for calculating the probability density from a set of measured raw data of droplet infiltra-
tion rates. It is highly valued by incorporating feature extraction and process quantifica-
tion into a general-purpose fuzzy prediction system [13,14]. According to this approach, 
the probability density of water droplet infiltration at the objective meshed grid zone is 
denoted as unlabeled data ( )[ ]{ } kk

kk

NM
yxkkd yxI ,

1,1
2,;, ==σμ . The RSAE decoder uses the mapping 

function f to calculate the mathematical features of probability density, as denoted by 
kk NM

RSAEH , , from Id[(xk,yk);μ,σ2] [15,16]. 
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where WRSAE denotes the weight matrix of the regularized sparse autoencoder and σr(z) is 
a rectified linear unit employed as the activation function in the RSAE decoder. Since it 
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allows for more efficient training of network prediction than any other traditional func-
tion does, σr(z) encourages sparse activation and be described as: 
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To learn various features from the measured probability density data of droplet in-
filtration, the cost function of RSAE is presented by Equation (12). 
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where WRSAE1 and WRSAE2 denote the weight matrix of the regularized sparse autoencoder, 
ensuring its computational performance is kept in a highly efficient state by using the cost 
function of RSAE. λxkyk stands for the regular coefficient of RSAE, corresponding to the 
grid zone coordinated by (xk,yk). Here, WRSAE1 and WRSAE2 are replaced by W and WT, then 
the optimization problem of the RSAE network minimizes the following cost function: 
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Thereafter, we calculate the gradient of JRSAE with respect to W: 

( )( ) ( ) ( )( ) T
kkr

kk

T
kkkkryx

kk

RSAE DyxW
NM

yxyxWDW
NMW

JJ
kk

×⋅+







⋅⋅








⋅+⋅=

∂
∂=∇ ,1,,'sgn1

, σσλ  (14)

Here, D = WTσr(W∙(xk,yk)) − (xk,yk), sgn denotes the result of the sign function of 
σr(W∙(xk,yk)), σr’ denotes the derivative function of rectified linear unit σr, and (xk,yk) stands 
for the matrix form of (xk) and (yk), so that the reiterative update process of W(i+1,j+1) for 
RSAE can be described as: 

),(),(),(),()1,1( jijijijiji JHWW η−=++   (15)

where i and j are the ith and jth intervals of the update process of WRSAE1 and WRSAE2, respec-
tively, H(i,j) denotes the inverse of the Hessian matrix [17,18], and η denotes the step size 
of the update process accordingly. In this equation, η(i+1,j+1) can be determined iteratively 
by: 
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The weight matrix WRSAE could be regularized by an orthonormality constraint. RSAE 
is trained an adequate number of times so that the probability density of water droplet 
infiltration can be accurately calculated and inputted into the Adaptive Neuro Fuzzy In-
ference System (ANFIS) for the highly efficient prediction of infiltration effectiveness, 
which provides high-performance adaptive prediction that incorporates neural networks 
with fuzzy logic principles, making ANFIS a universal and reliable prediction network 
for sprinkler irrigation effectiveness [19,20]. 

4.2. Working Mechanism of ANFIS (Adaptive Network-Based Fuzzy Inference System) Inte-
grated with RSAE 
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After the logic network of RSAE has been established, an intelligent prediction sys-
tem based on the working principle of the adaptive network-based fuzzy inference system 
(ANFIS) was developed to predict such droplet infiltration effectiveness indexes as aver-
age soil moisture depth increment (θ, mm), irrigation infiltration efficiency (ea, %), irriga-
tion turn duration efficiency (et, mm/min), and the uniformity coefficient of soil moisture 
infiltration (Cu, %). Here, RSAE identifies the mathematical properties of the probability 
density of droplet infiltration and ANFIS possesses an excellent capability of adaptive 
prediction for infiltration effectiveness, which are characterized by their mutual influ-
ences and fuzzy correlations [21–23]. As Figures 3 and 4 demonstrate the logic diagram of 
RSAE–ANFIS, this intelligent prediction system could be divided into an RSAE monitor-
ing level and an ANFIS prediction level. The RSAE monitoring level includes the gauging 
system that quantifies the measured probability density of droplet infiltration. On this 
level, all data resources of irrigation infiltration connect to the high-performance compu-
tation units, such as the data-processing units of monitoring, analyzing, transmitting, and 
decision making, which are located on the ANFIS adaptive prediction level. By linking 
the RSAE monitoring level and the ANFIS prediction level together through a set of in-
formation transmitting and processing modules taking charge of cognitive calculation, 
parametric monitoring and operative collaboration, a highly-efficient adaptive prediction 
system for droplet infiltration effectiveness can be established. 

In this research, a sensor array was used for water infiltration measurement. It stably 
indicates the true moisture content of the soil field with high accuracy and reliable perfor-
mance. This experimental calculation has been implemented on the computation platform 
of irrigation effectiveness prediction in the Guangzhou University intelligent irrigation 
lab. The computation platform we used for RSAE–ANFIS prediction was equipped with 
an Intel core i9 7900X microprocessor, 32GB of RAM (Random Access Memory), MATLAB 
R2018b, and Windows 10. Taking a typical case of adaptive prediction, for example, RSAE 
collects the input data of water droplet infiltration. Herein, the droplet infiltration rates 
and soil humidity signals are measured from the array of moisture sensors (9 × 9 in each 
grid zone illustrated by Figure 1), embedded in different soil depths (0–500 cm) and con-
nected with the informative data processing center of the sprinkler irrigation system. 
Meanwhile, a convective lognormal transfer function was employed to picture the infil-
tration-stress curves from the measured soil moisture data. Then, RSAE calculates the 
probability density of droplet infiltration at the targeted grid zone, and operates as a reli-
able cognitive process classifier to recognize the mathematical characteristics of probabil-
ity density from various kinds of mass infiltration data [24,25]. After all these computation 
tasks are completed, ANFIS sends back amend actions/decision signals to the RSAE mon-
itoring level through data representation of effectiveness prediction results. Thereafter, an 
effective calculation mechanism called adaptive prediction was applied, in which this 
mechanism architecture compares the calculated and actual measured results of infiltra-
tion effectiveness indexes and publishes adaptive instructions to amend the initial pre-
dicted value to a more accurate one. Based on this arrangement, the RSAE–ANFIS com-
putation platform accepts the probability density, processes the data signals, and selects 
appropriate calculation steps to predict infiltration effectiveness indexes (θ, ea, et, and Cu). 
The obtained effectiveness results could be classified into two groups: actual measured 
results characterized by stochasticity and nonlinearity, and the calculated results charac-
terized by uniformity and equilibrium [26]. Major differences between them comprise de-
viation corrections; therefore, a set of specific emendation instructions was presented and 
operated by sequence. It could be seen that the probability density of water droplet infil-
tration calculated by RSAE helps ANFIS to obtain higher and stabler computation accu-
racy for predicting irrigation infiltration effectiveness. Therefore, the high precision and 
strong robustness of adaptive effectiveness prediction can be ensured. 
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Figure 3. The measurement and adaptive prediction levels of the Regularized Sparse Autoencoder–Adaptive Network-
based Fuzzy Inference System (RSAE–ANFIS), in which droplet infiltration could be measured from soil moisture sen-
sors and transmitted to intelligent prediction network. 
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Figure 4. Diagram of RSAE–ANFIS computational mechanism in which the droplet infiltration properties could be com-
puted and determined for the interests of adaptive prediction. 

5. Adaptive Prediction of Water Droplet Infiltration Effectiveness 
5.1. Sprinkler Irrigation System 

In order to realize the adaptive prediction of infiltration effectiveness, it is necessary 
to build up an applicable sprinkler irrigation system at first. Figure 5 illustrates the tested 
irrigation system and the spatial layout of the pipeline network. Herein, the sprinkler ir-
rigation system integrates a completed set of mechanical components together, such as 
the high-performance 350HW-8S fluid-intensifier pumps manufactured by Yancheng 
Harriston Int’l Co., Ltd. (Yancheng city, Jiangsu Province, China), the revolving HX-3301-
1 sprinkler nozzles provided by Taizhou Hengxin Valve Tech. (Taizhou city, Jiangsu Prov-
ince, China), the NPS2 CLASS150 pressure valves manufactured by Sichuan Saier Valve 
Mfg. Co., Ltd. (Zigong city, Sichuan Province, China), the irrigation PVC pressure pipes 
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manufactured by Jiangsu Haiwei Plastics Industry Technology Co., Ltd.(Jiangyin city, 
Jiangsu Province, China), and the BONAD RS485 soil moisture sensors (BND-MS10) man-
ufactured by Shenzhen Bonad Precision Instrument Co., Ltd. (Shenzhen city, Guangdong 
Province, China), etc. In our irrigation pipeline network, the experimented soil field was 
equally partitioned into different meshed grids conforming to Figure 1, where each grid 
zone used for sprinkler irrigation could be positioned by (xk,yk) or being denoted as the 
(xk,yk)th meshed grid zone (1≤ xk ≤ Mk, and 1 ≤ yk ≤ Nk). Since in each grid the volume of 
surface water was different, according to the measured soil moisture data from the (xk,yk)th 

grid, the sprinkler irrigation system controls the water supply to a specific grid zone 
through adjusting the set of water distribution valve modules. Consequently, irrigation 
water was pressurized into the fluid intensifier pump and stabilized by the flow accumu-
lator, and then appropriate water droplet concentration on every grid zone could be main-
tained constantly. A moderate flow pressure of 320 kPa was applied in this research to 
ensure that the infiltrated soil depths could be measured easily. A relatively high nozzle 
ratio of 6.5:1 (nozzle tube length: nozzle orifice diameter) allows for the effective isolation 
of stream disturbance from sprinkling water flow. In this case, a pair of sprinkler irrigation 
heads (the revolving sprinkler nozzles) with a vertical height of 80 mm were placed at a 
linear interval of 2.5 m to provide an equally distributed soil wetting pattern and guaran-
tee a wetting-diameter overlap of 55–60% all the time. During this experimental irrigation 
process, the soil moisture content or droplet infiltration rate was checked once every 10 
min. To ensure the high repeatability of testing conditions, Table 1 demonstrates the rep-
resentative environmental conditions, including jetting pressure in the nozzle tube (P, 
kPa), irrigation time (IT, h), spray discharge amount (Q, L/h), average air temperature (T, 
°C), average air relative humidity (RH, %), solar radiation (SR), average wind speed (U, 
m/s), evaporation (E), and wind direction (WD). 
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Figure 5. The tested sprinkler irrigation system and the spatial layout of pipeline network: 1. high-performance fluid 
intensifier pump; 2. water source; 3. holder; 4. solar cell panel; 5. charging controller; 6. storage battery; 7. inverter; 8. 
storage; 9. electric control box; 10. pressure valve; 11. circuit controller; 12. irrigation pipe network; 13. irrigation control-
ler; 14. strainer; 15. main valve; 16. check valve. 

Table 1. The experimented environmental conditions for sprinkler irrigation tests: jetting pressure in nozzle tube (P, kPa), 
irrigation time (IT, h), spray discharge amount (Q, L/h), average air temperature (T, °C), average air relative humidity 
(RH, %), solar radiation (SR), average wind speed (U, m/s), evaporation (E, mm), and wind direction (WD). 

Condition P (kPa) IT (h) Q (L/h) T (°C) RH (%) SR (MJ/m2) U (m/s) E (mm) WD 
1 250 2.5 1785 25.6 88 15.2 0.5 20.2 Northeast 
2 330 2.6 1744 24.1 62 11.4 1.1 31.4 Southeast 
3 240 3.1 1562 28.6 75 17.2 1.2 28.2 Northeast/North 
4 280 3.2 1823 30.2 74 19.2 0.9 26.2 South/Southwest 
5 260 3.3 1492 31.2 69 15.3 0.5 30.2 Southwest 
6 270 2.8 1522 32.5 66 16.5 0.8 24.3 West 
7 330 2.7 1638 29.5 72 14.8 0.6 37.5 Northeast 
8 310 2.9 1729 29.3 76 15.6 1.1 28.2 Northwest 
9 350 2.4 1562 28.6 85 17.2 1.3 31.2 North/Northeast 

10 360 2.6 1882 24.6 92 18.8 1.4 33.2 Southeast 
11 250 2.6 1485 25.9 91 17.3 1.8 34.2 East/Northeast 
12 280 2.1 1925 28.8 68 15.6 1.5 30.6 Northeast 
13 290 2.0 1547 26.9 75 14.5 0.9 28.2 Southeast/South 
14 320 2.5 1482 28.7 77 18.2 0.8 37.2 Southeast 
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15 310 2.5 1556 33.2 84 19.2 1.4 28.9 North 
16 330 3.2 1572 33.6 88 14.2 1.6 27.6 Northwest 
17 280 3.6 1982 34.5 86 16.2 1.8 24.2 Northeast 
18 260 3.1 1563 26.5 87 14.5 1.7 23.2 Southeast 
19 270 3.0 1425 28.5 82 17.2 1.5 34.1 Northwest 
20 280 3.0 1825 24.9 85 18.2 1.4 36.2 North 
21 260 2.6 1472 26.3 86 15.5 1.7 28.2 Northeast/East 
22 240 2.8 1635 28.4 92 14.2 1.5 35.3 East/North 
23 250 2.7 1852 26.3 90 14.6 1.2 24.7 Northeast 
24 260 3.5 1472 25.8 86 16.2 1.6 35.2 Southeast 
25 260 3.6 1882 24.7 75 18.2 1.2 28.2 Southwest 
26 310 3.5 1664 26.3 74 15.6 0.8 33.2 Southeast 
27 330 3.4 1592 25.9 83 14.2 0.6 34.2 North 
28 350 3.2 1822 33.6 81 18.2 0.8 37.2 South 
29 320 3.3 1425 32.5 88 14.4 0.4 26.3 Southwest/West 
30 340 3.6 1632 36.2 86 16.2 0.8 32.1 Northwest 
31 360 3.4 1472 34.1 84 18.2 1.1 38.2 West 
32 380 3.8 1582 26.9 92 17.2 1.5 28.2 Northeast/East 
33 370 2.9 1556 32.4 82 16.6 1.4 37.2 Southeast 
34 260 2.5 1482 25.6 76 18.2 1.2 36.2 North/Northwest 
35 280 2.7 1725 28.4 77 18.2 1.8 34.2 Northeast 

In Figure 6, for the accurate prediction of infiltration rates, clods of soil crust with a 
thickness of 10 cm on different soil depth layers (vertical depth ranged from 0 to −500 cm) 
were sampled out and observed closely after each irrigation test was completed. The av-
erage distribution of water precipitation was measured at a rectangular area of 15 × 15 m2 
in calm conditions. Such environmental parameters as average air temperature (T, °C), 
average air relative humidity (RH, %), and solar radiation (SR) were collected every 10 
min. Here, local air temperature was measured by an HW-F7 thermometer (LD Products 
Inc. California, USA), air relative humidity was determined by using Testo 610 hygrome-
ters (Testo Pty Ltd, Croydon South, Australia), and solar radiation value could be obtained 
from an LI-1500 irradiance radiometer (HUATEC. Beijing, China). Since wind speed (U, 
m/s) has a decisive influence on the evaporation loss of soil moisture, it was measured by 
RK100-02 RS485 wind speed measurement units (RIKA Sensor Inc., Hunan, China). On 
the other side, the soil moisture evaporation measurements (E, mm) were carried out by 
40 sets of newly developed microlysimeter, which equally distributed throughout the 
whole field area. All these parametric variables were measured at row and inter-row irri-
gation positions, and then they were averaged across all measurement positions to pro-
vide accurate values. 
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Figure 6. The droplet infiltration distribution and partitioned infiltration levels I–X of sprinkler irrigation. 
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The probability density of droplet infiltration at each grid zone could be computed 
by RSAE, whereas spline interpolation was used to calculate the infiltration rates at any 
coordinate position that could not be measured or observed directly. Thereafter, the 
standard deviations and mean values of the probability density were acquired by se-
quence [27,28]. According to the infiltration gradient maps highlighted by tests 1–5, Figure 
6 pictures the obtained droplet infiltration distribution and its partitioned levels denoted 
from I to X, based on the measured soil moisture content. For instance, Level I denotes a 
soil moisture saturability of 0–10%, Level II denotes 10–20% … and Level X denotes 90–
100%, etc. Here, specific gradient values of droplet infiltration per cubic space were 
demonstrated by the scale column on the left, and their scale unit was mm/1000 mm3. The 
photos in the right column denote the actually obtained images of soil ground in different 
infiltration rates leveled from I to X, describing the on-the-spot variation of droplet infil-
tration effectiveness. 

5.2. Adaptive Prediction of Droplet Infiltration Effectiveness 
To control the efficiency of sprinkler irrigation, a set of input variables for RSAE–

ANFIS prediction was selected, including jetting pressure (Pw/kPa), impinge angle (Wa/°), 
flow rate of water (Fa/kg/min), and continuous irrigation time (Tc/min). Accordingly, av-
erage soil moisture depth increment (θ/mm), irrigation infiltration efficiency (ea/%), irri-
gation turn duration efficiency (et/mm/min), and the uniformity coefficient of soil mois-
ture infiltration (Cu/%) were applied to profile moisture infiltration [29,30]. Based on the 
measured coordinates of droplets, the infiltration effectiveness indexes of every grid zone 
were transmitted to the database and application server of the RSAE–ANFIS network. If 
mathematical deviations and computational errors emerge, the novel algorithm of adap-
tive prediction is able to provide corrective feedback guidance to solve them. For the con-
venience of fuzzy prediction, the input and output variables should be regulated to an 
identical data range. Table 2 demonstrates the partitioned levels of irrigation parameters 
and infiltration effectiveness indexes, being used as input and output variables in the 
RSAE–ANFIS system. The combination of input (Pw, Wa, Fa, Tc) and output (θ, ea, et, Cu) 
illustrates a set of fuzzy correlations described by logic rules. To predict infiltration effec-
tiveness, 25% of experimental cases (50 turns) were used for network training and others 
for network testing. Each case was tested for 10 trials to reduce signal disturbances and 
random errors, by which the resultant effectiveness indexes were averaged by these trials. 
Table 3 shows the logic rules of the RSAE–ANFIS system. The irrigation parameters are 
the input levels, and the partitioned levels of effectiveness indexes are the output levels. 
In this table, the logic rule base was selected via fuzzy reasoning algorithms. As their par-
titioned levels were referenced from Table 2, original parametric assessment and effec-
tiveness prediction could be simplified to a quantified profile of logic level reasoning. For 
the purpose of enhancing the applicability and precision of ANFIS computation, the in-
herent properties of fuzzy logic rules by setting IF-THEN rules were inherited in predic-
tion modules. Take No. 5 cases for instance, IF the experimental run of the input parti-
tioned level of Pw is 2, Wa is 3, Fa is 5, and Tc is 2, THEN the experimental run of the output 
partitioned level of θ is 10, ea is 1, et is 2, and Cu is 1, accordingly, through a set of logic 
reasoning and statistical computing. Based on these logic rules and input/output levels, 
the infiltration effectiveness indexes in different cases could be determined, confirming 
the reliability and usefulness of RSAE–ANFIS prediction. Considering the current capa-
bility of our computation platform, Figure 7 presents the profile comparisons between the 
predicted and actual measured effectiveness indexes at different soil depths, and Table 4 
gives the data comparison. Tests A–K have been implemented sequentially on specific 
monitoring grid zones described by Figure 1; thereafter, the infiltration effectiveness in-
dexes were measured at different soil depths, denoted by Layer 1: 0–100 cm; Layer 2: 100–
200 cm; Layer 3: 200–300 cm; Layer 4: 300–400 cm; and Layer 5: 400–500 cm. When the 
predicted and measured results (θ, ea, et, Cu) were profiled, the relative errors (RE) between 
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them could be determined to quantify the accuracy and reliability of predicted effective-
ness: RE = ((Predicted index − Measured index)/Measured index) × 100%. It was learned 
from Table 4 that RE kept in a relatively small range of 1.8–7.8%, confirming the high 
precision of the intelligent prediction system. 

 
Figure 7. Profile comparisons between the predicted and actual measured droplet infiltration indexes at different soil 
depths. 

Table 2. The partitioned levels of irrigation parameters and infiltration effectiveness indexes, used as input and output 
variables of RSAE–ANFIS system for infiltration effectiveness prediction. 

Irrigation Parameters 
Value Levels 

1 2 3 4 5 6 7 8 9 10 

Jetting pressure (Pw/kPa) 160 180 200 220 240 260 280 300 320 340 

Impinge angle (Wa/°) 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 

Flow rate of water (Fa/kg/min) 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 1.10 

Continuous irrigation time (Tc/min) 25 30 35 40 45 50 55 60 65 70 

Infiltration Effectiveness Indexes Value Levels 

Average soil moisture depth increment 
(θ/mm) 

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 

Irrigation infiltration efficiency (ea/%) 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 60.0 65.0 

Irrigation turn duration efficiency 
(et/mm/min) 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 50.0 55.0 
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The uniformity coefficient of soil moisture 
infiltration (Cu/%) 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 

Table 3. Logic rules of RSAE–ANFIS system. The partitioned levels of irrigation parameters, such as jetting pressure 
(Pw/kPa), impinge angle (Wa/°), flow rate of water (Fa/kg/min), and continuous irrigation time (Tc/min), are input variables. 
The partitioned levels of infiltration effectiveness indexes, including average soil moisture depth increment (θ/mm), irri-
gation infiltration efficiency (ea/%), irrigation turn duration efficiency (et/mm/min), and the uniformity coefficient of soil 
moisture infiltration (Cu/%), are output variables. 

No 
IF: Experimental Run of Input Levels THEN: Experimental Run of Output Levels 

Pw Wa Fa Tc θ ea et Cu 

1 1 1 1 1 5 3 6 6 

2 1 1 2 1 6 2 4 6 

3 1 2 3 1 7 2 5 8 

4 1 2 4 2 2 3 2 5 

5 2 3 5 2 10 1 2 1 

6 2 3 6 2 6 4 2 4 

7 2 4 7 3 8 5 4 5 

8 2 4 8 3 4 6 5 2 

9 3 5 9 3 7 2 1 2 

10 3 5 10 4 5 7 7 6 

11 3 6 1 4 2 8 8 9 

12 3 6 2 4 2 2 3 2 

13 4 7 3 5 3 6 5 4 

14 4 7 4 5 4 4 6 1 

15 4 8 5 5 6 8 4 10 

16 4 8 6 6 5 9 1 5 

17 5 9 7 6 8 2 2 5 

18 5 9 8 6 8 2 1 6 

19 5 10 9 7 7 4 1 10 

20 5 10 10 7 4 5 5 2 

21 6 1 1 7 2 4 4 5 

22 6 1 2 8 5 7 5 5 

23 6 2 3 8 6 1 6 4 

24 6 2 4 8 4 4 4 1 

25 7 3 5 9 2 5 8 3 
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26 7 3 6 9 5 6 8 3 

27 7 4 7 9 9 1 9 5 

28 7 4 8 10 4 2 10 6 

29 8 5 9 10 5 5 2 10 

30 8 5 10 10 1 5 2 2 

31 8 6 1 9 1 8 4 5 

32 8 6 2 9 5 8 5 6 

33 9 7 3 9 3 9 6 8 

34 9 7 4 8 5 1 4 7 

35 9 8 5 8 7 1 10 4 

36 9 8 6 8 9 2 2 1 

37 10 9 7 7 10 5 6 5 

38 10 9 8 7 5 4 1 2 

… …… …… …… …… …… 

100 10 10 10 6 5 8 5 6 

Table 4. Comparisons between the predicted and measured infiltration effectiveness indexes on different soil depth layers. 

Tests  

Infiltration Effectiveness Indexes Investigated in Our Experiment. 

Average Soil Moisture Depth In-
crement (θ, mm) 

Irrigation Infiltration Efficiency 
(ea, %) 

Irrigation Turn Duration Effi-
ciency (et, mm/min) 

Uniformity Coefficient of Soil 
Moisture Infiltration (Cu, %) 

RSAE– 

ANFIS 
Measured 

RE 

(%) 

RSAE– 

ANFIS 
Measured 

RE 

(%) 

RSAE– 

ANFIS 
Measured 

RE 

(%) 

RSAE– 

ANFIS 
Measured 

RE 

(%) 

Te
st

 A
 

1 52.33 53.65 2.46  36.22 35.30 2.61  15.22 14.15 7.56  63.25 61.25 3.27  

2 62.14 65.15 4.62  56.55 52.65 7.41  36.25 33.05 9.68  88.15 83.25 5.89  

3 82.11 86.32 4.88  47.21 43.33 8.95 33.42 36.14 7.53  47.25 45.14 4.67  

4 34.02 37.56 9.42  39.25 36.09 8.76  56.25 52.25 7.66  63.25 66.58 3.51  

5 53.26 50.55 5.36  55.41 52.00 6.56  27.55 26.14 5.39  33.58 34.92 3.84  

Te
st

 B
 

1 42.11 46.95 10.31  28.44 26.04 9.22  29.54 27.28 8.28  38.95 37.31 4.40  

2 59.32 56.55 4.90  62.14 68.06 8.70  30.14 33.85 10.96  41.25 43.58 5.35  

3 85.14 86.44 1.50  60.22 67.11 10.27  45.22 41.58 8.75  46.25 45.22 6.55  

4 75.22 79.14 4.95  50.14 53.65 6.54  50.06 54.45 8.06  47.22 44.47 6.18  

5 64.15 68.14 5.86  23.04 25.06 8.06  48.22 45.58 5.79  82.62 86.58 4.57  

Te
st

 C
 

1 63.95 68.17 6.19  28.44 26.05 9.17 47.01 43.44 8.22  55.26 53.26 3.76  

2 68.25 66.21 3.08  38.00 35.01 8.54  43.51 46.98 7.39  63.24 66.58 6.02  

3 47.22 43.54 8.45  36.14 38.03 4.97  39.25 36.48 7.59  53.26 57.14 6.79  
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4 69.25 64.14 7.97  30.25 33.06 8.50  33.01 35.65 7.41  45.26 49.25 6.13  

5 48.22 46.22 4.33  46.25 47.25 2.12  35.05 36.95 5.14  90.25 93.55 3.53  

Te
st

 D
 

1 32.55 35.97 9.51  44.17 45.06 1.98  42.06 46.25 9.06  91.00 96.51 5.71  

2 14.25 15.17 6.06 42.56 46.29 8.06  18.49 17.48 5.78  65.25 66.25 1.51  

3 16.55 15.88 4.22  63.22 67.22 5.95  17.22 16.99 1.35  48.26 46.66 4.54  

4 17.25 16.14 6.88 55.89 56.28 0.69  25.61 23.65 8.29  47.25 45.14 4.67 

5 82.55 89.17 7.42  52.47 57.25 8.35  28.48 26.48 7.55  66.32 63.02 5.24  

Te
st

 E
 

1 46.23 48.22 4.13 56.90 52.13 9.15 36.25 33.32 8.79 26.05 28.04 7.10 

2 54.12 53.14 1.84 55.02 53.15 3.52 37.48 36.28 3.31 37.82 39.25 2.74 

3 66.32 61.47 7.89 40.36 44.33 8.96 33.05 34.25 3.50 34.26 36.54 3.98 

4 82.56 86.98 5.08 43.81 47.05 6.89 28.49 26.05 9.37 48.25 47.14 2.35 

5 92.14 98.88 6.82 48.07 46.11 4.25 30.15 32.17 6.28 46.92 44.15 6.27 

Te
st

 F
  

1 45.26 47.98 5.67  45.62 48.26 5.47  48.05 43.48 10.51  40.15 43.25 7.17  

2 44.25 46.88 5.61  41.09 44.25 7.14  46.22 42.17 9.60  30.25 32.58 7.15  

3 41.56 43.89 5.31  35.04 36.33 3.55  38.15 36.14 5.56  36.95 38.75 3.81  

4 63.25 69.65 9.19  38.19 36.25 5.35  48.75 45.62 6.86  38.15 36.14 4.57  

5 65.47 68.95 5.05  35.62 39.23 9.20  53.25 51.84 2.72  62.15 66.95 7.17  

Te
st

 G
 

1 66.29 68.19 2.79  40.22 43.22 6.94 49.66 46.14 7.63  66.85 62.14 7.58  

2 48.25 43.65 10.54  46.25 47.25 2.12  27.58 25.65 7.52  75.18 78.25 3.92  

3 39.25 37.14 5.68  48.22 44.15 9.22  39.15 36.84 6.27  70.02 73.65 4.93  

4 47.25 45.16 4.63  46.92 44.06 6.49  38.14 36.48 4.55  65.14 68.04 4.26  

5 44.56 48.98 9.02  50.18 55.33 9.31  48.15 47.14 2.14  73.05 79.25 7.82  

Te
st

 H
 

1 53.36 55.22 4.02 38.25 39.25 2.55 25.11 23.65 6.18 85.45 89.65 4.69 

2 59.22 58.17 2.01 46.25 47.74 3.13 26.33 25.95 1.47 89.25 86.54 3.14 

3 72.13 74.69 3.43 43.78 46.22 5.28 28.14 27.17 3.57 87.24 83.62 4.33 

4 70.32 72.51 3.02 50.36 53.21 5.36 34.14 35.63 4.19 79.52 77.15 3.08 

5 59.22 56.38 5.04 48.72 46.21 5.44 26.95 25.85 4.26 88.32 84.65 4.34 

Te
st

 I 

1 48.25 46.14 4.58 62.14 65.55 5.21 24.58 25.87 4.99 86.45 84.25 2.62 

2 47.22 49.22 4.07 63.25 66.34 4.66 27.45 26.47 3.71 77.45 73.33 5.62 

3 63.21 65.89 4.07 48.29 46.25 4.41 26.35 25.65 2.73 79.21 75.12 5.45 

4 55.26 57.48 3.87 57.12 54.23 5.33 36.15 37.89 4.60 75.48 78.22 3.51 

5 58.14 55.48 4.80 66.32 63.68 4.15 36.55 35.47 3.05 82.45 80.11 2.92 

Te
st

 J 

1 36.54 39.32 7.07 49.25 46.25 6.49 38.24 37.56 1.81 80.12 83.54 4.10 

2 39.58 37.14 6.57 56.21 54.47 3.20 29.54 28.47 3.76 78.65 77.11 2.00 

3 42.15 45.55 7.47 43.26 44.98 3.83 28.48 29.98 5.01 77.48 75.96 2.01 

4 44.36 46.21 4.01 44.78 46.25 3.18 28.88 27.56 4.79 82.36 86.54 4.83 
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5 42.78 44.47 3.80 58.25 54.59 6.71 35.65 36.98 3.60 83.14 87.22 4.68 

Te
st

 K
 

1 53.26 56.47 5.69 63.21 66.98 5.63 37.41 38.98 4.03 82.64 88.21 6.32 

2 52.78 55.54 4.97 65.47 67.24 2.64 37.16 39.65 6.28 76.98 75.14 2.45 

3 55.36 56.98 2.85 59.25 56.24 5.36 29.54 28.56 3.44 77.25 75.11 2.85 

4 59.24 56.47 4.91 34.21 36.08 5.19 37.25 38.98 4.44 75.48 73.25 3.05 

5 57.15 56.10 1.88 39.25 37.25 5.37 28.41 27.36 3.84 78.29 76.21 2.73 

Note: 1. Relative error (RE) = ((The predicted index value—The measured index value)/The measured index value) × 100%; 
2. Soil depth of Layer 1: 0–100 cm; Layer 2: 100–200 cm; Layer 3: 200–300 cm; Layer 4: 300–400 cm; Layer 5: 400–500 cm. 

6. Assessments of Adaptive Prediction Quality 
The following evaluation indexes were designed or introduced specifically to assess 

the prediction qualities of infiltration effectiveness [31,32]: 
Recursive complexity index: 
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where G(xk,yk)[n] represents the predicted effectiveness value of θ, ea, et and Cu in the kth par-
titioned grid zone coordinated by (xk,yk), n stands for θ, ea, et and Cu, respectively [33]. 

Computational compactness index: 
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Kullback–Leibler divergence index: 
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Fuzzy clustering uniformity index: 
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where ][),( nG
kk yx denotes the mean value of G(xk,yk)[n]: 
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Figure 8 demonstrates the calculated cluster distribution of F1–F6. These graphs were 
obtained through positioning the computed values of the recursive complexity index (F1), 
functional inclusion index (F2), computational compactness index (F3), cluster validity in-
dex (F4), Kullback–Leibler divergence index (F5), and fuzzy clustering uniformity index 
(F6), using the predicted and measured effectiveness values of θ, ea, et and Cu, respectively. 
To identify statistical differences between them, a solid benchmark line represents the 
standard ratio between the predicted and actual measured results, regulating them into 
an identical data range. Here, the frames colored by green, red, blue, and brown were 
utilized to highlight the obtained F1–F6 clusters of θ, ea, et and Cu. Each cluster was illus-
trated by 120 data points. It could be observed that more data points dispersed around 
the solid benchmark line means that higher accuracy of the predicted effectiveness values 
is confirmed. 

Figure 8a presents data comparisons between the computed and measured recursive 
complexity index (F1) of θ, ea, et and Cu, obviously showing that the efficiency and reliability 
of adaptive prediction maintained remarkable correlation with the recursive complexity 
of predicted results, especially with regard to Wa and Tc. RSAE–ANFIS makes detailed 
considerations on the inherent capabilities of irrigated soil fields by adapting to external 
environmental changes, and this novel approach reached a high predictive precision of θ 
and ea when irrigation cut-off happened. Furthermore, RSAE–ANFIS offers a solid theo-
retical foundation for the recursive complexity index of θ, ea, and Cu, which means that the 
predicted infiltration effectiveness values are demonstrated by ea and Cu in a traditional 
mathematical sense, and they could be affected by deep moisture percolation, moisture 
content capacity, or irrigation efficiency of the objective soil field. The droplet infiltration 
quality identified by et reaches optimal values with regard to Fa, Tc, and Pw, which explains 
their wide applications in keeping the high circulation efficiency of groundwater irriga-
tion, especially when the moisture content variances of soil fields should be fully consid-
ered. 

Figure 8b presents data comparisons between the computed and measured func-
tional inclusion index (F2) of θ, ea, et and Cu, which shows that the F2 index of prediction 
performance with respect to the probability density of droplet infiltration obviously main-
tains a close relation with θ and et, and places emphasis on Pw and Fa. The working ap-
plicability of effectiveness prediction also highly depends upon the consumption rate of 
water transpiration and soil moisture content during practical sprinkler irrigation. Since 
this intelligent prediction system showed an improvement tendency in its assessment pre-
dictability or computational compatibility, the calculation efficiency of the RSAE–ANFIS 
system keeps a positive relation with Wa and Tc, according to the conditional determina-
tion of ea and Cu in sprinkler irrigation evaluation. 

Figure 8c shows data comparisons between the computed and measured computa-
tional compactness index (F3) of θ, ea, et and Cu, which gives us an applicable reference 
criterion related to water use efficiency and the water balance condition when Pw, Fa, and 
Tc are focused on. Its value variation causes a corresponding fluctuation in the predictive 
precision of θ and Cu. This assessment index could be employed to identify the distribu-
tive rationality of infield infiltration variability, prompting the circulation efficiency and 
moisture diffusivity of deep moisture percolation. A set of F3 result comparisons demon-
strated that, with a moderate reduction in moisture pressure and soil moisture uniformity, 
ea stays in an invariant value state. Here, droplet infiltration plays an important role in the 
balanced distributive condition of moisture saturation, the water balance mechanism, and 
moisture drainage, etc. This assessment index contributes greatly to the stable demonstra-
tion of sprinkler irrigation efficiency and moisture infiltration quality on the soil surface. 
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Figure 8d shows data comparisons between the computed and measured cluster va-
lidity index (F4) of θ, ea, et and Cu, describing that F4 keeps a close relation with ea and Cu 
when Wa, Fa, Tc are carefully examined. This assessment index is also affected heavily by 
soil moisture redistribution and droplet penetration time. As θ indirectly demonstrates 
the consumption rate of transpiration and infiltration opportunity time, by focusing on 
moisture diffusivity or infiltration depth, actual sprinkler irrigation presents objective cri-
teria of Pw and Tc to evaluate droplet infiltration effectiveness, from the novel perspectives 
of soil moisture storage and moisture uniformity. Therefore, the circulation efficiency of 
groundwater irrigation could be improved by optimizing the infield infiltration rate. The 
cluster validity index illustrates that the probability density of droplet infiltration pro-
vides useful tools to suppress external computational interference originating from noisy 
measurement signals or error fuzzy rules, and the prediction robustness of RSAE–ANFIS 
can be improved for moisture redistribution, soil evaporation, or infiltration efficiency. 
Furthermore, this assessment index also provides a clear demonstration of the infiltration 
rate and facilitates a reliable evaluative criterion for soil moisture uniformity. 
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Figure 8. Cluster distribution of F1–F6 used for the prediction evaluation of infiltration effectiveness indexes, where the 
computed and measured indexes of recursive complexity, functional inclusion, computational compactness, cluster va-
lidity, Kullback–Leibler divergence, fuzzy clustering uniformity for describing infiltration effectiveness could be cali-
brated. 

Figure 8e shows data comparisons between the computed and measured Kullback–
Leibler divergence index (F5) of θ, ea, et and Cu, which can be frequently used to regulate 
RSAE–ANFIS computation and monitor the water circulation efficiency in soil fields. This 
index quantifies the critical influence of Pw and Wa on the moisture content and saturated 
hydraulic conductivity of a tested soil portion, and it also highly depends on the value 
range of θ when Cu and et are deliberately adjusted and closely observed. The Kullback–
Leibler divergence index demonstrates the invariant properties of Cu and ea when the 
droplet infiltration conditions impacted by Fa and Tc are faced, so that the sprinkler irriga-
tion stability can be quantified by the measurements of soil moisture content, infiltration 
depth, or soil evaporation. 

Figure 8f shows data comparisons between the computed and measured fuzzy clus-
tering uniformity index (F6) of θ, ea, et and Cu, which demonstrates that the calculation 
precision of RSAE–ANFIS heavily influences ea and Cu, and its operational mechanism 
could be remarkably affected by the value accuracy of Pw, Wa, and Fa. This index assesses 
the adaptive prediction of infiltration effectiveness in measurement quality and calcula-
tion precision through calibrating the relative proportion of drainage water and soil mois-
ture saturation. It could be observed that this assessment index maintains a relatively sta-
ble value during the determination of the circulation efficiency of groundwater. Conse-
quently, it contributes greatly to the precise monitoring of moisture infiltration oppor-
tunity time. The fuzzy clustering uniformity index could also be utilized to testify the for-
mula veracity of Wa and Tc based on the cumulative depth of infiltrated water and soil 
moisture uniformity. 

To quantify the applicability and efficiency of the RSAE–ANFIS approach with alter-
native ones, such frequently used approaches as genetic optimization, simulated anneal-
ing–genetic algorithm (SA–GA), Taguchi parameter estimation, artificial neural network–
simulated annealing (ANN–SA) prediction, and genetically optimized neural network 
(GONN) have been employed in the experimental conditions prearranged by Tables 1 and 
2 [34–38]. Figure 9a–d showed the value comparisons of θ, ea, et and Cu between the pre-
dicted and actual measured results in tests A–K. It could be learned that RSAE–ANFIS 
(denoted by brown lines) presents θ, ea, et and Cu, keeping closer to actual measured ones 
(denoted by black lines) than any other approach does. The precision and reliability of the 
RSAE–ANFIS system could be identified and acknowledged, demonstrating that this pro-
posed approach ensures optimal prediction results of infiltration effectiveness indexes. 
Table 5 presents a data description about the performance comparisons of the RSAE–AN-
FIS approach with others. Considering the current calculation capability of our computa-
tion station demonstrated in Section 4.2, the reliability and sensitivity of effectiveness pre-
diction by using these typical approaches were verified in terms of reasoning efficiency 
and calculation precision. From statistical analysis, it is summarized that higher efficient 
prediction could be returned by RSAE–ANFIS than that of other approaches. Its average 
computation accuracy reaches 98.25% in network training and 93.47% in performance test-
ing (error tolerance = ±5%, the same as follows). On the value determination stage of θ, ea, 
et, and Cu, its standard deviation reaches 0.335% in network training and 0.402% in perfor-
mance testing, respectively. This intelligent prediction system only uses 1.22 s to complete 
the entire calculation on the computation platform provided. Other excellent properties 
of RSAE–ANFIS include average computation storage (1855.4 kb), standard error of pre-
diction (3.66%), and upper and lower error limits (4.27% and 4.52%, respectively), with 
the frequently used confidence interval of 95% being adopted. 
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Figure 9. Value comparisons of θ, ea, et and Cu between the predicted and actual measured results originating from tests 
A–K. Where Figure 9 (a) denotes the data variation trend of average soil moisture depth increment (θ, mm), Figure 9 
(b) denotes the irrigation infiltration efficiency (ea), Figure 9 (c) denotes the ratio of net infiltrated moisture depth per 
unit of irrigation time (et, mm/min), and Figure 9 (d) denotes the uniformity coefficient of soil moisture infiltration 
(Cu, %). Besides, Genetic method denotes genetic optimization, SA-GA stands for the simulated annealing- genetic al-
gorithm, Taguchi is Taguchi parameter estimation method, ANN-SA denotes the artificial neural network- simulated 
annealing prediction method, and GONN stands for the genetically optimized neural network.  

Table 5. Performance comparisons of RSAE–ANFIS approach with others, such as SA-GA, simulated annealing-genetic 
algorithm; ANN, artificial neural network; GONN, genetically optimized neural network. 

Performance Accuracy and Computa-
tional Efficiency 

Representative Prediction Approaches (Error Tolerance = ±5%) 

RSAE–ANFIS Genetic SA-GA Taguchi ANN-SA GONN 

Network 
training 

Computation accuracy (%) 98.25 91.02 96.55 91.41 91.26 92.95 

Standard deviation (%) 0.335 0.562 0.662 0.623 0.485 0.635 

Network 
testing 

Computation accuracy (%) 93.47 87.25 86.33 87.58 89.25 84.56 

Standard deviation (%) 0.402 0.568 0.596 0.553 0.563 0.725 

Average computation storage (kb) 1855.4 1556.5 1472.5 1566.2 1695.2 1475.2 

Computation time (s) 1.22s 1.85s 1.87s 1.76s 1.85s 1.95s 

Standard error of prediction (%) 3.66 4.78 5.68 6.65 5.68 5.85 

Confidence 
interval 95% 

Upper error limit (%) 4.27 6.24 6.28 6.47 6.98 6.52 

Lower error limit (%) 4.52 6.85 6.54 6.58 6.88 5.69 

7. Conclusions 
A new adaptive prediction approach used for droplet infiltration effectiveness by us-

ing RSAE–ANFIS was proposed to schedule the circulation efficiency of sprinkler irriga-
tion. This research shows that when jetting pressure (Pw) is 255.2 kPa, the impinge angle 
(Wa) is 42.5°, the water flow rate (Fa) is 0.67 kg/min, and continuous irrigation time (Tc) is 
32.4 min, the optimal and stable effectiveness prediction quality could be ensured: the 
average soil moisture depth increment (θ) is 57.6 mm, irrigation infiltration efficiency (ea) 
is 62.5%, irrigation turn duration efficiency (et) is 34.5 mm/min, and the uniformity coeffi-
cient of soil moisture infiltration (Cu) is 53.6% (error tolerance = ±5%). This research makes 
the following contributions to sprinkler irrigation: (1) It predicted water droplet infiltra-
tion effectiveness in a more efficient way both theoretically and technically; (2) A novel 
intelligent prediction system named RSAE–ANFIS was designed, with its working mech-
anism and constructive influence being explained clearly; (3) A set of effectiveness indexes 
were presented to assess the moisture infiltration mechanism from innovative perspec-
tives; (4) The efficiency, accuracy and quality of sprinkler irrigation can be planned pre-
cisely and monitored instantaneously. This novel intelligent prediction system has out-
standing predictive capability and possesses much better calculation reliability for water 
droplet infiltration effectiveness in accuracy and efficiency. Meanwhile, high agreement 
between the adaptive predicted and actual measured values of infiltration effectiveness 
could be obtained. Consequently, the superiority and efficiency of RSAE–ANFIS were 
confirmed, and the instantaneous supervision and mechanism optimization of sprinkler 
irrigation were facilitated greatly, too. 
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Nomenclature 

endθ  The averaged value of soil moisture proportion (%) 
(xk,yk)th The meshed grid zone of the soil field 

kk NM
RSAEH , The mathematical features of probability density 

( )[ ]{ } kk

kk

NM
yxkkd yxI ,

1,1
2,;, ==σμ

 
The probability density of droplet infiltration at a given 
meshed grid zone ∇J The gradient of JRSAE 

Cf The cumulative irrigation flow depth (mm) 
Cu The uniformity coefficient of soil moisture infiltration (%) 
E evaporation 
ea The irrigation infiltration efficiency 

et 
The irrigation turn duration efficiency, or the ratio of net infil-
trated moisture depth per unit of irrigation time (mm/min) 

Ev The cumulative water flow depth evaporated at the end of irri-
gation turn (mm) 

f The mapping function of the RSAE decoder 
F1 The recursive complexity index 
F2 The functional inclusion index 
F3 The computational compactness index 
F4 The cluster validity index 
F5 The Kullback–Leibler divergence index 
F6 The fuzzy clustering uniformity index 
Fa The flow rate of water (kg/min) 
gRSAE The mapping function for the RSAE decoder 
H(i,j) The inverse of the Hessian matrix 
i The ith intervals of the update process of WRSAE 

Id((xk,yk); μ, σ2) The probability density of water droplet infiltration at the in-
vestigated area 

IT The irrigation time (h) 
j The jth intervals of the update process of WRSAE 
Mk The number of meshed grids in length directions 
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N(μ,σ) 
Normal distribution of droplet infiltration positions on an ob-
jective meshed grid zone 

Nk The number of meshed grids in width directions 
Pw The jetting pressure in the nozzle tube (kPa) 
Q The spray discharge amount (L/h) 
RH The average air relative humidity (%) 
sgn The result of the sign function of σr(W∙(xk,yk)) 
SR The solar radiation 
T The average air temperature (℃) 
t The irrigation turn duration (min) 
Tc The continuous irrigation time (min) 
Wa The impinge angle (º) 
WRSAE The weight matrix of the Regularized Sparse Autoencoder 

xk 
The horizontal coordinates of the specific position where water 
droplet infiltration happens 

yk 
The vertical coordinates of the specific position where water 
droplet infiltration happens 

η The step size of the update process 
θ The average soil moisture depth increment (mm) 
θantecedent The average antecedent soil moisture depths (mm) 
θend The average achieved soil moisture depths (mm) 

θxk,yk 
The soil moisture proportion at one infiltration measurement 
position (%) 

λxkyk The regular coefficient of RSAE corresponding to the mesh grid 
zone 

μ The mean value of the infiltration position coordinate 
σ The corresponding distribution variance 

σr(z) 
The rectified linear unit employed as the activation function in 
the RSAE decoder 

σr’ The derivative function of rectified linear unit σr 
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