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Abstract: This paper proposes a real-time detection method for a car driving ahead in real time on
a tunnel road. Unlike the general road environment, the tunnel environment is irregular and has
significantly lower illumination, including tunnel lighting and light reflected from driving vehicles.
The environmental restrictions are large owing to pollution by vehicle exhaust gas. In the proposed
method, a real-time detection method is used for vehicles in tunnel images learned in advance
using deep learning techniques. To detect the vehicle region in the tunnel environment, brightness
smoothing and noise removal processes are carried out. The vehicle region is learned after generating
a learning image using the ground-truth method. The YOLO v2 model, with an optimal performance
compared to the performances of deep learning algorithms, is applied. The training parameters are
refined through experiments. The vehicle detection rate is approximately 87%, while the detection
accuracy is approximately 94% for the proposed method applied to various tunnel road environments.

Keywords: advanced driver assistance systems (ADAS); intelligent transportation system (ITS);
vehicle detection; tunnel road environment

1. Introduction

Recently, various technologies for autonomous vehicles have emerged. A support system for the
safe driving of vehicles has been achieved by combining various sensors included in the vehicle, such as
lane maintenance, omnidirectional vehicle distance estimation, side vehicle detection, and vehicle
distance maintenance sensors [1–3]. This paves the way for the realization of fully autonomous driving.
Among the sensors installed in vehicles to support autonomous driving, the charge-coupled device
(CCD) vision sensor is the most important [4–9]. Most driving tasks are the driver’s visual tasks.
The road environment information is analyzed through visual information, the situation is recognized,
and the vehicle steering task is finally determined through the driving task. Thus, image recognition
through vision sensors is important for the safety support of autonomous vehicles. Among the sensors
required for safe driving support, the most commonly mounted or installed sensor on vehicles is a
vehicle-type black-box device, which is a front and rear video recording device [10,11].

However, the current vehicle black-box system is simply used as a video recording device for
accident identification. If the black-box product is equipped with a function for safe driving support,
it will be possible to support safe driving. Some products include image processing functions such as
lane keeping, determination of whether the vehicle in front is starting or not, and traffic sign recognition.
However, existing black-box systems capable of recognizing intelligent road conditions can be applied
in environments where lighting or road conditions do not significantly change. For example, it is
impossible to recognize the correct road situation in an environment with poor lighting that is not a
general road environment, such as those in tunnels or bridges. Traffic accidents have been continuously
occurring in tunnels in Korea, and the number of deaths is also increasing [12]. Figure 1 shows the
scene of a traffic accident in a tunnel [13]. As shown in Figure 1, most traffic accidents in tunnels are
caused by collisions with vehicles in front.
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Figure 1. Photograph of a traffic accident scene in a tunnel [13]. (see 
https://www.socialfocus.co.kr/news/articleView.html?idxno=7398,  
http://www.sisa-news.com/news/article.html?no=121142, 
https://www.seoul.co.kr/news/newsView.php?id=20200506800014, 
https://news.zum.com/articles/59902225). 

According to the traffic accident analysis system of the Korea Road Traffic Authority [12], the 
traffic accident status in tunnels in the period of 2010 to 2019 is shown in Figure 2. The number of 
injured persons has increased owing to the increase in the number of tunnel traffic accidents over the 
past four years. In addition, according to the analysis of traffic accident types in tunnels in the period 
of 2015 to 2019 in Figure 3, the ratio of vehicle-to-vehicle traffic accidents was above 88%, owing to 
the nature of the tunnel. Figures 4 and 5 show diagrams demonstrating the violation of road traffic 
regulations and status of each vehicle type among traffic accident types in tunnels. Approximately 
60% of the traffic accidents in tunnels in the last five years were due to negligence, while 25% of the 
accidents were caused by not maintaining a safe distance between vehicles. More than 76% of vehicles 
were passenger vehicles. 

Figure 1. Photograph of a traffic accident scene in a tunnel [13]. (see https://www.socialfocus.co.kr/
news/articleView.html?idxno=7398, http://www.sisa-news.com/news/article.html?no=121142, https:
//www.seoul.co.kr/news/newsView.php?id=20200506800014, https://news.zum.com/articles/59902225).

According to the traffic accident analysis system of the Korea Road Traffic Authority [12], the traffic
accident status in tunnels in the period of 2010 to 2019 is shown in Figure 2. The number of injured
persons has increased owing to the increase in the number of tunnel traffic accidents over the past four
years. In addition, according to the analysis of traffic accident types in tunnels in the period of 2015 to
2019 in Figure 3, the ratio of vehicle-to-vehicle traffic accidents was above 88%, owing to the nature
of the tunnel. Figures 4 and 5 show diagrams demonstrating the violation of road traffic regulations
and status of each vehicle type among traffic accident types in tunnels. Approximately 60% of the
traffic accidents in tunnels in the last five years were due to negligence, while 25% of the accidents
were caused by not maintaining a safe distance between vehicles. More than 76% of vehicles were
passenger vehicles.Symmetry 2020, 12, x FOR PEER REVIEW 3 of 12 

 

 

Figure 2. Traffic accidents in tunnels in the last 10 years (Korea Road Traffic Authority, traffic accident 
analysis system). 

 

Figure 3. Current status of traffic accidents in tunnels over the past five years according to the accident 
type. 

 

Figure 4. Traffic accidents in tunnels by violation of laws and regulations in the past five years. 

Figure 2. Traffic accidents in tunnels in the last 10 years (Korea Road Traffic Authority, traffic accident
analysis system).

https://www.socialfocus.co.kr/news/articleView.html?idxno=7398
https://www.socialfocus.co.kr/news/articleView.html?idxno=7398
http://www.sisa-news.com/news/article.html?no=121142
https://www.seoul.co.kr/news/newsView.php?id=20200506800014
https://www.seoul.co.kr/news/newsView.php?id=20200506800014
https://news.zum.com/articles/59902225


Symmetry 2020, 12, 2012 3 of 11

Symmetry 2020, 12, x FOR PEER REVIEW 3 of 12 

 

 

Figure 2. Traffic accidents in tunnels in the last 10 years (Korea Road Traffic Authority, traffic accident 
analysis system). 

 

Figure 3. Current status of traffic accidents in tunnels over the past five years according to the accident 
type. 

 

Figure 4. Traffic accidents in tunnels by violation of laws and regulations in the past five years. 

Figure 3. Current status of traffic accidents in tunnels over the past five years according to the
accident type.

Symmetry 2020, 12, x FOR PEER REVIEW 3 of 12 

 

 

Figure 2. Traffic accidents in tunnels in the last 10 years (Korea Road Traffic Authority, traffic accident 
analysis system). 

 

Figure 3. Current status of traffic accidents in tunnels over the past five years according to the accident 
type. 

 

Figure 4. Traffic accidents in tunnels by violation of laws and regulations in the past five years. 
Figure 4. Traffic accidents in tunnels by violation of laws and regulations in the past five years.Symmetry 2020, 12, x FOR PEER REVIEW 4 of 12 

 

Figure 5. Traffic accidents in tunnels in the last five years according to the vehicle type (Road Traffic 
Authority, traffic accident analysis system). 

Through the analysis of big traffic accident data [12], it is necessary to provide a guidance for 
vehicle drivers in tunnels to maintain a safe distance from the vehicle driving ahead and be attentive 
to the scene in front. Therefore, through a support system for the presence or absence of a vehicle 
ahead in such a tunnel, the number of traffic accidents in the tunnel can be reduced.  

In the last five years, 3218 tunnel traffic accidents have occurred in Korea, in which 7472 people 
have been killed and injured. Thus, approximately 2.32 people were affected in a tunnel traffic 
accident. The risk is very high compared to 1.52 people per year in traffic accidents. Therefore, a safe 
driving support system that can inform the driver about whether the vehicle is driving ahead in real 
time to a vehicle running in a tunnel can largely reduce the number of traffic accidents in tunnels. 
Various methods for the detection and recognition of vehicles on roads have been proposed [14–16]. 
These methods involve various sensors. However, deep learning models [17–19] that can be applied 
to vehicle recognition using the image processing function are mainly the result of learning from 
vehicle images acquired in the daytime driving road environment, while the vehicle recognition rate 
is very low under tunnel-like environments. Therefore, in this paper, we propose an omnidirectional 
vehicle detection method in a tunnel environment. The tunnel environment has various brightnesses 
levels and colors depending on the characteristics of the lighting applied to the tunnel. In this study, 
to minimize the effect of the illumination light in the tunnel, the brightness of the image is smoothed 
and the effect of noise is minimized. The images of cars driving in the tunnel are learned using a deep 
learning model. In addition, we propose a method to detect a vehicle running in a tunnel using the 
learned deep learning model. 

2. Proposed Method 

In this paper, we propose a real-time detection method for a vehicle in a tunnel environment. 
Figure 6 shows images of vehicles in a tunnel road environment. 

  

Figure 6. Examples of a vehicle driving ahead in a tunnel environment. 

Figure 5. Traffic accidents in tunnels in the last five years according to the vehicle type (Road Traffic
Authority, traffic accident analysis system).

Through the analysis of big traffic accident data [12], it is necessary to provide a guidance for
vehicle drivers in tunnels to maintain a safe distance from the vehicle driving ahead and be attentive to
the scene in front. Therefore, through a support system for the presence or absence of a vehicle ahead
in such a tunnel, the number of traffic accidents in the tunnel can be reduced.
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In the last five years, 3218 tunnel traffic accidents have occurred in Korea, in which 7472 people
have been killed and injured. Thus, approximately 2.32 people were affected in a tunnel traffic
accident. The risk is very high compared to 1.52 people per year in traffic accidents. Therefore, a safe
driving support system that can inform the driver about whether the vehicle is driving ahead in real
time to a vehicle running in a tunnel can largely reduce the number of traffic accidents in tunnels.
Various methods for the detection and recognition of vehicles on roads have been proposed [14–16].
These methods involve various sensors. However, deep learning models [17–19] that can be applied to
vehicle recognition using the image processing function are mainly the result of learning from vehicle
images acquired in the daytime driving road environment, while the vehicle recognition rate is very
low under tunnel-like environments. Therefore, in this paper, we propose an omnidirectional vehicle
detection method in a tunnel environment. The tunnel environment has various brightnesses levels
and colors depending on the characteristics of the lighting applied to the tunnel. In this study, to
minimize the effect of the illumination light in the tunnel, the brightness of the image is smoothed and
the effect of noise is minimized. The images of cars driving in the tunnel are learned using a deep
learning model. In addition, we propose a method to detect a vehicle running in a tunnel using the
learned deep learning model.

2. Proposed Method

In this paper, we propose a real-time detection method for a vehicle in a tunnel environment.
Figure 6 shows images of vehicles in a tunnel road environment.
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Tunnel images have low illumination compared to general road images, diffused reflections
frequently occur due to the tunnel lighting, and they contain noise due to automobile smoke. In addition,
it is challenging to detect the vehicle area visually at the entrance and exit of the tunnel owing to
the sudden change in illumination. Therefore, in this study, a deep learning technique is applied to
learn vehicles running in the tunnel. Brightness balance and noise removal steps are implemented to
minimize the effects of various tunnel illumination lights and noise on the tunnel image. The input
tunnel images are acquired from a black box installed in the vehicle.

2.1. Overview

We propose a method for the real-time detection of vehicles in vehicle black-box images acquired
on tunnel roads. On tunnel roads, generally, the tunnel image quality is reduced owing to the irregular
lighting, diffused reflection by the tunnel lighting, light reflected from the surface of driving vehicles,
and exhaust gas from vehicles, in contrast to general roads. The image acquired on the tunnel road
includes haze, light leakage, and blurring. When a vehicle detection method based on color and shape
is applied to a tunnel road, error occurs in the detection. Therefore, in the proposed method, vehicle
detection is performed by image brightness equalization and noise removal in advance.

Figure 7 shows a flowchart of the vehicle detection process in the tunnel proposed in this paper.
The black-box image is a 1920× 1080 pixel, full color high-definition (HD) quality image, which requires
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a large time period to be processed. In this study, the image was reduced by applying the bilinear
interpolation method to a 1

2 image. In addition, to correct the brightness of the image, illuminance
smoothing was performed and the noise was removed by applying an average-value filter of pixel
values. In the image post-processing step, the execution time was minimized by selectively using only
the middle area of the image where the vehicle driving ahead appeared, not the entire input image.
In the training stage, the YOLO v2 model was used for the images that were previously labeled with
the ground-truth method. In the final vehicle detection step, a vehicle detector was used to detect the
position of the vehicle in the tunnel image.
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2.2. Pre-Processing

In this step, to effectively detect vehicles in a tunnel image, the processing amount is reduced and
the image quality is improved. To reduce the processing calculation amount, the image size is reduced
and the brightness is corrected to improve the image quality. In addition, the noise generated by diffuse
reflection by exhaust gas and tunnel lighting in the tunnel environment is removed. A black-box,
a video recording device for vehicles, is used to record the driving situation of the vehicle. Consequently,
vehicle black box devices require a wide angle of view and high image quality to store road images.
To this end, most black-box devices are tapped as a CCD sensors that provides a high HD-level quality.
The size of the image acquired from the black-box device is 1920×1080 pixels (24-bit red-green-blue
(RGB) color image). With the processing of the high-resolution image to detect a vehicle, the vehicle
detection rate is high and the position can be accurately detected. However, the calculation amount is
increased. Moreover, if a high-resolution image is used to learn a vehicle from a tunnel road image,
a limit exists, which leads to an increase in the learning time. In the proposed method, the size of
the input black-box HD-level image is reduced through bilinear interpolation. The advantage of
the bilinear interpolation method is that it can output smoother images than those obtained by the
nearest-neighbor interpolation method. Through the proposed method, the input tunnel image is
reduced to 1/2 pixel size. As stated above, most tunnel environments have low illuminations compared
to the general road environment. In the pre-processing, the first step in improving the brightness of the
input image is performed. In the tunnel environment, the image quality is largely reduced owing to the
haze attributed to light scattering from vehicle exhaust gas, road dust, and tunnel lighting. The haze
contribution is stored together in the vehicle black box as a noise. Therefore, in the pre-processing step,
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the brightness of the image is improved and the included haze is minimized. The tunnel image (I)
obtained from the black box can be expressed by

I(x) = J(x)t(x) + L(1 − t(x)). (1)

where x is the two-dimensional (2D) image pixel coordinates, I(x) is the observed image, J(x) is the
original image, L is the atmospheric light, and t(x) is the transmission map describing the portion of
light. The original image J(x) to be estimated by Equation (1) can be expressed using the atmospheric
light and transmission map. Therefore, the original image is estimated using the Retinex theory [20–22]
to remove the noise. In the step of estimating J(x) of the original image from which the noise was
removed, the atmospheric light L is estimated using a dark channel prior. The transmission map t(x)
is estimated using atmospheric light. The original image J(x) without noise is estimated using the
estimated L and t(x).

Figure 8 shows the result of the estimation of the image with an improved brightness and
removed noise from the tunnel image. Figure 8b shows an inverted image obtained by calculating
the complement from the image in Figure 8a, acquired from the black box. Figure 8c shows a dark
channel image, representing the lowest brightness in each RGB channel of that in (b). Using the image
in Figure 8b, the atmospheric light L is estimated using the method reported by Dubok et al. [23].
The transmission map (Figure 8d) t(x) is estimated using the atmospheric light L. Using the atmospheric
light L and transmission map t(x), and image with a smoothed brightness and removed noise is
generated, as shown in Figure 8e. Finally, the image with a complement is obtained (Figure 8f).
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2.3. Vehicle Detection

In this step, the vehicle region is detected in the tunnel image using the YOLO v2 model. It utilizes
the vehicle detector created through the vehicle learning step in advance. We use the pre-trained
model to learn the vehicle region. Rather than constructing a new learning model, the YOLO v2 vehicle
detector was created by effectively modifying the pre-trained learning model. ResNet-50 was used
as the prior learning model [24]. ResNet-50 is a 50-layer convolutional neural network trained on
over 1 million images in the ImageNet database. This model can be classified into approximately 1000
categories. The image input size of the neural network is 224 × 224. The YOLO v2 neural network
consists of two sub-neural networks, feature extraction and detection neural networks. The feature
extraction neural network used in this study uses the previously learned RestNet-50 CNN model.
The detection neural network consists of several convolutional layers and a YOLO v2 dedicated layer.
The inputs used to parameterize the YOLO v2 neural network are the neural network input size, anchor
box, and feature extraction neural network. The size of the neural input was set to [224 224 3], while the
number of anchor boxes was set to 11. The feature extraction neural network used 40 activation
rectified linear units (ReLUs). Figure 9 shows the neural network structure of the YOLO v2 model
used for the vehicle region detection by the proposed method.
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3. Experimental Results

To evaluate of the proposed method, an experiment was carried out on 1920 × 1080 24-bit color
images of driving videos acquired from a car black-box in various tunnels. The experiment was carried
out using MATLAB. For the training data, we estimated the anchor size and number of the YOLO
v2 model that could most effectively represent the vehicle region according to the size of the vehicle
region designated by the ground-truth method and ratio of horizontal/vertical pixels. In the image
input from the training data, it is important to use a mask that matches the size of the vehicle region in
the extraction of feature information during the model learning according to the size distribution of
the vehicle region. It is necessary to set the anchor box size and number of candidates, most effective
for the vehicle area sizes, through cross-comparison of the vehicle area in the experimental data and
vehicle area detected during the experiment. Figure 10 shows the size and width/length ratio of the
vehicle region in the experimental data. Figure 11 shows the accuracy of intersection of detected
vehicle regions according to the number of YOLO learning anchors.

According to the experiment, the size of the anchor box that most effectively detects the vehicle
area in the training data was set to 11 and the YOLO learner was used. For the network training,
stochastic gradient-descent optimization functions were used, the initial learning rate was 0.0001, the
mini-batch size for each training iteration was set to 64, and the maximum number of iterations was
set to 30. Only 70% of the data were used, 15% were used for verification, while the remaining 15%
were used for testing. Figure 12 shows a graph of the precision and recall obtained using the YOLO v2
vehicle detector generated after the training. The average accuracy of the resulting vehicle detectors
was approximately 95%. Figure 13 shows the results of applying Aggregated Channel Features
(ACF) [24,25], Fast R-CNN [26,27], Single Shot Detector (SSD) [28,29], feature information-based
vehicle detectors, and the proposed method to detect vehicles in various terminal environments. The
proposed method provides good results for the detection of vehicles in a tunnel environment. However,
a vehicle cannot be correctly detected in a road portion where a sudden change in illuminance occurs,
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such as a tunnel entrance/exit portion. Figure 13 shows the results of vehicle detection in a tunnel
using different learners.
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The ACF-based vehicle detectors decompose the learning vehicle images into 10 feature channels
and reduce them in multiple steps to calculate the features of the vehicle region. In addition, to classify
the features of the vehicle region with the AdaBoost algorithm, only the regions where the features
of the vehicle are located are classified in stages using several weak classifiers. The number of weak
classifiers used for learning was set to a maximum of 2048, while the number of iterations of learning
process was set to 10 to proceed with the learning. The Fast R-CNN-based vehicle detector uses a deep
convolutional neural network based on a region of interest. For learning, VCG-16 was used as the
pre-training model, the mini-batch size was set to 16, the initial learning rate was set to 0.0001, and the
maximum number of epochs was set to 30. The SSD-based vehicle detectors use the pre-training
model ResNet-50 for feature extraction and stochastic gradient descent with momentum for learning.
The initial learning rate of the learner was set to 0.0001, the mini-batch size was set to 16, and the
maximum number of epochs was set to 30. According to the experiment, the proposed method
provided good results for vehicle detection in tunnels.

The ACF-based vehicle detection method [27] could not detect vehicles at a distance or at the
entrance and exit of a tunnel. For the Fast R-CNN-based vehicle detection method [28], the vehicle
detection rate was the lowest, owing to the use of a vehicle model learned on a general road in a
tunnel. The SSD-based vehicle detection method [29] could not detect vehicles located at a distance.
The proposed method has a relatively effective vehicle detection rate regardless of the distance.

The comparison of the vehicle detection rates in various tunnel environments shows an accuracy
improvement of approximately 10.7% with the introduction of the pre-processing. Table 1 compares
the vehicle detection rates with and without the preprocessing in the vehicle detection step. A vehicle
cannot be detected in the tunnel when two or more vehicles overlap owing to lane changes while
driving. In addition, it could not detect a vehicle in progress behind a large bus or truck. According to
the experiment, the average vehicle detection rate of the proposed method was approximately 86.8%.
The comparison of the vehicle detection accuracy shows a performance of approximately 94.1%.
The vehicle detection was judged successful if it overlapped the location of the vehicle area by
approximately 50% or more by the ground-truth method in advance.
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Table 1. Comparison of vehicle detection rates (%) with and without pre-processing steps.

Tunnel Scenes Without Pre-Processing With Pre-Processing

#1 81.4 87.6
#2 82.1 88.2
#3 79.4 85.0
#4 79.6 86.5

4. Conclusions and Future Work

In this paper, we proposed a method to detect a vehicle driving ahead in a tunnel environment.
In the proposed scheme, a vehicle detector was created using a YOLO v2 learner. The learning
was performed on road images acquired in various tunnel environments to generate the detector.
To increase the accuracy of vehicle detection in a tunnel environment, vehicle detection performance
was improved by applying the noise reduction and illuminance smoothing steps to the tunnel image
in advance. In addition, according to the application of several deep learning learners, the YOLO v2
network was effective for vehicle detection in a tunnel environment. However, it was challenging
to detect vehicles at the entrance and exit of the tunnel owing to the sudden change in brightness.
We intend to continue with studies on vehicle detection using Kalman filters, estimation of the distance
between vehicles in the tunnel, and discrimination of brake application through the detection of
brake lights.
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