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Abstract: Unmanned Aerial Vehicles (UAVs) demand technologies so they can not only fly au-
tonomously, but also communicate with base stations, flight controllers, computers, devices, or even
other UAVs. Still, UAVs usually operate within unlicensed spectrum bands, competing against
the increasing number of mobile devices and other wireless networks. Combining UAVs with
Cognitive Radio (CR) may increase their general communication performance, thus allowing them
to execute missions where the conventional UAVs face limitations. CR provides a smart wireless
communication which, instead of using a transmission frequency defined in the hardware, uses
software transmission. CR smartly uses free transmission channels and/or chooses them according
to application’s requirements. Moreover, CR is considered a key enabler for deploying technologies
that require high connectivity, such as Smart Cities, 5G, Internet of Things (IoT), and the Internet of
Flying Things (IoFT). This paper presents an overview on the field of CR for UAV communications
and its state-of-the-art, testbed alternatives for real data experiments, as well as specifications to build
a simple and low-cost testbed, and indicates key opportunities and future challenges in the field.

Keywords: unmanned aerial vehicles; cognitive radio networks; software defined radio; network
sensing; security; internet of flying things; machine learning; energy management

1. Introduction

An Unmanned Aerial Vehicle (UAV), also known as drone, is an aircraft without
passengers on board. Thus, the term “unmanned” implies a total absence of humans
within the aircraft [1]. In this regard, UAVs need not only hardware and software capable
of providing stability and preprogrammed flight navigation control [2], but also robust,
effective, and secure communication technologies that enable them to communicate with
base stations, air traffic controllers, other UAVs, or other devices and computers [1].

Although UAVs were initially designed for military action, the mass production
of high-performance, low-cost, intelligent UAVs has made them suitable for different
applications. These applications include video streaming, amateur photography and
filming, people and environment monitoring, rescue and research, traffic control, and
disaster recovery [3,4]. In fact, UAVs are currently being considered as an important
part of the next generation of wireless networks 5G with the so-called cellular-connected
UAVs [5], where they play a critical role to provide great performance improvements, thus
bringing more opportunities to the Internet of Things (IoT) and more diversity for 5G
communications.

Likewise, while performing their missions, the UAVs may work within an IoT [6]
context when equipped with IoT devices. Herewith, the UAVs will form an innovative IoT
platform operating in the skies, thus being part of a new concept known as the Internet
of Flying Things (IoFT) [7]. For this purpose, UAVs need to support instantaneous and
real-time communication, and offer access to high-resolution files (e.g., videos streaming
and high-definition images), even if they are in an overcrowded area. That is the reason
why 5G networks are considered a key enabler for the IoT and the IoFT. In this sense,
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the ultra-reliable and low latency (URLLC) mode of communication expected with 5G
networks would not only provide the UAVs with the necessary IoT requirements but also
provide coverage at high altitudes. Furthermore, the tasks of 5G networks may support
remote change, and the planning of flight routes will be enhanced with the potential
benefits of a 5G communication, thus preventing UAVs from colliding with each other [8].

Regarding the impact on spectral usage expected for the massive connections of UAVs
in 5G, an important issue to be addressed is how these devices will be connected to future
networks in a spectral efficient manner. It is known that despite the need for more robust
and secure communication UAVs traditionally operate within unlicensed spectrum bands
(i.e., open/free spectrum), such as IEEE S-Band, IEEE L-Band, and ISM, fixedly defined in
their hardware. Therefore, the UAVs increasingly face competition, thus competing with
a growing number of mobile devices (e.g., smartphones and tablets), operating within
other wireless networks (e.g., Wi-Fi and bluetooth) that use the same spectrum bands.
However, besides interfering the UAVs communications, this competition will not be
bearable anymore, once a massive number of UAVs is expected to be connected, which will
lead to a serious problem of spectrum scarcity and security-related problems [9]. In this
context, Cognitive Radio (CR) emerges as a promising technology to solve these issues by
enabling Dynamic Spectrum Access (DSA) [10].

Proposed by Mitola [11], CR is a smart wireless communication implemented in a
Software-Defined Radio (SDR). An SDR sets its transmission frequency in software rather
than in hardware, thus allowing the CR to intelligently switch to different channels. To
switch channels, CR senses the radio spectrum environment around it and adapts its own
configurations accordingly to increase reliability and efficient spectrum usage [10]. Further-
more, CR is considered a key enabling technology for 5G in emerging IoT applications [12].
Therefore, CR can provide UAVs with promising features for their massive deployment,
such as reduced energy consumption and delay, opportunistic spectrum use based on
application requirements, and a security enhancement, as CR does not suffer the effects of
some conventional attacks.

These features would allow CR-based UAVs to perform in situations where traditional
UAVs face limitations, or are often subject to being hacked. Moreover, CR alongside 5G
would permit the UAVs to work in an IoFT role within an IoT context. This would fulfill
the increasing growth of applications requiring highly connected devices, such as Smart
Cities [13]. However, although UAVs and CR are well-established research fields, the
integration between the two is fairly unexplored [9]. Many issues remain open, such as the
impact of the UAVs mobility on CR and the definition of hardware compatible with both.
These open issues allow new research opportunities and advances into the state-of-the-art.

In this paper, we provide a comprehensive overview of background on CR for UAV
communication, and the ongoing research regarding the integration between the two. We
also specify the steps to build a simple and low-cost CR-based UAV testbed. Finally, we
present key opportunities and future challenges in the field.

2. Related Works

The first step towards the proper development of a CR-based UAV is choosing a suit-
able SDR-UAV combination. With a particular emphasis on SDR hardware and software
that can be used for aerial wireless exploration and analysis, Powell et al. [14] provides a
comparative overview of SDRs. They address specifications for SDR hardware, features of
available SDR hardware that are acceptable for small UAVs, and measurements of power.
They also present SDR software specifications, open-source SDR software available, and
SDR software calibration/benchmarking. Finally, the authors present Aerial Experimenta-
tion and Research Platform for Advanced Wireless (AERPAW) as a case study, and address
various different experiments that can be sponsored by SDRs on that platform to verify/test
possible wireless advancements, protocols, and technologies.

CR aircraft applications are also the subject of recent surveys. Jacob et al. [15] carried
out a survey on CR for aeronautical applications. Although their survey is not directly
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related to UAVs, they present valuable information about studies involving CR and UAS.
Notwithstanding, Saleem et al. [9] undertook a survey on the integration of CR with
UAVs. They discussed and highlighted a variety of challenges, issues, and future research
in the field.

3. Background

Herein, we introduce some background information required to understand this work.
First, we give an overview of UAVs. Second, we present a general description of the
concepts related to CR and its operation.

3.1. Unmanned Aerial Vehicles

UAVs are described with different terms, such as drones and Unmanned Aerial
Systems (UAS). These terms vary according to the research field, often describing the same
thing though [1]. In this work, UAV is defined as an aerial vehicle, with an embedded
computer platform, capable of flying with no human pilot on-board.

UAVs can be remotely controlled and/or autonomous, and they can perform a variety
of tasks. Although initially purposed for military tasks, there is an increasing growth in
civilian, commercial, and scientific applications (e.g., traffic surveillance, communication
relays, disaster management, data and image acquisition, etc.) [16].

As shown in Table 1, UAVs can be classified according to their weight, altitude
and endurance [9]. Figure 1 shows an example of a mini UAV, the Inspire 2, by DJI, as
categorized by Table 1 [17]. This UAV weighs around 3.3 kg and its flight reaches up
to 27 min.

Table 1. Unmanned aerial vehicles (UAVs) classification. Adapted from the work in [9].

UAV Weight (kg) Altitude (km) Endurance (h)

Micro 0.1 0.25 1
Mini <30 0.15–0.3 <2

Short range 200 3 2–4
Medium range 150–500 3–5 30–70

Long range - 5 6–13
Endurance 500–1500 5–8 12–24

Medium altitude, 1000–1500 5–8 24–48
long endurance
High altitude 2500–12,500 15–50 24–48

long endurance

Figure 1. DJI Inspire 2, a mini UAV weighing around 3.3 kg and capable of a flight time up to
27 min [17].

Although there is a wide variety of UAVs, this work focuses on their communication,
considering micro and mini UAVs battery, space, and weight constraints.

For mini and micro UAVs, the battery represents an important portion of their weight.
The DJI Inspire 2, for example, typically works with a pair of 4280 mAh batteries, weighing
515 g each. Although over 30% of this UAV weight is assigned to batteries, it is only able to
fly 27 min per charge.
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3.2. Cognitive Radio Networks

The European Telecommunications Standards Institute (ETSI) defines CR as a radio
that can sense and understand the radio environment and policies, and monitor usage
patterns and users’ needs; autonomously and dynamically adapts according to the radio
environment, so that it can achieve predefined objectives, such as efficient utilization of
spectrum; and learn from the environment and the results of its own actions, so it can
further improve its performance [18].

CR is also able to operate as a secondary user (SU) within a spectrum band of a li-
censed user or primary user (PU). In [12,19], the Resolution ITU-R 58-2 of the International
Telecommunications Union (ITU) states that “the introduction of CRSs in any radiocommu-
nication service needs to ensure that coexistence within radiocommunication services and
the protection of other radiocommunication services sharing the band and in the adjacent
bands are maintained or improved” [20]. In practice, clearer parameters on how that action
is done is usually defined by local regulatory agencies.

CR is described as an intelligent SDR with the following components:

1. spectrum sensing: identifies the available spectrum and detects PUs when operating
in a licensed band,

2. spectrum management: selects the best available channel,
3. spectrum sharing: coordinates accessibility to the available channel with other users,

and
4. spectrum mobility: vacates the channel when a PU arrives.

Figure 2 shows the interaction among the CR components. First, the spectrum sensing
component is responsible for collecting data from the radio environment, and it keeps
sending the gathered radio data to the spectrum management component. When a PU
is detected, it also notifies the spectrum mobility component, then a spectrum handover
must be executed. The spectrum management component is responsible for submitting the
channel with higher availability to the mobility component of the spectrum, because when
the current channel needs to be vacated, a new channel is used. Finally, to organize the
allocation of spectrum bands, the spectrum sharing portion is responsible for interacting
with the radio environment.

Figure 2. The interaction among CR components. Adapted from the work in [21].

In practice, CR consists of a hardware associated with an intelligent software. Usually,
the hardware consists of a radio platform, generally an SDR, and a computational platform.
Most computational platforms used for CR applications are single-board computers, such
as the ODROID [22], the Raspberry Pi [23], and the BeagleBoard [24]. The Universal
Software Radio Peripheral (USRP) from Ettus Research [25] and the Wireless Open-Access
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Research Platform (WARP) from Rice University are both SRDs and the most common
radio platforms used in CR [26,27].

Figure 3 shows one of the most usual SDR hardware in research experiments: the
USRP B200 by Ettus Research. It provides full-duplex wireless communication within
a frequency range starting from 70 MHz varying up to 6 GHz. Its architecture offers
compatibility with a variety of software and frameworks, such as C++, Python, GNU
Radio, Amarisoft LTE 100, and OpenBTS.

Figure 3. USRP B200 by Ettus Research. Its price is currently $905.00.

4. CR-Based UAVs

A CR-based UAV may be seen as a UAV with an SDR platform embedded to it. It
should also contain a computational unity that interacts with the SDR platform in order to
autonomously take decisions regarding the radio spectrum usage. In this section, we first
discuss the need for CR-based UAVs, potential applications, and hardware/software char-
acteristics.

4.1. The Need for CR-Based UAVs

Herein, we define the most prominent aspects regarding the paramount importance
of CR in the context of UAVs.

4.1.1. Security

Communication security is critically important for UAVs. These aircraft are also
considered critical systems, a security issue, which can be used to manage confidential
information, thus, in a UAV, may often represent a serious safety issue. Some conventional
attacks, such as jamming and location spoofing (sometimes referred to as GPS spoofing or
GNSS spoofing), could lead the base station to lose the UAV. This problem is particularly
evident in overcrowded or hostile areas.

Jamming is an attack in the physical layer which causes a high interference to a spec-
trum band by overloading it. It may provoke the attacked devices to present an excessive
energy consumption due to package retransmission, or even interrupt its communication
channel [7]. When a CR is under a jamming attack, it simply understands that spectrum
band as being busy or overcrowded, and then it switches its transmission to a new channel,
thus avoiding the attack. In order to succeed in their jamming attempt, the attackers would
have to keep detecting the new CR frequency and switch to the same frequency. For this,
however, the attackers themselves would need to also be equipped with a CR device and
more sophisticated algorithms.

Location spoofing attacks also happen in the physical layer, and they have become
more frequent. It happens when an attacker uses a signal that is stronger than and mimics
the attributes of a genuine location satellite signal to spoof the receiver [7]. By using a
location spoofing attack, attackers may capture UAVs and/or take control of their flight
path. Such attacks have become easy to launch [28]. However, location spoofing attacks are
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much more complex to execute to CR devices. The work in [29] provides some strategies
for spoofing attack detection and countermeasure solutions in CR networks.

Therefore, UAVs may benefit from CR technology security. Conventional jamming
and GPS spoofing strategies may be easily avoided by CR. These attacks are only possible
to CR when the attacker is also using a CR with different and specific strategies; therefore,
attacking a CR device is a more complex problem than attacking conventional wireless de-
vices. Herein, we define the most prominent aspects regarding the paramount importance
of CR in the context of UAVs.

4.1.2. Energy Efficiency

Although CR devices may represent a computational overload to UAVs, they may
be capable of actually reducing energy consumption to these aircraft. Because the UAVs
operate in overcrowded spectrum bands, they are susceptible to a high number of loss,
thus increasing packet retransmission. The energy consumed for packet retransmission
may be greatly reduced when a UAV is equipped with a CR.

Li et al. [30] proposed a method to maximize energy efficiency based on a joint
optimization with medium access control (MAC) and physical layers, considering CR
networks. In their scenario, a CR user senses different channels simultaneously and uses
some idle ones for data transmission. The authors showed that the more channels the CR
device is able to use, the more efficient is its bits/joule ratio throughput. The bits/second
ratio also increased with the number of channels used.

4.1.3. Spectrum Scarcity

Despite a massive growth in the number of wireless connected devices, most of the
radio spectrum is underutilized. Because of the fixed spectrum allocation policy, a big
portion of the radio spectrum is reserved to sporadic PUs, while other spectrum portions
are overloaded, such as Wi-Fi and mobile bands. Moreover, the UAVs traditionally operate
within unlicensed spectrum bands (i.e., open/free spectrum), such as IEEE S-Band, IEEE L-
Band, and ISM, fixedly defined in their hardware, under the same fixed spectrum allocation
policy [31].

In this context, CR emerges as a promising technology to solve these issues by enabling
DSA [10]. CR-based UAVs are able to select idle spectrum bands for communicating.
Thus, the UAV overall communication quality increases when using CR, especially in
overcrowded areas.

4.1.4. Application Requirements

UAVs may often be deployed in missions where they are expected to broadcast live
video and to send high definition pictures to the base station. However, live stream
broadcast tolerate packet loss, but require a high bandwidth for the timely data delivery.
Sending high definition pictures is the opposite operation, as the UAV may need a low
bandwidth with no packet loss tolerance, but with delay tolerance [9].

While traditional UAVs may face this problem, CR-based UAVs may easily deal with
it. CR-based UAVs may change their communication frequency accordingly to application
requirements. Thus, a UAV equipped with CR technology may be live streaming video
and switch to a low bandwidth to send a large file when required. This feature not only
optimizes the overall network performance of CR-based UAVs, but it also opens new
application opportunities for these aircraft. For instance, they can be used to improve
the communication performance of terrestrial users in 5G, through the UAV-assisted 5G
communications [32].

4.2. Potential Applications

In the last few years, emerged a growing trend to rely on UAVs as a support tool
on critical missions, such as military surveillance [33], forest fire monitoring [34], crop
monitoring [35–37], traffic surveillance [38], border patrolling [39], natural disasters area
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surveillance and support [40–42], and commercial drones [43]. However, these areas
usually suffer from infrastructure issues that could possibly lead to spectrum scarcity or
anomalous PUs behavior [44,45]. Thus, an integration between UAVs and CR could be
useful for these scenarios due to its spectrum sensing and handover capabilities.

As well as the spectrum uncertainty scenario set up by emergency conditions, densely
populated areas such as big cities can likewise go through overcrowded frequency bands,
mainly motivated for the growing volume of wireless network users. Although spectrum
scarcity is perceived as a harmless effect, the falling of a UAV in a crowded area due to
an unstable communication could inflict much damage depending on the aircraft size
and set up [46]. One potential advantage of CR utilization is the potential increase in the
Quality of Service (QoS) caused by applying the spectrum handover capabilities to identify
and relocate to less occupied frequency bands, thus adding to the stability of the data
transmission between UAVs and their base stations.

In order to avoid the spectrum scarcity caused by densely populated areas, the UAV
can previously adjust its flight path considering the spectrum availability, as applied in [47]
using cellular data network. To accomplish this application, it can be done a mapping
of several frequency bands of the area in which the UAV would be deployed, therefore
enabling the occupancy pattern recognition and, subsequently, prediction by machine
learning (ML) algorithms [48].

4.2.1. Internet of Flying Things

The increased demand for highly connected devices originated the concept of IoT. In
IoT, a massive number of “things” (i.e., devices) are connected to the Internet, in order
to exchange information for the most diverse applications and purposes, from gains in
efficiency to expansion of functions.

Because of the IoT rise, there is a major demand for integrating UAVs with this network.
However, due to the special features involving Flying Ad hoc Networks (FANETS) and
these aircraft, the IoFT was created. IoFT is a new research field that differs to IoT in scope
of research, despite being related areas.

IoFT specific challenges range from regulatory issues to hardware and software limita-
tions. Regarding security, as the UAVs are critical embedded systems, so a network security
issue may generate a safety issue. The security challenges in IoFT are diverse, involving
the physical, data link, transport, session, and application layers [7].

4.2.2. UAV-Aided 5G

UAVs may play an important role for 5G and beyond 5G (B5G), as future dronecell
networks [49]. Because cellular-connected UAV communication has unique characteristics
related to ground conventional cellular communication, this field offers new research
challenges and opportunities. Zeng et al. [5] presented an overview of 5G in UAV commu-
nications, as well as emerging technologies and potential challenges.

CR is an enabling technology for using UAVs in 5G networks. In 5G, CR-based UAVs
may simultaneously access the wireless channel and fulfill their different roles in traffic
surveillance, disaster management, and package delivery [32].

4.3. Hardware Characteristics

Usually, CR hardware consists of a radio platform, typically an SDR, and a computer
platform. The Wireless Open-Access Research Platform (WARP) from Rice University [26]
and the USRP from Ettus Research [25] are the most commonly deployed radio platforms
for CR [27].

A recent implementation of SDR, however, has been carried out using various methods
rather than considering the integration with UAVs. As a consequence, for UAVs, overhead,
energy consumption, and time delays associated with conventional SDR are constraints.
Alternatively, Young and Bostian [27] built the SKIRL, a simple and low-cost RFIC-based
RF CR platform suitable for the experimentation of small radio-controlled UAVs. The Hope
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RF RFM22B [50] was used as the radio platform, whereas the BeagleBoard-xM [24] single
board was deployed as the computer unit. This was done to reduce resource consumption
and simplify CR design.

Figure 4 shows the physical dimensions of the USRP B200, 97 × 155 millimeters, and
the Hope RF RFM23B, 16 × 16 millimeters. For UAVs, particularly for micro UAVs, where
physical space is limited, so if a large board is inserted to it, series of changes may be
triggered in the aircraft system, configuration, and scale. Thus, this difference in size is
critical. Moreover, the energy consumption of the Hope RF RFM22B is just 0.306 Wh in
the worst case scenario. The USRP B200, on the other hand, may have up to 4.092 Wh
of energy consumption. Because the energy capacity of a LiFe SourceHCAM6426 UAV
lithium battery, a typical UAV battery, is just 12 Wh, energy consumption is a key aspect to
take into account in this context.

Figure 4. Physical aspects of the Hope RF RFM23B on the left and the USRP B200 on the right. The
boards are shown in different size scales. Adapted from the work in [51].

4.4. Software Characteristics

The CR software design and applications can be divided into multiple categories, from
MAC protocols and routing algorithms to machine learning approaches used to predict
channel occupancy. In this work, we summarize three of those categories: (i) spectrum
sensing algorithms, focusing mainly on transmitter detection and identification of spectrum
holes [52,53]; (ii) methods to perform the spectrum handover [54]; and (iii) and simulation
software [55].

4.4.1. Spectrum Sensing

The literature commonly refers to spectrum sensing as the procedure of gathering
and analyzing radio data to establish the spectrum occupancy [56]. In order to detect
transmitters, some well-known methods can be employed, i.e., Energy detector, Matched-
filter, and Cyclostationary feature detection. These algorithms are connected with two
hypotheses formally defined as [57,58]

x(t) =

{
n(t), H0

s(t) + n(t), H1
(1)

where H1 indicates the presence of a licensed user, whereas H0 represents the null hypothe-
sis. x represents the received signal, t is the time sample, and s and n denote the PU signal
and the additive noise, respectively.

In cases where the signal receiver has no prior information about the PU signal, the
energy detector algorithm may be deployed at a low computational cost. It functions by
comparing a signal sample from the data to a predefined threshold, where a value higher
than the threshold suggests the presence of a primary user, whereas a value smaller than
the threshold implies the lack of band utilization. The main downside of this approach is
the fixed threshold value, as noise power can differ over time possibly assuming unknown
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behavior. In this case, the threshold could be surpassed by the noise power, indicating an
invalid PU presence in a given spectrum band [59,60].

The matched-filter contrasts the current signal with previous collected samples from
the same transmitter, in comparison to the energy method. It appears to be more precise,
has a shorter sensing time and maximizes the ratio of signal to noise (SNR). However, the
need for prior knowledge of the form of the transmitter signal restricts its feasibility only
to the point where licensed users cooperate [61].

In order to check whether or not the transmitted signal has periodicity, the cyclostation-
ary feature detection adopts a spectral correlation function (SCF) [62]. Unlike the previous
approaches, it helps the CR user to distinguish between noise and user signal, improving
the efficiency of the algorithm in channels where there is greater noise [63]. Because of
its computational complexity, perhaps the most serious drawback of this approach is the
need for long processing time, an undesired characteristic for small energy consumption
systems such as UAVs.

Finally, machine learning approaches have been adopted in the literature to enhance
the detection of transmitters. The authors of [64] achieved an overall success rate of over
99.50% in predicting PU presence by using an Artificial Neural Network (ANN) at different
SNR frequencies. Similarly, Zhang et al. [65] proposed a cooperative detection device
combining the energy detector with ANNs, adding a basic ANN for each SU, and a base
station responsible for final decision-making, referred to as the Fusion Center. Matinmikko
et al. [66] proposed a new Fuzzy logic system to adapt each spectrum scenario to the most
suitable transmitter detection algorithm. The reader may refer to the works in [67,68] for
further information concerning spectrum sensing techniques.

4.4.2. Spectrum Handover

The channel occupied by an unlicensed should ideally be vacant when a PU arrives.
This is desirable in order to generate minimal interference to the primary user transmission.
The literature generally refers to the process of hoping to another channels as spectrum
handover. It involves distinct strategies with regards to its integration with spectrum
sensing, such as non-handover, pure proactive, pure reactive, hybrid, and ML approaches,
which incorporates the preceding [54].

In the non-handover strategy, the SU remains idle until the PU leaves the channel,
resuming the transmission of data later. Although spectrum sensing is limited solely to
current channel monitoring, the drawback of this concept is unveiled during a long PU
transmission, which significantly restricts the transmission time available to the SU, in
terms of detection of PU arrivals and departures.

Unlike non-handover, before and after the arrival of the PU, both pure proactive and
reactive strategies concentrate on handover to an idle channel, respectively. The pure
proactive algorithm tries to predict the arrival of the PU while perceiving the atmosphere
to locate a spectrum hole based on the traffic pattern of the channel. On the contrary, after
the identification of the PU, the pure reactive approach only senses and switches to an
unused channel. A potential disadvantage in the pure proactive method may be created by
a poor prediction of traffic, leading to an unnecessary handover, whereas the pure reactive
approach may have a greater handover delay just after a PU arrival due to the execution of
the spectrum sensing stage.

The hybrid handover strategy, taking advantage of the advantages of both methods,
incorporates both the proactive spectrum sensing phase, perceiving the spectrum holes
before the arrival of the PU, and reactive handover action. Therefore, due to the proactive
process, the handover delay is reduced, and not every PU arrival needs to be predicted
by the algorithm. However, the backup channel can become obsolete before use, as in
the proactive method, thus driving the algorithm to perform a supplementary spectrum
sensing phase.

The literature has stressed the utility of ML algorithms to overcome the complexities
of spectrum handover. Trigui et al. [69] developed a method of negotiating multi-agent
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systems that enables SUs to migrate opportunistically to the most adequate spectrum
band provided its characteristics, achieving around 97% of spectrum utilization. An
investigation on the Hidden Markov Model (HMM) application for spectrum handover
and simulated data showed that in detecting transmission opportunities, this technique can
give SUs greater accuracy [70]. Finally, in order to achieve dynamic handover management,
Anandakumar and Umamaheswari [71] suggested a supervised Machine Learning (ML)
approach referred to as Spectrum Particle Swarm Optimization (SpecPSO), using Visitor
Location Register and Home Location Register databases to train the algorithm.

4.4.3. Simulation Tools

All levels of abstraction, from the physical layer to protocols and routing, should
be associated with a full CR simulation program. We have not found a method in the
literature that embodies all these characteristics. The only way to do this, to the best of
our knowledge, is to combine open source resources, such as radio simulators (e.g., GNU
Radio [72] and CogWave [73]) and general network simulators (e.g., Omnet++ [74] and
ns-3 [75]).

GNU Radio is a free and open source software designed to use its graphical user
interface flow graphs to simulate radio transmissions and signal processing (GNU Radio
Companion). It could be compared to LabView [76] and Simulink [77]. Standard flow
graph blocks encompass waveform generators, modulators, instrumentation sinks, math
operators, filters, and Fourier analysis. It also facilitates the development of new blocks
using the programming language C++, as well as the design of the flow graph using Python.
In addition, GNU Radio can be connected to SDR hardware, thus allowing simulations
from the testbed to be used.

Another open-source program suggested for designing CR waveforms is CogWave. It
involves many modulation systems, including multichannel DAA-OFDM, Fathers, and
others from GNU Radio (e.g., OFDM, BPSK, and QPSK). During run-time, CogWave is
able to reconfigure the modulation scheme and can communicate with SDR hardware, as
well as GNU Radio, to provide real-time transmission between USRP devices.

Omnet++ and INET [78] have been widely used in the literature to simulate CR
networks for general network simulators [79–81]. Omnet++ offers a C++ component-based
architecture where modules and components can be assembled using a graphical user
interface or a high-level network description language, similar to flow graphs in GNU
Radio (NED). Its modular architecture therefore eases the reusability of the built models.
Furthermore, INET offers protocols, templates, routing, and mobility simulation as an
open-source model library for Omnet++.

Another well-established tool is the ns-3. It is an open discrete-event simulation
environment for network research that provides C++ libraries of models for wired protocols,
IP and non-IP, wireless, dynamic routing protocols, and so forth. For instance, the ns-3 has
been applied in the simulation of CR networks regarding spectrum handover [82], data
collection [83], and channel sharing [84].

It is necessary to note that many programming languages can be used to build a custom
simulator, as they provide access to several network and scientific libraries (e.g., Java, C++,
Python, and Julia). However, most simulation scenarios encountered in the literature are
complex enough to require thousands of lines of code, turning this option impractical for
most of the problems.

4.5. Spectrum Mobility

When a PU resumes transmission through the same channel as the SU, the latter has
to vacate the channel by suspending its transmission and restart communication through a
vacant channel. This CR feature is called Spectrum Mobility [54].

It is considered a daunting problem due to the erratic behavior of the wireless medium
in combination with the high mobility of UAVs. Thus, network protocols for ground-based
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networks could not perform as expected for UAVs, and their high mobility should be taken
into account when designing CR-based UAV transport protocols [9,85].

One of the forms in which an SU does not trigger disruption in a PU-licensed band
is to perform a spectrum handover as soon as the SU detects the existence of the PU. In
general, UAVs take their places in a CR network as SUs, and they are likely to conduct
a high number of spectrum handovers, as they will be on a mission throughout their
route in the presence of various PUs. Therefore, spectrum handover is a key element in
CR-based UAVs.

A general spectrum handover process is shown in Figure 5. A SU keeps monitoring
the spectrum environment during the evaluation phase by sensing it. The link maintenance
process begins when a handover signal is identified, then the SU pauses its transmission
and performs a channel handover to a backup channel and resumes its transmission,
returning to the evaluation phase.

A handover trigger could be provided by a PU or by the SU itself, depending on the
application purposes and signal quality. Depending on the spectrum handover strategy,
a backup channel could be searched proactively during the assessment process, and a
channel handover could also be performed proactively.

On the other hand, both backup channel scanning and channel handover are per-
formed reactively in a reactive technique. A new backup channel has to be checked, and
another channel handover attempt is made if a channel handover is not successful due
to any incident affecting the target channel (e.g., a PU started a transmission through the
target channel) [54].

Figure 5. Spectrum handover process. Adapted from the work in [54].

Considerable energy consumption is required in a spectrum handover. Furthermore,
some communication problems, such as packet loss and delay, may increase during the
spectrum handover process. In a spectrum handover, delay is also a significant performance
factor [86].

Figure 6 demonstrates the effect of the spectrum handover delay over a SU after many
PU channel reclaims. In that case, an SU establishes a connection whose operation requires
the completion of 7 time slots. However, due to successive PU arrivals, the process needs
9 time slots. Nevertheless, as the existence of a PU on channel Ch1 is quite short, the first
SU channel handover was unnecessarily executed, which means that the SU was submitted
to excessive channel handover costs [87].
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Figure 6. Spectrum handover delay caused to an SU. Adapted from the work in [87].

UAVs designed for real-time multimedia broadcasting can cause unsatisfactory user
experience, as spectrum handover latency can have a significant effect on delay-sensitive
applications. For optimal transmission, therefore, delay reduction has to be considered [88].

5. Developing a Simple and Low-Cost CR-Based UAV Testbed

One of the main obstacles when integrating CR into UAVs is the energy consumption.
Devices such as USRP B200 [25] have a consumption around 4.1 Wh, whereas a commercial
quad-rotor UAV like DJI Phantom 4 [89] has a LiPo 4S battery with 81.3 Wh of capacity,
which ensure a max flight time up to 28 min. This issue has been subject of empirical
evaluations in Young and Bostian [27], where the authors apply the Hope’s RF RFM22B [50]
to greatly reduce the energy utilization (0.3 Wh), although it likewise reduces the coverage
range from USRP’s 70 MHz–6 GHz Hope’s 433–915 GHz.

The employment of miniaturized SDR devices could also help to reduce the additional
weight load of UAV. For instance, Phantom 4 weights 1380 g, whereas USRP B200 weights
350 g. In comparison, Hope’s RF RFM22B weights only 1.8 g. The additional load could
influence not solely the weight capacity of the aircraft, but also the energy consumption.
Ultimately, the impact on the load capacity of the UAV poses as a major drawback on
mobile manipulating UAVs [90].

Finally, there is no conclusive information referring to the maximum transmission
distance of both USRP’s and Hope’s SDRs, as well as for other manufacturers. A limited
transmission distance can be a tricky feature, potentially limiting the assimilation of CR
into UAV Swarms. One probable solution to this shortcoming is the use of signal amplifiers;
however, it is essential to note that additional weight load could result in less flight time,
especially in swarms where the UAVs individual weight could reach 500 g in medium
range devices or even less in short range devices.

5.1. The Testbed Components

The first step towards building this testbed is to develop and test a CR platform
with the purpose to integrate it with the UAV. We developed one using a Raspberry Pi 3
connected to an RTL SDR 820T2 [91] as the radio front-end with a basic antenna. The RTL
SDR 820T2 is a simple and low-cost USB SDR receptor, which frequency coverage varies
from 30 MHz to 1.8 GHz.

Although the RTL SDR 820T2 does not support wireless data transmission (it only
supports wireless data reception), its low-cost feature makes it a valuable tool for CR
experiments, as most of the gaps are not found in the transmission itself, but in the received
data processing and decision-making. For example, to evaluate a given spectrum handover
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algorithm, a CR device is not required to transmit wireless data itself. It only needs to sense
the environment and decide whether to vacate the channel.

We choose a Parrot AR.Drone 2.0 [92] UAV to be integrated with the CR platform
built for this work. Because Parrot AR.Drone 2.0 is a typical commercial drone widely
used for entertainment, it fits the “keep it simple” requirement of this testbed, and it is
also appropriated to test the CR platform suitability to mini-UAVs. Because the Parrot
AR.Drone 2.0 is not open in hardware nor in software (except for an SDK intended for
the development of smartphones, smartwatches, or VR glasses applications [93]), it is not
possible to make any changes directly to the UAV. Therefore, here we use Parrot simply as
the UAV platform; the Raspberry Pi 3 is used as the CR computer component. However,
both the CR platform and the Parrot AR.Drone 2.0 run Linux operating systems [93];
therefore, this work results are equally valid not only for Linux-based computer platforms
(like the Raspberry Pi 3), but also for open-source/open-hardware Linux-based UAVs. Note
that for such UAVs it may be possible to use the same single board as the computational
unit of both the CR and the UAV itself.

Moreover, this UAV provides a USB port on its top. This port can be used as an
interface to connect the CR platform to it. Figure 7 shows a picture taken in the laboratory
of the Parrot AR.Drone 2.0 without its hull, in which it is possible to see its USB port.

Figure 7. The Parrot AR.Drone 2.0 without its hull, highlighting its USB port.

Because of the low energy supply provided by the Parrot AR.Drone 2.0, it was neces-
sary to efficiently adapt the CR platform. We changed its operational system to Ubuntu
Mate, in order to have a better general compatibility with third-party software and more
control over unnecessary background processing. It was also integrated with RLTSDR-
Scanner, which is an open-source cross platform Python frequency scanning tool for RTL
SDR [94].

Finally, it was possible possible to deploy the CR-based UAV prototype outdoors.
Figure 8 shows the prototype developed and deployed in this work. Because of the
influence that an indoor environment could cause to radio data collection (for instance,
because of walls, other devices, etc.), outdoor data collection is a key factor to determine
the quality of the collected data.
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Figure 8. The CR-based UAV prototype developed for this work.

5.2. Outdoor Radio Data Collection of a Jamming Attack

The experiment we conducted in this work comprises executing a typical jamming
attack to the CR-based UAV prototype outdoor. The CR should detect the jammed fre-
quency range as busy and then switch to a backup frequency, thus avoiding the jamming
attack consequences.

In this experiment, we used a jammer device capable of jamming the frequency
432 MHz and the CR-based UAV testbed. First, we deployed the CR-based UAV sensing
the 432 MHz frequency. Second, we used the jammer device to execute the jamming attack
to that frequency. The CR-based UAV then sensed the high signal level in that frequency
and it autonomously switched to its backup frequency. Although it was an outdoor
experiment, it was important to isolate it, keeping it away from other variables. Therefore,
we experimentally defined its backup channel as 440 MHz and its level threshold to −40 dB.
It was necessary to avoid that other PUs and/or SUs interfered in the experiment, and to
reduce the incidence of false alarms.

Figure 9 shows that the CR-based UAV prototype performed as expected under a
jamming attack.

Figure 9. Data collected using the CR-based UAV. It kept using the 432 MHz frequency until it sensed
a transmission level over the threshold. It then switched to its backup channel at 440 MHz.
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For a clearer understanding of the radio spectrum environment within the frequency
range from 432 MHz to 441 MHz, we used the CR platform to make a data collection
during a jamming attack, in similar circumstances to the CR-based UAV testbed experiment.
Figure 10 shows the data collected. It highlights the 432 MHz frequency level discrepancy
under the jamming attack, related to other frequencies within the measured range.

Figure 10. Data collected using the CR platform. It shows a map of the level in dB measured within
the frequency range from 432 MHz to 441 MHz throughout the time.

These results show that even switching to a channel around the same frequency bands
could be enough to avoid a jamming attack, considering the attacker does not have access
to the new channel. Furthermore, note that we used a simple reactive algorithm based
on static channel noise threshold, but especially proactive algorithms may benefit from
such data collections, as Machine Learning techniques could be trained and tested over
real-scenario data.

6. State-of-the-Art of CR-Based UAVs

We conducted a review in November 2020 in search of works involving UAVs and
SDR and/or CR. The main idea was to find the state-of-the-art of CR-based UAVs. As
SDR-based UAVs represent somehow a step backwards for CR-based UAVs, they were also
included in this review.

We evaluated a total of 520 publications from four different digital libraries. However,
the majority of these articles were identified marginally related to the scope of this work.
Thus, the final studies dataset obtained after analyzing them regarding the following
exclusion criteria consisted of 64 articles:

1. non-English publications. Although we used English language keywords, we found
a few publications in other languages. We had to exclude them merely because we
would not be able to analyze them in depth;

2. papers that are not downloadable online;
3. publications that are not related to CR, SDR, or UAVs as defined in this work (other

research fields);
4. papers focusing on CR or SDR applications other than UAVs wireless communication.

Figure 11 outlines the number of publications per year, among those selected in this
review. It shows an increasing interest over the recent years in this research field. Although
the year of 2020 was evaluated from January until November, it already has a high number
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of publications. Note that a number of papers might have been published from January
2020 to November 2020, but were not yet available online.

Figure 11. Related publications per year. The year of 2020 was evaluated from January until November.

Figure 12 presents keywords graph and occurrence mapping for all 64 articles selected
on this review. We consider keywords with at least two occurrences and at least one
link to other keywords. Thereby, the keyword mapping consists of 34 keywords in total.
In Figure 12, it is possible to note an expressive amount of links correlating UAV-related
keywords and SDR-related keywords. However, although CR-related keywords are present
in Figure 12, there are few links correlating them to UAVs. Thus, Figure 12 outlines the
paucity of studies on the integration of CR and UAVs.

Figure 12. Keywords graph and occurrence mapping for all 64 articles selected on this review.

In order to measure how fit each selected publication is to CR-based UAVs research
field, we analyzed each paper regarding the following aspects:

1. the work presents a theoretical analysis (Q1);
2. the work presents practical results (Q2);
3. the work involves a real SDR-based UAV (Q3);
4. the work is centered on CR-based UAVs (Q4);
5. the work involves a real CR-based UAV (Q5).

For each publication, each aspect is analyzed, and it is evaluated as “yes”, if the aspect
is present in the paper, or “no” otherwise. Table 2 presents all selected publications in this
review, as well as their publication year and aspects analysis.
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Table 2. Reviewed publications and their explored topics. On the columns Q1 to Q5, cells filled in
gray color represent “yes” for the respective column, and “no” otherwise.

Publication Q1 Q2 Q3 Q4 Q5
Chen et al. [95]

Young and Bostian [27]
Miko and Nemeth [96]
Harounabadi et al. [97]

Brown et al. [98]
Reyes et al. [10]

Guevara et al. [99]
Anderson et al. [100]

Mikó and Németh [101]
Andryeyev et al. [102]

Saleem et al. [9]
VonEhr et al. [103]

Jacob et al. [15]
Tato et al. [104]

Murphy et al. [105]
Sboui et al. [106]

Gutierrez et al. [107]
Gonzalez and Fung [108]

Horapong et al. [109]
Zhang et al. [110]

Ghazzai et al. [111]
Cai et al. [112]

Noble et al. [113]
Petrolo et al. [114]

Shi et al. [115]
Huang et al. [116]

Shi et al. [117]
Liu et al. [118]

Sklivanitis et al. [119]
Pärlin et al. [120]

Dunne and Keenlance [121]
Shamaei et al. [122]
Santana et al. [51]
Jadon et al. [123]
Torabi et al. [124]

Xu et al. [125]
Pan et al. [126]
Shen et al. [127]
Aftab et al. [128]

Adane [129]
Almasoud and Kamal [130]

Matheou et al. [131]
Wang et al. [132]

Murphy et al. [133]
Hasan et al. [134]
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Table 2. Cont.

Publication Q1 Q2 Q3 Q4 Q5
Che et al. [135]
Nie et al. [136]

Radišić et al. [137]
u. Hasan et al. [138]
Yuheng et al. [139]

D’Alterio et al. [140]
Zhao et al. [141]

Mohanti et al. [142]
Liang et al. [143]

Kornprobst et al. [144]
Bertizzolo et al. [145]
Figueira et al. [146]
Hasan et al. [147]
Powell et al. [14]

AbdulCareem et al. [148]
Zambrano et al. [149]
Sommer et al. [150]

Liu et al. [151]
Krayani et al. [152]

In general, these works can be separated in two groups: one using SDR-based UAVs
for different applications, and another studying the impact of integrating CR technology
with UAVs, mainly with theoretical analysis and simulation results.

A notable exception to this is Sklivanitis et al. [119]. The authors designed, developed,
and validated through real indoor and outdoor experiments a CR platform for UAVs. Their
experiment involves on-ground CR nodes interacting with a CR-based UAV, and it shows
that their proposed platform optimizes wireless networks subject to interference, thus
maximizing their throughput. To the best of our knowledge, their work presents the first
CR-based UAV real experiment in the literature.

7. Challenges and Future Research Directions

To better grasp how the occupation pattern behaves in spectrum bands, a channel
white-space mapping may be helpful. As the authors of [90] demonstrated, distinct areas
on the map (Figure 13) may have a varied spectrum behavior. Therefore, a data exploration
study like this is essential to improve the PU arrival prediction and, consequently, enhance
the spectrum handover. In addition, a white-space mapped area may be crucial in order to
achieve an UAV flight path guided by spectrum occupancy.

Although some studies [153–156] have successfully employed Machine Learning algo-
rithms to predict the PUs arrivals, most of them use simulated data. Even though simulated
data have importance in proof-testing new approaches, real data are indispensable when
integrating UAVs to CR. Likewise, these studies generally concentrate on prediction of one
or few channels, although a large range of channels may be preferable on UAV context.
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Figure 13. Amount of 6 MHz TV channels available for SUs in the United States in 2015. Adapted
from the work in [90].

As noted before, the proportion of SDR devices presents as a major challenge. Al-
though devices such as Hope’s RF RFM22B may initially comply with this requirement,
a device with a wider frequency range may be desirable for the use in UAV communica-
tion. In consonance with hardware improvements, to the extent of our knowledge, there
has been no study concerning the software adjustments required when combining SDR
and UAVs.

8. Conclusions

In this paper, we presented an overview on CR-based UAVs, as well as their hardware
and software requirements. We also indicated the first steps taken towards integrating CR
with UAVs, and a review of the state-of-the-art of CR for UAV communications. This work
has also shown that several questions remain unclear, in particular regarding the impact
of CR to UAVs energy consumption, and the effects of UAVs mobility to CR spectrum
mobility and spectrum sharing. We also specified steps to build a simple and low-cost
CR-based UAV testbed.

Future work shall consider a channel occupation mapping aiming at achieving an
UAV flight path guided by spectrum occupancy. PU arrivals prediction based on Machine
Learning algorithms on real data collected by UAVs is a key element concerning the study
of CR algorithms for UAVs. Finally, CR hardware and software that meet the constraints
and requirements of UAVs are also needed.
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Abbreviations
The following abbreviations are used in this manuscript:

AERPAW Aerial Experimentation and Research Platform for Advanced Wireless
ANN Artificial Neural Network
B5G beyond 5G
CR Cognitive Radio
DSA Dynamic Spectrum Access
ETSI European Telecommunications Standards Institute
FANETs Flying Ad hoc Networks
GNSS Global Navigation Satellite System
GPS Global Positioning System
HMM Hidden Markov Model
IoFT Internet of Flying Things
IoT Internet of Things
ITU International Telecommunications Union
MAC Medium Access Control
ML Machine Learning
PU Primary User
QoS Quality of Service
SCF Spectral Correlation Function
SDR Software-Defined Radio
SNR Ratio of Signal to Noise
SpecPSO Spectrum Particle Swarm Optimization
SU Secondary User
UAS Unmanned Aerial Systems
UAV Unmanned Aerial Vehicle
URLLC Ultra-Reliable and Low Latency
USRP Universal Software Radio Peripheral
WARP The Wireless Open-Access Research Platform
Wi-FI Wireless Network
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