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Abstract: In this paper, we propose AirSign, a novel user authentication technology to provide
users with more convenient, intuitive, and secure ways of interacting with smartphones in daily
settings. AirSign leverages both acoustic and motion sensors for user authentication by signing
signatures in the air through smartphones without requiring any special hardware. This technology
actively transmits inaudible acoustic signals from the earpiece speaker, receives echoes back through
both built-in microphones to “illuminate” signature and hand geometry, and authenticates users
according to the unique features extracted from echoes and motion sensors. To evaluate our system,
we collected registered, genuine, and forged signatures from 30 participants, and by applying AirSign
on the above dataset, we were able to successfully distinguish between genuine and forged signatures
with a 97.1% F-score while requesting only seven signatures during the registration phase.

Keywords: security and privacy protection; biometrics; acoustic sensing; online signature authenti-
cation; machine learning

1. Introduction

With the rapid development of wireless networking and mobile computing technol-
ogy, reliable user authentication technologies are urgently needed for smartphone users to
protect their valuable information. People tend to spend more time and preserve their pri-
vate and sensitive information, such as social networks [1,2] and online banking accounts,
on their smartphones. Currently, many user authentication technologies have been used in
today’s smartphones. However, each of the existing technologies has its limitations.

Password (personal identification number (PIN)) authentication [3] is the most basic
and traditional of these technologies. In reality, people are more likely to use shorter pass-
words, which are easier for a shoulder surfer to acquire, and therefore make this method
less safe [4]. Fingerprint authentication [5,6] is another method that has been applied to
most smartphones nowadays. Nevertheless, its accuracy is severely affected by the state of
one’s fingers (e.g., it can make mistakes with the dryness or the cleanness of the fingers’
skin [7]). Additionally, other people could put a user’s finger on his/her smartphone screen
while he/she is unconscious, which would make this authentication method easy to attack.
More advanced fingerprint authentication uses ultrasonic signals [6] to capture the unique
3D characteristics of the user’s fingerprint, but it requires significant hardware changes.
Apple’s FaceID [8] is a state-of-the-art way to securely authenticate users. However, FaceID
requires special sensors, such as a dot projector, a flood illuminator, and an infrared depth
sensor, which require extra screen space and hardware cost. Therefore, considering the
limitations of the above existing authentication methods, we are interested in asking: Is it
possible to develop a user authentication technology (1) with higher authentication accu-
racy; (2) with no extra hardware; (3) that could not easily be cracked by shoulder surfers;
(4) that is easier and more flexible to use?

In this paper, we aim at leveraging the existing sensors on smartphones to develop
a novel user authentication technology, AirSign, which allows users to accomplish the
authentication process by signing their signatures in the air. As Figure 1 shows, smartphone
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users can use one of their hands to create signatures in the air without touching the screen
while the other hand is holding the smartphone. The main idea behind our approach is
to exploit the potential of both acoustic and motion sensors to extract unique features of
different users and distinguish them according to these features. In this work, we make a
basic assumption that the human body will move as an entire entity when signing in the
air in front of their smartphone. Our assumption originates from the inner workings of
the human brain. Corballis et al. [9] shows that the left hemisphere controls the right half
of the body, and the right hemisphere controls the left half of the body. Bundy et al. [10]
shows that both sides of the brain are active during one-sided arm movement. They also
show that the same side of the brain mirrors the neural activity of the opposite hemisphere
in the context of reaching movements. Thus, when the user is signing their signatures
in the air using his/her right hand, the left hemisphere controls this movement, but the
right hemisphere mirrors the neural activity of the left hemisphere. If so, the left hand
holding the smartphone will receive the same neural signals as the right hand moves and
triggers mild movement. Hence, the motion captured by the left hand could be considered
as the behavioral characteristics of our signature data. Specifically, when a user is signing
his/her signature in the air, acoustic signals are transmitted by the earpiece speaker of the
smartphone; they travel through the air, reach the user’s hand, and reflect back to both the
top and bottom microphones.

Top Microphone

Bottom Microphone Motion Sensors

Earpiece Speaker

Figure 1. AirSign leverages both motion and acoustic sensors of smartphones to extract hand
geometry, signature, and motion features while the user is signing his/her signature in the air.

Since the movement features of different people’s signing processes are different, it is
possible to distinguish them according to their reflected sound signals. In addition, motion
sensors, including the accelerometer and gyroscope sensors, can continuously capture the
features of acceleration and rotation of the smartphone during the signing process, since
one of the user’s hands that holds the smartphone cannot be perfectly motionless. Next,
using all these extracted features, the Multidimensional Dynamic Time Warping (MD-DTW)
method [11] is adopted to calculate the similarity between the registered signatures and
the new signature. Users may unlock their devices if the similarity is less than a specific
threshold. Additionally, to improve the system performance, we add a hand geometry
authentication module, which could recognize different people by the features of their
hands and fingers, including hand size, finger length, and distance from the screen. In this
step, before a user starts signing his/her signature, he/she is required to hold the hand
in front of the smartphone screen for 0.5 s, during which time the acoustic sensors emit
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specially designed sound waves and collect and extract features of the reflected signals.
The user could sign his/her signature over the smartphone screen in a three-dimensional
space of 25 cm × 25 cm and 5–15 cm hovering over the earpiece speaker. The details of our
system will be discussed in Section 3.

People may ask why they should sign their signatures in the air instead of on the
smartphone screen. There are several reasons. First of all, people’s fingers are not limited
in the space of a small screen when they are signing their signatures in the air, which will
make users feel more comfortable. Second, when people are signing their signatures on
the screen, it is hard for the authentication system to leverage the acoustic sensors because
only a tiny part of the sound signals transmitted by the earpiece speaker can be reflected
back to the built-in microphones. Without the help of acoustic sensors, the usability of our
system will decrease. Last but not least, it is relatively easy to imitate a user’s signature on
the screen by watching how he/she signs because the screen is only a two-dimensional
space. However, it is hard to imitate a three-dimensional signature in the air. From this
perspective, signing signatures in the air is more secure.

In order to evaluate our system, we applied it on registered, genuine, and forged
signatures collected from 30 participants. During the enrollment phase when users were
registering their signatures on smartphones, we assumed that attackers could not have
physical access to these devices. After the enrollment phase, we assumed that attackers
could have physical access to people’s smartphones in the following ways: stealing devices
or picking up lost devices. In addition, we assumed that the attackers could launch shoulder
surfing attacks when users were signing their signatures on smartphones. The details of
how the above signature data were collected for our system will be discussed in Section 4.

The contributions of our paper can be summarized as follows:

1. We designed a smartphone signature authentication system that allows users to sign
their signatures in the air, which improves the convenience and flexibility of the
signing authentication process.

2. We, for the first time, leveraged both acoustic sensors and motion sensors on a
smartphone to detect different users’ hand geometries, trace their signing processes
in the air, and extract essential features to verify their identities.

3. We implemented a smartphone prototype application and collected user surveys
to evaluate our AirSign system. The evaluation demonstrated that our system can
authenticate users with an F-score of 97.1%.

The rest of this paper is organized as follows. In Section 2, we give a brief introduction
to the system architecture. In Section 3, we discuss the detailed design of the proposed
AirSign system. In Section 4, we describe the experiments that we conducted to collect
registered, genuine, and forged signatures. In Section 5, we evaluate the proposed system
from different perspectives. Section 6 provides the relevant background and related work.
Section 7 discusses the limitations and future work for our system. Section 8 summarizes
this paper.

2. Overview

The AirSign system leverages two types of sensing modules to implement the au-
thentication process of signing signatures in the air. Acoustic sensing is one type that
uses the built-in speaker and microphones. Another type is motion sensing, which uses
the accelerometer and gyroscope sensors. Figure 2 demonstrates an overview of the sys-
tem architecture, which contains two phases, i.e., a user enrollment phase and a user
authentication phase.
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Figure 2. AirSign system architecture—user enrollment and user authentication.

2.1. User Enrollment Phase

In the enrollment step, each user is required to register his/her signature for N times.
Now, we are going to discuss how acoustic and motion sensors work together to collect
registration data and extract each user’s unique features in the following description.

2.1.1. Acoustic Sensing

The acoustic sensing includes two modules—hand geometry sensing and signature
sensing. At the beginning of registration, each user is required to hold the smartphone
with one hand and keep the other hand in front of the screen for around 2 s. At the
same time, the earpiece speaker emits pre-designed chirp sound signals, which will reach
the user’s hand and reflect back to the top and bottom microphones. Then, our AirSign
system will extract the user’s hand geometry features by calculating the spectrogram of the
reflected sound waves. When a user starts signing his/her signature, the earpiece speaker
begins emitting sound signals with different fixed frequencies. In a way similar to [12],
we can use the echoes to acquire in-air signature features, including displacement, velocity,
and acceleration, during the signing process.

2.1.2. Motion Sensing

The motion sensing happens when the user starts signing his/her signature. Since
the hand that holds the phone will inevitably move slightly, and the same person tends
to move the “holding hand” with a similar pattern, the motion sensors, including the
accelerometer and gyroscope sensors, can capture the specific features of this movement,
such as acceleration and angular velocity.

The combination of those features extracted in each registration, including features of
hand geometry, signature, and motion, will be regarded as one “Air Signature”. After col-
lecting the user’s registered data, we use them to train three types of classifiers, i.e., a hand
geometry classifier, signature classifier, and motion classifier, which will be used for the
future decision (genuine or forged) for signature authentication.

2.2. User Authentication Phase

In the authentication step, a specific user needs to follow a similar procedure to that
of the enrollment step: putting one hand in front of the smartphone for around 0.5 s and
creating his/her signature. Then, the features extracted by acoustic and motion sensors
will be created as a new “Air Signature”. Next, our system will calculate the dissimilarity
between the new “Air Signature” and the registered ones using the three trained classifiers,
and decide whether it is genuine or forged data.
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3. System Design

In this section, we are going to discuss the detailed design of the AirSign system,
which is divided into three different parts: sound signal design, feature extraction, and de-
cision model.

3.1. Sound Signal Design
3.1.1. Selection of Acoustic Sensors

There are typically two speakers and two microphones on a smartphone. In terms of
speakers, the top one is mainly used for phone calls, while the bottom one can provide a
better sound effect. With regard to microphones, the main one is usually at the bottom
for phone calls, and the other one is at the top for noise cancellation. See Figure 1 for
more details.

In the proposed AirSign system, because of the location of the bottom speaker, the en-
ergy of the emitted sound signal will focus on the downward direction. In other words,
the amount of energy that reaches users’ fingers will be small, and the reflected signal may
be influenced by the directed signal, causing inaccurate acoustic data. Therefore, we only
use the earpiece speaker in our system. During the signing process, since we need to
capture the information about how users’ fingers move in the air, both the top and bottom
built-in microphones should be used to acquire the movement data.

3.1.2. Overview of Sound Signal Design

We discuss whether the features extracted by acoustic sensors are accurate enough
to represent the user’s hand geometry and the signature has a huge influence on the final
performance of AirSign system. Therefore, there are several factors that we need to consider
in the design of sound signals:

1. To avoid disturbances to other people, the acoustic signals should be inaudible.
According to [13], the sound above 17 kHz is difficult to hear. On the other hand,
the highest sampling rate on a typical smartphone is 48 kHz, which means that the
highest frequency of the sound wave should not be greater than 48 kHz/2 = 24 kHz to
avoid aliasing. After extensive experiments on analyzing different frequency intervals,
we choose 20–23 kHz as the frequency interval for both the hand geometry phase and
the signature phase.

2. To ensure that echoes from the hand geometry section do not overlap with the
transmitted signal from the in-air signature section, we need to provide a gap between
two sections. After testing different distance ranges for the above signal, we find
that the echoes reflected by objects are very weak if the distance between objects
and reflectors is over 3 m. Thus the maximum delay can be calculated as (2 × 3 m)
/(343 m/s) = 17.5 ms. In AirSign, we add a little buffer and set the time interval
between the hand geometry section and the in-air signature section to be 20 ms.
An illustrative example of the acoustic signals is shown below in Figure 3.

3. To increase the signal-to-noise ratio (SNR) and prevent frequency echo leaks in both
hand geometry and in-air signature sections, a Hanning window [14] is applied to
reshape all emitted sound waves.

Hand Geometry 

Section
In-air Signature

Section

tChirp waves Cosine waves

20ms

Figure 3. Sound signal design overview.
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3.1.3. Sound Signal for Hand Geometry

As introduced in the above subsection, the hand geometry section is transmitted
before the in-air signature section. During the hand geometry section, a user holds his/her
hand or finger in front of the smartphone screen for a short period. The speaker emits
20–23 kHz chirp waves in which the frequency increases linearly with time. As shown in
Figure 4, a segment of the chirp signal is emitted every 20 ms, while each one only lasts for
1 ms. This design is to make sure that the emitted signals will not overlap with the echoes
from the previous chirp wave. Since the features of hand geometry, including hand size,
finger length, distance from the screen, etc., are quite different among users, we expect
that these features are encoded in the reflected signals and can be extracted to distinguish
different users.

20ms

SignalSignal

Original Signal Window Reshaping

Signal…

t

Figure 4. Hand geometry transmitter design.

3.1.4. Sound Signal for Signature

During the signing process, to sense the users’ signing trace using the Doppler effect,
we transmit a continuous cosine sound wave, Acos2π f t, in which A denotes the amplitude
and f denotes the frequency of the sound signal. However, due to the multi-path effect
of the sound signal that is reflected by the user’s finger, hand, and the environment,
obtaining an accurate phase length change becomes difficult when the user is signing
his/her signature in the air. We adopt frequency diversity to solve this problem [12].
More specifically, to measure the accurate path length change, a continuous sound wave
that contains n different frequencies ranging from 20 kHz to 23 kHz with a step of 200 Hz
is transmitted. The designed wave can be denoted as 1

n ∑n
i=1 cos2π fit.

3.2. Feature Extraction

In this subsection, we will discuss how AirSign extracts features of the hand geometry,
the signature, and the motion.

3.2.1. Hand Geometry Feature Extraction

The detailed design of the receiver is shown in Figure 5. After both the top and bottom
built-in microphones receive the echoes, a Butterworth bandpass filter [15] is adopted
to remove the background noise. The direct signal that which travels from the earpiece
speaker to the microphones is also needed to be removed. The removal of the direct signal
is implemented by calculating the difference between the echoes with and without the
signing hand in front of the screen.
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Figure 5. Hand geometry receiver design.

The illustration of the relationship between time and frequency is shown in Figure 6.
The solid blue line represents the transmitted sound signal, while different dashed red
lines represent the echoes of the direct path and multi-paths. In addition, we use different
shades to represent the power of echoes. After all of these processing steps, Figure 7 is
obtained, in which the echoes coming from the reflection of both the users’ hands and the
environment are separated clearly.

Frequency

Time

𝑓𝑠𝑡𝑎𝑟𝑡

𝑓𝑒𝑛𝑑

𝐵

Transmitted Signal Received Signal

EnvironmentHand

Direct Signal

Figure 6. Relationship between time and frequency of the transmitted signal and received signals.

0 1 2 3 4 5
Time(ms)

-0.4

-0.2

0

0.2

0.4
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pl
itu

de

Hand Echoes

Environment Echoes

Figure 7. Separation of hand echoes and environment echoes.

For each hand geometry section for the registered user, we first calculate the spec-
trograms of echoes using short-window Fast Fourier Transform (FFT). Illustrative figures
of the spectrograms are shown in Figure 8, while two subfigures of each row represent a
specific user. From Figure 8, it can be observed that the differences between the patterns of
users are obvious enough to be noticed by our eyes. To better distinguish different users by
their spectrograms, a K nearest neighbors (KNN)-based classifier is trained considering
the size of training samples and by providing higher recall. Specifically, we regard the
spectrograms obtained from the registered user’s hand geometry as positive data of the
training set, while randomly selecting the same number of samples from spectrograms
obtained from other users’ hand geometry as negative data of the training set. When new
hand geometry data comes, the KNN-based model will classify the new data into the
category of genuine or forged for a certain user.
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(c) User 3 spectrogram 1
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(d) User 1 spectrogram 2
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(e) User 2 spectrogram 2
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(f) User 3 spectrogram 2

Figure 8. Spectrograms of echoes obtained by the top microphone in the hand geometry section for
three different users.

3.2.2. Signature Feature Extraction

As mentioned above, we use the top and bottom built-in microphones on the same de-
vice to receive the reflected sound signal for the signature in our AirSign system. Similarly
to the hand geometry section, the echoes should pass through a Butterworth bandpass filter
to remove the background noise. This step is essential, especially for collecting signature
data in some noisy environments.

After the removal of background noise, the signal is then split into two identical copies
and multiplied by cos2π f t and −sin2π f t. We then remove high-frequency components
and downsample the signal to get in-phase and quadrature components using a cascaded
integrator comb (CIC) filter. Once we obtain the in-phase and quadrature signals, the path
length change will be calculated through the local extreme value detection (LEVD) algo-
rithm [12]. Next, we combine all the results of the path length change for each frequency
and apply linear regression to achieve more accurate path length changes for both top and
bottom built-in microphones, denoted as dtop(t) and dbot(t). Then, a local feature-based
approach where the features are derived from each point along the online trace of a signa-
ture is adopted. In addition to dtop(t) and dbot(t), we also consider the following features,
such as:
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• First-order differences: {
∆dtop(t) = dtop(t + 1)− dtop(t)
∆dbot(t) = dbot(t + 1)− dbot(t)

• Second-order differences:{
∆2dtop(t) = ∆dtop(t + 1)− ∆dtop(t)
∆2dbot(t) = ∆dbot(t + 1)− ∆dbot(t)

In addition, we consider the combination features obtained by both the top and bottom
built-in microphones, such as:

• Sine and cosine features:
sin(t) =

∆dbot(t)√
(∆dtop(t))

2 + (∆dbot(t))
2

cos(t) =
∆dtop(t)√

(∆dtop(t))
2 + (∆dbot(t))

2

• Length-based features: l(t) =
√
(∆dtop(t))

2 + (∆dbot(t))
2

∆l(t) =
√
(∆2dtop(t))

2 + (∆2dbot(t))
2

where t = 1, 2, . . . , n− 1 and n denote a discrete time point. Finally, the above 10 features
are selected, i.e., {dtop(t), dbot(t), ∆dtop(t), ∆dbot(t), ∆2dtop(t), ∆2dbot(t), sin(t), cos(t), l(t),
and ∆l(t)}, as extracted features in the signature data. Therefore, a signature classifier that
is based on the signature features can be trained.

We compare the displacement features of the registered, the genuine, and the forged
signature data obtained by the bottom microphone from one certain user in Figure 9. It can
be observed that the genuine data are very similar to the registered data, while the forged
data provided by a skilled attacker show much difference.

0 0.5 1 1.5 2 2.5
Time(s)

-4

-2

0

2

4

D
is

ta
nc

e(
cm

)

Registered
Genuine
Forged

Figure 9. User’s bottom microphone displacement example: registered, genuine, and forged in-
air signatures.

3.2.3. Motion Feature Extraction

As introduced in the system overview, when a user is signing his/her signature in the
air using one hand, the other hand that holds the smartphone could be observed moving
slightly. Our in-air signing process includes two components: the signing action of the
right hand (assuming the user signs with the right hand), and the movement of the left
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hand, which holds the smartphone. One important insight of our work is that we consider
the human body as an entire entity. That is, the movement of the right (signing) hand
will drive the movement of the left (holding) hand through the body. Another important
insight is the coupling of the acoustic features with the motion features of the users. It is
relatively easy for someone to imitate the motion of signing, but it is typically hard to
imitate the strength and speed of the signing, which are greatly reflected by the acoustic
features. Therefore, motion sensors, such as the accelerometer and gyroscope sensors on
smartphones, can be applied to continuously capture the displacement and rotation of
the device for the holding hand. We use {Accx(t), Accy(t), Accz(t)} to denote the three-
dimensional linear acceleration from the accelerometer, and use {Gyrox(t), Gyroy(t), and
Gyroz(t)} to denote the angular velocity from the gyroscope. We also consider the above
angular velocity’s first-order differences as additional features, which could provide us
more information for user authentication. Therefore, a motion classifier based on motion
features can be trained.

Figures 10 and 11 illustrate the linear acceleration feature extracted by the accelerom-
eter sensor along the Y-axis and the angular velocity feature extracted by the gyroscope
sensor along the Z-axis, respectively, for the registered signature, the genuine signature,
and the forged signature of one certain user. As can be seen in these two figures, the regis-
tered signature data are much closer to those of the genuine signature data. The forged
signature data provided by a skilled attacker can be distinguished from the original user’s
signature (both registered and genuine) using the decision model, which will be discussed
in the following subsection.
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Figure 10. User’s motion sensor data example (Acceleration-Y): registered, genuine, and forged in-air
signatures.
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Figure 11. User’s motion sensor data example (Gyroscope-Z): registered, genuine, and forged
in-air signatures.

3.3. Decision Model

In this subsection, we are going to discuss the decision model of the AirSign system.

3.3.1. Architecture of the Decision Model

The flow chart of the decision model of the AirSign system is shown in Figure 12.
The idea of the decision model is to organize the three types of classifiers—the hand
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geometry classifier, signature classifier, and motion classifier—as a combined cascade
classifier.

Hand Geometry 

Classifier
Air Signature

Signature 

Classifier

Motion 

Classifier

Figure 12. Flow chart of the decision model.

3.3.2. Hand Geometry Classifier

In the hand geometry section, the KNN-based classifier will compare the Euclidean
distance between the hand geometry feature of the new “Air Signature” and the registered,
genuine, and forged signature data. In our system, we chose K = 33 for the KNN-based
model. For each new “Air Signature”, it has 20 hand geometry samples and will pass
the hand geometry classifier as long as the number of hand geometry samples classified
into the positive data class is larger than a threshold. If this threshold is small, more
forged signatures will pass the classifier, while a large threshold will cause more genuine
signatures to be rejected. For AirSign, we use the number of 8 hand geometry samples as
our threshold.

3.3.3. Motion and Signature Classifiers

The dynamic time warping (DTW) method is a well-known technique to find an
optimal alignment between two given sequences. This algorithm will return a DTW
distance for each pair of sequences to determine the similarity. The method is used
to compute the warping distance between the pair of sequences. Suppose that the input
observation sequence is represented by w(i), where i = 1, . . . , m, and the reference sequence
by r(j), where j = 1, . . . , n. Then, the distance D(i, j) in the DTW method is defined as the
minimum distance starting from the beginning of the DTW table to the current position
(i, j):

D(i, j) = d(i, j) + min


D(i− 1, j)
D(i, j− 1)
D(i− 1, j− 1)

, (1)

where d(i, j) is the distance matrix and can be defined as d(i, j) = (w(i)− r(j))2.
Since the DTW method only compares two sequences and finds the best path with

the least global distance, we use an extension of the original method—multidimensional
dynamic time warping (MD-DTW) [11]. The MD-DTW method is used to calculate DTW
by synchronizing multi-dimensional series. In order to generalize the DTW method for
multidimensional sequence alignment, the matrix distance will be calculated by using the
vector norm between a pair of points. Here, w(k, i) now is the input series and r(k, j) is the
reference series, where k is the kth dimension of the point, i = 1, . . . , m, and j = 1, . . . , n.
The matrix distance d(i, j) in MD-DTW is defined as

d(i, j) =
K

∑
k=1

(w(k, i)− r(k, j))2,

where K is the number of dimensions of one point and the distance D(i, j) calculation will
still follow Equation (1).

For our AirSign system, we implement the MD-DTW method on the acoustic features
and motion features as dimensions and calculate the least global distance for each pair of
registered data samples for each user.

As mentioned in Section 2, each user is required to register his/her signature for
N times during the enrollment phase. These N registered signatures are selected as
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the training samples for each user. In either the signature section or motion section,
N ∗ (N − 1)/2 distances could be formed between each pair of registered signatures. Next,
we calculate the average and standard deviation of the above N ∗ (N − 1)/2 distances for
both sections, denoted as the means and stds in the signature section and meanm and stdm
in the motion section, respectively. Therefore, the personalized thresholds

thresholds = means + ks ∗ stds

thresholdm = meanm + km ∗ stdm

could be trained for the signature classifier and the motion classifier for each specific user,
respectively, where ks and km are parameters inside the signature classifier and the motion
classifier, respectively. With a high value of ks and km, more forged signatures will be
accepted. A low value of ks and km will cause more genuine signatures to be rejected.

When testing a new “Air Signature”, we first compare it with other N registered
signatures to obtain N distances for both signature and motion. Then, we compare the
average of these N distances with the personalized threshold in each section that we trained
before to determine whether this new “Air Signature” could pass the signature and motion
classifiers or not. We adjust the parameters ks and km to make sure genuine signatures have
a high possibility of passing the signature classifier, and let the motion classifier make the
final decision for all passed signatures.

4. Data Collection

Since there is no public smartphone-based dataset available for our system, to better
understand how AirSign performs in the real world, we conducted experiments to collect
users’ data. For this purpose, we created an Android application to collect users’ hand
geometry, signature, and motion data. The interface of the designed app, which is able to
control the flow of our experiments, is shown in Figure 13. In the following subsections,
we will describe more details about how we conducted these experiments.

(a) Main interface (b) “Sign in air” interface

Figure 13. Data collection application user interface (UI).
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4.1. Data Collection System

All experiments were conducted on a Huawei P20 smartphone provided by us, which
has both acoustic sensors (earpiece speaker and top/bottom microphones) and motion
sensors (accelerometer and gyroscope sensors). Specifically, for each experiment, designed
sound signals would be transmitted by the earpiece speaker, travel through the air, reach
the user’s hand, and be reflected back to the top and bottom microphones. Meanwhile,
motion sensors would record the slight movement of the hand holding the smartphone.

For today’s smartphone, the common sampling frequencies that are used by acoustic
sensors are 44.1 and 48 kHz. To obtain more precise in-air signature trace measurements,
a sampling rate of 48 kHz was used for both the earpiece speaker and top/bottom micro-
phones on the Huawei P20. The starting and finishing times of acoustic recordings for each
signature were stored as Android system timestamps [16]. The Huawei P20 also includes
both an accelerometer sensor with a sampling rate of 100 Hz and a gyroscope sensor with a
sampling rate of 500 Hz. We saved the hand geometry and signature data from the acoustic
sensors as an individual “.pcm” file with a size of 1–2 MB, while we stored each user’s
motion measurements from the motion sensors as a “.txt” file with a size of 0.05–1 MB.

4.2. Data Collection Experiments

Our data collection process contained three sessions; 30 participants (20 male and
10 female) attended the first session, while 10 participants (seven male and three female)
randomly selected from the above 30 participants joined both the second and third sessions.
All participants held the Huawei P20 smartphone provided by us to sign in-air signatures
through our designed Android application in our research lab. We also provided a survey
to all participants asking about their experience of using AirSign. It took us about two
weeks to collect all the data and we provided a 10-dollar gift card for each hour that they
participated in the study as an incentive. The following experiments were approved by the
institutional review board (IRB).

In the first session, 30 participants (undergraduate/graduate students at our institu-
tion) were asked to come every other day for three separate days to provide their registered
signatures, genuine signatures, and forge other participants’ signatures. On Day 1, each
participant was asked to select a name from a provided list of names (2–5 characters) for
privacy concerns and practice signing this name in the air through our designed Android
application for five minutes, with one hand holding the smartphone in portrait (verti-
cally) and the other hand signing in the air. All participants were asked to sign over the
smartphone screen in a three-dimensional space of 25 cm × 25 cm and 5–15 cm hovering
over the earpiece speaker. Participants needed to practice first to meet our space require-
ments before the real experiment. Once a participant became proficient in signing the
selected name in the air, he/she was then asked to register this signature 10 times. For
each “air signature” in the registered phase, the signing hand/finger was held in front of
the smartphone screen before signing for 2 s to collect hand geometry data (100 samples).
In the meantime, we recorded how each participant signed his/her in-air signatures from
different perspectives through a smartphone’s camera to imitate the shoulder surfing
attacks. After registration, 10 genuine signatures were then collected from each participant.
Only 0.5 s (20 samples) was needed for holding in front of the screen before signing the
signature in the air this time. On each Day 3 and Day 5, 10 more genuine signatures
were collected from each participant. In addition, we asked each participant to forge 10
signatures of two other randomly selected participants (five signatures each) by learning
from the recorded videos. Participants could watch the recorded videos and practice as
many times as they want before the attack. Hand geometry, as well as the signing process,
would be carefully imitated so that these forgeries could have a high quality inside our
database. Each participant had a total of 10 forged signatures after the random selection.
Details about how to separate the above hand geometry data into training and testing
datasets in our KNN-model have been described in Section 3.2.1.
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In the second session, 10 participants were asked to sign signatures in different poses—
standing, sitting, and lying on a chair or sofa. Ten registered, 10 genuine, and 10 forged
signatures were collected under the same “quiet” environment from each participant within
one day. At the training stage, all registered signatures were collected with a sitting pose,
while genuine and forged signatures were collected in different poses. To evaluate the
robustness of our method, at the test stage, 10 genuine and 10 forged signatures were
collected in three different poses (sitting, standing, and lying) from each participant within
one day. The procedure was the same as the one in the first session.

In the third session, 10 participants were asked to sign signatures in different environ-
ments (the “quiet” environment was a silent indoor environment with only a 40 dB sound
pressure level measurement, the “talk” environment (50 dB) was an indoor environment
with people talking at the same time, and the “music” environment (65 dB) was also
an indoor environment with pop music being played at the same time). Ten registered,
10 genuine, and 10 forged signatures were collected with the same sitting pose from each
participant within one day. At the training stage, all registered signatures were collected in
a “quiet” environment, while genuine and forged signatures were collected in different
environments. To evaluate the robustness of our method, at the test stage, 10 genuine and
10 forged signatures were collected in three different environments (quiet, talk, and music)
from each participant within one day. The procedure was the same as the one in the first
session as well.

In summary, our dataset is comprised of a total of 300 registered signatures, 900 gen-
uine signatures, and 300 forged signatures from 30 participants in the first session and a
total of 300 registered signatures, 300 genuine signatures, and 300 forged signatures from
10 participants in both second and third sessions. In total, 3300 signatures were collected
from the three sessions.

5. Evaluation

This section discusses the performance results of AirSign from different perspectives.

5.1. How Well Does AirSign Perform Overall?

We use the first experiment session from Section 4.2 to demonstrate the overall perfor-
mance using three possible systems—an acoustic classifier only, a motion classifier only,
and both. The results are summarized in Figure 14.

Figure 14. Overall system authentication performances.

As can be seen from this figure, the combination of acoustic and motion classifiers
achieves the best F-score (97.1%), which is better than the F-score (92.4%) achieved by using
an acoustic classifier only and the F-score (92.0%) achieved by using a motion classifier
only. It can be observed that combining both the acoustic and motion classifiers will
provide a more secure way to authenticate users because more distinguished features are
extracted, which is hard to imitate for the attackers. Moreover, even without a motion
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classifier, our system still achieves an F-score = 92.4% using an acoustic classifier only, which
also provides users another way to authenticate access to his/her smartphone without
touching or holding the device. In addition, the motion classifier’s result also proves our
assumption made in Section 1 that the human body will move as an entire entity when
signing in the air in front of the smartphone. We also tested our system on a Google Pixel
XL with 10 participants. After adjusting the sampling rates of the accelerometer sensor and
gyroscope sensor, we obtained the final performance with a 96.3% F-score, which shows
that AirSign has the applicability to work in the real world.

On the other hand, the average response delay of AirSign is 14.8 ms. The response
delay is the time needed for AirSign to authenticate one signature after a user finishes
signing his/her signature in the air. Since the acoustic signal processing is conducted si-
multaneously while a user is signing, the only part that causes response delay is calculating
similarities using the MD-DTW method.

5.2. Will Users Be Able to Recall Their Signatures after a Few Days?

In this subsection, we again apply the first experiment session from Section 4.2 to test
whether users could recall their signatures through AirSign after a few days’ rest. As can
be seen in Figure 15, AirSign achieves 98.3%, 97.2%, and 95.9% F-scores using both the
acoustic and motion classifiers on Day 1, Day 3, and Day 5, respectively. The performance is
slightly degraded as the number of days increases because a user’s behavior is not always
consistent on three different days, and he/she could wear different clothes or sign his/her
signatures in different locations. In certain application scenarios, we may improve the
performance by updating the registered signature database once a new signature passes
the system.

Figure 15. Different days’ authentication performances.

5.3. Will Different Poses Affect the Authentication Accuracy?

In this subsection, we use the second experiment session from Section 4.2 to show the
authentication accuracy of AirSign in three different poses—standing, sitting, and lying
on a chair or sofa. Figure 16 shows the authentication performances in the above poses.
As shown in this figure, AirSign performs the best with a sitting pose (97.5% F-score), while
a lying pose has the lowest performance result (95.9% F-score) compared with the other two
poses. With different poses, the data collected from the holding hand’s movement may be
recorded differently, but they still perform well and do not influence the final authentication
accuracy a lot by applying both the motion and acoustic classifiers. However, it is hard to
do the authentication while a user is actively moving. More discussion is in Section 7.
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Figure 16. Different poses’ authentication performances—standing, sitting, and lying.

5.4. Will Different Environments Affect the Authentication Accuracy?

In this subsection, we use the third experiment session from Section 4.2 to show the
authentication accuracy of AirSign under three different environments—the “quiet” environ-
ment was a silent indoor environment, the “talk” environment was an indoor environment
with people talking at the same time, and the “music” environment was also an indoor envi-
ronment with pop music being played with the normal volume. The sound pressure levels
measured in these three environments were 40, 50, and 65 dB respectively. Figure 17 shows
the authentication performances in the above environments. We observe that the final
results under these three different environments using both acoustic and motion classifiers
do not change much by achieving 95.3%, 97.5%, and 94.9% F-scores in the quiet, talking,
music environments, respectively. This is because AirSign uses higher frequency bands
from 20 to 23 kHz, which could be separated from the audible sound noises by applying a
Butterworth bandpass filter [15].

Figure 17. Different environments’ authentication performances—quiet, talking, and music.

5.5. Why Was a KNN-Based Model Chosen for Classifying Hand Geometry?

As we mentioned in the previous section, in order to obtain useful hand geometry
information from different users, a classifier must have a high recall such that it will not filter
out any genuine data. Figure 18 shows four different machine learning models’ results. We
compared KNN-based model with three other models—Random Forest, Naive Bayes, and
SVM (support vector machine). From the data collection section, our final dataset for each
participant included 200 positive training data, 600 positive testing data, and 200 negative
testing data for the hand geometry classifier. Since we could not obtain a very large number
of training examples, a neural network could not be applied in this case. As can be seen in
this figure, the KNN-based model has the highest recall = 98.5%, while recall was only 89.9%
for SVM, 76.2% for Naive Bayes, and 71.9% for Random Forest. According to the different
properties of each machine learning model [17], KNN is insensitive to outliers, SVM is good
at handling missing data, Random Forest is good at dealing with irrelevant features, and
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Naive Bayes is good for handling multiple classes. Combining all the above properties and
the size of training examples, the KNN-based model fits our dataset and could provide us
with the highest recall among these four machine learning models. Therefore, we selected
a KNN-based model for classifying hand geometry. We adopted the Python machine
learning package “scikit-learn” (http://scikit-learn.org/stable/index.html) to implement
three machine learning methods: Random Forest (RF), K nearest neighbors (KNN), and
support vector machine (SVM). For all these methods, we chose their hyper-parameters by
conducting a five-fold cross validation.

Figure 18. Authentication performances using different machine learning models—Random Forest,
Naive Bayes, SVM and KNN.

5.6. How Do Hand Geometry, Signature, and Motion Classifiers Work for the Overall System?

In this subsection, we are going to show how these three classifiers work in our system.
Tables 1 and 2 provide the status information of genuine and forged data after the input
signature data pass each classifier. In the beginning, our system does not know whether
the input signature data are genuine or forged. Therefore, the “Unsure” rates for both the
genuine and forged data are 100%. Finally, our system will output accurate rates for both
kinds of data. The details of the two tables are discussed below.

Table 1. Statistic table for genuine data after each step of the classifiers.

Unsure (%) FRR (%) TAR (%)

Input 100 0 0
Hand Geometry

Classifier 98.2 1.8 0

Signature Classifier 97.3 2.7 0
Motion Classifier 0 3.4 96.6

Table 2. Statistic table for forged data after each step of the classifiers.

Unsure (%) FAR (%) TRR (%)

Input 100 0 0
Hand Geometry

Classifier 46.4 0 53.6

Signature Classifier 34.1 0 65.9
Motion Classifier 0 1.6 98.4

In Table 1, the FRR (false recognition rate) represents the percentage of genuine users
who are recognized as forged users, while the TAR (true acceptance rate) represents the
percentage of genuine users who are recognized as genuine users.

http://scikit-learn.org/stable/index.html
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In Table 2, the FAR (false acceptance rate) represents the percentage of the forged users
who are recognized as genuine users, while the TRR (true recognition rate) represents the
percentage of forged users who are recognized as forged users.

In the beginning, not all the input data are decided. After applying a hand geometry
classifier, FRR = 1.8% in genuine data and TRR = 53.6% forged data are filtered out. Then,
the FRR becomes 2.7% in the genuine dataset after passing the signature classifier, while
12.3% more forged data are filtered out. The motion classifier makes the final decision, and
the final errors for the overall system are FRR = 3.4% and FAR = 1.6%. By implementing
the above three classifiers in our dataset, the authentication performance is enhanced at
each step and provides a more secure way to authenticate users.

5.7. How Many Registered Signatures Are Needed?

To test the relationship between the overall system performance and the size of
registered signatures, we analyze AirSign on the data collected from the first experiment
session with different numbers of registered signatures. Figure 19 shows the F-score of our
proposed method under different numbers of registered signatures using both acoustic
and motion classifiers. As can be seen in this figure, the F-score is relatively low given the
small number of registered signatures (87.0% when the number of registered signatures is
three) compared to other numbers of registered signatures. The F-score tends to be stable
if more registered signatures are given (97.1% when the number of register signatures is
seven). More registered signatures result in more comparisons and, hence, larger time
consumption to complete the authentication process. Considering both the authentication
performance and running time for AirSign, seven registered signatures are finally used.

3 4 5 6 7 8 9 10
Number of Registered Signatures

85%

90%

95%

100%

F
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Figure 19. Authentication performances with different numbers of registered signatures.

5.8. How Do Participants Respond to AirSign?

All 30 participants answered the survey provided by us about the experience of using
AirSign in terms of convenience, flexibility, and attractiveness. In terms of convenience,
27 participants thought the authentication process was easy to understand and that it was
easy to use by signing signatures through AirSign. A total of 25 participants agreed with the
flexibility because AirSign provided extra space to sign their signatures in the air compared
with signing their signatures on the screen. For attractiveness, 29 participants thought
AirSign was fascinating compared to other authentication methods, such as passwords,
fingerprints, FaceID, etc., which means that AirSign is attractive to people.

5.9. How Does AirSign Compare to the Other Smartphone Authentication Systems?

Table 3 gives an overview of the existing methods for smartphone authentication
methods from different perspectives. Among the commercial solutions, Samsung’s face
recognition [6] is vulnerable to simple 2D image attacks and needs to be combined with
other authentication methods for security [18]. Personal identification numbers (PINs) and
graphical passwords [3] are the most popular smartphone authentication technologies;
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however, they are prone to shoulder-surfing attacks [4]. Apple’s TouchID and Samsung’s
fingerprint are widely used and have good accuracy, but are vulnerable to finger mask
attacks [19,20]. Apple’s FaceID [8] is the most secure method against 2D and 3D attacks ow-
ing to the TrueDepth camera system. However, Apple’s FaceID relies on extra-specialized
hardware, which takes up a large space on the top of the screen. Among noncommercial
methods, AirAuth [21] authenticates users according to in-air gestures, but it may require
additional hardware, such as a short-range depth camera, which again takes a large space
on the top of the screen. EchoPrint [22] leverages acoustics and vision for secure and conve-
nient user authentication without requiring any special hardware, but the accuracy is low
compared to our AirSign system. Z. Sitová et al. [23] introduced hand movement, orienta-
tion, and grasp (HMOG) to continuously authenticate smartphone users, but the accuracy
is low compared to our AirSign system and needs additional hardware. SilentSign [24] and
ASSV [25] both leverage acoustic signals to measure the distance variation of the tip of a
pen while signing; however, they both rely on an additional 2D space to write the signature
down. Compared to the above authentication methods, AirSign achieves a 97.1% F-score
by using both built-in acoustic and motion sensors, which are readily available on most
of today’s smartphones for user authentication. In addition, built-in motion sensors and
microphones do not occupy the screen, and an earpiece speaker installed on the screen
takes up a small space and may be moved out of the screen in the future. Moreover, AirSign
can allow users to sign their signatures in a 3D space at any time and any place.

Table 3. Summary of existing smartphone authentication methods.

Technique Hardware Screen Space Limitation Accuracy
Occupied

FaceID [8] TrueDepth camera Large 3D head mask attack[26] >99.9%
Samsung FR [27] RGB camera Medium Images attack [18] -

TouchID [5] Fingerprint sensor Large Finger masks [20] >99.9%
Samsung FP [6] Ultrasonic fingerprint sensor None Finger masks [19] >99.9%

PIN [3] Smartphone screen None Shoulder-surfing attack [4] -
AirAuth [21] Depth camera Large Additional hardware EER 3.4%

Z. Sitová et al. [23] Motion sensors and Large Low accuracy EER 7.16% (walking)
touch screen EER 10.05% (Sitting)

EchoPrint [22] Acoustic sensors and camera Medium Low accuracy in low illumination 93.5%
SilentSign [28] Acoustic sensors Small Handwritten signature by pen EER 1.25%

ASSV [25] Acoustic sensors Small Handwritten signature by pen EER 5.5%

6. Related Work

We categorize existing works on (1) smartphone authentication, (2) signature authenti-
cation, and (3) acoustic sensing on smartphones.

6.1. Smartphone Authentication

Password authentication methods, such as personal identification numbers (PINs),
or graphical passwords are the most natural and traditional smartphone user authentication
technologies. However, PINs or graphical passwords can be easily acquired by other
people [4]. Fingerprint authentication is pervasive in today’s smartphone authentication,
but its accuracy is affected by the state of users’ fingers [7], and forging people’s fingerprints
is possible [29]. More advanced fingerprint authentication technologies use ultrasonic
signals [6] to capture the unique 3D characteristics of a user’s fingerprint, but this security
method requires significant hardware changes to the smartphone. Apple’s FaceID [8] uses
special sensors, such as a dot projector, a flood illuminator, and an infrared depth sensor,
which require a large extra hardware cost.

In recent years, many solutions have been proposed for smartphone authentication
research, which emphasize different behavioral biometric approaches [30] and use active
sampling techniques. BreathPrint [31] senses the user’s breath sound using the in-built
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speaker and microphones to authenticate the user, which may have a significant impact
when the user exercises intensively. Zheng et al. [32] utilized the accelerometer, gyroscope,
and touchscreen sensors for non-intrusive authentication of a smartphone user by analyz-
ing how a user touches the phone. However, due to user behavior changes, it may need the
user to disable the verification function remotely and start the re-training to recognize these
changes, which may cause a trade-off between security and convenience. Sitová et al. [23]
introduced hand movement, orientation, and grasp (HMOG) to continuously authenticate
smartphone users. The features of HMOG unobtrusively capture subtle micro-movements
and orientation dynamics resulting from how a user grasps, holds, and taps on the smart-
phone. Karakaya et al. [33] used hand movement, orientation, and grasp (HMOG) sensor
data to authenticate smartphone users as well. Yang et al. [34] performed a large-scale user
study to collect a wide spectrum of signals on smartphones for signature authentication by
involving multiple modalities on existing datasets, such as movement, orientation, touch,
and gestures. More mobile authentications leveraging continuous multi-modal data [35,36]
were proposed in mobile cloud environments. Differently from all the existing works,
AirSign innovatively extracted unique in-air signature traces and hand geometries for
smartphone authentication.

6.2. Signature Authentication

Generally, signature authentication can be summarized in two types: offline (static)
and online (dynamic). Offline signature authentication uses solely 2D visual data acquired
from scanning signed documents [37], while online signature authentication requires an
electronic signing system, such as a digital tablet or iPad. The online signature authentica-
tion method provides dynamic features, like signature trajectory coordinates [38]. These
dynamic features make online signatures more distinct and robust, as well as more difficult
to be forged against offline signatures. Both the offline and online methods can potentially
be used for real-time signature authentication, but in a real-world application, it is diffi-
cult to apply the offline methods, and most mobile devices’ signature authentication [39]
methods associate the real-time capability with the online methods because of the greater
diversity of signature features.

Among the overall processes of online signature authentication, which include data
acquisition, pre-processing, feature extraction, and matching, feature extraction is the most
essential part. Current approaches to online signature authentication can be divided into
two categories: feature-based and function-based.

Feature-based: The calculation of a histogram is one of the feature-based appro-
aches [40], which uses the histogram to compare the genuine and forged signatures on
a smartphone. More specifically, it compares the extracted first-order and second-order
differences of x, y, pressure, and angle, which are computed with respect to the horizontal
axis as the features. Feature-based approaches also include the analysis of principal
components [41]. However, Ref. [42] shows that homomorphic encryption can be easily
applied to function-based methods, such as DTW, and thus, the feature-based approach no
longer has a prominent security advantage over the function-based approach.

Function-based: Hidden Markov models (HMMs) are one type of function-based
approach to solving online signature authentication problems. HMMs [43] are statisti-
cal Markov models that require a considerable number of reference signatures per user
for training. An HMM-based online signature verification method is proposed in [44],
which uses a set of time sequences and hidden Markov models on an electronic tablet.
On the other hand, the dynamic time warping (DTW) method matches signatures directly
with reference samples of the claimed user, which is another approach for solving online
signature authentication problems. More precisely, DTW computes a dissimilarity score
between two time sequences and outputs the warping path, which minimizes the score.
A video-based system for in-air signature verification [45] uses DTW, FFT, and the analysis
of the signature length to propose a video-based system, which enables smartphone users
to complete the in-air signature verification process without touching the screen.
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More advanced online handwritten signature authentication methods, such as SilentSign [24]
and ASSV [25], adopt a device-free approach. SilentSign [24] leverages acoustic signals to
measure the distance variation of the tip of a pen while signing. ASSV [25] uses a novel
chord-based method to estimate phase-related changes caused by tiny actions and a trained
deep convolutional neural network (CNN) model to verify signatures. Compared to the
aforementioned works, AirSign novelly leverages both acoustic and motion sensors on
the smartphone to detect hand geometry and a finger’s signing trace in a 3D space, which
improves both the robustness and the security level of the authentication.

6.3. Acoustic Sensing on Smartphones

Acoustic sensing has been used for ranging, localization, gesture recognition, and
tracking due to its slow propagation speed, which can improve the accuracy of measure-
ment results. We classify existing work into a device-based approach and a device-free
approach.

Device-based: Most existing acoustic-based recognition and tracking research is
device-based. One part of this research uses acoustic signals to estimate distance. Beep-
Beep [46] designs and implements a high-accuracy acoustic-based ranging system that
allows the sender and receiver with unknown clock offsets to measure the one-way propa-
gation delay. Sword-Fight [47] develops a fast, accurate, and robust localization system
that enables two potentially fast-moving phones to keep accurate distance estimates with
each other. Another part of this research uses acoustic signals for localization. Cricket [48]
uses both Radio Frequency (RF) and audio to achieve a median error of 12 cm with six
beacon nodes. Shake and Walk [49] exploits the Doppler shift in an audio signal for fine-
grained indoor localization. AAmouse [50] uses Doppler shifts to track a phone’s position
using anchor devices in a room. CAT [51] leverages external speakers and uses frequency-
modulated continuous waves (FMCWs) for phone movement tracking at millimeter-level
accuracy. The third part of acoustic-based approaches is aimed at gesture recognition.
All of these approaches can only deal with predefined gestures and are not designed for
the same gesture from different people.

Device-free: ApneaApp [52] tracks the periodic breathing movements using FMCW
reflections of the inaudible transmissions from smartphones. LLAP [12] develops a device-
free gesture-tracking scheme using the acoustic phase to get fine-grained movement direc-
tion and movement distance measurements. FingerIO [53] explores the feasibility of using
commercial mobile devices to track fingers and hands within a short distance. BatMap-
per [15] uses acoustics for fast, fine-grained, and low-cost indoor floor plan construction.

7. Discussion and Future Work
7.1. Users’ Active Motion

Currently, it is hard for AirSign to authenticate a user when he/she is actively moving
(i.e., walking, running, climbing, driving, etc.). These motions captured by the accelerome-
ter and gyroscope sensors will inevitably cause dissimilarity between registered signatures
and input signatures. Currently, we only tested our system while the users were static
(standing, sitting, and lying on a chair or sofa). The holding hand’s motion may be extracted
if the moving pattern of the user is learned by using machine learning tools. This will add
much more complexity to our system, and we leave it for future work.

7.2. Multiple Users

If multiple users are trying to authenticate using AirSign in the same place at the same
time, the transmitted and reflected signals with the same frequency interval from different
smartphones may interfere with each other. Consequently, authentication performance
may be affected. In the future, we plan to explore the feasibility of dynamically choosing
a lower number of frequency bands or different frequency intervals to address the above
frequency collision problem and allow multiple users to authenticate through AirSign
simultaneously.



Sensors 2021, 21, 104 22 of 24

7.3. Privacy Concerns and Memory Concerns

All of our signature data are anonymous, and all the users have already signed the
data publishing contract. For international business purposes, multiple data encryption
technologies, such as RSA (Rivest, Shamir, and Adleman), AES (Advanced Encryption
Standard), and DES (Data Encryption Standard) could be easily adopted to store the users’
data.

Note that one user’s data, which consist of many signatures, only take around 1 MB.
It is typical for a modern smartphone to have a memory of at least 32 or 64 GB. Therefore,
at the current stage, memory cost should not be the bottleneck of our method. As time
goes by, a user’s genuine signature may consume more and more memory. We will set a
reasonable memory cost threshold, which leads to a good authentication accuracy based
on the memory size of the smartphone. We only need to use the new data to update the
old data after reaching the memory threshold.

7.4. Large-Scale Experiment

We only had 30 users in the current experiments and 10 users for the subsequent
experiments (on pose and environment), while large-scale experiments with more than 100
or even more users for each experiment are needed for a better and more mature solution.
In the future, we will seek ways to do experiments at such a large scale.

8. Conclusions

In this paper, we proposed AirSign, which enables users to sign in the air for signature
authentication. The system leverages acoustic and motion sensors of smartphones without
using extra hardware and authenticates users as being genuine if their signatures pass
all three classifiers—hand geometry, signature, and motion classifiers. The experiments
showed that AirSign is able to distinguish genuine and forged data with a 97.1% F-score
and is convenient and flexible to use.
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