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Abstract: Goal recognition (GR) is a method of inferring the goals of other agents, which enables
humans or AI agents to proactively make response plans. Goal recognition design (GRD) has
been proposed to deliberately redesign the underlying environment to accelerate goal recognition.
Along with the GR and GRD problems, in this paper, we start by introducing the goal recognition
control (GRC) problem under network interdiction, which focuses on controlling the goal recognition
process. When the observer attempts to facilitate the explainability of the actor’s behavior and
accelerate goal recognition by reducing the uncertainty, the actor wants to minimize the privacy
information leakage by manipulating the asymmetric information and delay the goal recognition
process. Then, the GRC under network interdiction is formulated as one static Stackelberg game,
where the observer obtains asymmetric information about the actor’s intended goal and proactively
interdicts the edges of the network with a bounded resource. The privacy leakage of the actor’s
actions about the real goals is quantified by a min-entropy information metric and this privacy
information metric is associated with the goal uncertainty. Next in importance, we define the privacy
information metric based GRC under network interdiction (InfoGRC) and the information metric
based GRC under threshold network interdiction (InfoGRCT). After dual reformulating, the InfoGRC
and InfoGRCT as bi-level mixed-integer programming problems, one Benders decomposition-based
approach is adopted to optimize the observer’s optimal interdiction resource allocation and the
actor’s cost-optimal path-planning. Finally, some experimental evaluations are conducted to
demonstrate the effectiveness of the InfoGRC and InfoGRCT models in the task of controlling
the goal recognition process.

Keywords: information metric; goal recognition; network interdiction; Stackelberg game

1. Introduction

Goal recognition (GR), also called intention recognition, or more generally plan recognition, is the
task of recognizing other agents’ goals by analyzing the actions and/or the state (environment) changes
caused by the actions [1], which has drawn the interest of researchers in the field of artificial intelligence
and psychology for recent decades. Goal reasoning as one variant is the process in which intelligent
agents continually reason about the goals they are pursuing [2]. Goal recognition design has been
proposed to redesign the environment to facilitate goal recognition offline [3]. As one sub-problem
of PAIR (plan activity and intent recognition) [4], goal recognition has been successfully applied
to various applications, such as human–machine interaction (HMI) in social settings (home, offices,
and hospitals) [5], agent modeling [6], critical infrastructure protection (CIP) [7], and some military
applications about reasoning the goals of the terrorists or opponents [2,8]. Unlike manipulating
asymmetric information in CIP, goal recognition is widely applied to “human–AI planning (HAIP)” [9],
and “explainable planning (XAIP)” [10], where the focus is symmetric information understanding and
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explicit information sharing respectively. But, in a parallel thread, new problems arise, such as the
goals uncertainty in a fully observable and deterministic environment, the hard environment redesign
can be replaced by soft interdiction with additional cost to actions. One simplified CIP scenario is
illustrated in Figure 1, first mentioned in [7], in which the defender’ objective is to protect critical
infrastructure against the attacker whose goal (target) is unknown. The urban environment contains
military and government facilities, physical (natural or artificial) obstacles and other environmental
factors, where the ability of agents to perform certain actions is restricted. The actor is equipped with
some explosive weapons, and these weapons enable the actor to carry out bomb attacks on vulnerable
buildings. Owing to the different situation awareness of the urban environment, the defender has
asymmetric information about the attacker’s real goals [11], but bridge interdiction still could be
performed by the defender to facilitate the goal recognition process.

(a) (b)

Figure 1. A simple tactical scenario of critical infrastructure protection (CIP) [7]: the defender would
like to proactively recognize the goal of the attacker and make response plans. (a) A CIP domain.
(b) A simple instance of the CIP domain.

Explainability, as one key AI enabling technology, has been used to develop robust AI
applications and systems [12]. Explainability and obfuscation of the behavior are a pair of opposite
requirements, since sharing and hiding the goals depict the opposite choice of the agents. Sharing
goals drives the actor’s behavior to be explainable (interpretable) with understandability [13],
explicability [14], legibility [15], predictability [16], and transparency [17], while hiding goals drives
the actor’s behavior to be uninterpretable with obfuscation, deception, privacy, and security [18].
In the cooperative setting, the explainability and interpretability of behavior remain significantly
challenging in developing human-aware AI agents [18] and human-agent systems [19]. Goal signaling
assists behavior explanation in human-robot teaming [20]. In order to share explainable behavior,
the human-aware agent should not only consider his own model, but also the observer model
and the differences thereof [5]. In the adversarial setting, such as military mission planning and
counter-planning [21,22], keeping the goal obfuscated is the most important. Many recent pieces
of work explore deception [23] and privacy [24]. For example, deception was investigated in two
classes, simulation and dissimulation [23], privacy was investigated in five classes, agent privacy,
model privacy, decision privacy, topology privacy, and constraint privacy [25,26]. In cooperative
and adversarial environment, a goal-driven intelligent agent would manipulate the goals in the
goal-pursuing process, such as sharing or revealing the goals among teammates and meanwhile hide
the goals against adversaries. The recursive reasoning process shows the cruel twist of situation
awareness between agents, who continually react to their evolving situation, possibly abandoning
current goals and switching to other goals [27]. Many unified frameworks have been proposed for the
cooperative and adversarial environment, such as information bottleneck based intention reveal and
hide [28–30], cooperative-competitive processes (CCP)-based multi-agent decision-making [31]. In fact,
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many pieces of research revolved around the communication of goals implicitly using behavioral cues.
The agents’ action could be treated as special cases of implicit signaling behavior [18,20]. The highly
interwoven decision-making process of the opposing players situated in these settings motivates the
need for a comprehensive strategic analysis, which would help the observer to recognize the agents’
real goals and identify the optimal interdiction strategies [32].

In different game models, the players are called differently. To be different from the pairing
roles, such as attacker–defender, leader–follower, searcher–evader, and interdictor–intruder, in this
paper, we use actor–observer as a more neutral pairing role to depict the interaction between the
two players. When the actor performs an action privately in adversarial environment, the privacy
information leakage from the actor’s behavior is closely related to the goal uncertainty. Similar to the
behavioral probability weighting technique, which has been used in interdependent security game [33],
the actions or states of the agents can be measured by information metrics. In this paper, we quantify
the privacy information leakage of actions or states with a min-entropy information metric, which is
tightly associated with the goal uncertainty and can be used to aid in recognizing the goals. Aiming at
assisting the observer to control the goal recognition process, in this paper, we follow the multi-model
models, such as share (reveal, signal) or hide information [28,29], delay predictability [34] or assist
recognition [3], reduce or improve uncertainty [35], and define the goal recognition control (GRC)
problem under network interdiction with a privacy information metric as InfoGRC. Here, the observer
will reduce the goal uncertainty value through limiting the action space that an actor can perform
under network interdiction, while the actor manages to delay the goal recognition process through
adding the goal uncertainty value by performing abnormal actions.

In summary, the main contributions of this paper are as follows:

• We start by introducing one game-theoretic decision-making framework, and then present
the generative inverse path-planning and network interdiction for goal recognition, and some
information metrics for the signaling behavior.

• We adopt a min-entropy based privacy information metric to quantify the privacy information
leakage of the actions and states about the goal.

• We define the InfoGRC and InfoGRCT using the privacy information metric, and provide a more
compact solution method for the observer to control the goal uncertainty by incorporating the
information metric as additional path cost.

• We conduct some experimental evaluations to demonstrate the effectiveness of the InfoGRC and
InfoGRCT model in controlling the goal recognition process under network interdiction.

The rest of the paper is organized as follows: the background and related work are introduced in
Section 2. In Section 3, the min-entropy based privacy information metric is presented, the InfoGRC and
InfoGRCT problems are defined, and a Benders decomposition based solution method is introduced.
Section 4 presents experimental results, evaluation, and analysis. Finally, conclusion and future work
are summarized in Section 5.

2. Background and Related Work

In the defense and security domain, critical facility protection, privacy security, and convoy
protection are in need of goal recognition. In such situations, the observer (decision-maker) is
threatened by the actor with some conflicting goals and need one enabler to read the actor’s mind.
Here, we first propose one game-theoretic decision-making framework for goal recognition under
network interdiction, the goal recognition process can, therefore, be divided into two main subtasks,
namely generative inverse planning, where the observer attempts to generate plans for the actor,
and goal recognition for proactive response, where the observer has to identify the actor’s goal and
make proactively response plans. As shown in Figure 2, the observer will get the game situation
from the generative courses of action (COA) of the hostile opponents and friendly teammates, then
attempts to recognize the actor’s goals under network interdiction. In fact, as one important carrier,
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the network can be used to represent “critical infrastructure network” (road network, railway network,
power network, and cyber network), “task plans” (HTN, attack graph, and Petri Net). In this paper,
we simply use the road network for path-planning and network interdiction.

Information Fusion
Sensors Databases Reports Text Streams

Situation Awareness

Physical Entities

Hostile Decisions Friendly Decisions

Game Situation

Adversarial Environment

Game-Theoretic Decision-Making

Generative Inverse Planning

Goal Recognition Proactive Response Plan

ObserverActor

Network Interdiction

Figure 2. A game-theoretic decision-making framework for goal recognition under network interdiction.

2.1. Path-Planing and Network Interdiction

2.1.1. Path-Planning

Path-planning is a sub-problem of general task planning, which aims at finding a path through the
map of a domain. One typical path planning scenario on the hexagonal grids is illustrated in Figure 3.
Path-planning for an actor on the road network ( discrete grid or connected graph representation) finds
a path from the start location to the final goals. The path-planning problem can be defined as follow:

Actor

Goal 2

Goal1

Observer

Figure 3. A simple path-planning scenario on the hexagonal grid, where the black path contains the
least goal uncertainty, the red path contains the largest goal uncertainty, while the blue path contains
some deceptive steps.

Definition 1 (PPD). A path planning domain is a tuple:

D = 〈N , E , c〉 (1)

• N is a non-empty set of location nodes;
• E ⊆ N ×N is a set of actions related edges between nodes;
• c : E 7→ R+

0 returns the cost of traversing each edge.
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Definition 2 (GDPP). A goal-driven path planning problem is a tuple:

PGP =
〈
D, s,G,Ppo, Ω,O

〉
(2)

• D is the path planning domain;
• s ∈ N is the start location;
• G = {gr, g0, g1, . . . }is a set of candidate goals, where gr is the real goal;
• Ppo(G|On) denotes the posterior probability of a goal given a sequence of observations (or last state in that

sequence), which can be the model of the observer;
• Ω = {oi|i = 1, . . . , m} is the set of m observations that can be emitted as results of the actions and

the states;
• O : (N × E)→ Ω is a many-to-one observation function which maps the action taken and the next state

reached to an observation in Ω.

2.1.2. Network Interdiction

In the defense and security domain, interdiction refers to actions that serve to block or otherwise
inhibit an adversary’s operations [36]. Network interdiction is usually involved with two players,
and it is a special class of network flow games [37], which has been widely studied in the fields
of combinatorial optimization, artificial intelligence, and operations research. The interdiction and
fortification between the two players can be described as one Stackelberg game model [38]. Generally,
two basic models of network interdiction are considered: maximum-flow network interdiction (MXFI),
shortest path network interdiction (SPNI). In this paper, we focus on maximizing the shortest path
(MXSP), one variant of SPNI, where the actor attempts to travel along the shortest path through a road
network from one start (origin) to one goal (destination), while the observer tries to interdict the edges
to maximize the length of this shortest path. When the actor privately approaches a goal, the probability
that the actor’s goal is correctly recognized by the observer would be inversely proportional to the
path cost or time cost that the actor is willing to take. So, we formulate this road network interdiction
problem with one Stackelberg game model, in which observer aims at maximizing the expectation
of “start-goal” path cost in a directed path network by interdicting nodes (states) or edges (actions)
under bounded resource. In fact, the node interdiction problem can be transformed into one edge
interdiction problem [39,40]. In such environment, the actor’s past actions or states are increasingly
difficult to conceal, the observer would proactively take some interdictions to accelerate the goal
recognition process.

We consider that an actor executes a cost-critical task to travel from a start location S to a goal
location G in minimum path cost, meanwhile, an observer seeks to interdict the actor path by choosing
states (nodes) or actions (edges) along from S to G. The set of nodes between S and G define a secure
road network represented by a directed graph G(N , E), as shown in Figure 4, where the set N is the
set of |N | nodes between S and G, and the set E is the set of connections between nodes.
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Figure 4. A simple road network with 10 nodes.
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Each path will go through some nodes which are shared among different paths. An extremely
patient actor without task but with a large time budget might start along a path that traverses the
entire state space (e.g., a Hamiltonian path over the nodes) and stop when the goal is reached,
so as to make the past actions reveal essentially nothing about the goal and make the observer’s
recognition difficult [34]. But one goal-driven actor would lie somewhere in the middle, by combining
a cost-optimal path with some wasteful actions of goal obfuscation. In addition, owing to the bounded
resources for interdiction, the observer is unable to separate the goal and the start node by interdicting
the minimum-cut set. The basic mathematical formulation of MXSP is defined as follows:

[MXSP-P] z∗ = max
x∈X

min
y ∑

a∈E
(c(a) + x(a)d(a)) y(a) (3)

s.t. ∑
a∈Out(i)

y(a)− ∑
a∈In(i)

y(a) =


1 for i = s
0 ∀i ∈ N\ {s, g}
−1 for i = t

(4)

where X =
{

x ∈ {0, 1}|E ||rTx ≤ R
}

with bounded resource R, x(a), y(a) ∈ {0, 1} indicate the
observer’s interdiction resource allocation and the actor’s traverse respectively.

• x∗ denotes an optimal interdiction solution for the observer.
• Flow-balance constraints of variables y, route one unit of flow from s to g, the inner minimum is a

standard shortest path model with edge cost c(a) + αx(a)d(a).
• c(a) is the nominal cost of edge a and c(a) + d(a) is the interdicted cost; d(a) represents the

additional path cost, if sufficiently large, represents complete destruction of edge a.
• r(a) is a small positive integer, representing how many resources are required to interdict edge a.

• R is the total available resource, the observer has C|x|R possible interdiction combinations,
which will grow exponentially with R.

• y denotes a traverse path of the actor.

If the outer variable x is fixed, we can take the inner minimization using Karush–Kuhn–Tucker
(KKT) conditions, then the dual formulation that releases y is defined as follows:

[MXSP-D] z∗ = max
x∈X,~π

π(t)− π(s) (5)

s.t. π(j)− π(i)− d(a)x(a) ≤ c(a), ∀a = (i, j) ∈ E (6)

π(s) = 0. (7)

where we may interpret π(i) as the post-interdiction shortest-path cost from s to i, π(s) = 0.

2.2. Goal Recognition

The ability to recognize the goals of others enables humans to reason about what they are doing,
why they are doing it, and what they will do next [4]. Goal recognition problems can be divided
into three kinds according to the role of the actor whose intention is being inferred. In keyhole
recognition [41], the actor is unaware of being observed and recognized as if the actor is looking
through a keyhole. In intended recognition [42], the actor wants to convey the goal to be understood.
In adversarial recognition [7], the actor is actively hostile to the observations of the actions and the
inference of the goals, and would hide the intention and attempt to thwart the recognition process
by deception and concealment. Different kinds of intention recognition bring different challenges.
More generally, adversarial plan recognition has been applied to the recognition of strategies and
tactics of opponents, in which adversarial reasoning is needed to understand the minds of the
opponents. Generic methods for plan recognition are based on plan-library [43], inverse-planning [44],
and learning [45].
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2.2.1. Probabilistic Goal Recognition

Among the approaches proposed for goal recognition, the probabilistic goal recognition model is
highly regarded, and it is defined as follows:

Definition 3 (PGR). A probabilistic goal recognition problem for path-planning is a tuple:

PGR = 〈D,G, s, O,Ppr〉 (8)

• D = 〈N , E , c〉 is a path planning domain;
• G ⊆ N is the set of candidate goals locations;
• s ∈ N is the start location;
• O = o1, . . . , ok, where k ≥ 0 and oi ∈ N for all i ∈ {1, . . . , k}, is a sequence of observation;
• Ppr represents the prior probabilities of the goals.

The solution to a probabilistic goal recognition problem is a posterior probability distribution
Ppo(G|O) over the set of possible goals. Given the start location and the sequence of observations,
the posterior goal distribution will be computed by the Bayesian rule. One cost difference-based [46]
Boltzmann distribution of the posterior probability is defined as follow:

Ppo(G|O) = αP(O|G)Ppr(G) = α
e−λδ

1 + e−λδ
(9)

δ = Cdi f f (s, g,On) = optc(On, g)− optc(s, g), (10)

where α is a normalizing constant across all goals, λ is a positive constant which captures a soft
rationality assumption, s is the start, g is a goal, On is the most recently observed of the actor.

This cost difference-based recognition method provides one single-observation recognition
paradigm, since the start and goal-related cost difference can be computed offline, we only need
to compute the current location-related cost difference.

2.2.2. Goal Recognition Design

Goal recognition design focuses on one controllable environment by modifying the configuration
of the domain [43]. As for the observer, redesigning the environment will improve explainability of
the actor’s behavior. Many metrics have been proposed to redesign the environment, such as worst
case distinctiveness (wcd) [3], expected-case distinctiveness (ecd) [47], all-goals wcd (wcd(ag)) [47],
and relative goal uncertainty (rgu) [35]. As for more general plan recognition design problem,
the worst-case distinctiveness for plans (wcpd) measures the number of observations needed to
unambiguously identify the agent’s plan [43]. The wcd and goal recognition design (GRD) problem
are defined as follow:

Definition 4 (wcd). Let ΠD = {π|π is a non-distinctive path of D) and let |π| denote the length of a path π,
then, worst case distinctiveness (wcd) of a model D, denoted by wcd(D), is:

wcd(D) = max
π∈ΠD

|π| (11)

Definition 5 (GRD). A goal recognition design problem is defined as a tuple:

D = 〈PD ,GD〉 (12)

• PD is a planning domain formulated in STRIPS;
• GD is a set of possible goal;
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• The output is PD′ such that wcp
(
PD′

)
≤ wcp

(
PD′′

)
,

where all actions have the same cost, the objective is to find a subset of actions and remove them from the action
space, then the wcd of the resulting problem is minimized.

These metrics for GRD are mainly formulated to optimize the maximum number of observations,
which are required to unambiguously infer the goal or plan of the agent [43]. Such as the wcd of
a domain D is an upper bound of the action number that the actor can perform in a stable model,
before selecting a distinctive path to reveal the goal [3]. Figure 5 portrays two possible solutions for
placing barriers or blocks to interdict the passage of the actor.

(a) (b)

Figure 5. The goal recognition design problem with two kinds of redesign (interdiction): the wcd value
is 4 in (a), the wcd value is 0 in (b) [3]. (a) A GRD domain; (b) redesign with one block.

In addition, the GRD problem can be reformulated into an optimization problem with some
constraints: the cost of the cost-optimal plan to achieve each goal g ∈ G is the same before and after
removing the subset of actions [48]. So, the objective is to find a subset of action δE ⊂ E , if they are
removed from the set of actions E , then the wcd of the resulting problem is minimized.

δE = argminδE⊂Ewcd(P) (13)

s.t C
(

π∗g

)
= C

(
π̂∗g

)
∀g ∈ G (14)

where P = 〈D,G〉 is the problem with the resulting domain D̂ = 〈N , s0, E\δE , f , C〉 after removing
actions δE , π∗g is a cost-optimal plan to achieve goal g in the original problem P, and π̂∗g is
a cost-minimal plan to achieve goal g in problem P̂.

As for goal uncertainty, last deceptive point (LDP)-based deceptive path planning [23] and
equidistant states based goal obfuscated plan [49] present two selective solutions. But, there are
still a few standard assumptions in cryptography and multi-party computation. But what if the
adversary knows the algorithms, which is realistic and complied with Kerckhoffs’ principle used
in cryptography [50], these closed formulated solutions of the deceptive path-planning will not
incorporate deception. Goal recognition design aims at facilitating the recognition process. In order to
reduce the wcd, three types of modification, i.e., sensor refinement (SR), action removal (AR), and action
conditioning (AC), are widely used [51]. Owing to the strategic interaction between the actor and
the observer in the GR and GRD problems, the solutions with cost-minimal or wcd do not reflect the
strategic behaviors [52]. We are more interested in adopting soft measures such as additional action
cost by interdiction so as to control the goal uncertainty.
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2.2.3. Trend and Dual-Use

Three paradigms are widely used in recent research on goal recognition, such as the
decision-theoretic paradigm based equi-reward utility maximizing design (ER-UMD) model,
the environment is controlled by applying a sequence of modifications to maximize the agent’s
utility [53]. The game-theoretic paradigm-based goal recognition and design models were used to
reason the opponents’ minds, such as the adversarial intention recognition as inverse planning model,
one generative stochastic game model was used for threat assessment [7]. As for the learning-based
paradigm, inverse reinforcement learning [45], maximum entropy deep reinforcement learning [54],
and information regularization-based deep reinforcement learning [30] are usually employed to
explore the stochastic environment.

Network flow interdiction [55], plan interdiction games [56] and MDP interdiction [57] show one
more potential research thread about interdiction. Network flow based game models such as network
control under node disruptions and network routing under link disruptions [37] show one parallel
thread of research about the goal and plan recognition.

From the perspective of explainability, goal obfuscation is the inverse problem of the goal legibility,
while plan obfuscation is the inverse problem of the goal predictability [18]. Considering the duality
property, road network interdiction is the inverse problem of network fortification [58].

2.3. Behavioral Information Metrics

Several information metrics for signaling behavior have been proposed in the literature. Such as
the deception metric for deceptive path-planning, which involves finding a path such that the
probability of an observer identifying the final destination is minimized [23]. As in the cost-optimal
path-planning setting, simulation (simply deception) or dissimulation(concealment) can be employed
to thwart the goal recognition process.

Simulation bound agents deliberately choose misleading actions to confuse the goal recognition
process, i.e., there exists g ∈ G\{gr} s.t. the recognition probability P

(
gr|sj

)
< P

(
g|sj
)
, where sj is the

j-th node, gr is the real goal.

Definition 6 (S-SD). The simulation based state information metric is defined as follows:

IS−SD(sj) = max
gi∈G\{gr}

P
(

gi|sj
)
− P

(
gr|sj

)
. (15)

Definition 7 (A-SD). The simulation based action information metric is defined as follows:

IA−SD(ai) = 1− λIS−SD(sj). (16)

Dissimulation-bound agents act covertly or intentionally select actions that are hard to detect.
That is, there exists g ∈ G\{gr} s.t. the recognition probability P

(
gr|sj

)
≤ P

(
g|sj
)
, where sj is the j-th

node, gr is the real goal.

Definition 8 (S-DD). The dissimulation-based state information metric is defined as follows:

IS−DD(sj) = −κ ∑
gi∈G

P
(

gi|sj
)
× log

(
P
(

gi|sj
))

(κ = log2 |G|) (17)

Definition 9 (A-DD). The dissimulation-based action information metric is defined as follows:

IA−DD(ai) = 1− λIS−DD(sj) (18)

Also, in some game-theoretic approaches of learning-based goal recognition frameworks, such
as in [7], belief space and Kullback–Leibler (KL) divergence DKL have been adopted to measure
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the deception of strategy. Besides, in the reinforcement learning domain, the conditional mutual
information between goal and action given state, Iaction[π] := I(A;G|S) was defined as the action
information metric, and the mutual information between state and goal, Istate[π] := I(S ;G) was
defined as the state information metric [29]. Although these metrics have been defined for goal-related
actions and states, the applicable scenarios and environment are diverse, we may need some neutral
metrics if the actor knows the observer’s algorithms or deliberately reveals the goal.

3. Goal Recognition Control

In this section, we will define the GRC problem in the context of defense and security with the
road network to connect start locations and goals. Different from the GRD problem, we employ
more applicable and soft measure, network interdiction under bounded resource, to control the goal
recognition process. We propose to model the GRC problem under network interdiction as one
Stackelberg game, where the observer owns asymmetric information about the actor’s intended goal,
and could proactively allocate security resources (such as road barrier, patrolling force) to protect goals
against the actor.

3.1. Privacy Information Metrics

In the fully observable and deterministic environment with multiple goals, the observer may not
be able to catch the real goal, since the actor’s actions and states contain goal uncertainty. Given the
possible goals and current observations, the posterior probability distribution over the goals reflects
the goal uncertainty that the actor will encounter after selecting an action and reaching the next
state. This enlightens us to measure the goal uncertainty associated with the conveyed information
of the actions and states, in which the leaked privacy information can be quantified as the difference
between the initial uncertainty and the remaining uncertainty. In this paper, we consider the actions
(the adjacent edges between the nodes in the road network) as quantitative information flow [59],
the leakage of the privacy information is based on the uncertainty of the observer about the input.
We propose to use the min-entropy (an instance of Rényi entropy [60]) as the privacy information
leakage metric. How much information about H can be deduced by the observer who obtains the
output L is computed as follows:

In f ormation Leakage = Initial uncertainty− Remaining uncertainty (19)

• initial uncertainty: H∞(H) = −logV(H)

• remaining uncertainty: H∞(H|L) = −logV(H|L).
• information leakage = H∞(H)− H∞(H|L)

where V(x) = maxx∈X p(X = x).
This privacy leakage metric represents the rate of information transmission, which has been

widely used in quantifying the privacy leakage in the privacy-preserving planning domain [28].
In this section, we will define the state and action privacy information metrics to control the goal
recognition process. Under the requirement of privacy-preserving, the actor may deliberately choose
misleading actions to obfuscate the goal, i.e., if there exists g ∈ G\{gr} s.t. the recognition probability
P
(

gr|sj
)
< P

(
g|sj
)
, where sj is the j-th node, gr is the real goal. So, we define the metric of action at

each state as follows:

Definition 10 (S-PI). The privacy information metric of the state is defined as follows:

IS−PI(sj) = H( max
gi∈G\{gr}

P
(

gi|sj
)
− P

(
gr|sj

)
) = −log( max

gi∈G\{gr}
P
(

gi|sj
)
− P

(
gr|sj

)
) (20)
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Definition 11 (A-PI). The privacy information metric of action is defined as follows:

IA−PI(ai) =
∑aj∈E ′(s) IS−PI(s)

|E ′(s)| (21)

where ai ∈ E(s), aj ∈ E ′(s), and E ′(s) = E(s)\ai.

The metric IA−PI(ai) reflects the goal uncertainty associated with the action taken. The higher
the privacy information metric is, more uncertainty the goal will be, which means the action taken by
the actor gives less privacy information to the observer, and this will accelerate the goal recognition
process. As shown in Figure 6, we compute the IA−PI(ai) of actions represented by arrow edges
between nodes. As for the path-planning task, goal 1 and goal 2 are the actor’s two goals from the start
node 2, we use c′(a) = c(a) + IA−PI(a) and c(a) = 1 to represent the additional path cost, which will
be employed by the observer to control the goal recognition process. Generally, the actor would choose
path = 〈2, 5, 8, 7〉 for the goal 1 and path = 〈2, 5, 8, 9〉 for goal 2. After the additional path cost with
IA−PI(a), the actor will choose path = 〈2, 1, 4, 7〉 for the goal 1 and path = 〈2, 3, 6, 9〉 for goal 2.

3

1

52

6

4

8

9

7

Goal 2

Goal1

1
1

1

1+0.24

1

1

1

1

1

1+0.22

1
1

1
1

1
1

1
1

1
1

1

1+0.33

1

1+0.28

1
1

1
1

1
1

1
1

Figure 6. Path-planning on the hexagon grid with additional path cost IA−PI(a).

3.2. InfoGRC and InfoGRCT

The GRC problem is a special case of static Stackelberg game. The observer attempts to facilitate
the explainability of the actor’s behavior and accelerate goal recognition by reducing the goal
uncertainty under network interdiction, while the actor wants to delay the goal recognition process.
Without requiring the cost-optimal paths to the goals to be the same before and after redesign the
environment, as investigated in GRD, we will attempt to change the goal uncertainty by proactively
allocating interdiction resource to add the action cost. Adding the information metric I proportionally
as additional cost to the original action cost: c′(a) = c(a) + IA(a), the GRC problem under network
interdiction could be transformed into the problem of maximizing the expectation of “s-g” path cost.
Here, we use optimization techniques to reformulate the GRC problems as mathematical programming
problems. Some notations are shown in Table 1.
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Table 1. Notations for the information metric based goal recognition control (GRC) under network
interdiction (InfoGRC) and information metric based GRC under threshold network interdiction
(InfoGRCT) problem.

Parameters Meaning

Sets and indices
G = (N , E) Road graph network with nodes N and edges E
i ∈ N Node i in G
a = (i, j) ∈ E Edge (i, j) in G
s ∈ N Start node s
g ∈ N Goal node g
In(i)/Out(i) Edges set directed into or out of node i

Data
0 ≤ c(a) < ∞ Cost of edge a, vector form c
0 < d(a) < ∞ Interdiction increment if edge a is interdicted, vector form d
IA(a) The privacy information metric of action a
r(a) > 0 Resource required to interdict edge a, vector form r
R Total amount of interdiction resource available
θ̃ > 0 Threshold of the shortest path
θ > 0 Upper bound with full interdiction
θ > 0 Lower bound without interdiction

Decision Variables
x(a) Observer’s interdiction resource allocation, x(a) = 1 if edge a is interdicted
y(a) Actor’s traveling edge, y(a) = 1 if edge a is traveled by the actor

3.2.1. Accelerate and Delay

In order to formulate the accelerate model of the goal recognition process for the observer and the
delay model of the goal recognition process for the actor, we use the network flow model to define
these situations as follows:

[Accelerate] z∗ = max
x∈X

min
y ∑

a∈E
(c(a) + x(a)d(a)(1 + αIA(a))) y(a) (22)

[Delay] z∗ = max
x∈X

min
y ∑

a∈E

(c(a) + x(a)d(a))) y(a)
1 + βIA(a)

(23)

s.t. ∑
a∈Out(i)

y(a)− ∑
a∈In(i)

y(a) =


1 for i = s
0 ∀i ∈ N\ {s, g}
−1 for i = t

(24)

where X =
{

x ∈ {0, 1}|E ||rTx ≤ R
}

with bounded resource R, x(a), y(a) ∈ {0, 1} indicate the
observer’s interdiction resource allocation and the actor’s traverse path respectively, α, β are the
controlling parameters of two opposite objectives.

As shown in Figure 7, three paths of the actor under the observer’s interdiction with a barrier
before the start node s. The observer proactively interdicts to reduce the goal uncertainty and accelerate
goal recognition. The actor attempts to minimize the privacy information leakage, so as to improve the
goal uncertainty and hide the real goal.

We need to know the metric IA(a) associated with the goal uncertainty, which is defined over
actions available at each state and can be computed offline. The single observation based probabilistic
goal recognition approach will not encounter online inconsistency.

3.2.2. Control and Threshold

Instead of individually analyze the accelerate and delay model, we may want to control the goal
recognition process by adding additional path cost under bounded resource. Here, we mainly focus on
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reformulating the GRC under network interdiction with bounded resource as one optimizing problem
incorporating the metric IA(a).

Actor

Goal 2

Goal1

Observer

(a) (b)

Figure 7. (a) Three paths of the actor, (b) the observer’s goal recognition results at every stage.

Definition 12 (InfoGRC). The formulation of the action privacy information metric-based goal recognition
control is defined as follows:

[InfoGRC] z∗ = max
x∈X

min
y ∑

a∈E

(c(a) + x(a)d(a)(1 + αIA(a))) y(a)
1 + βIA(a)

(25)

s.t. ∑
a∈Out(i)

y(a)− ∑
a∈In(i)

y(a) =


1 for i = s
0 ∀i ∈ N\ {s, g}
−1 for i = t

(26)

where X =
{

x ∈ {0, 1}|E ||rTx ≤ R
}

with bounded resource R, x(a), y(a) ∈ {0, 1} indicate the observer’s
interdiction resource allocation and the actor’s traverse path respectively, α, β are the controlling parameters of
two opposite objectives. Equation (26) is the flow-balance constraint.

Here, we define one variant InfoGRCT, a novel extension of the InfoGRC with threshold
interdiction [61], in which the actor attempts to minimize the length of the metric IA(a) added
path cost, while the observer interdicts the path so that the path cost exceeds a specific threshold with
least resource consumption. We designate this critical threshold as a trade-off between the maximum
shortest path and resource consumption for the observer, which represents the longest shortest path
cost that the actor will tolerate.

Definition 13 (InfoGRCT). The formulation of the action privacy information metric based goal recognition
control with a threshold is defined as follows:

[InfoGRCT] r∗ = min
x∈X

∑
a∈E

x(a)r(a) (27)

s.t. min
x,y ∑

a∈E

(c(a) + x(a)d(a)(1 + αIA(a))) y(a)
1 + βIA(a)

≥ θ̃ (28)

∑
a∈Out(i)

y(a)− ∑
a∈In(i)

y(a) =


1 for i = s
0 ∀i ∈ N\ {s, g}
−1 for i = t

(29)

where x(a), y(a) ∈ {0, 1} indicate the observer’s interdiction resource allocation and the actor’s traverse path
respectively, α, β are the controlling parameters of two opposite objectives, θ̃ is the threshold. Equation (29) is the
flow-balance constraint.
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As illustrated in Figure 8a, one simple road graph network is composed of |N | = 11 nodes and
|E | = 21 edges. Given that node S and node Gi as part of each path, we label the 18 paths, from S
to G1, as follows: [S, . . . , G1] , [(A, D, F), (A, D, H), (A, D, I), (A, E, F), (A, E, H), (A, E, I), (B, D, F),
(B, D, H), (B, D, I), (B, E, F), (B, E, H), (B, E, I), (C, D, F), (C, D, H), (C, D, I), (C, E, F), (C, E, H),
(C, E, I)]. We choose the path cost ci for the i-th edge to be equal to [c1, c2, . . . , c21] , [6, 3, 7, 4, 3,
3, 5, 4, 4, 6, 5, 5, 7, 3, 6, 6, 7, 4, 5, 5, 3]. The three numbers in the tuple (c, d, r) represent the original
path cost of the edge, added cost after interdiction and the resource required for edge interdiction,
respectively. The actor has one fixed starting node S and two possible goals (G1 and G2). We link the
actor’s shortest path before and after the network interdiction using different lines with red arrows,
and the interdicted edges are labeled with a red cross. Specifically, we assume that the observer has
been assigned with a total of R = 5 units of resource to interdict, and the threshold for interdiction is
θ̃ = 20.

The network interdiction solutions for the InfoGRC and InfoGRCT are shown in
Figure 8. Taking the goal G1 as an example, the actor would first traverse the optimal
path (S, B), (B, D), (D, H), (H, G1) with a total length of 15. However, if the edge (H, G1) is
interdicted, the path cost of the original path would be added to 18, and then the other path
(S, B), (B, D), (D, I), (I, G1) with a cost of 16 will be selected, as shown in Figure 8b. Similarly, if the
actor takes G2 as the real goal, as shown in Figure 8c, a new path (S, B), (B, D), (D, I), (I, G2) would be
taken to replace the original (S, B), (B, E), (E, H), (H, G2) after the edge (7, 8) being interdicted. In this
case, the path cost before and after network interdiction are 16 and 22 respectively, while the newly
selected path after interdiction is 18. As shown in Figure 8d,e, considering the interdiction threshold,
the optimal interdiction solution for G1 is (H, G1), (I, G1), and the solution for G2 is (H, G2), (I, G2).

3.3. Dual Reformulation

The InfoGRC and InfoGRCT can be transformed into bi-level optimization programming
(BMIP) problems, in which the observer’s interdiction resource allocation is transparent to the actor.
Some algorithms cannot scale up to large road networks and are sensitive to network parameters,
here we first propose to dual reformulate these problems. The matrix form of the InfoGRC problem is
as follows:

[InfoGRC-P] z∗ = max
x∈X

min
y ∑

a∈E
(c′ + Mx)Ty (30)

s.t. KTy = b

y ≥ 0,
(31)

where c′a = ca/ (1 + βIAI(a)) is the additional action cost, M = diag
(

m1, · · · , m|E |
)

,
b = (1, 0, · · · , 0,−1), ma = d(a)(1 + αIA(a))/ (1 + βIA(a)), K is the network matrix. Equation (31) is
the vector-form flow-balance constraint.

Fixing the outer variable x, we can take the dual of the inner minimization using KKT conditions,
then the dual reformulation of the InfoGRC is as follows:

[InfoGRC-D] z∗ = max
x∈X,~π

bT~π (32)

s.t. KT~π = c′ + Mx

πs = 0,
(33)

where X =
{

x ∈ {0, 1}|E ||rTx ≤ R
}

with bounded resource R, ~π is the dual variables. Hence, the dual
problem can be solved by a standard branch-and-bound algorithm.

The matrix form and the dual reformulation of the InfoGRCT problem are as follows:

[InfoGRCT-P] r∗ = min
x∈X

rTx (34)
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s.t. c′Ty + xTMy ≥ θ̃ ∀y ∈ Y (35)

KTy = b

y ≥ 0.
(36)

[InfoGRCT-D] r∗ = min
x∈X

rTx (37)

s.t. A~π ≥ θ̃ (38)

BT~π + MTx ≥ −c

x ≥ 0,
(39)

where θ̃ is the threshold, A = [−1, 0, . . . , 0, 1]1×m, and B|N |×|E| = (bik) is the node-edge
incidence matrix.

S

G(6,2,3)

A

B

C

D

E

F

H

I

1

G2

(3,1,3)

(7,5,3)

(4,2,3)

(3,2,3)

(3,3,3)

(5,1,3)

(4,1,1)

(4,2,3)

(6,3,3)

(5,1,3)

(5,2,3)

(7,3,4)

(3,1,3)

(6,3,3)

(6,4,3)

(7,6,3)

(4,3,2)

(5,6,2)

(5,7,3)

(5,4,3)

The Actor’s Real Goal

Traversed Edge Before Interdiction

Traversed Edge Before Interdiction

Interdicted Edge

(c,d,r): Original Cost of the Edge

Added Cost After Interdiction

Resource Required to Interdict

(a)

(b) (c)

(d) (e)

Figure 8. The network interdiction solutions for information metric based goal recognition control
(GRC) under network interdiction (InfoGRC) and information metric based GRC under threshold
network interdiction (InfoGRCT) on the 11 nodes graph network. (a) The road graph network with
11 nodes. (b) Interdiction for G1. (c) Interdiction for G2. (d) Interdiction for G1 with the threshold.
(e) Interdiction for G2 with the threshold.
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We will adopt a Benders decomposition based constraint generation approach [62].
The framework is depicted in Figure 9. The higher-level is the interdiction resource allocation problem
for the observer, while the lower-level is the generative cost-optimal path-planning for the actor.

Optimal Resource 
Consumption Update

Threshold Constraint Check

Actor’s Cost-Optimal
Path-Planning

Observer’s Optimal 
Interdiction Allocation

InfoGRC���������InfoGRCT

Master Problem

Sub Problem

Figure 9. The Benders decomposition based problem-solving framework.

Benders decomposition is an efficient approach to solve large-scale optimization problems.
The main idea is to separate the mixed decision variables into two-stage variables and generate
two relatively independent problems denoted as the Master problem and the Subproblem respectively.
Then we alternately solve the problems and iteratively update the results until a convergence condition
is satisfied. Here, the InfoGRC and InfoGRCT can be reformulated to [Master(Ŷ)]− [Sub(x̂)] problems
as follows:

[InfoGRC-Master] z∗ = max
x∈X

z (40)

s.t. z ≤ c′T ŷ + xTMŷ ∀ŷ ∈ Ŷ (41)

[InfoGRC-Sub(x̂)] zx̂ = min
y ∑

a∈E
(c(a) + x̂(a)d(a)) y(a) (42)

s.t. KTy = b

x(a) ∈ {0, 1} ∀a ∈ E
(43)

[InfoGRCT-Master(Ŷ)] rŶ = min
x

rTx (44)

s.t. c′T ŷ + xTMŷ ≥ θ̃ ∀ŷ ∈ Ŷ

x(a) ∈ {0, 1} ∀a ∈ E
(45)

[InfoGRCT-Sub(x̂)] dx̂ = min
y ∑

a∈E
(c(a) + x̂(a)d(a)) y(a) (46)

s.t. KTy = b

x(a) ∈ {0, 1} ∀a ∈ E
(47)

where Y denotes the set of all simple s− g paths, ŷ (temporary optimal actor path in [Master(Ŷ)])
and x̂ (temporary observer’s interdiction plan in [Sub(x̂)]) are fixed and known in their respective
solutions. The basic Benders decomposition algorithm for InfoGRCT can be found in [63], and the
Benders decomposition based problem-solving algorithm for InfoGRCT is proposed in Algorithm 1.



Symmetry 2019, 11, 1059 17 of 26

Algorithm 1 The Benders decomposition based problem-solving algorithm for InfoGRCT

Input: An instance of InfoGRCT.
Output: An optimal observer’s interdiction plan for goal recognition

1: x̂ ← 1, solve [Sub(x̂)] to obtain the θ;
2: while θ̃ ≤ θ do
3: X̂Ŷ ← ∅, x̂ ← 0
4: repeat: solve [Sub(x̂)] to obtain ŷ and θ;
5: X̂Ŷ ← X̂Ŷ ∪ (x̂, ŷ);
6: solve [Master(ŷ)] for x̂ and rŷ;
7: until θ ≥ θ̃

8: x∗ ← x̂, r∗ = rŷ
9: end while

10: Return x∗, r∗

4. Experiments

Experiments were conducted on synthetic path datasets upon two small artificially generated
network and one real-world road network. Here, we assume the actor to be rational, which means
the path datasets will contain some sub-optimal paths but without some loopy or zigzagging paths.
We first evaluate the effectiveness and then compare the performance under different interdiction.

4.1. Experimental Setup

The experimental programs are coded with python, the experiments are run on one MacbookPro
that runs macOS Sierra 10.12.6 with 4 CPU and 8 GB RAM. The InfoGRC/InfoGRCT have been
reformulated as bi-level mixed-integer programming (BLMIP) problems and solved using the MIP
solvers (Gurobi and MiniZinc). We simply set α = β = 1, more details will be introduced below.

As for goal recognition, early prediction, precision and recall, are properties required. We use
F-measure as the accuracy metric [4]. F-measure is an integration of precision and recall, where precision
is used to scale the reliability of the recognized results and recall is used to scale the efficiency of the
algorithm applied. They are computed as follows:

F-measure =
2 · precision · recall
precision + recall

(48)

precision =
1

NG

NG

∑
i=1

TPi
TIi

(49)

recall =
1

NG

NG

∑
i=1

TPi
TTi

(50)

where NG is the number of possible goals, TPi, TIi and TTi are the true positives, total of true labels,
and the total of inferred labels for class i respectively. The value of F-measure will be between 0 and 1,
and a higher value means better performance.

As for early prediction, if the goal recognition model converged (the final prediction was correct),
the convergence point metric [4] represents the point where the following predictions are correct,
which can be defined as follow:

NCP ∈ N (51)

s.t. Ppo(gr|ONCP) ≥ γ (52)

where NCP denoted the convergence point at which the posterior of the actor’s real goal will not be
less than γ, here we set γ = 0.8.
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We may want to compare the relative early prediction ability between two goal recognition models
given the path that contains the real goal:

REP =
|N1

CP − N2
CP|

PS = |〈s0, . . . Ni . . . gr〉|
(53)

where REP represents the relative early prediction ability, PS is the path steps from the start node to
the real goal.

As for network interdiction, we employ the path interdiction efficiency for evaluation [35], which is
defined as follows:

e = δL/dTx, (54)

where δL is the increased path cost for the actor after interdiction and dTx is the total path cost
increment in the network.

4.2. Experimental Scenarios

Different network topologies may indicate different application domains and greatly affect the
efficiency of the InfoGRC and InfoGRCT. We adopt two small artificially generated networks to verify
the feasibility, as shown in Figures 10 and 11, and then adopt one real-world road network to further
verify the scalability, see Figure 12 for detail.

Hexagon grid network: We employ one 7× 7 hexagonal discrete grid with 7 rows and 7 columns.
Since the hexagonal discrete grid owns great symmetrical properties and is widely used in simulation
systems to represent the environment. The hexagonal grid on Offset coordinate is shown in Figure 10,
the start node is (0, 3), and the goal nodes are (6, 1) and (6, 5). The actor has one fixed starting
node S and two possible goals (G1 and G2). The path cost between nodes c(a), the interdiction
increment d(a), and resource consumption r(a) are generated to be uniform distribution on [1, 10],
[1, 10], [1, 10], respectively.

S

G1

G2

Figure 10. One 7× 7 hexagonal grid on offset coordinate.

Random Graph Network: We employ the Erdős–Rényi model [64] to generate one random
graph network, which is composed of |N | = 30 nodes and |E | = 60 edges, and the edges are added
uniformly randomly. As shown in Figure 11, the actor has one fixed starting node S and two possible
goals (G1 and G2). The path cost between nodes c(a) is generated to be uniform distribution on
[1, 10], the interdiction increment d(a), and resource consumption r(a) is linearly proportional to the
node degree.
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S

G1

G2

Figure 11. One random network with 30 nodes generated based on the Erdős–Rényi model.

Real-world road network: As shown in Figure 12, it is the real-world Chicago Sketch road
network [65], which contains 933 nodes and 2950 edges. Here, the network is assumed to be undirected,
the node indexes of the start and possible goals are {368} and {377, 597, 575}, respectively. The cost
of each edge c(a) is an approximate integer of the real distance between two nodes, the interdiction
increment d(a) and resource consumption r(a) are linearly proportional to the node degrees. A dataset
consists of 50 labeled paths for each goal is generated with about 20 steps without goal switch during
the midway. Each path is separated into 10 stages so as to evaluate paths with different steps.

(a)

S

G2

G3

G1

(b)

Figure 12. The Chicago Sketch road network. (a) The real-world Chicago Scketch road map from
Google. (b) The real-world Chicago Scketch road network.

4.3. Goal Recognition Control under Network Interdiction

As for goal recognition, experimental evaluations are performed on four models, the “normal”
without metric, “delay” and “accelerate” with metric, and the “control” model (InfoGRC). The actor
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has one start state and two or three predefined possible goals, which are selected with equal probability
at the beginning. If the actor reaches its goal, then the goal is achieved, otherwise, the probabilistic goal
recognition module will generate goal distribution over goals. In the following test, we will statistically
evaluate different goal recognition models with the metric F-measure, and REP, which are widely used
to measure the performance of different goal recognition models. As shown in Figure 13, the statistical
performance of different models for the three scenarios is measured by the F-measure value.

The actor’s actions involve privacy information, which are tightly associated with the goal
uncertainty and indeed seriously hinder the goal recognition of the observer. After incorporating the
action privacy information metric, the F-measure values of the “Accelerate” model were greater than
the “normal” and “delay” model, while the “delay” model performs poor compared to the “normal”
model. The big gap of the F-measure values between the “accelerate” model and the “delay” model
showed that the actor’s actions are tightly associated with the goal uncertainty, the action privacy
information metric IA(a) could be employed by the observer during the goal recognition process.
As for the “control” model, the values of F-measure under network interdiction were usually higher
compared with the “normal”, “accelerate”, and “delay” model, which proves that the control model
with IA(a) metric assisted could be employed to control the goal recognition process.

Here, using the total 150 paths for the Chicago Sketch road network scenario, we compute the
“relative early prediction” ability of the “normal” model and “dontrol” model on three different
goals. As shown in Figure 14, there are still 54 paths whose REP is 0, when the actor traverse
over these paths, no privacy information about the goal will be leaked. So, even if the actor could
manipulate the asymmetric information about their action-goal, but there are still paths that possess
little goal uncertainty.

After evaluating the performance of our models in goal recognition, here, we compared the
network interdiction efficiency of InfoGRC and InfoGRCT under different network interdiction. As
shown in Table 2, the expectation of the e are almost more than 50%, the values of the Chicago
Sketch road network scenario are almost 80%. This demonstrates the average impact of InfoGRC and
InfoGRCT model in network interdiction.

Table 2. The expectation of network interdiction efficiency on the three scenarios for each goal.

E(e) (%) Scenario 1 Scenario 2 Scenario 3

InfoGRC 65.4/63.7 62.7/78.4 88.7/77.5/90.8

InfoGRCT 65.1/63.3 62.1/78.1 88.2/77.2/90.4

(a) (b)

Figure 13. Cont.
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(c) (d)

(e) (f)

(g)

Figure 13. The statistical performance of different models for goal recognition on two synthetic
road networks with two goals (G1,G2), and one real-world road network with three goals (G1, G2,
G3). (a) F-measure for goal 1 on the hexagonal grid. (b) F-measure for goal 2 on the hexagonal grid.
(c) F-measure for goal 1 on the random graph network. (d) F-measure for goal 2 on the random graph
network. (e) F-measure for goal 1 on the Chicago Sketch road network. (f) F-measure for goal 2 on the
Chicago Sketch road network. (g) F-measure for goal 3 on the Chicago Sketch road network.
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Figure 14. Relative early prediction (REP) of the “Normal” and “Control” model on the Chicago Sketch
road network scenario with three goals.

5. Conclusions and Future Work

Goal recognition is vital in the defense and security domain, such as in CIP. Goals of the attacker
are in need of timely recognized and the actions of the attacker should be restricted. In this paper,
from the perspective of explainable agent behavior, we first adopt a privacy information metric to
quantify the privacy information leakage of the actions taken by the actor, since these actions are
tightly associated with the goal uncertainty. Then, we defined two different interdiction models
(InfoGRC and InfoGRCT) to control the goal recognition process. Experimental results demonstrate
the effectiveness of our models in the fully observable and deterministic environment with multiple
goals. These models above provide one paradigm, from generative path planning, probabilistic goal
recognition to proactively response interdiction resource allocation, which is simple but inspiring for
decision-making (such as offline proactive planning, threat analysis) in the defense and security domain.
Also, considering the dual use of these models, we could attempt to do inverse privacy-preserving
path planning. Goal recognition control under network interdiction with bounded resource may be
a suitable and soft method to facilitate goal recognition offline compared to the goal recognition design
with the hard environment redesign.

However, it is noteworthy that our work is suggestive but still simple, the applicability of
our models under network interdiction still face many challenges. As for the goal recognition,
partial observable environment, noisy observation, adversarial goal recognition, and online recognition
are very realistic need. As for the action model, durative action, midway goal change, deceptive action,
active attacker, multiple attacker, higher dimensionality, and bounded rationality drive us to develop
more robust opponent modeling methods. As for the interdiction model, nodal interdiction,
threshold sensitivity, network resilience are still worthy of further study. As for the metric model,
deceptive action metric and goal-related mutual information metric inspire us to design learning based
goal recognition model. All of these are still open in our future work.

As a continuation of this work, allocating interdiction resource can be modeled as one dynamic
process assisted with online goal recognition. In the future, we will attempt to use a stochastic
game-theoretic framework to model the attacker-defender interaction in the partial observable
environment, where the attacker would perform active deceptive actions or irrational actions to
mislead the goal recognition process of the observer.
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Abbreviations

The following abbreviations are used in this manuscript:

GR Goal recognition
GRD Goal recognition design
GRC Goal recognition control
CIP Critical infrastructure protection
PAIR Plan activity and intent recognition
HAIP Human–AI planning
XAIP Explainable planning
HMI Human–machine interaction
COA Course Of action
HTN Hierarchical task network
BLMIP Bi-level mixed-integer programming
wcd worst-case distinctiveness
MXFI Maximum-flow network interdiction
SPNI Shortest path network interdiction
MXSP Maximizing the shortest path
KKT Karush–Kuhn–Tucker
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