ﬁ Sensors

Article

A Deep Learning Model for Predictive Maintenance in
Cyber-Physical Production Systems Using LSTM Autoencoders

Xanthi Bampoula

check for

updates
Citation: Bampoula, X;; Siaterlis, G.;
Nikolakis, N.; Alexopoulos, K. A
Deep Learning Model for Predictive
Maintenance in Cyber-Physical
Production Systems Using LSTM
Autoencoders. Sensors 2021, 21, 972.
https:/ /doi.org/10.3390/521030972

Academic Editor:

Miguel Delgado-Prieto
Received: 21 December 2020
Accepted: 26 January 2021
Published: 1 February 2021

Publisher’s Note: MDPI stays neu-
tral with regard to jurisdictional clai-
ms in published maps and institutio-

nal affiliations.

Copyright: (© 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and con-
ditions of the Creative Commons At-
tribution (CC BY) license (https://
creativecommons.org/licenses /by /
4.0/).

, Georgios Siaterlis

, Nikolaos Nikolakis © and Kosmas Alexopoulos *

Laboratory for Manufacturing Systems and Automation, Department of Mechanical Engineering
and Aeronautics, University of Patras, 26504 Patras, Greece; baboula@lms.mech.upatras.gr (X.B.);
siaterlis@lms.mech.upatras.gr (G.S.); nikolakis@lms.mech.upatras.gr (N.N.)

* Correspondence: alexokos@lms.mech.upatras.gr; Tel.: +30-2610-910160

Abstract: Condition monitoring of industrial equipment, combined with machine learning algo-
rithms, may significantly improve maintenance activities on modern cyber-physical production
systems. However, data of proper quality and of adequate quantity, modeling both good opera-
tional conditions as well as abnormal situations throughout the operational lifecycle, are required.
Nevertheless, this is difficult to acquire in a non-destructive approach. In this context, this study
investigates an approach to enable a transition from preventive maintenance activities, that are
scheduled at predetermined time intervals, into predictive ones. In order to enable such approaches
in a cyber-physical production system, a deep learning algorithm is used, allowing for maintenance
activities to be planned according to the actual operational status of the machine and not in advance.
An autoencoder-based methodology is employed for classifying real-world machine and sensor data,
into a set of condition-related labels. Real-world data collected from manufacturing operations are
used for training and testing a prototype implementation of Long Short-Term Memory autoencoders
for estimating the remaining useful life of the monitored equipment. Finally, the proposed approach
is evaluated in a use case related to a steel industry production process.

Keywords: cyber-physical production systems; deep learning; artificial intelligence; Long Short-Term
Memory (LSTM); predictive maintenance; remaining useful life

1. Introduction

Digitization in production systems mandates the use of new Information and Com-
munication Technology (ICT) systems in order to improve performance in manufacturing.
However, the enormous amount of information generated and gathered by manufacturing
ICT systems as well as Internet of Things (IoT) devices installed on the factory floor usually
remains underutilized. New methods and models are needed that can truly benefit the
ICT landscape and improve production processes [1,2]. Considering that a cyber-physical
system (CPS) can be defined as a closed-loop control system, coupling physical assets to
software modules [3], the application of its principles to a production system denote a
cyber-physical production system, or CPPS [4,5]. In contrast to the traditional automation
pyramid [6], a CPPS consists of many distributed and interconnected systems managing
or controlling different aspects of manufacturing processes. This may vary from simple
monitoring to planning, control, and online reconfiguration of a production system. The
use of containerization technologies towards holistic orchestration and control of a CPPS is
discussed in Nikolakis et al. [7].

Furthermore, the evolution of embedded systems and sensors in conjunction with
the ever-increasing digitization of modern shop-floors has enabled the generation of an
enormous volume of digital information. The analysis of those data may reveal underlying
patterns not visible to the human operator and may support proactive decision making [8].
Hence, insight can be created on the actual condition of production equipment, through
the adoption of data-driven techniques for condition monitoring and assessment of its
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operational condition, as discussed in Entezami et al. [9] and Chuang et al. [10]. In turn, this
can enable a transition from time-based preventive maintenance to predictive maintenance
(PdM) or a combination of them. This can reduce maintenance, and thus production costs,
by assessing the current condition of the equipment and estimating its remaining useful
life (RUL). Towards that end, the employment of artificial intelligence (AI) techniques, and
in particular machine learning (ML) approaches, capable of analyzing large-scale data sets
and detecting underlying patterns, can enable proactive decision-making, such as in the
context of predictive maintenance [11].

A novel approach for prediction and fault detection is proposed in this work. It
relies on autoencoders with Long Short-Term Memory (LSTM) networks to assess the
operational condition of production equipment, using a deep learning method for anomaly
detection that is then mapped to different RUL values. A combination of more than one
network is proposed for classifying the current machine’s health condition to one or more
corresponding labels. The main novelty of this approach is that a separate neural network
is trained for each label leading to better results for each case. Consequently, this method
can be adjusted to several types of machines and labels. The proposed approach relies on
the reconstruction error that the LSTM-autoencoders commit trying to reconstruct data
values the network has never seen in the training phase, and it has also been evaluated in an
industrial case based on historical maintenance record datasets. Finally, the development
of a prototype method and the implementation of a software prototype have shown that
the proposed method can provide information regarding the machine’s health without
requiring any specialization and additional skills from the industry operators.

2. Literature Review

Condition monitoring of industrial equipment has attracted heightened interest in the
last decade [12-15]. As a consequence and empowered by the progress in Al, predictive
analytics emerged for identifying abnormalities in large-scale datasets and, among others,
determining imminent maintenance needs [16]. The adoption of Al, and in particular
ML, methods for PAM purposes has the potential to prevent equipment failures, without
requiring a clear understanding of the production process itself or the collected data [17,18].
The reason is that data-driven approaches can be used to train ML models with run-to-
failure data without requiring knowledge of the underlying process [19,20].

Several ML techniques have been investigated throughout the years. An overview of
ML approaches for predictive maintenance is presented in Carvalho et al. [21] and Zonta
et al. [22]. Artificial neural network combined with data mining tools [23] and Bayesian
networks [24] was used for large manufacturing datasets to diagnose and predict faults,
nonetheless presenting issues associated with process time and the computational learning
aspects, respectively, due to the large amount of data. In addition, for sequence-to-sequence
learning, transformer models have recently received increased attention as discussed in
Wu et al. [25] and Vaswani et al. [26].

In particular, Convolutional Neural Networks (CNNs) are suggested for fault diagno-
sis over multi-channel data from sensors with excellent performance and lower computa-
tional cost, requiring homogeneity of the multi-channel data [27]. In order to overcome
this problem, a Double Deep Autoencoder structure is proposed in Chen and Huang [28]
for clustering distributed and heterogeneous datasets. Autoencoders consist of exactly one
input and output layer and one or more hidden layers. The input values are compressed at
the encoding stage, and then the same values are reconstructed at the decoding stage [29].

Concurrently, for sequential data such as time-series data, Recurrent Neural Networks
(RNNSs) are considered more suitable than CNNs [30,31]. RNNs contain feedback loops and
have the ability to remember the information of former units. Although they are capable of
capturing long-term temporal dependencies from the data, they have restrictions on long-
term RUL predictions [32]. Small gradients tend to slowly shrink and eventually disappear
during propagation across multiple unfoldings of network layers [33]. Popular variants of
RNNSs that avoid these limitations are Long Short-Term Memory (LSTM) networks and
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Gated Recurrent Unit (GRU) networks [31,34-36]. LSTM hidden structure includes a new
unit, a memory cell, capable of representing the long-term dependencies in sequential
time-series data contrary to GRU networks [37-40]. Nevertheless, because of sensitivity to
dataset changes or program tuning parameters, internal layers and cells in LSTM networks
seem to lack efficiency [41].

LSTM memory cells consist of different neural networks, called gates. Gates control
the interactions between the memory units and decide what data are relevant to keep or
forget during training. The input gate is responsible to decide if the state of the memory
cell can be modified by the input signal, while the output gate determines if the state of
other memory cells can be modified by the input signal. Finally, the forget gate is in charge
of deciding whether to forget or remember the previous status of the signal [42,43].

LSTM-autoencoders are capable of dealing with data sequences as input in contrast to
regular autoencoders. Many studies have presented LSTM-autoencoders as a promising
tool for time series predictions. LSTM-autoencoder was used for traffic flow prediction and
had an outstanding performance not only mining deeply big data considering the temporal
characteristics but also capturing the spatial characteristics of traffic flow in comparison
with CNN and SVM models [44]. Stacked autoencoders with LSTM were used to predict
the one-step-ahead closing price of six popular stock indices traded in different financial
markets, and they outperformed WLSTM (i.e., a combination of WT and LSTM), LSTM,
and the conventional RNN in both predictive accuracy and profitability [45]. Moreover,
autoencoders combined with LSTM presented as the best-performing model in terms of
RMSE values for different training and test data sets. This shows the better capability of
feature extraction of these models enabling better forecast than multilayer perceptron, deep
belief network, and single LSTM [46]. Consequently, the combination of autoencoders and
LSTM has shown high potential in time series prediction.

The purpose of a deep learning LSTM-autoencoder network is to gather and extract
composite information from large time-series datasets using many hidden layers [47].
However, choosing suitable hyperparameters is a complex task and significantly affects
the model’s performance [48]. For example, more hidden layers or more neurons in a
network does not necessarily increase the performance of the network. This hyperparam-
eter selection depends on different factors such as the amount of data or the generating
process [49].

Consequently, this paper proposes an LSTM-based autoencoder model for estimating
the health state of an industrial machine. Autoencoder neural networks are preferred
in order to learn a compressed representation of input data and change the input data
dimension, while the LSTM network is considered suitable for processing time-series data
and identifying their temporal patterns. The proposed LSTM-autoencoder consists of an
autoencoder for sequential data combined with an LSTM network [50]. The LSTM encoder
is trained on historical time-series data and records from previous maintenance activities
to produce a fixed-length vector that is imported to the decoder, which in turn classifies it
in one of the predetermined labels. After the classification step, the outcome is associated
to a RUL value enabling predictive maintenance actions to take place.

3. Approach

This study investigates a supervised deep learning approach to estimate the health
status of a machine. Sensor data, monitoring different parameters of a production machine,
are acquired and used to train a set of LSTM-autoencoders. At the next step, the trained
LSTM-autoencoders can classify new streams of incoming data to different operational
status. A high-level architecture illustrating the proposed concept is provided in Figure 1.
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Figure 1. High-level Long Short-Term Memory (LSTM)-autoencoder architecture.

After the classification, an estimation of the RUL value can be determined based
on the input dataset’s performance. This, depends among others, on the time that the
machine required for issuing a replacement order in the past that presented similar values
to the input.

In particular, real-world data are acquired via sensors that are placed on the machine,
measuring key process-related features from the equipment and its environment, the
processing of which will generate the required features for enabling the proposed learning
procedure. Nevertheless, it is challenging to identify the correct set of features that may
be associated to potential failures. Critical values should be determined and modeled
considering the degradation process of the machine. Hence, the key features used for the
analysis are selected using knowledge stemming from the machine’s related studies and
process experts that were acquired in the context of this work.

LSTM-autoencoders are used for classifying the current machine’s health condition to
one or more corresponding labels. The architecture of each LSTM-autoencoder depends
on the nature of the problem [51,52]. At a minimum, two labels are required, one deter-
mining the “good” condition of the equipment, usually referring at (1) a time right after
a maintenance activity or a part replacement has occurred, and (2) a label characterizing
a failure, an alarm or a low health-level, from an operational perspective, mandating for
maintenance to be carried out. Apart from the two aforementioned categories, more could
be added depending on a case-by-case analysis and requirements. In this study, three
labels have been used to determine a high, medium, and low level of equipment health
status. The high and low levels, named as “good” and “bad” labels in the present study,
correspond to an observation window right before and after the emergence of restoration
activity, bringing back the machine to its normal operational condition. This may or may
not include a breakdown of the machine.

For each label, a single LSTM-autoencoder is trained, so as the training dataset includes
only the temporal data related with the corresponding machine’s status. The input of each
LSTM-autoencoder is a time-series sequence, denoted in this work as A; with a;, being
the values of the sensors denoting one of the variables measured at a specific time, with n
being the number of features, as presented in Equation (1).



Sensors 2021, 21, 972

50f 14

A = [ail,aiz,ai3,...,aij}, where wj, € R, withi,j€ Zandi<n (1)

Each time-series sequence is imported into a new encoder LSTM cell together with
the hidden output from the previous LSTM cell. The hidden output from the last LSTM
cell of the encoder is encoded finally into a learned representation vector. This vector may
be an entire sequence of hidden states from all the previous encoder LSTM cells.

Then, the decoder takes the encoded features as input in order to be processed through
the various LSTM decoder cells and finally produce the output. The output of the decoder
layer is a reconstruction of the initial input time-series sequence, represented as A’;, with
the reconstructed values of the sensors, a;j, presented in Equation (2).

Al = [“;1'“§z'“;3’ ey a;j}, where zxgj € R, withi,j€ Zandi<n 2)

This requires out of the entire set of sensor data to separate them in order to properly
train each autoencoder. This is possible by using the actual maintenance records and
expert knowledge. In greater detail, past maintenance records contain the dates and causes
requiring maintenance. This could also be provided by the preventive maintenance plans
set in place by the equipment owner. This information, in combination with historical
sensor data values from these specific dates, make it possible to label the data values and
distinguish the datasets for network training and testing. Data values are categorized and
separated according to the number and kind of statuses chosen, based on their timestamp.
Then, in order to define, train, and test data for each LSTM-autoencoder, a simple split
is performed in each dataset; 90% of the first part of the dataset is the train data, and the
remaining 10% is the test data.

The accuracy of a model is usually determined after the model training. Test samples
are fed as input to the model, and the network compares the initial input values with
the reconstructed ones. The mean squared error (MSE) of the difference between the
reconstructed time-series sequence, A’;, and the initial input, A;, is the cost function of the
LSTM-autoencoder, as presented in Equation (3).

1y / 2
MSE; = - ;(Ai —A))

®)

For each time-sequence, a mean squared error is calculated. Then, the accuracy rate
(%) of the LSTM-autoencoder is obtained from the average calculation of these values.

After the training of the set of LSTM-autoencoders, the same dataset becomes the
input to each of these trained networks. Then, according to the accuracy rate that appears
with this input, classification of the input dataset is possible.

As mentioned before, in this study three labels have been used to determine a high,
medium, and low level of equipment health status. As a consequence, three LSTM-
autoencoders should be trained, and each of them with a dataset includes only the temporal
data related with the corresponding machine’s status. So, for example, if the accuracy rate
is bigger at the LSTM autoencoder trained with the data from the healthy status of the
machine, then the input unknown dataset also contains data values that correspond to a
healthy machine status.

4. Implementation

In order to test and validate the potential contribution of the proposed approach for
future real-world applications, the aforementioned method has been implemented into a
prototype software system using Python 3.7 [53].The resources used in order to integrate
the aforementioned system were a computer with an Intel i7 processor (Intel(R) Core(TM)
i7-3770 CPU @3.40 GHz 3.80 Ghz), (Intel, Santa Clara, CA, USA), regarding the processing
power, and an eight (8) gigabyte RAM memory (Samsung, Seoul, Korea). The operating
system that the proposed system was hosted and tested on was Microsoft Windows 10.
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The time required for the previous set up to perform the proposed approach was
measured with the time() function in Python. It took one hour (1 h) for the training
parameters of each LSTM-autoencoder during the training process with about 180,000 data
values. Considering that, in a real-world production, RUL prediction will take place twice
a day. Assuming that in a period of one (1) day there will be about 40,000 data values
from the machine, the RUL prediction for a dataset of 20,000 measured 0.3 s for each
LSTM-autoencoder. A high-level representation of the system’s architecture is illustrated
in Figure 2.
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Figure 2. LSTM-autoencoder implementation.

Machine or sensor data are imported to the implemented system as JSON files via
the Python data analysis library. Afterwards, imported data are processed to remove zero
values and converted to a dataframe format, using the Pandas library. Each column of
this dataframe includes the values of a single sensor sorted according to their timestamp.
The feature selection for determining the degradation level is mostly based upon human
knowledge of the equipment and process. This consists of the first set of parameters that are
used for the analysis. At a second level, this set is experimentally enhanced with additional
parameters to increase its performance in terms of classification accuracy to one or more
labels. In this work, three labels are used identifying the good, bad, and intermediate
operating condition of the monitored equipment.

The LSTM-autoencoders are implemented using Keras, a Python library for de-
veloping and evaluating deep learning models. In particular, three individual LSTM-
autoencoders are trained with data corresponding to each state: initial, intermediate, and
bad. The segmentation of the training dataset is based upon historical maintenance records.
Finally, and after the training phase, newly arrived JSON messages are passed through
each autoencoder that form a parallel connected complex in order to be classified into one
out of the three supported labels. On the basis of the achieved classification accuracy, the
remaining useful life is determined, as mentioned in the previous section, and exported to
the user of the system. During the experimentation stage, the accuracy of the results was
cross-validated with the actual maintenance records of the case owner, as discussed in the
following section.

5. Case Study

In order to evaluate the potential of the proposed concept, the implemented prototype
was tested in a case study related to the steel production industry. In particular, the data
were derived from a rolling mill machine used for metal bars production. A high-level
diagram of the machine components and its connectivity is illustrated in Figure 3. Sensor
values were stored to a local database in the motion controller and then transferred to a
Programmable Logic Controller (PLC) database. Finally, data values were stored in the
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historical database. Real-time data were transmitted via communication channels from the
PLC database to the PC for the RUL prediction.

Different geometrically coated segments were attached to the rolling cylinders. The
segments were used in order to form the metal bars by applying force. The rolling mill had
three top and three bottom segments with a wear-resistant coating. Until now, the coated
segments of this rolling mill machine were scheduled to be replaced approximately every
10,000 products, or sooner in case of any unexpected damage. The time needed for the
replacement of the coated segments was about two hours. Hence, the purpose, in this use
case, was to turn preventive maintenance into predictive and anticipate the behavior of
the segments.

Real-Time Data II

N P
Profinet Motion
Controller

PLC
_ \

glsfoélcal Hydraulic forcp Segment surface
atabase temperature sensors
senfors P! "
lo—————
T ~— Rolling cylinder A

C . ' ' T Rolling cylinder B
\ ) (h———
kROlling Mill Coated segments J

Figure 3. Rolling mill machine.

—(H Torque Motor

Historical Data I

—)(H Torque Motor

Equipment conditions were monitored using multiple sensors on the machine that
counted twenty-seven (27) factors for the equipment and its environment.Real-world data
tend to be inconsistent, noisy, and incomplete, leading to a low quality of models built
on them. In order to prepare these raw data to meet their requirements, pre-processing
steps are of great importance [54]. The pre-processing of the data was accomplished via a
separate software module. In particular, this system took as input JSON files with twenty-
seven (27) features every forty-five seconds (45 s), and each sensor collected data every
five milliseconds (5 ms). Afterwards, the zero and missing values were removed as fault
values of the sensors. The subtraction of these values did not affect the results due to the
big sample that was provided for each timestamp. Finally, as a result of the preprocessing
phase a dataframe was exported.

However, the identification of the correct set of parameters that may be associated to
potential failures of the production equipment is a challenging task. Hence, the values of
the dataframe were plotted and visually examined against factory expert’s knowledge and
maintenance records to identify patterns in order to make a first selection of the important
features. Thus, according to data visualization, machine-related studies, and scientific
dissertations, the critical values that determine the rolling mill’s degradation process were
identified [12,55]. The parameters used for this analysis were surface temperature and
hydraulic force for both cylinder A and B, Table 1.
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Table 1. Features.
Feature Name Feature Value Feature Description
Cylinder A segment surface temperature Celsius (°C) Surface temperature of cylinder A
Cylinder B segment surface temperature Celsius (°C) Surface temperature of cylinder A
Cylinder A hydraulic force Kilonewton (kN) Force of cylinder A on trailing arm
Cylinder B hydraulic force Kilonewton (kN)  Force of cylinder B on trailing arm

These data values were processed as time-series data because tools like Discrete
Wavelet Transform (DWT) and Fast Fourier Transform (FFT) have not been preferred for
this case. From our analysis of the data, the oscillating components likely will not reveal
any regular behavior in terms of frequency because the oscillations of the features used,
the temperature, and the hydraulic force did not appear to present any periodicity [56].

Before setting up the three LSTM-autoencoder models, three datasets were created,
that represent the three different situations of the machine, defined according to the pre-
vious segment’s exchanges records. Each dataset included about 200,000 values. Then,
in order to define, train, and test data for each LSTM-autoencoder a simple split was
performed; 90% of the first part of the dataset was the train data, thus approximately
180,000 values, and the remaining 10% consisted of the test data corresponding to approxi-
mately 20,000 values. Subsequently, train and test data were normalized in ranges from 0
to 1 enabling a faster training of the neural networks.

As illustrated in Figure 4, the architecture of each LSTM-autoencoder included, ini-
tially, an input layer where the size depends on the number of features selected, in this
case four (4), as four (4) features were chosen for this model. Then, the first encoding
LSTM layer read the input data and output sixteen (16) features with one timestep for each.
The second encoding LSTM layer red the 1 x 16 input data from the first encoding LSTM
layer and reduced the feature size to four (4). The output of this layerisa 1 x 4 feature
vector. A repeat vector replicated the feature vector and prepared the 2D array input for
the first LSTM layer in the decoder. Then, the first decoding LSTM layer read the 1 x 4
input data and output four (4) features with one (1) timestep for each. The second decoding
LSTM layer read the 1 x 4 input data and output 16 features with one (1) timestep for
each. Then, a time distributed layer took the output and created a 16 x 4 (number of
features outputted from the previous layer x number of features) vector. Finally, a matrix
multiplication between the second decoding LSTM layer and the time distributed layer
outputted the 1 x 4 output.

Matrix multiplication
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fime ’st e AL {Lst™ - tsrv - Ry H—{Lstv J-H—{-{tsm ) | x| [z} a4 jj
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Figure 4. LSTM-autoencoder architecture set.
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6. Results

Performance evaluation followed, exploiting data from three (3) months of machine
operation. Datasets were created, as mentioned previously, from historical maintenance
records from the factory and the equipment state they represent.

The architecture of the implemented LSTM-autoencoder, as described in the previous
section, including the layers of the network created, the number of parameters (weights
and biases) of each layer, and also the total parameters of the model, are presented in
Table 2.

Table 2. Number of trainable parameters.

Layer Type Output Shape (Timesteps x Features) Parameters

inputl InputLayer 1x4 0

Istm1 LSTM 1x16 1344

Istm?2 LST™M 1x4 336
repeatvectorl RepeatVector 1x4 0
Istm3 LSTM 1x4 144

Istm4 LSTM 1x16 1344
timedistributed1 TimeDistributed 1x4 68

Total parameters: 3.236

Trainable parameters: 3.236
Non-trainable parameters: 0

Parameters affect the processing complexity of the network [57]. However, the total
number of trainable parameters in each LSTM-autoencoder network was 3.236, presenting
satisfying results for the specific dataset.

After the training, accuracy, recall, precision, specificity and F1 score metric values
of the three LSTM-autoencoders were calculated after feeding them with test data [58,59].
However, the model’s performance was evaluated mostly based on accuracy because the
other metrics presented small differences between the different test datasets, as presented
in Tables 3-6.

In order to identify the ideal number of epochs and batch sizes in this use case, several
experiments were conducted, and the best accuracy rate results are presented in Table 7.

Table 3. LSTM-autoencoders recall metrics.

Historical Maintenance Records Recall Metrics
Equipment State Dates Initial Intermediate  Bad

Initial 2019-12-24 T 01:01:49-2019-12-25 T 02:42:55  80.98% 81.23% 81.34%
Intermediate 2020-01-10 T 00:38:54-2020-01-10 T 23:01:24 81.97% 81.91% 81.91%
Bad 2020-01-13 T 00:05:47-2020-01-13 T 23:38:20 78.28% 78.31% 78.29%

Initial 2020-02-20 T 00:46:49-2020-02-21 T 22:38:45 87.82% 88.18% 87.82%
Intermediate 2020-02-25 T 01:20:54-2020-02-26 T 03:46:3  74.41% 74.44% 74.49%
Bad 2020-03-01 T 01:53:56-2020-03-01 T 21:37:48  65.62% 65.80% 65.60%
Initial 2020-03-02 T 01:00:14-2020-03-02 T 23:15:5  76.06% 76.23% 75.98%

Intermediate 2020-03-08 T 00:10:24-2020-03-08 T 22:46:33  73.48% 73.66% 73.61%
Bad 2020-03-16 T 09:13:47-2020-03-16 T 21:37:4  77.26% 77.20% 77.15%
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Table 4. LSTM-autoencoders precision metrics.
Historical Maintenance Records Precision Metrics
Equipment State Dates Initial Intermediate Bad
Initial 2019-12-24 T 01:01:49-2019-12-25 T 02:42:55  79.86% 79.95% 79.90%
Intermediate 2020-01-10 T 00:38:54-2020-01-10 T 23:01:24  79.06% 80.12% 79.58%
Bad 2020-01-13 T 00:05:47-2020-01-13 T 23:38:20 78.10% 78.34% 78.43%
Initial 2020-02-20 T 00:46:49-2020-02-21 T 22:38:45 88.03% 88.07% 88.09%
Intermediate 2020-02-25 T 01:20:54-2020-02-26 T 03:46:30  71.47% 74.08% 72.07%
Bad 2020-03-01 T 01:53:56-2020-03-01 T 21:37:48  65.46% 65.78% 66.02%
Initial 2020-03-02 T 01:00:14-2020-03-02 T 23:15:53  74.35% 74.97% 75.29%
Intermediate 2020-03-08 T 00:10:24-2020-03-08 T 22:46:33  72.94% 73.49% 73.34%
Bad 2020-03-16 T 09:13:47-2020-03-16 T 21:37:48 72.21% 77.22% 77.26%
Table 5. LSTM-autoencoders specificity metrics.
Historical Maintenance Records Specificity Metrics
Equipment State Dates Initial Intermediate  Bad
Initial 2019-12-24 T 01:01:49-2019-12-25 T 02:42:55 91.20% 90.98% 91.23%
Intermediate 2020-01-10 T 00:38:54-2020-01-10 T 23:01:24  90.16% 90.39% 90.41%
Bad 2020-01-13 T 00:05:47-2020-01-13 T 23:38:20  89.70% 89.92% 89.96%
Initial 2020-02-20 T 00:46:49-2020-02-21 T 22:38:45 85.74% 85.68% 85.64%
Intermediate 2020-02-25 T 01:20:54-2020-02-26 T 03:46:30  85.35% 85.84% 85.98%
Bad 2020-03-01 T 01:53:56-2020-03-01 T 21:37:48 85.55% 85.63% 86.45%
Initial 2020-03-02 T 01:00:14-2020-03-02 T 23:15:53  86.79% 86.82% 87.92%
Intermediate 2020-03-08 T 00:10:24-2020-03-08 T 22:46:33  74.99% 75.31% 75.71%
Bad 2020-03-16 T 09:13:47-2020-03-16 T 21:37:48 75.85% 75.98% 76.63%
Table 6. LSTM-autoencoders F1 score metrics.
Historical Maintenance Records F1 Score Metrics
Equipment State Dates Initial Intermediate Bad
Initial 2019-12-24 T 01:01:49-2019-12-25 T 02:42:55 80.41% 80.58% 80.61%
Intermediate 2020-01-10 T 00:38:54-2020-01-10 T 23:01:24  80.05% 80.83% 80.29%
Bad 2020-01-13 T 00:05:47-2020-01-13 T 23:38:20 78.19% 78.32% 78.36%
Initial 2020-02-20 T 00:46:49-2020-02-21 T 22:38:45 87.92% 88.12% 87.95%
Intermediate 2020-02-25 T 01:20:54-2020-02-26 T 03:46:30  72.54% 74.25% 73.00%
Bad 2020-03-01 T 01:53:56-2020-03-01 T 21:37:48 65.54% 65.79% 65.80%
Initial 2020-03-02 T 01:00:14-2020-03-02 T 23:15:53  74.91% 75.46% 75.50%
Intermediate 2020-03-08 T 00:10:24-2020-03-08 T 22:46:33  73.13% 73.56% 73.42%
Bad 2020-03-16 T 09:13:47-2020-03-16 T 21:37:48 77.23% 77.21% 77.20%

Table 7. Accuracy results from testing the implemented autoencoders.

Accuracy (%) Epochs100-Batch10  Epochs70-Batch10  Epochs40-Batch10
Initial State 93.99% 93.45% 98.91%
Intermediate State 95.08% 99.74% 94.21%
Bad State 99.44% 93.20% 89.48%

As a result, each LSTM-autoencoder was trained with the number of epochs and
batch sizes presented by the accuracy rate. The initial-state LSTM-autoencoder presented
better accuracy results after training with forty (40) epochs, while the intermediate-state
LSTM-Autoencoder presented higher accuracy results after training within seventy (70)
epochs. Finally, the good-state LSTM-autoencoder presented better accuracy results after

training within a hundred (100) epochs.

Each dataset was the input to an LSTM-autoencoder. The reconstructed values pre-
sented a smaller reconstructed error for the LSTM-autoencoder that was trained with the
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data representing the same state to the input. Consequently, they represent a bigger accu-
racy rate(%), Table 8, where the first two columns refer to the actual states of the monitored
equipment at the specific timestamps, while next to them is provided the accuracy rate
generated by each one of the three LSTM-autoencoders for the corresponding timestamps.

Table 8. LSTM-autoencoders accuracy rates.

Historical Maintenance Records Accuracy Rates (%)
Equipment State Dates Initial Intermediate  Bad

Initial 2019-12-24 T 01:01:49-2019-12-25 T 02:42:55  90.09% 83.71% 85.51%
Intermediate 2020-01-10 T 00:38:54-2020-01-10 T 23:01:24  73.42% 82.28% 73.42%
Bad 2020-01-13 T 00:05:47-2020-01-13 T 23:38:20  82.43% 86.74% 91.21%
Initial 2020-02-20 T 00:46:49-2020-02-21 T 22:38:45  96.09% 72.91% 63.44%
Intermediate 2020-02-25 T 01:20:54-2020-02-26 T 03:46:30  75.31% 94.80% 80.15%
Bad 2020-03-01 T 01:53:56-2020-03-01 T 21:37:48  92.54% 82.59% 81.55%
Initial 2020-03-02 T 01:00:14-2020-03-02 T 23:15:53  93.22% 89.10% 88.05%
Intermediate 2020-03-08 T 00:10:24-2020-03-08 T 22:46:33  70.31% 87.80% 80.15%
Bad 2020-03-16 T 09:13:47-2020-03-16 T 21:37:48  89.65% 71.23% 70.41%

The difference, though, between those three health statuses was not so big, but it was
enough in order to characterize and provide a label for the type of the data and the status
of the component’s health accordingly. During analysis, this observation was characterized
as acceptable and logical, as the factory proceed to conduct maintenance activities on the
component before it was completely damaged. Thus, the health status of the coating was
not bad during the maintenance, and as a result the remaining useful life can be extended.

Assuming that the everyday production rate is constant, and that the fatigue of
the machine is proportional to the number of produced trailing arms, the time interval
between two maintenance events is determined by the working time of the machine
and, consequently, by the number of created products. To this end, the fatigue rate
was considered constant, and according to Table 8 the equipment could be functional
approximately three (3) to five (5) days more. When the accuracy rate (%) between the bad
state of the current condition and the condition where break down occurred was bigger
than 10%, Table 8, then the RUL was three (3) days, and for each increase by 10% the RUL
value increased by 2 days.

Considering the actual preventive maintenance plan for a period of approximately
three (3) months, a comparison was made between the actual maintenance activity and
the one suggested by the proposed approach, Table 9. In particular and regarding the
aforementioned table, the first two columns indicate the day the new equipment was
mounted /unmounted, while under the cause column the reason is stated. Next, the
unmounting date as suggested by the proposed method is included in the next column,
while in the last is provided an estimation on the additional days the equipment could
remain mounted and operational, also based on the proposed approach.

Table 9. Experimental Results.

Mounted Unmounted Cause Suggested Unmounted Date Days Gained
2019-12-23  2020-01-14 Broken 2020-01-13 -
2020-02-19  2020-03-02  Preventive maintenance 2020-03-04 approx 3
2020-03-02  2020-03-16  Preventive maintenance 2020-03-18 approx 5

According to the results, the LSTM-autoencoders predicted equipment break down
one (1) day before the actual event. Additionally, the network results show that the
equipment was still in a healthy state at the time of preventive maintenance activities.

Consequently, in a period of one (1) year, as preventive maintenance activities take
place every sixteen (16) days, the equipment could gain (on average) approximately ninety-
six (96) more days of life and 22.22% reduction in preventive stoppages.
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7. Conclusions

In conclusion, this study discussed a deep learning approach based on LSTM-autoencoders
for assessing the condition of a hot rolling milling machine and estimating its RUL value.
Three separate autoencoders have been trained, one per label considered in the current
study. Real-world data were used for training and testing a prototype implemented in
Python. The prototype was tested in a real-world case study with the results presented in
this study. However, additional experiments are required to further test its performance
and accuracy with a larger dataset of proper data quality in a greater period.

From the results, redundant and preventive stoppages in the production line can
be reduced, at the same time decreasing the cost of maintenance operations. The main
limitation of the proposed approach is that the use of multiple neural networks to identify
the status and the RUL at higher resolution can be very difficult, as the system may predict
fault classifications and may not be able to recognize neighbor states. Another limitation
of this approach emerges from the need of maintenance records for labeling the datasets
and the need of large amounts of proper quality data with maintenance events such as
component breakdowns. These kinds of data may not be easily available in industrial
practice due to the significance of preventive maintenance in order to avoid any important
failure of the equipment.

Apart from further experimentation, one of the authors’ next steps would be to evalu-
ate the performance of the proposed approach against other machine learning methods.
Future work will focus on evaluating the proposed concept in consideration to real-world
production and maintenance plans. DWT and FFT will be examined for better data analysis,
as additional parameters that may affect the segment wear, such as pressure and prod-
uct position, should be tested. Additionally, the performance of the proposed algorithm
could be improved by optimizing the hyperparameters of each network. A comparison
with other ML methods will take place in terms of parametric complexity, training ac-
curacy, prediction accuracy, and training speed. Furthermore, a time-series forecasting
approach will be tested based on the transformer architecture or on GRU networks instead
of LSTMs. Finally, a maintenance scheduling application will be developed including both
the LSTM-autoencoder and transformer architectures.
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