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Abstract: Electroencephalogram (EEG) biosignals are widely used to measure human emotional
reactions. The recent progress of deep learning-based classification models has improved the accuracy
of emotion recognition in EEG signals. We apply a deep learning-based emotion recognition model
from EEG biosignals to prove that illustrated surgical images reduce the negative emotional reactions
that the photographic surgical images generate. The strong negative emotional reactions caused by
surgical images, which show the internal structure of the human body (including blood, flesh, muscle,
fatty tissue, and bone) act as an obstacle in explaining the images to patients or communicating
with the images with non-professional people. We claim that the negative emotional reactions
generated by illustrated surgical images are less severe than those caused by raw surgical images.
To demonstrate the difference in emotional reaction, we produce several illustrated surgical images
from photographs and measure the emotional reactions they engender using EEG biosignals; a deep
learning-based emotion recognition model is applied to extract emotional reactions. Through this
experiment, we show that the negative emotional reactions associated with photographic surgical
images are much higher than those caused by illustrated versions of identical images. We further
execute a self-assessed user survey to prove that the emotions recognized from EEG signals effectively
represent user-annotated emotions.
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1. Introduction

From the early days of brain science, many researchers have studied negative human emotions
that come from surgical images showing blood, injection, and injury (BII). Usually, the negative emotion
caused by surgical images is classified as fear and disgust. Even though emotional responses can be
different according to the subject’s experience, knowledge, and personality, the emotional responses are
located in close distances when mapped on widely used Russell’s emotional coordinate [1].

Ordinary people rarely have the chance to view surgical images. However, there are certain
situations in which people should carefully inspect surgical images. For example, when we or our
family members face surgical operation, surgeons explain the process of the operation by showing
surgical images. Even though we feel very negative emotions in response to the images, we still have
to study them very carefully to understand the procedure. In cases such as this, the negative emotional
response to surgical images can prevent people from understanding necessary surgical procedures.

Some studies have tried to reduce impact of the image by simplifying the color of the images
through image abstraction schemes [2,3]. They employed existing image abstraction techniques on
surgical images to produce illustrated expressions in order to reduce the negative affective responses.
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Even though many of the existing image abstraction techniques fail to present the details of the surgical
images, some surgeons participating in these studies recommend the illustrated surgical images for
explaining the images to ordinary people or training students [4,5].

Even though several image abstraction algorithms such as [4,5] have demonstrated effectiveness
for abstracting surgical images, it is difficult to retain the diverse and fine details of human organic
structures which is especially important for educational purposes while reducing negative emotional
response. It would take a lot of cost and effort to develop an algorithm that satisfies the above
requirements. Before undertaking such an effort, we need objective evidence that the illustrated
surgical images can reduce the severity of negative emotional reactions to photographic surgical
images. Unfortunately, the works of Besancon et al.’s [2,3] lack such an evidence, as they did not
include quantitative study such as EEG-based emotion measurement on the emotional reactions
comparing abstracted surgical images from original images.

We argue that objective and quantitative strategies including biosignal-based methods are needed to
confirm the hypothesis that illustrated surgical images can reduce negative emotional reactions. The cost
of developing an automatic algorithm that produces illustrative representations of surgical images
with preserving sufficient details would be surprisingly expensive; before deciding whether to develop
such an algorithm, we need concrete evidence that supports our hypothesis. Among the various kinds
of biosignals, the electroencephalogram (EEG) is very widely used to measure emotional responses.
Recently, many deep learning-based methods employing EEG have been presented [6–18].

We employ an EEG-based emotion recognition framework in order to present a quantitative
measure of the difference in emotional reactions to illustrated surgical images and photographic
surgical images. To this end, we employ professional scientific illustrators to produce illustrations of
surgical images, and execute a user study with a deep learning-based emotion recognition model with
EEG biosignals. Our study seeks to provide a confidence that the negative emotional reactions caused
by surgical images can be reduced through abstraction via illustration.

We employ two groups of participants who view photographic surgical images and illustrated
surgical images, respectively. Their emotional responses are measured through an EEG capturing
device and processed with a deep learning-based emotion recognition model. To show the effectiveness
of the model, we additionally execute a nine-metric user survey for the participants, then compare those
results with those of the model. From the results of this experiment, we suggest that the illustrated
surgical images successfully reduce the negative emotional responses caused by their photographic
counterparts.

2. Related Work

2.1. Emotional Reactions to Surgical Images

Many researchers have studied human emotional reactions on BII (blood, injection, and injury)
scenes including body mutilation [19], surgical procedures [20,21], blood drawing [22], open-heart
surgery [23], and surgical amputation [24]. Other studies presented human reactions to repelling scenes
including homicide scenes [25], spiders [21], vomit [23], and dirty toilets [26]. To estimate human
reactions to these scenes, most studies employed either estimation of physical reactions or subjective
methods. For estimating physical reactions, they examined heart rate [19,23], facial expression [27],
electromyography [23,28], skin conductance [28], neural activation by fMRI [26], eye tracking [29],
and visuomotor processing [30]. The subjective methods include user survey [20,21], rate of refusal
to watch [23], and experienced vasovagal symptoms [22]. Even though these schemes are used to
estimate human reactions to repelling scenes including surgery images, Cisler et al. found that there is
no universal scheme to consistently estimate human reactions [31].

Surgical images incur various human reactions including anxiety, fear, disgust, and vicarious
pain [31,32]. Among them, fear and disgust are suggested to be the most prominent. Cisler et al.
and Olatunji et al. reported disgust as the most representative emotion [31,33]. Their reason is that
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fear is an emotion of avoiding danger, which is not induced by watching images of bodily injury or
surgery. Chapman and Anderson classified blood-injury disgust as a subtype of physical disgust [34].
Olatunji et al. further divided blood-injury disgust into contamination disgust and animal-reminder
disgust, where animal-reminder disgust is defined as the reminder of one’s mortality and inherent
animal nature [23].

2.2. CNN-Based Emotion Recognition from EEG

From the great success of AlexNet [35] and VGGNet [36] in image classification, deep convolutional
neural networks are employed in various EEG analytic tasks.

Tang et al. [6] proposed an early deep CNN-based classification model for single-trial EEG.
Their model, which is composed of five layers, is applied to classify motor imagery of left and right
hand movement. The model recorded F1 scores of 87.76% 86.64% for classification of motor imagery.
While the performance of the model does not show significant improvement over conventional
hand-crafted feature-based models, this study has shown the promise of CNN for EEG recognition.

Schirrmeister et al. [7] presented a deep CNN to analyze EEG biosignals. Their model is composed
of four blocks, each of which executes convolution and max pooling operations. The first block is
distinguished from the others, as it executes spatial filtering between the convolution and max pooling
operations. The result of fourth block is linearly classified to four soft max units including left hand,
right hand, feet, and rest. They also visualized the features of their CNN to analyze the relationships
between the features and EEG signals.

Li et al. [17] presented a hybrid model of convolutional neural network and recurrent neural
network to recognize emotions from a multi-channel EEG dataset. As a preprocessing of their data,
they employ wavelet and scalogram transform to encapsulate multi-channel neuro-signals into grid-like
frames. Their model extracts task-related features and mines correlation between channels, incorporating
contextual information. They demonstrate their accuracy by estimating valence and arousal.

Salama et al. [8] presented a 3-dimentional CNN approach for recognizing emotions from
multi-channel EEG signals. Their model is constructed using two convolutional layers and two max
pooling layers, followed by a fully connected layer. The 3D representation of EEG data is fed into
a data augmentation phase, which improves the performance of their 3D CNN model. The simple
structure of their model leaves many aspects to be improved. They achieved 87.44% accuracy for
valence and 88.49% for arousal.

Moon et al. [9] applied CNN models for EEG-based emotion recognition. They tested three
CNN models: CNN-2, CNN-5, and CNN-10, which are distinguished by the number of convolutional
layers. The CNN-2 model has one convolutional layer followed by one max pooling layer; CNN-10
has five convolutional layers followed by five max pooling layers. Among the three models, CNN-5,
which has three convolutional layers and two max pooling layers, shows the best accuracy for PSD,
PCC, and PLV features.

Chiarelli et al. [10] presented a hybrid framework to construct a brain-computer interface
using EEG and infrared spectroscopy (fNIRS). They employed DNN, which recorded unprecedented
classification outcomes, for their framework. They performed a guided left and right hand motor task
on 15 participants. The left-to-right classification accuracy of the DNN was estimated and compared to
a stand-alone EEG and fNIRS. The results of their multi-modal recording and DNN classifier significant
improvement over the state-of-the-art techniques.

Lawhern et al. [11] presented an EEGNet, a DNN-based approach for constructing brain-computer
interface using EEG biosignals. Their EEGNet has three blocks of layers: Conv2D, DepthwiseConv2D,
and SeparableConv2D. In this network, they introduce depthwise convolution and separable
convolution to process the EEG signals effectively. They tested their method on three datasets: P300
Event-related Potential, Feedback Error-related Negativity, and Movement-related Corticial Potential.
The results demonstrate EEGNet’s improved performance over reference algorithms.
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Croce et al. [12] applied a CNN model to a large dataset of independent component (IC)s extracted
from multi-channel EEG and magnetoencephalographic (MEG) signals. Their aim was to classify brain
IC and artifactual IC from the biosignals. The EEG, MEG, and combined EEG + MEG signals were
processed through a CNN model to compare its accuracy of classification with state-of-the-art models;
their classification accuracies reached 92.4% for EEG, 95.4% for MEG and 95.0% for EEG + MEG.

Yang et al. [13] proposed a CNN-based approach to recognize valence and arousal from
unstationary EEG signals. Their model has a multi-column structure of independent modules, each of
which was designed using DenseNet [37]. The independent decisions from the modules were merged
using a voting strategy to make a final decision. Their model was trained and optimized using
DEAP dataset, and applied to distinguish the emotional responses between photographs and artwork
images [38] and to verify the influence of contrast on valence [39].

2.3. RNN-Based Emotion Recognition from EEG

The spatio-temporal aspect of EEG biosignals invites the use of a recurrent neural network (RNN),
which is known as an effective model for processing time-serial data, to analyze EEG signals.

Khosrowabadi et al. [14] presented a biologically inspired feedforward neural network (ERNN),
which has six layers, to recognize human emotions from EEG biosignals. The ERNN model employs a
serial-in/parallel-out shift register to simulate the short term memory of emotion. This model with a
radial basis function shows very competitive accuracy compared with other feature extraction methods.

Alhagry et al. [16] presented an RNN-based emotion recognition model from EEG biosignals.
Their model has two long short term memory (LSTM) layers, one dropout layer and one fully connected
layer. Since the EEG biosignal captured from subjects watching a movie clip has a time-serial property,
the RNN structure demonstrates competitive accuracy in emotion recognition. Their model showed
85.65% accuracy for arousal and 85.45% for valence.

Soleymani et al. [15] employed an LSTM RNN with conditional random fields to trace the emotions
captured from EEG biosignals of subjects watching video. They also captured facial expressions of
the subjects. The combination of EEG biosignals and facial expressions was able to provide adequate
information for emotion recognition.

Xing et al. [18] presented a framework consisting of a linear EEG mixing model and an LSTM
RNN model. For EEG mixing, they employed stack auto encoder (SAE), which is similar to the
standard auto encoder; the difference lies in the processing of source signals, which are separated by
brain region. The EEG source signals processed by SAE are fed into the LSTM RNN model, which then
extracts features from them. This model achieved 81.10% accuracy for valence and 74.38% for arousal.

3. Overview of Our Framework

Our assumption is that the negative emotions caused by photographic surgical images would
hinder non-professional people in understanding necessary information conveyed by the images.
Since these people are not trained with surgical images, the negative emotions such as fear and disgust
arise at their first glance of the images. To reduce negative emotion and to increase the understanding of
the information conveyed by surgical images, anatomy textbooks tend to use illustrations, rather than
photographs. From this point, we build our assumption that illustrated surgical images evoke less
negative emotion from ordinary people than photographic surgical images.

To prove our assumption, we chose 10 photographic surgical images and produced their illustrated
versions by hiring professional scientific illustrators. The photographic surgical images and their
illustrated counterparts are presented in Figures 1–3. Before producing the illustrations, the illustrators
were instructed to preserve as much fine details as possible. The target images were collected from
various sources and are released under ’fair use’ purpose.
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(a) Photographic surgical images (b) Illustrated surgical images

Figure 1. The first comparison of photographic surgical images and illustrated surgical images.
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(a) Photographic surgical images (b) Illustrated surgical images

Figure 2. The second comparison of photographic surgical images and illustrated surgical images.
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(a) Photographic surgical images (b) Illustrated surgical images

Figure 3. The third comparison of photographic surgical images and illustrated surgical images.

From the ten pairs of photographic and illustrated surgical images, we hired 40 participants
to record their emotional reactions to both photographic surgical images and illustrated images.
To record their emotional reactions, we employed two different processes. One was the usage of EEG
biosignals; the EEG signals captured from participants were processed through a deep multi-channel
emotion recognition model [13] and quantized into valence and arousal scores. The other process
was a self-assessed user survey. The participants were given a 9-metric survey to record their valence
and arousal.

The 40 participants were randomly partitioned into two groups. The first group underwent the
above processes for photographic surgical images, while the second worked with illustrated images.
The results of these two groups are analyzed and discussed; the outline of this study is illustrated in
Figure 4.
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Photographic surgical images

Illustrated surgical images

EEG signal 

emotion recognition model

9-point User annotation

EEG-based emotion recognition

Figure 4. Overview of our framework.

4. Deep Emotion Recognition Model

4.1. Structure of the Model

In this section, we describe our deep emotion recognition model, which was presented in our
previous study [13]. Our model is based on a multi-column structure: five independent modules
process the EEG signal and make estimations of valence and arousal. Results from these modules are
ensembled into concerted valence and arousal scores, effectively recognizing emotional responses.

4.2. Dataset Preparation

For the training of our model, we employ the DEAP dataset [40], one of the most widely used
EEG datasets. The DEAP dataset consists of preprocessed EEG signals and their corresponding labels
which describe emotional states. As instructed by the original authors [40], and similar to our previous
study [38], we downsample the EEG signal in DEAP to 128 Hz and process it with a 4.0–45.0 Hz
band pass filter. Therefore, we extract 128 × 60 samples from a trial for 40 channels of the dataset.
Among the 40 channels, we exclude 8 for normalization and employ 32 channels for the input of our
model. For each input channel, we prepare 32 consecutive samples for an input for each module of our
model, effectively creating 32 × 32-sized input data. Figure 5 (a) illustrates the sampling process of
EEG data, (b) shows the structure of a recognition module, and (c) shows the overall multi-column
structure of the model.
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Figure 5. Structure and dataflow of our model, which is constructed according to [13].
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4.3. Model Training

The DEAP dataset is constructed using the EEG signals captured from 32 participants. We segment
the dataset into three groups: training, validation and test. Out of the 32, EEG signals from
22 participants are used for training, validation and the remaining 5 for test. Each participant executed
40 experiments. Therefore, the numbers of the EEG signal data for training, validation, and test are
880, 200, and 200, respectively.

5. Implementation and Experiment

5.1. Implementation

We implemented our emotion recognition model with Pytorch library on a machine with an Intel
Core i7 CPU, 64 GB main memory, and nVidia GTX 2080TI GPU. We employed LiveAmp32 with
LiveCap [41], which supports 32 channels following a standard 10/20 system [42].

5.2. Preparation of Surgical Images

While preparing our dataset of surgical images, we surveyed various open emotional image
datasets including IAPS [43], GAPED [44], NAPS [45], CAPD [46], SMID [47], ISEE [48] and
COMPASS [49]. Some of the datasets are specialized for scary images (SFIP) [50], disgusting images
(DIRTI) [51], natural disaster images (NDPS) [52], and adult images (BAPS-adult) [53]. However,
there was no existing dataset dedicated to surgical images; therefore, we collected several “fair-use”
images from various sources for our experiment.

5.3. Preparing of User Annotation

For user annotation of emotional responses, we presented participants with a nine-point metric
separated into valence and arousal. They were asked to mark the metric for the photographic and
illustrated surgical images they saw. The leftmost point means very negative reaction, which matches
to −1 in EEG-based estimation, and the rightmost point means very positive reaction, which matches
to 1. The mid-point signifies a neutral reaction, which matches to 0. The nine-point metric form for
user annotation is presented in Figure 6.

5.4. Experiment

For the experiment, we hired 40 participants and separated them into two groups: group1 watched
photographic surgical images and group2 watched the illustrated versions. The characteristics of the
two groups are suggested in Table 1. In the case of a participant watching both photographic and
illustrated surgical images in a short timeframe, the emotional response from the images they watched
first can affect that from the images that they watched later. This was our motivation for employing
disjoint groups. We address the issue that personal differences between participants may affect
their emotional responses by increasing the number of participants. Before participants watched the
images, we explained what they were about to see and allowed withdrawal from the experiment.
The participants were asked to watch a 100 s movie clip, wich each image lasting 10 s. In the first
round of our experiment, we extracted EEG biosignals from the participants for objective responses.
We performed the second round by asking the participants to mark their valence and arousal on
a 9-point metric for subjective responses. To avoid the diminishment of emotional reactions in the
second round, the participants were instructed to remember their emotions during the first round and
mark those. The results of both rounds of the experiment on each group are illustrated in Table 2 and
Figure 7. We further visualize the comparison of personal responses for EEG-based and user-annotated
emotion in Figures 8 and 9.
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valence

very positivenegative neutral positivevery negative
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arousal

very positivenegative neutral positivevery negative
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Figure 6. Nine-point metric for user annotation.

Table 1. Gender and age distribution of the participants.

Total
Gender Age

Female Male 20 s 30 s >40

group1 20 10 10 13 6 1
group2 20 10 10 12 8 0
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Photographic surgical vs Illustrated surgical
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Photographic surgical vs Illustrated surgical

(a) EEG-based estimation (b) User-annotated estimation

valence valence

arousal arousal

Figure 7. Results plotted in Russell’s emotion circumplex model.
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Table 2. Results of our experiment valence and arousal values in EEG-estimated matrix are rearranged
to (−1∼1) scale.

EEG-Estimated User-Annotated

Photographic Surgical Illustrated Surgical Photographic Surgical Illustrated Surgical

Part. No. Val. Arou. Part. No. Val. Arou. Part. No. Val. Arou. Part. No. Val. Arou.

01 −0.86 0.34 21 −0.68 0.21 01 2 6 21 2 3
02 −0.91 0.64 22 −0.39 0.24 02 1 9 22 4 5
03 −0.76 0.47 23 −0.54 0.09 03 2 7 23 1 4
04 −0.85 0.55 24 −0.48 0.19 04 3 7 24 4 5
05 −0.73 0.49 25 −0.45 0.17 05 3 7 25 4 4
06 −0.93 0.51 26 −0.53 0.18 06 1 7 26 3 5
07 −0.81 0.58 27 −0.59 0.13 07 2 7 27 2 5
08 −0.84 0.63 28 −0.52 0.25 08 1 8 28 3 6
09 −0.85 0.65 29 −0.63 0.21 09 1 8 29 2 5
10 −0.86 0.61 30 −0.61 0.311 10 1 9 30 3 6
11 −0.84 0.59 31 −0.43 0.26 11 3 8 31 3 6
12 −0.88 0.52 32 −0.47 0.24 12 1 7 32 5 6
13 −0.92 0.51 33 −0.51 0.23 13 1 7 33 3 5
14 −0.78 0.48 34 −0.56 0.28 14 2 5 34 3 5
15 −0.83 0.53 35 −0.64 0.27 15 1 7 35 3 6
16 −0.89 0.55 36 −0.65 0.26 16 1 7 36 1 7
17 −0.79 0.59 37 −0.59 0.23 17 1 7 37 3 5
18 −0.80 0.53 38 −0.58 0.26 18 2 7 38 3 6
19 −0.76 0.51 39 −0.52 0.31 19 4 6 39 2 6
20 −0.74 0.55 40 −0.61 0.33 20 2 7 40 3 6

EEG‐estimated User‐annotated
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EEG‐estimated User‐annotated
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EEG‐estimated User‐annotated
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EEG‐estimated User‐annotated
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Figure 8. Results from photographic surgical images. Subjects 01∼20 participated in the experiment
for photographic surgical images. The left box, which corresponds to EEG-based recognition has a
range of (−1, 1)× (−1, 1), while the right box corresponding to user-annotated emotion has a range of
(1, 9)× (1, 9). The x-axis of each box represents valence and the y-axis represents arousal.
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EEG‐estimated User‐annotated
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EEG‐estimated User‐annotated
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EEG‐estimated User‐annotated
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EEG‐estimated User‐annotated

Subject 24

EEG‐estimated User‐annotated

Subject 25

EEG‐estimated User‐annotated

Subject 26

EEG‐estimated User‐annotated

Subject 27

EEG‐estimated User‐annotated

Subject 28

EEG‐estimated User‐annotated

Subject 09
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Subject 10
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Subject 13

EEG‐estimated User‐annotated

Subject 14
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EEG‐estimated User‐annotated

Subject 20

Figure 9. Results from illustrated surgical images. Subjects 21∼40 participated in the experiment for
illustrated surgical images. The left box, which corresponds to EEG-based recognition has a range
of (−1, 1) × (−1, 1), while the right box corresponding to user-annotated emotion has a range of
(1, 9)× (1, 9). The x-axis of each box represents valence and the y-axis represents arousal.

6. Analysis

We have two research questions regarding our experiment.

• RQ1 Are emotional responses from illustrated surgical images discernably less negative than
those from photographic surgical images?

• RQ2 Is our emotional recognition model reliable? In other words, is there sufficient evidence that
the emotions recognized by our model resemble self-assessed ones?

6.1. Analysis 1: t-Test

We have set up our null hypothesis for RQ1 as follows:

• H0 There is no notable difference between emotional responses from photographic surgical images
and illustrated images.

To answer RQ1, a t-test is executed between group1 who watch photographic surgical images
and group2 who watch illustrated surgical images. The p values of this t-test are presented in Table 3.
According to the very small p values in Table 3, we can reject H0 in favor of the alternative hypothesis.

Table 3. p values for t-test between photographic and illustrated surgical images.

EEG-Estimated User-Annotated

Photographic Surgical Illustrated Surgical Photographic Surgical Illustrated Surgical
(group1) (group2) (group1) (group2)

valence 2.27 × 10−15 7.6 × 10−4

arousal 2.07 × 10−17 2.2 × 10−7
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Another t-test regarding the emotions estimated by EEG and the emotions annotated by users,
leads us to answer RQ2. RQ2’s null hypothesis is:

• H1 There is no notable difference between EEG-based assessment and user-annotated approach.

The p values for this second t-test are presented in Table 4. For group1, who watched photographic
surgical images, the valence and arousal estimated from EEG biosignals and annotated by users are
very closely related; the strong negative emotion recognized from photographic surgical images is
consistent regardless of the recognition scheme. However, for group2, who watched illustrated surgical
images, the valence is closely related, while the arousal is not. Therefore, we cannot reject H1 except in
case of arousal. We assume that pictures of organs, blood, and flesh effect similar negative emotions
in viewers, even though they are reduced by the illustrated representation. Therefore, the different
approaches for estimating emotions show consistently similar valence scores; for arousal, however,
ordinary people have only rarely seen surgical images even, even in their illustrated form. Users who
have watched illustrated surgical images in the first round of the emotion recognition experiment
through EEG biosignals may pay less attention in the second stage experiment using user annotation.
Therefore, the arousal values for illustrated surgical images in user annotation can be lower than those
in EEG-based estimation.

Table 4. p values for t-test between EEG-estimated and user-annotated valence and arousal.

Photographic Surgical (group1) Illustrated Surgical (group2)

EEG-Estimated User-Annotated EEG-Estimated User-Annotated

valence 0.72134 0.844513
arousal 0.942176 0.007345

6.2. Analysis 2: Effect Size

We estimate the effect size by calculating Cohen’s d values for the pairs of the emotions.
The formula for Cohen’s d (X, Y) is suggested as follows:

d(X, Y) =
Exp(X)− Exp(Y)

SDpooled
,

where Exp(X) and Exp(Y) are the mean values of the distributions X and Y, respectively, and SDpooled
is the pooled standard deviation of X and Y.

We estimate Cohen’s d to measure the difference between the emotional reactions of photographic
and illustrated surgical images in the following four combinations in Table 5:

(i) the valence estimated by EEG between photographic and illustrated surgical images,
(ii) the arousal estimated by EEG between photographic and illustrated surgical images,
(iii) the valence estimated by user-annotation between photographic and illustrated surgical images,
(iv) the arousal estimated by user-annotation between photographic and illustrated surgical images.

The Cohen’s d values for these four matches are greater than 0.8, which denotes that the effect
size is very large.

Table 5. Cohen’s d values to measure the difference in emotional reaction between photographic and
illustrated surgical images.

EEG-Estimated User-Annotated

Photographic Surgical Illustrated Surgical Photographic Surgical Illustrated Surgical
(group1) (group2) (group1) (group2)

valence (i) 1.78 (ii) 1.01
arousal (iii) 1.82 (iv) 1.37
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We also estimate Cohen’s d to measure the difference between the emotions estimated by EEG
and the emotions estimated by user-annotation in the following four combinations in Table 6:

(i) the valence for photographic surgical images estimated by EEG biosignal and user annotation,
(ii) the arousal for photographic surgical images estimated by EEG biosignal and user annotation,
(iii) the valence for illustrated surgical images estimated by EEG biosignal and user annotation,
(iv) the arousal for illustrated surgical images estimated by EEG biosignal and user annotation.

The Cohen’s d values for cases (i)∼(iii) are less than 0.23, which denotes that the effect size is
small, and the d value for case (iv) implies there is relatively larger effect size. The reason case (iv) has
a medium effect size can be described as similar to the reason results from the case (iv) in the prior
t-test are more weakly related.

Table 6. Cohen’s d values to measure the difference of the emotional reaction estimation methods:
EEG-biosignal and user-annotation.

Photographic Surgical (group1) Illustrated Surgical (group2)

EEG-Estimated User-Annotated EEG-Estimated User-Annotated

valence (i) 0.12 (ii) 0.06
arousal (iii) 0.23 (iv) 0.64

7. Discussion

7.1. Discussion 1: Comparison of Performances

In the relevant literatures, many models, including conventional machine learning techniques
or deep learning techniques, have been employed to estimate valence and arousal from EEG signal.
According to [13], models using machine learning-based approaches such as SVM or decision tree show
71.66% average accuracy for valence and 69.37% for arousal, while the models using deep learning
schemes such as CNN or RNN show 81.4% for valence and 80.5% for arousal. Clearly, emotion
recognition schemes based on deep learning techniques outperform those based on conventional
machine learning techniques. The accuracy of our model is compared to that of several important
existing studies that estimate emotion through valence and arousal, as shown in Table 7.

Table 7. Comparison to existing models that recognizes valence and arousal using DEAP dataset.

Existing Models Classifier
Accuracy (%)

Valence Arousal

Khosrowabadi et al. 2014 [14] RNN 71.43 70.83
Alhagry et al. 2017 [16] LSTM RNN 85.00 85.00

Li et al. 2017 [17] CRNN 72.06 74.12
Salama et al. 2018 [8] 3D CNN 87.44 88.49
Xing et al. 2019 [18] LSTM 81.10 74.38

Ours multi-column 90.01 90.65

7.2. Discussion 2: Increase of Valence

Our experiment reveals that the valence estimated from illustrated surgical images is significantly
higher than the valence from photographic surgical images. We assume that the unpleasant feelings
from photographic blood and flesh are decreased by substituting the color of photographic blood and
flesh with a similar color that has higher saturation or intensity. Classic artistic media, such as pencil
or watercolor brush, produce similar effects. It is also notable to invoke the conclusion of the work
of Yang et al’s work [38] that the artwork images induce higher valence than photographs. Since the
illustrated surgical image can be regarded as a kind of artwork, the increased valence for the illustrated
surgical image reinforces the conclusion of [38].
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The change in valence in our study, however, is greater than that in [38]. We assume that emotional
reactions to surgical images generally more negative: fearsome or disgusting. Therefore, the increase
of valence between the surgical image and its illustrated version is greater than the increase of valence
between a photograph and an artwork image when the image itself is neutral.

7.3. Discussion 3: Decrease of Arousal

Our result shows a decrease in arousal for the illustrated surgical images compared to the
photographic surgical images. Since photographic surgical images are distinguished from other
images, their engendered arousal is very great. The reason for the photographic surgical images
showing higher arousal is reasoned to be that seeing flesh and blood usually occurs only in very
frightening or alerting situations. The decrease in arousal for the illustrated images can be explained
by the fact that the realistic colors of flesh and blood are converted to less threatening colors frequently
seen in animations or cartoons. The simple and friendly color of the illustrated flesh and blood reduces
the sense of actual alert or frightening, which results in the decrease of arousal.

7.4. Discussion 4: Evaluation from a Surgeon

We have asked a surgeon to evaluate the illustrated surgical images. The surgeon marked some
regions of the photographic and illustrated surgical images and suggested the following opinions:

(1) Color transform of the illustrated images is reasonable. Replacing vivid colors such as red and
violet by less vivid colors can help reducing negative reactions from the people who do not have
an experience in the surgical images

(2) In the illustrated versions, the reflections on the surface of organs are illustrated as a narrow spot
with higher brightness (the yellow circles in Figure 10). Since the spots on organs can be from
some disease or from the reflection, the reflections should be illustrated in different style.

(3) The blood vessels, which play important role in many diagnosis cases, are not illustrated in a
consistent way. In some figures, they are preserved in a very salient way (the blue circles in
Figure 10), and in others, they are omitted (the green circles in Figure 10). Presenting details such
as blood vessels should be expressed in a consistent way.

(a) Photographic surgical images

(b) Illustrated surgical images

Figure 10. The marks drawn by a surgeon for the evaluation of the illustrated images.
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As a conclusion, the surgeon suggested a positive answer for using the illustrated images to
reduce negative emotional reactions from ordinary people. However, he suggested several points to
improve for educational or professional purposes.

7.5. Discussion 5: Limitations

The limitation of this study is that we have not taken into account the opinions of experts,
such as surgeons or pathologists in producing the illustrative surgical images. Surgeons may provide
productive insights in the illustration of surgical images, for example, which fine details are important
and must be kept. They may also be able to suggest proper colors to replace the original colors of flesh
and blood.

This limitation of this study can be addressed in two points. Similar studies [2,3] hired a small
group of surgeons to confirm that the illustrated surgical images could be used for communication
and education. In another point, we collected a series of opinions from a surgeon for the illustrative
surgical images in Section 7.4. The opinions can be employed to give a guidance for developing an
automatic algorithm that produces illustrative surgical images.

8. Conclusions and Future Work

In this paper, we produced illustrated surgical images to prove their ability to reduce the
negative emotional responses engendered by photographic surgical images. We executed emotion
recognition processes on 40 participants to compare their emotional responses to photographic and
illustrated surgical images. The emotional responses were estimated in a bi-modal approach: a deep
learning-based emotion recognition model from EEG biosignals was combined with a 9-point metric
user annotation. From the results, we conclude that illustrated surgical images indeed capable of
reducing the negative emotions of participants.

In our future research, we will study relevant methods to create appropriate illustrated images.
We will consult with experts including surgeons and pathologists to enrich the illustration schemes
on surgical images. We will also examine the illustrated surgical images from experts to improve
the quality of the illustrations. These approaches will help developing an automatic algorithm for
generating illustrated surgical images that satisfy both ordinary people and experts.
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