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Abstract: The computer-vision-based surface defect detection of metal planar materials is a research
hotspot in the field of metallurgical industry. The high standard of planar surface quality in the metal
manufacturing industry requires that the performance of an automated visual inspection system
and its algorithms are constantly improved. This paper attempts to present a comprehensive
survey on both two-dimensional and three-dimensional surface defect detection technologies
based on reviewing over 160 publications for some typical metal planar material products of
steel, aluminum, copper plates and strips. According to the algorithm properties as well as the image
features, the existing two-dimensional methodologies are categorized into four groups: statistical,
spectral, model, and machine learning-based methods. On the basis of three-dimensional data
acquisition, the three-dimensional technologies are divided into stereoscopic vision, photometric
stereo, laser scanner, and structured light measurement methods. These classical algorithms and
emerging methods are introduced, analyzed, and compared in this review. Finally, the remaining
challenges and future research trends of visual defect detection are discussed and forecasted at an
abstract level.

Keywords: automated visual inspection; image detection; surface defect detection; metal planar
materials

1. Introduction

Metal planar materials (e.g., steel, aluminum, copper plates and strips, etc.) are widely used in
automobile manufacturing, bridge construction, aerospace, and other pillar industries, which make
immense contributions to the modern social development and the betterment of life. Nevertheless,
in the actual industrial production process, the processing equipment damage or the harsh industrial
environment will inevitably lead to certain quality problems of metal planar materials products.
Some products surface defects showing large-area or periodic characteristics not only impact on the
subsequent production but also threaten the quality of terminal products, which bring huge economic
and reputational losses to the manufacturing enterprises. The number, degree, and distribution of
surface defects areas are significant factors to determine the quality of industrial metal planar materials.
The damage detection methods based on vibro-acoustic modulation [1], wireless sensing technology [2]
and other different principles have been researched for a long time. However, the computer-vision-based
surface defect detection methods are the most commonly used to find and locate the abnormal areas
on the image surface due to their advantages of low cost, easy operation, and superior performance,
etc. Nowadays, with the rapid development of hardware facilities and the continuous advance of
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artificial intelligence technology, automated visual inspection (AVI) equipment has gradually become
the standard configuration for industrial manufacturers to improve product quality and production
efficiency [3–8].

The metal planar materials such as steel, aluminum, copper plates and strips along with the
similar appearance characteristics have the unified quality requirement that can be summarized as
“precise size, homogeneous, and finish surface”, which means that the thickness and width of the metal
planar materials should meet the specified precision requirements, and the surface should be clean
and free of scales, cracks, scratches, roll marks and bubbles, etc. The defects on the surface of planar
materials not only damage the appearance of planar products but may become the weak link of stress
concentration as the source of cracking and corrosion. The AVI equipment for surface defects of metal
planar materials has two main functions: defect detection and defect classification. The former aims to
accurately detect and locate defects on-line in the industrial production process without identifying
the types of defects, so that the industrial site can adjust the corresponding continuous casting/rolling
equipment according to the degree and frequency of defects, so as to lose no time in controlling the
massive diffusion of similar defects and effectively avoid economic losses caused by quality problems.
Meanwhile, defect classification is to recognize and label the detected defects to support the grading of
finished products. The classification accuracy is directly determined by the precision of defect detection;
thus, the overall performance of an AVI system is mainly limited by the accuracy, time efficiency,
and robustness of various algorithms in the process of defect detection, which is the focus of this paper.

The online surface defect detection of metal planar materials faces the following severe challenges
in the production process:

(1) High surface reflectance
The surface of steel, aluminum, copper strips, and other extremely thin strips is smooth, and their

high surface reflectivity is liable to bring high light and shadow area; then, the phenomenon of
inconsistent gray value increases the possibility of false edge detection.

(2) Pseudo defect interference
Pseudo defects such as water droplets, water cloth, rain line, water mist, and other real defects

produced in the process of laminar cooling lead to frequent false alarms of AVI equipment [9].
(3) Random elastic deformation
Caused by continuous rolling equipment vibration, roll speed differential, side guide plate

heterotopia, rolling speed fluctuation, atmospheric turbulence-like effect, and so on, the random elastic
deformation presents random image distortion on the charge coupled device (CCD) camera side [10].

(4) Massive image data
The high speed of the real-world production line, the fast pace of coil change, and the demand for

fine defects detection in hot rolling mill make the image acquisition front-end continuously generate
massive image data, and its peak speed is as high as 5.12 Gbps [9], which requires that the detection
algorithm must achieve a good balance among the detection accuracy, calculation, and reliability.

In different processes, the process operations of different types of industrial equipment make the
surface textures have great differences, and the corresponding metal plates and strips also have different
detection difficulties. Figure 1 lists three typical surface images of metal planar materials; from the
left, the first column includes the defect-free images, and the right side shows several typical defect or
pseudo defect images, such as scales, slag marks, cracks, scratches, burrs, and uneven illumination on
the continuous casting slab surface; roll marks, scratches, entrapped slag, inclusions, holes and oxide
scales on the hot-rolled strip surface; and pickling, corrosions, ripples, stains, pits, and holes on the
cold-rolled strip surface. These images are all acquired from the real-world production line using a
linear array scanning CCD camera [11].
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Figure 1. Three classes of typical metal planar materials images: (a) continuous casting slabs; (b) 
hot-rolled strips; (c) cold-rolled strips. 
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Figure 1. Three classes of typical metal planar materials images: (a) continuous casting slabs; (b) hot-rolled
strips; (c) cold-rolled strips.

This paper focuses on the latest theory and algorithm of two-dimensional (2D) defect detection
methods based on AVI, as well as the attempt and development process of three-dimensional (3D)
technologies in the field of surface defects detection, which will serve as an important reference and
inspire scholars to develop methods more suitable for various application scenarios.

The content of this paper is arranged as follows. Firstly, the research background and challenges
of the project are introduced. In the second section, the hardware facilities of the 2D surface quality
inspection system are described in detail. In the third section, some previous related survey papers are
briefly reviewed. The fourth section presents several commonly used performance evaluation criteria
for industrial surface defect detection tasks. In the fifth section, four kinds of 2D defect detection
methods are introduced in detail, and the classical algorithms and new methods in each category are
introduced, analyzed, and compared. Then, in the sixth section, the imaging equipment and detection
algorithms of 3D defect detection technology are introduced. Finally, the challenges and future research
trends of defect visual inspection are discussed and prospected.

2. Two-Dimensional Surface Quality Inspection System

The traditional manual visual inspection methods with the disadvantages of low detection rate,
poor real-time performance, low detection confidence, and poor environmental adaptability are not
sufficient for the requirements of high precision and fast speed of industrial surface defect detection.
With the rapid development of machine vision technology, the automated surface defect detection
methods based on machine vision have gradually become the mainstream methods and have been
widely used in the surface defect detection of glass bottles [12], mobile phone screens [13], automobile
carbon brushes [14], polysilicon solar cells [15], especially steel plates and strips [9], aluminum plates
and aluminum strips [16], copper plates and copper strips [17], and other metal planar materials.
A machine vision inspection system usually includes an image acquisition subsystem and region of
interest detection (ROI) subsystem. Specifically, the camera is used to photograph the product surface,
and then the computer system processes and identifies the acquired images to determine whether there
are defects on the product surface. This system is highly advantageous for non-contact, high detection
accuracy, low cost, and high automation degree.

The hardware of the image acquisition subsystem usually consists of lighting, a lens, and a sensor.
Lighting conditions have a great impact on image quality; favorable illumination helps to reduce
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noise, shadow, and reflection and enhance image contrast, so as to improve the success rate of image
processing and analysis, and the commonly used light sources are incandescent lamps, fluorescent
lamps, halogen lamps, etc. The lens focuses the light reflected from the surface of the target object
to generate a clear image on the sensor. The most momentous part of a camera is the digital sensor,
which converts the image into analog or digital video signals. The two main sensors are the CCD
(charge coupled device) and CMOS (complementary metal oxide semiconductor). The communication
interface receives digital signals and converts them into images in computer memory. An ROI detection
subsystem is used to determine whether there are defects on the image surface. It originates in the
visual attention technology, which can quickly focus the vision on important targets. In the past
30 years, numerous scholars have carried out in-depth research on ROI detection algorithms, and in
the fifth section, we will mainly overview these algorithms.

Taking the strip surface defect detection system as an example, its hardware framework mainly
consists of lighting facilities, a CCD camera, and an image processing computer and server, and its
lighting facilities adopt a special infrared light source array. The CCD line scanning camera group is
arranged horizontally on the strip steel production line, and the horizontal and vertical visual ranges
overlap each other to ensure no missing inspection. The images collected by the CCD camera are
transmitted to the image processing computer group via the optical fiber for image processing and
pattern recognition. Then, the results, together with the relevant information of the production line
are sent to the server database for further processing, and various on-site production information
statistical reports are generated. Users can evaluate the quality grade of steel coils according to these
reports or analyze the causes of the abnormal production line, so as to realize the real-time monitoring
of the production line. Figure 2 shows a typical industrial strip surface defect detection system.
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Figure 2. A typical industrial strip surface defect detection system.

In recent years, great breakthroughs have been made in image processing, computer vision,
artificial intelligence, and other related fields, which makes the surface defect detection systems of
industrial metal planar materials continuously optimized. In 1900, Matti et al. developed a prototype of
the automated online visual inspection system, which collected images by a CCD linear scanning camera,
concentrated a strong field light source, and detected defects by combining morphology and statistical
algorithms. This system was successfully applied to the surface defects detection and classification of
copper alloy strips [18]. In 1995, POSCO along with the Germany Parsytec company developed the
automated optical inspection (AOI) system and installed it on the rolling steel strip production line [19].
In 1998, the Parsytec’s HTS-2 system proposed by Rinn et al. firstly employed a high-resolution CCD
combined with bright and dark field illumination for surface analysis, which greatly improved the
image quality to a large extent [20]. Subsequently, researchers in related fields reported their latest
technologies and achievements. Zhang and Ding et al. [21] installed a polarized light filter in front
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of the camera and rotated the filter in the way of suppressing polarized light to suppress partially
polarized light due to metal reflection, thus preventing the image quality from being unsatisfactory.
Zhang et al. [16] realized high-speed image processing and data transmission by industrial personal
computer (IPC) array, machine vision technology, and Gigabit Ethernet, which can effectively detect
defects such as holes, bubbles, foreign matters, and roll marks on cold-rolled aluminum plates. Luo [9]
developed a low-cost real-time AOI system based on an embedded image processing board for the
automated on-line quality inspection of the hot-rolled strips. As a tool to improve the manufacturing
process and industrial quality control, the AVI system has developed well in hardware development,
but there is still a broad space for algorithm research.

3. Previous Review

Over the past 30 years, researchers have conducted in-depth researches on AVI, and various
theories and algorithms have emerged in an endless stream. Some scholars have summarized and
compared the relevant research results [22–25]; however, most of them are relatively old. Recently,
researchers have increasingly focused on planar materials, the reviews they presented including those
for a particular material (e.g., fabric [26,27] and semiconductors [28]), or those covering a wide range
of materials (including fabrics, food, steel, wood, and ceramic tiles) [29–32]; nevertheless, none of
them can specifically review the detection of metal surface defects. In 2014, Neogi et al. [33] made a
brief review of steel surface defect detection methods based on AVI, covering the defect detection and
classification technology of steel products, including slab, billet, steel plate, hot-rolled strip, cold-rolled
strip, and bar. Sun et al. [34] provided a supplement to [33]. However, they all cover a wide range
of products and involve defect detection and classification, so it is not highly targeted. It is worth
mentioning that Luo and Fang et al. [35] have made a detailed review of two-dimensional visual
detection methods for flat steel (including con-casting slabs, hot- and cold-rolled steel strips) surface
defects. However, there is still no comprehensive overview that contains both two-dimensional and
three-dimension detection algorithms. Related surveys about AVI are listed and compared briefly in
Table 1. In order to cover as many plane metal materials as possible with similar surface properties and
industrial production requirements and focus on the subject of defect detection, this paper summarizes
the surface defect detection methods of steel plates and strips, aluminum plates and strips, and copper
plates and strips. On the other hand, the above-mentioned review literature does not involve 3D
detection methods for the surface defects of planar materials. In addition to a detailed summary of the
2D detection methods, this paper also introduces the 3D methods, hoping to provide a mite reference
for the relevant scholars and engineers engaged in AVI research in the automated manufacturing field.

Table 1. Related surveys about automated visual inspection. AVI: automated visual inspection.

Reference Years The Main Contents Inadequacies

[22] 1982

This paper discussed the problem of automated
visual inspection in industry from the aspects of

hardware, software, system throughput,
universality, and reliability.

These papers only discussed the
general advantages and the

feasibility of the AVI method,
and have been published for a

long time

[23] 1988
This paper summarized the progress made by the
AVI industry from 1981 to 1987 and the problems

to be solved.

[24] 1995 In this paper, the most suitable algorithms for
real-time application were mainly introduced.

[25] 1995
The general advantages and feasibility of AVI were
discussed in conjunction with the literature from

1988 to 1993.
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Table 1. Cont.

Reference Years The Main Contents Inadequacies

[26] 2008
The detection techniques based on computer vision

were reviewed from the point of view of fabric
surface defects.

There is no special review on
metal planar materials surface

defect detection technology.

[28] 2015 Optical detection systems in the semiconductor
industry were reviewed.

[29] 2008
The research progress of surface detection

technology based on texture analysis method in
recent years was reviewed.

[30] 2014
The applications of several typical surface defect

detection techniques on multiple surfaces
were compared.

[31] 2017
The applications of machine vision surface defect

detection in many kinds of planar materials
were reviewed.

[32] 2020

This paper reviewed the vision-based automated
detection methods for metals, ceramics, textiles,
and other materials, and it describes the types of

defects in detail.

[33] 2014

This paper summarized the detection methods of
steel surface defects based on AVI, including the

detection algorithms and classification algorithms
of six types of steel products such as slab, strip and
bar, and it summarizes the hardware composition

of AVI system.

It covers a wide range of
products, involving defect
detection and classification,
which is not well targeted.

[34] 2018
This paper provided a supplement to [33]; it also

covers AVI methods of flat steel products and long
steel products.

[35] 2020

This paper made a detail review of
two-dimensional visual detection methods for flat

steel (including con-casting slabs, hot- and
cold-rolled steel strips) surface defects.

Only two dimensional detection
methods are involved.

4. Evaluation Criterion

In the task of surface defect detection, we usually evaluate the relevant methods quantitatively
according to statistical results, which can be divided into four categories: true positive (TP) indicates
the actual defect is detected as a defect, true negative (TN) means the actual defect is mistakenly
detected as a background, false positive (FP) means the actual background is wrongly detected as a
defect, and false negative (FN) indicates the actual background is detected as a background. Obviously,
in the ideal case, the larger the TP and FN, the better the detection effect, while the larger the TN and
FP, the worse the detection effect. Nine indicators are consequently defined as follows:

True Positive Rate (TPR):

TPR =
TP

TP + FN
(1)

True Negative Rate (TNR):

TNR =
TN

TN + FP
(2)

False Positive Rate (FPR):

FPR =
FP

FP + TN
(3)
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False Negative Rate (FNR):

FNR =
FN

FN + TP
(4)

Precision Rate:
Precision =

TP
TP + FP

(5)

Recall Rate:
Recall =

TP
TP + TN

(6)

Accuracy Rate:

Accuracy =
TP + TN

TP + FP + TN + FN
(7)

G-Mean Value:
G−mean =

√

TPR× TNR (8)

F-Measure Value:
F−measure =

2× Precision×Recall
Precision + Recall

(9)

Among them, G-mean measures the accuracy of these two categories in a combined way, and a
larger G-mean means higher TPR and TNR, which is also the requirement of defect detection application.
On the other hand, F-measure evaluates the overall performance of defect detection based on the
accuracy and recall rate.

5. Taxonomy of Two-Dimension Defect Detection Methods

In this section, the existing two-dimensional vision technologies and models of metal planar
materials surface defect detection methods are comprehensively reviewed, and the discussions and
prospects are also carried out, the overall structure of detection method taxonomy is shown in Figure 3.
Researchers divided the previously proposed methods into different categories according to different
characteristics; however, due to scholars’ subjective differences, these categories also vary with each
individual. For instance, Zhang et al. [17] thought that texture can be divided into statistical texture
and structural texture, and accordingly, the surface defect detection methods based on machine
vision are divided into non-texture surface defect detection and texture surface defect detection,
in which the former includes threshold methods and pyramid methods, and the latter includes
spatial domain methods and frequency domain methods. Yet, based on diverse technology roadmaps,
Wang et al. [36] classified defect detection methods into three categories: classification-, local exception-
and template matching-based. Youkachen et al. [37] proposed that the detection methods can be
classified into a probability model, statistical model, proximity model, deviation model, and network
model. Wu et al. [38] divided the methods into statistics-, structure-, spectrum- and subspace-based
methods. The texture analysis problem is formerly settled by statistical, spectral, and model-based
methods. However, it is noteworthy that the rapid development of deep learning in recent years has
changed this pattern; more and more defects detection methods based on deep learning have been
applied to metal planar materials. Hence, this paper divides the surface defect detection methods
of metal planar materials into four categories: traditional statistical-based methods, spectrum-based
methods, model-based methods, and emerging machine learning-based methods.

5.1. Statistical-Based Approaches

From the perspective of statistical methods, the image texture is regarded as a random phenomenon.
Statistical methods study the regular and periodic distribution of pixel strength by measuring the
statistical characteristics of pixel spatial distribution, so as to detect the defects on the metal planar
materials surface. The following is a brief introduction to five representative statistical approaches and
the comparison of several typical approaches of these five categories is given in Table 2.
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5.1.1. Edge Detection

Edge detection is essentially the detection of grayscale or structural mutation in the tested
image. The difference of gray level between the defect area and the background results in an obvious
edge at the boundary, which can be applied to detect surface defects of metal planar materials.
Owing to the discontinuity of pixels at the edge of the image, researchers usually employ local image
differentiation technology to obtain edge detection operators, and the commonly used edge detection
templates of metal planar materials surface defects include Prewitt [43], Sobel [39,44], and Canny [45]
operators, Figure 4 shows the detection results of these primitive operators on the same defect sample.
These operators also have their own shortcomings, and many researchers have optimized them to
achieve better results. Table 3 presents the traditional versions and the optimization ones, and it makes
a brief comparison of the advantages and disadvantages of these operators.
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Table 2. The comparison of several typical statistical-based surface detection approaches.

Methods Reference Approaches Defect Types Difficulties Advantages Disadvantages

Edge detection [39] Eight directional Sobel operator Backfin defect Random noise
interference

Robust to noise and
protect edge shape well

Only suitable for
low-resolution images

Hough transform [40] Traditional Hough transform Holes, scratches Complex background
and noise interference

Strong
anti-interference ability

Only detects defects
of certain shapes

Gray level statistics [41] Multi-directional
gray fluctuation Multi-type defects Complex texture

characteristics
Suitable for

low-resolution images

Poor timeliness and
cannot automatically
select the threshold

Local binary pattern [6] Adjacent evaluation completed
local binary patterns Multi-type defects Uneven illumination Robust to noise Weak robustness to

scale variation

Co-occurrence matrix [42] Combination of GLCM and HOG Scales Complex texture
characteristics

Extracted the spatial
correlation between

image pixels completely

Computing and
storage requirements

are relatively high
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Table 3. Comparison of several edge detection operators.

Reference Operators Application Advantages Inadequacies

[43]
Prewitt combined
with the Gaussian

smoothing operator
Aluminum strip

Achieves high
robustness to image

non-uniformity

The results are not ideal
for images with mixed

complex noises

[44] Traditional
Sobel operators Steel sheet

Good detection result
for images with

gradual gray variation
and low noise

Has only two templates
for horizontal and

vertical edges detection
respectively,

which has limitations

[39] Eight directional
Sobel operator Rail

Suppresses false edge
detection that is easy

to trigger well

The computational
burden is relatively high

[45] Double-threshold
Canny operator Copper strip Avoid false detection

as far as possible

Poor adaptive ability
makes it easy to blur the

noiseless
region sometimes

In practice, various differential operators are generally used to realize differential operation by
a small region template and image convolution, which is extremely sensitive to noise and uneven
illumination, so image preprocessing is necessary when using differential operators to detect the edge.
Generally speaking, the edge detection operators are deficient in the images with complex gray changes
and rich details, and they are even less ideal once the noise interferes. For this reason, some other
edge detection methods have been proposed continuously. Zhao and Yan et al. [46] proposed a
multi-scale edge detection algorithm based on wavelet transform modulus maxima for the on-line
detection of surface defects of a cold-rolled steel strip, which realizes the edge extraction of strip surface
defects on multiple scales by balancing edge detection accuracy and noise resistance. Furthermore,
edge projection profilometry, a non-contact and non-interference measurement technology, has been
widely applied to macro-scale surface profile detection and sub-millimeter scale feature detection [47],
and it has broad exploration space in the application of surface defect detection of metal planar
materials. The application of these methods in the surface defect detection of metal planar materials
is worth exploring. In addition, the fitting operator first uses the edge parameter model to fit the
local gray value and then carries out edge detection on the fitting parameter model to smooth noise,
which has a certain research value.

5.1.2. Hough Transform

Hough transform (HT) utilizes the global characteristics of the image to detect the target contour
directly and connect the edge pixels to form the region closed boundary. As for the application on
metal planar materials, Sharifzadeh et al. [40] utilized HT to detect holes, scratches, coil breakage,
and corrosion on a cold-rolled steel strip, and Bulnes et al. [48] applied HT to detect the straight line of
a strip edge. Given the shape of the region in advance, HT conduces to obtain the boundary curve and
connect discontinuous boundary pixels, but the uncertainty of the surface defect shape of most metal
planar materials often leads to unsatisfactory detection accuracy. In addition, HT appears to have
strong anti-interference ability in line detection, which helps to suppress the influence of nonlinear
structures such as noise and incomplete edges, but the complexity of HT increases at a certain rate
when encountering massive parameters.

5.1.3. Gray-Level Statistics

Due to the uneven reflection caused by the surface morphology and texture as well as the change
of ambient light, the pixel intensity difference between the defect area and background is quite large.
The probability distribution of pixel intensity is estimated from a set of images without defects, which is
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used to select pixels with outliers as candidate defects pixels. Choi et al. [49] first employed the
spectrum-based method to obtain the distribution estimation of the image background and then locally
refined the defect area to obtain probability estimation, and the detection results were still robust
in the noise environment. In the current industrial plate and strip defect detection tasks, the pixels
in the detected surface image are regarded as the realization of a random process described by a
certain probability distribution. Before defect detection, it is necessary to determine the probability
distribution of pixel intensity in the tested image, and Gaussian (normal) distribution and Weibull
distribution are two common cumulative distribution functions [50]. Zhao et al. [51] assumed that the
background intensity of the aluminum foil image obeys Gaussian distribution, and the distribution
of defect parts was different from the background, which was determined by a chi-square test of
unknown input estimated value. The processing time of each image is less than 52 ms, and the correct
precision rate of 95% is achieved on the production line running at the speed of 5m/s. Wang et al. [36]
studied the statistical characteristics and intensity distribution of a large number of defect-free images
of strip steel and found that the Gaussian function can fit the histogram of defect-free images well.
In addition, the authors also established a unique guiding template, which can accurately locate
defects through subtraction operation, reverse sorting operation, and adaptive threshold determination
between the guide template and the sorted test images (both accuracy and recall rate are higher than
0.95). Fofi et al. [52] put forward a new, nonparametric, and efficient defect detection method based
on Weibull distribution, which calculates two parameters of a Weibull function to fit the distribution
of the image gradient in the local area. This unsupervised method has achieved good test results
in the industrial optical inspection database containing challenging planar materials defect images,
but Weibull is powerless for defects with a gradual pixel intensity or low contrast. Liu et al. [53]
proposed a Haar Weibull variance (HWV) model, in which the Haar feature of the local image block
replaces the feature of local gradient amplitude. At the same time, the detection accuracy rate and
recall rate of this method on the uniform texture defect dataset collected from the actual hot-rolling
mill exceed 96%, and the calculation time on each test image of 864 × 864 pixels is 52 ms. Furthermore,
in order to increase universality, Ma et al. [41] combined the advantages of global and local features and
proposed a neighborhood gray difference method based on multi-directional gray-level fluctuation,
which also achieved higher surface defect detection accuracy.

5.1.4. Local Binary Pattern

Local binary pattern (LBP) marks the difference between the center pixel and its neighborhood
pixel by threshold, and it is commonly used in image local feature comparison. LBP proposed by
Ojala et al. [54] in 1994 is a simple yet effective texture operator, and the coding and sampling rules are
shown in Figure 5. Song et al. [55] summarized texture features based on LBP and their applications
in texture analysis, face recognition, and other fields. In order to overcome the shortcomings of the
initial LBP, such as weak global description ability and noise sensitivity, researchers have constantly
proposed new LBP variants. As shown in Table 4, the comparison of tradition LBP and its variants
applied on detecting defects on metal planar materials is given. For example, for the surface defect
detection of strip steel, Wang et al. [56] proposed a feature extraction method based on LBP that
simultaneously calculates the changes of the horizontal direction, vertical direction, and two diagonal
directions, by which the feature extracted has better visual recognition ability, but this method still
traps in the problem of noise sensitivity. Based on this, some researchers changed the threshold
mechanism for neighborhood evaluation to enhance the anti-noise ability of LBP [6]. However, similar
to CLBP, its scale adaptability is not prominent. Chu et al. [57] proposed a smooth local binary pattern
(SLBP) and combined it with GLCM, which can not only effectively suppress noise but also extract
features with rotation, illumination, and translation invariance. All LBP algorithms focus on one point
when they operate on the test image, but different defects have different sizes, and the corresponding
appropriate scale to describe the texture features is different, so different block sizes should be selected.
Multi-scale local binary mode (MB-LBP) changes the block size to express the defect characteristics
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with an appropriate scale to ensure the detection accuracy [58–60]. It cannot be ignored that the useful
description information in the non-uniform patterns in all these LBP variants has been elided. Luo et al.
creatively used the reverse thinking to explore the non-uniform pattern to supplement the description
information hidden in the uniform pattern in [7] and [61]. As lightweight feature descriptors, LBP and
its variants can be applied to defect detection and classification at the same time, and researchers
should follow and develop LBP variants or LBP-like descriptors with better noise robustness and scale
invariance, which is also in line with the future development trend of AVI.Sensors 2020, 20, x FOR PEER REVIEW 13 of 37 
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Table 4. Comparison of tradition LBP and its variants applied on detecting defects on metal planar materials.

Reference Methods Improvements Advantages Disadvantages

[54] Traditional LBP - Rotation and
gray invariance

Sensitive to scale
variation and

noise interference

[56] Improved LBP
Simultaneously calculate

the changes in
multiple directions

Has better visual
recognition ability

The noise
suppression ability is

not outstanding

[6]
Adjacent evaluation

completed LBP
(AECLBPs)

Changed the threshold
mechanism of CLBP by

taking neighborhood pixels
instead of central pixels

Has high recognition
accuracy and strong

anti-noise ability

Scale adaptability is
not prominent

[60] New multi-scale LBP
(new MB-LBP)

Changed the block size and
replaced the simple average

with the percentage
difference between the

neighborhood block and
the center block

Enhances the
robustness to

scale variation.

The noise
suppression ability is

not outstanding

[7]
Generalized

complete LBP
(GCLBP)

Explore the non-uniform
pattern hidden in the

uniform pattern

With strong
anti-interference

ability and
simple calculation

It cannot suppress
noise and adapt to
scale variation well

at the same time

5.1.5. Co-Occurrence Matrix

Gray level co-occurrence matrix (GLCM) describes the spatial dependence of pixel gray level,
which can be used to extract the feature parameters of image texture on the surface of the plane
workpiece, and these feature parameters are significant information for analyzing image primitives and
arrangement structure. In 1973, Haralick et al. [62] first proposed a GLCM with 14 texture features to
reflect the comprehensive information of image grayscale about direction, adjacent interval, and change
amplitude, which owns powerful automated texture recognition ability. Nevertheless, balancing
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matrix performance and window size is a difficult assignment. In order to overcome the limitation of
GLCM only describing local features, Wang et al. [42] combined the histogram of oriented gradient
(HOG) with GLCM to describe the global and local texture of steel surface images, respectively, but this
method is very sensitive to background noise and non-uniform gray changes, and its calculation
is complex. Tsai et al. [63] take the weighted eigenvalue of GLCM as a single discriminant feature,
thus achieving low computational complexity and strong noise robustness at the same time.

5.2. Spectrum-Based Approaches

Many statistical methods are not reliable in the case of illumination variation and pseudo defects
interference. Fortunately, researchers have found that images are more likely to be separated out
information of different characteristics in the transform domain, and it is possible to find a better
defect detection method than the direct processing method in the pixel domain. Some transformation
domain methods are summarized as bellow and the comparison of several typical approaches of these
categories is given in Table 5.

Table 5. The comparison of several typical spectrum-based surface detection approaches.

Methods Reference Approaches Defect types Difficulties Advantages Disadvantages

Fourier
transform (FT) [64]

Combination of
FT and curvelet

transform

Longitudinal
cracks

Complex
background
information

Invariant to
translation, expansion,

and rotation

Background and
defect information in

frequency domain
can easily be mixed
to cause interference

Gabor filter [65] Traditional
Gabor filter Periodic defect Uneven illumination

Suitable for
high-dimensional

feature space

Difficult to
determine the

optimal filtering
parameters and no
rotation invariance

Wavelet
transform [66]

Undecimated
wavelet

transform

Horizontal
scratch

Pseudo-noise
interference and

uneven illumination

Suitable for
multi-scale image
analysis and can

compress
image effectively

Difficult to select a
proper wavelet base

5.2.1. Fourier Transform

Fourier transform can transform images into the frequency domain and represent texture by
spectral energy or spectrum entropy, which realizes translation invariance, unfolding invariance,
and rotation invariance. The defect images directly obtained from the steel production line normally
contain background noise; therefore, for removing the noise, Yazdchi et al. [67] used the Time Fourier
analysis method to eliminate the black and white vertical strips in the image caused by the steel
plate reflecting the ambient light. By calculating discrete Fourier transform (DFT), Paulraj et al. [68]
converted the vibration signals generated by the pulse signal acting on steel plates into the frequency
domain signals, identified the spectral band, extracted the spectral energy as a feature, and linked
the extracted features with the health state or defect state of the steel plates. In order to detect
the longitudinal cracks on the surface of the continuous casting slab under complex background,
Xu et al. calculated the Fourier amplitude spectrum of each subband in reference [64] and obtained the
translation-invariant characteristics.

5.2.2. Gabor Filter

Fourier transform plays an important role in the frequency domain analysis of the whole time
period, but it lacks the ability to describe the spatial local information of the signal, so most of
the local description information is ignored in the spatial domain. The Gabor filter can effectively
make up this disadvantage by modulating Gaussian kernel function on a sine wave of a specific
frequency in the spatial domain and frequency domain. On the basis of the Gabor filter, Yun et al. [69]
detected thin cracks and corner cracks of coarse steel blocks by minimizing the cost function of
energy separation in defect and non-defect areas, and the detection accuracy was 91.9% and 93.5%,
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respectively. Park et al. [70] used the Gabor filter to filter the hot plate images and enhanced the
stripe pattern on the images by adjusting the frequency and direction of the Gabor filter according
to the stripe mode of the lighting system. Since the layered defects are difficult to identify, Wu [71]
took the Gabor filter method to extract Gabor features from the collected layered defect copper strip
images, and after improving the image contrast, denoising, and binarization, the defect area can
be efficiently detected. The real part and imaginary part of the typical Gabor detector can be used
for image smoothing and edge detection respectively, whose parameters are mainly determined by
the size and direction of defects, and a single Gabor filter is hard to obtain ideal results for mixed
defects of various sizes. Choi et al. [72] proposed a dual Gabor filter combination method based on
morphological feature enhancement to identify small holes in the steel plates. Medina et al. [73] fused
Gabor features with other classic image features and greatly improved the image defect detection
accuracy. In addition, reference [73] also pointed out that real-time performance should be highly
valued in the field application of defect detection in industrial manufacturing, which was realized
in the reference [74] that proposed a detection acceleration method based on Log-Gabor filter banks.
If Gabor parameters are not selected properly, the boundaries between the defects and the background
are not very clear, which will make the defect and background unable to be completely separated.
In view of this situation, Wu adopted a Gabor filter model [75] that is optimal and practical under
uneven illumination conditions for copper surface defect detection. Similarly, to avoid this parameter
selection problem, Tolba et al. [76] developed a new image visual quality measurement method based
on a multi-scale structure similarity index, which not only has scale invariance but also achieves high
detection accuracy and quasi-real-time processing speed. However, due to the non-orthogonality of
Gabor, there is redundancy in different feature components, which leads to the low efficiency of texture
image analysis.

5.2.3. Wavelet Transform

Admittedly, the performance of Fourier transform in local feature analysis is unsatisfactory.
The Gabor filter overcomes the drawback to a limited extent, whereas the immutability of the sliding
window function determines the fixity of the time-frequency resolution. Compared with the Gabor filter,
wavelet transform has a more powerful adaptive ability and is in line with human visual characteristics
ideally, which could not only locomote the time-frequency window but also automatically modify the
window size according to the variation of the window center frequency [77,78]. Figure 6 shows the
schematic diagram of the second-order wavelet decomposition of a two-dimensional image, which is
decomposed from scale j + 1 to scale J and then to scale J - 1. The result of wavelet decomposition
is to divide the image into a collection of sub-images. As a result, to extract information from the
signal effectively and analyze the function or signal, scale transform and shift operation have become a
prominent advantage of the wavelet transform. In the actual production line, the detection of surface
defects of a metal plate and strip is more and more challenging due to the defects such as water drops,
oxide scale, uneven illumination, or adverse environment. Jeon et al. [79] proposed an algorithm based
on the combination of discrete wavelet transform and morphological analysis to detect corner cracks
of an iron oxide scale on the surface of steel billets, which successfully distinguished corner cracks and
false defects. Haar, Daubechies2 (DB2), daubechies4 (DB4), biorthogonal spline (Bior), and multi-class
wavelets are used to extract the features of small size image blocks by Ghorai et al. [5]. The successful
application of the method in the hot strip production line with a rolling speed of 5 m/s completes the
detection task at the fastest cost of 16.4 s, which is shorter than the specified 20 s. In order to overcome
the lack of resistance to uneven light, Zhang et al. [17] detected copper strip surface defects based on
wavelet multivariate statistics. Daubechies wavelet basis is employed to decompose the image scale,
and then Hotelling T2 is applied for the statistical analysis of wavelet coefficients. The application
of this innovative thinking makes the detection performance of the algorithm better than that of the
traditional algorithm. Yan et al. [80] developed a new wavelet image filtering algorithm based on
anisotropic diffusion, which extracted defects reliably from the noise background. Wu et al. [66] focused
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on an undecimated wavelet transform (UDWT) to solve the false alarm problem caused by oxide scale
and scale. Moreover, Song et al. [81] adopted the scattering convolution network (SCN) based on
wavelet transform to improve the adaptability to local and linearized deformation and successfully
applied it to the detection of surface defects of hot-rolled strip steel.
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5.3. Model-Based Approaches

In addition to statistical- and spectrum-based methods, there is a type of approach with a different
work scheme, which is called the model-based approach. The model-based method projects the original
texture distribution of the image block to the low-dimensional distribution through the special structure
model enhanced by parameter learning, so as to detect various defects better. Several model-based
approaches are briefly discussed below and the comparison of several typical approaches of these
categories is given in Table 6.

Table 6. The comparison of several typical model-based surface detection approaches.

Methods Reference Approaches Defect types Difficulties Advantages Disadvantages

Markov random
field [82] Hidden Markov

tree model Multi-type defects
Complex
texture

characteristics

Can reflect the
underlying structure

of the image

Not suitable for
global texture

analysis and small
size defects

Fractal
dimension model [67] Multifractal

decomposition Multi-type defects Irregular defect
shape

Global information
can be represented by

local features

Only applicable to
images with
adaptability

Visual saliency
model [83]

Double
low-rank and

sparse
decomposition

Multi-type defects

Mixed pattern
information and

pseudo-noise
interference

Robust to noise and
uneven illumination

Limitations on
gradient strength or
low contrast defects

5.3.1. Markov Random Field

In 1983, Cross et al. [84] regarded the texture image as a random two-dimensional image field
when they first used the Markov random field (MRF) model. By assuming that the gray level of the
pixel is only related to the gray level of the pixel in the field and using the conditional distribution
description of the local neighborhood as the local feature of the corresponding random field, the spatial
correlation of the image neighborhood pixels is well represented. Furthermore, Gayubo et al. [85] used
MRF to repair surface crack defects of metal planar materials and effectively eliminate pseudo features.
Starting from the physiological structure of the human visual system, Zhang et al. [86] introduced
the observable MRF model into the simulated task-driven attention mechanism and considered the
top–down attention and bottom–up attention to complete surface defect detection. Based on the
assumption that the correlation of wavelet coefficients of strip surface images of different scales meets
the Markov property, Xu et al. [82] proposed an adaptive hidden Markov tree model (CAHMT),
which significantly reduced the detection error rate from 18.8% to 3.7%. Recently, studies show that
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MRF contains great application potential in the detection of industrial surface defects due to its ability
to relate local characteristics with global characteristics and good anti-noise performance.

5.3.2. Fractal Dimension Model

Mathematically speaking, fractals are extremely complex and fragmented geometric figures with
inherent laws, and fractal dimension (FD) has ideal self-similarity—that is, the overall information
can be represented by local features. The grayscale statistics of defect images actually contain
features of FD’s self-similarity; Yazdchi et al. [67] applied the multifractal dimension to separate and
identify the defect areas of five typical defects on the steel surface. Using the fractal characteristics
of digital images, Zhiznyakov et al. [87] detected the defects on the surface of the strips by
representing the internal distribution of self-similarity and the image segment with the highest
similarity. The experimental results were basically consistent with the detection data of nondestructive
testing personnel. Shi and Qiao achieved a new surface fractal dimension, edge circumference
dimension (EPD) [88], and established a window dimension trajectory (EPD-WDL) algorithm based
on EPD, which is used for plate structure irregularity or damage recognition. The experimental results
demonstrated the advantages of the emerging algorithm in defect location and noise anti-interference
ability. However, it should be pointed out that FD is mainly applicable to the detection of defects with
self-similarity, leading to certain limitations in its industrial application.

5.3.3. Visual Saliency Model

Research exhibits that the human visual system keeps the ability to quickly search and locate
objects of interest in the face of natural scenes. By introducing the visual attention mechanism, namely
visual saliency, into computer vision tasks, the difficulties of visual information processing tasks
are significantly abated [89–92]. The visual saliency detection model is a process in which computer
vision algorithms are used to predict which information in an image or video receives more visual
attention. Yu et al. [93] considered the significance of track defects and the regularity of background
when detecting rail surface defects; then, they selected pure phase Fourier transform (POFTs) to
locate defects. Similarly, Song et al. [94] calculated saliency mapping of grayscale images in order
to detect micro-cracks on the surface of steel beams, and they defined central hole-out as a square
template for the convolution of filter operator and binarized saliency mapping. Moreover, the pixel
retained after filtering corresponds to the position of micro-cracks. In order to be self-adaptive to the
shape, size, and scale of the defects, Zhou et al. [83] put forward a surface defect detection model
based on double low-rank and sparse decomposition to detect defects as the saliency part of the
image, which is not only robust to noise and illumination inhomogeneity but also highly adaptive
to the complex and changeable surface defects of a steel plate. After the model was tested on the
Northeastern University (NEU) surface defect dataset, the F measure was 0.606, and the calculation
time on each image was 0.713 s. Yan et al. [95] developed a probabilistic saliency framework based on a
feature enhancement mechanism for realizing robust defect detection on a micro 3D texture surface of
industrial products, which designed the absolute strength deviation and local strength aggregation to
represent the initial saliency of the pixel level while all pixels are classified as defective or non-defective.
To address the issues of intra-class defects having large differences in appearance while inter-class
defects contain similar parts, Song et al. have studied many approaches to combine visual salience
with other ideas, such as Encoder–Decoder Residual network (EDRNet) [96], multiple constraints and
improve texture feature (MCITF) [97], attention mechanism [98], and pyramid feature (PGA-Net) [99],
and the experimental results show that they are both effective and outperform the state-of-the-art
methods. The advantages of introducing visual saliency are mainly manifested in two aspects: first,
limited computing resources are allocated to more important information in images and videos; second,
the results of introducing visual saliency are more in line with people’s visual cognition needs.
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5.3.4. Other Emerging Models

In addition to the above model-based defect detection methods, new model-based methods have
been proposed continuously in recent years. In Table 7, several emerging model-based methods
are summarized. The Gaussian mixture model uses several Gaussian models to characterize the
features of each pixel in the image, updates the mixed Gaussian model after the new image is acquired,
and judges whether it is a defect by matching each pixel of the current image with the updated Gaussian
mixture model, which has the advantages of automated image balance and contrast enhancement [100].
Low-rank sparse representation means finding a suitable dictionary for the information commonly
expressed in dense form, which simplifies the learning task and reduces the complexity of the model.
In recent years, the model based on low-rank sparse representation is also widely used to detect the
surface defects of strip steel, and its effect is particularly outstanding. For the sake of making the
model-based methods more universal, Wang et al. [56] and Liu et al. [36,101] utilized the guidance
information template and proposed methods with preeminent performance. Moreover, Zhou et al. [102]
designed a generic method of automated surface defect detection based on a bilinear model, the method
realized end-to-end weak monitoring detection of the hot-rolled strips, glass bulb, and other materials
by using only small sample data. The model methods are based on the construction model of images
and use the statistics of model parameters as texture features. Further, how to optimize the parameters
to make the model have better image information description performance will be the main content of
model method research.

Table 7. Comparison of several emerging model-based methods. FNR: false negative rate, FPR: false
positive rate, TNR: true negative rate, TPR: true positive rate.

Reference Models Main Content Performance

[103] Gaussian mixture model

The Gaussian mixture model and local and
nonlocal linear discriminant analysis are

combined to solve the problem of
dimension reduction and defects detection

and recognition.

TPR = 0.993

[104] Gaussian mixture
entropy model

Authors used the non-extensive entropy
with Gaussian gain as the regularity index

and utilized this entropy for localizing
texture defects through Gaussian mixture

entropy modeling.

FNR = 0.078

[105] Smooth and sparse
decomposition model

The method exploits regularized
high-dimensional regression to decompose
an image and separate anomalous regions

by solving a large-scale
optimization problem.

FPR = 0.010
FNR = 0.004

Time (sec) = 0.195

[106] Low-rank sparse
reconstruction model

The method detects the defect via low-rank
decomposition with the help of the texture
prior, which is estimated by constructing a

texture prior map on the given images
where higher values indicate a higher

probability of abnormality.

TPR = 0.72
FPR = 0.31

Accuracy = 0.99
Precision = 0.69

F-measure = 0.68
Time (sec) = 0.81

[56]
A concise and compact

guidance
information model

The authors provided a paradigm of
incorporating intrinsic priors of defect

images, which detects the surface defects at
the entity level rather than pixel level.

FPR = 0.01
FNR = 0.02

Time (sec) = 0.945

[36] A guide template model

A guide template is proposed to sort the
gray value of each column pixel of the test

image and use the guide template to
subtract the sorted test image to

locate defects.

Precision = 0.95
Recall = 0.97

F-measure = 0.96
Time (sec) = 0.035
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Table 7. Cont.

Reference Models Main Content Performance

[101] A new self-reference
template-guided model

The authors calculated the statistical
characteristics of a large number of

defect-free images and built a specific
template for each test defect image. Then, it
was based on the self-reference template to

detect defects.

Precision = 0.99
Recall = 0.98

F-measure = 0.98

[102] Bilinear model

The authors designed the dual-vision
geometric group 16 (D-VGG16) as the

feature function of the bilinear model, used
the gradient weighted function class

activation mapping to obtain the heat map
of the original image, and used the

threshold segmentation method to process
the heat map and automatically locate

the defects.

Precision = 0.99

5.4. Machine Learning-Based Approaches

With the rapid development of artificial intelligence technology, widely applied machine learning
has shown good results in various fields. Duan et al. [107] and Zu et al. [108] reviewed the application
of machine learning algorithms in the field of control and intelligent video analysis. The surface
defect detection methods combined with machine learning have been proposed continuously. In this
section, we divide machine learning methods into supervised learning, unsupervised learning,
and semi-supervised learning according to the learning mode. The summaries and discussions will be
given below, and Table 8 lists several typical methods of these three taxonomies.

Table 8. The comparison of several typical machine learning-based surface detection approaches.

Taxonomy Reference Approaches Strengths and Weaknesses

Supervised learning

[109] A double-layer feed-forward neural
network

Quite simple, effective and robust but
dependent on labeled samples, and the

number is limited

[110]
Convolutional neural network (CNN)

and Naive Bayesian data fusion
schemes (NB-CNN)

[111] Improved Fast R-CNN

[112] Classification priority network (CPN)

Unsupervised learning
[113] Clustering Requires no labeled samples for

training but is susceptible to noise and
highly influenced by initial values[37] Convolutional automatic encoder

Semi-supervised learning

[114] Generative adversarial network (GAN)

Requires only a small number of
labeled samples and the result is stable,

but requires many interactions and
reduces efficiency

[8]
Convolutional auto-encoder (CAE)

and semi-supervised GAN
fusion schemes

[115] Convolutional neural network based
on a residual structure

5.4.1. Supervised Learning

The essence of machine learning is to analyze and learn data (features) and then make accurate
decisions or predictions. In 2005, Liu et al. [109] used a double-layer feed-forward neural network
to classify the pixel points of test images into defective and non-defective. The basic idea of this
task is actually to dichotomize whether there are defects or not, so it can still be classified as defect
detection. The convolutional neural network (CNN) is currently the most commonly used deep
learning network based on supervised manner [116,117]. Chen et al. [110] performed crack detection
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based on convolutional neural network (CNN) and Naive Bayesian data fusion schemes, which are
called NB-CNN. Considering the diversity of defect shapes, Zhou et al. [111] improved the Fast
R-CNN, selected the K-mean algorithm, generated the length–width ratio of the anchor box according
to the size of the “ground truth”, and fused the feature matrix with different receiving domains.
This method possesses a better capability of microscopic defect detection, and it can still accurately
identify the defect type when the light changes, which is easier to be transplanted to the actual industrial
application. Subsequently, with the development and improvement of support vector machines (SVM),
this generalized linear classifier, which supports data binary classification commendably, is often widely
used to distinguish between defective and non-defective regions [118,119]. Ghorai et al. [5] believe that
the performance of classifiers in defect detection depends largely on the combination of features and
classifiers. For this reason, they permuted and combined different feature sets (Haar, DB2, DB4) and
different classifiers (SVM and vector-valued regularized kernel function approximation (VVRKFA))
and observe the defect detection results. The experiments show that the performance of VVRKFA
with first-level Haar characteristics ranks first among all feature classifier combinations. Different
from the above defect detection methods, He and Xu et al. [112] reversed the general order of ROI
extraction and object classification, and they proposed a new object detection framework: classification
Priority Network (CPN). The test images were first classified by multiple sets of convolutional neural
networks (MG-CNN), and more sparse and reasonable feature groups were output. According to the
classification results, CPN regressed defect bounding boxes from feature groups that might contain
defects, which were tested on steel plates and strips respectively, and achieved detection rates of 94%
and 96%. However, in the real-world industrial production line, to collect and label a large number
of image samples is impractical, and the resulting image samples are more unlabeled. In order to
achieve satisfactory results with a small number of training samples, data augmentation as well as
transfer learning are the key ingredients for training networks. For instance, Yun et al. [120] used
the conditional convolutional variational autoencoder (CCVAE) as the data augmentation method,
and various defect images are generated by learning the distribution of the given defect data using
CCVAE. The experiments showed that in the case of data augmentation using CCVAE, the accuracy
could increase from 96.27% to 99.69%, and the F-measure also increased from 96.27% to 99.71%.
By applying transfer learning, Neuhauser et al. [121] used the network weights pre-trained on
ImageNet as initial weights for the learning procedure; they leveraged transfer learning to accelerate
the training process and to enhance the performance of detecting defects on extruded aluminum.
The underlying premise of transfer learning is that the feature extraction function of the network can
be extended; if the similarity between the source domain and target domain is not enough, the result
will not be ideal.

5.4.2. Unsupervised Learning

In the field of machine learning, using unlabeled image samples to detect surface defects of strip
steel is called unsupervised learning, which aims to find sample groups with similar information in
input data, so it is also called clustering. Based on the similarity between pixels, the clustering method
mines the hidden information in texture images and performs clustering based on the features of pixel
points. Then, defect detection is realized by the multi-classification method. The clustering method
mines the hidden information in the texture image according to the similarity between the image pixels.
In detail, clustering is based on the characteristics of pixels, and then defect detection is realized by
the multi-classification method. Bulnes et al. [113] analyzed the characteristics of each defect (such as
location and shape) and carried out clustering so as to detect the periodically occurring defects with
good noise robustness. However, random industrial liquids and other interference factors increase
the difficulty of detection. Zhao et al. [122] developed a two-stage marking technology based on
superpixels, which firstly aggregated the pixels into superpixels and then aggregated the superpixels
into subregions. The boundary of the superpixel is iteratively updated until pixels with similar visual
perception properties are aggregated into a superpixel. Then, the author created a method called
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“L-nearest neighbor” to combine the superpixels and the superpixels whose difference values are within
the set threshold into subregions. After several rounds of evolution, the subregions will converge
to the defect regions. The accuracy rate of 91% in the cold-rolled strip production line proves the
detection capability of this method.

For a long time, Auto-encoder (AE) has represented strong competitiveness due to its potential to
solve the above problems, but the redundant parameters limit the application of the AE method in
2D image data. To break through this limitation, Tao et al. [123] established a cascaded autoencoder
(CASAE) framework for connecting the two subtasks of defect detection and classification in complex
industrial environments. In this framework design, the detection task binaries the CASAE prediction
results through the threshold module, and then the defect area detector extracts and trims the defect
area to obtain the accurate defect contour. Furthermore, Youkachen et al. [37] thought CASAE based
on supervised learning would spend a long time in the labeling process, so they creatively built
a convolutional automated encoder (CAE) based on unsupervised learning to reconstruct defect
test images and then used the reconstructed images to highlight shape features through a simple
post-processing algorithm. However, due to the inherent nature of the clustering method, such a
method is more suitable for defect classification than defect detection, so it is often used as a major tool
for classification. The classification performance of unsupervised learning methods is exceptionally
dependent on the quality of the input images and the initial parameter design of the classification
model. The present instability of unsupervised learning-based classification methods shows some
margins of this research stream.

5.4.3. Semi-Supervised Learning

Compared with the above two categories, the semi-supervised learning method chooses a
more compromised route by using both limited labeled samples and a large number of unlabeled
samples. The generative adversarial network (GAN) [124], consisting of two deep neural networks
(i.e., a generator and discriminator), is a typical semi-supervised learning method. The generator
continuously generates new images and feeds them to the discriminator. The discriminator, acting as a
binary classifier, is used to distinguish the real images from the generated images. GANs are usually
applied to generate defective images to expand the limit of defect samples [114,125]. For instance,
Di et al. [8] proposed a semi-supervised learning method based on a convolutional auto-encoder (CAE)
and semi-supervised GAN to classify surface defects of steel. CAE was trained through unlabeled data
and used as a feature extractor, while GAN was introduced for semi-supervised learning to further
improve the generalization ability. In order to increase the adaptability of semi-supervised learning
and obtain the best semi-supervised learning algorithm, Berthelot et al. [126] unified the currently
dominant semi-supervised learning methods and produced a new algorithm, MixMatch, that guesses
low-entropy labels for data-augmented unlabeled examples and mixes labeled and unlabeled data
using MixUp. MixMatch has obtained state-of-the-art results by a large margin across many datasets
and labeled data amounts. Following the MixMatch rules to conduct sophisticated data augmentation,
Zhang et al. [115] introduce a new loss function calculation method and propose a new convolutional
neural network based on a residual structure to achieve accurate defect detection. Semi-supervised
learning methods combine the prior two methods and use labeled samples and a large number of
unlabeled samples to train classifiers. The results obtained by a small sample set achieve a similar
performance as those obtained by a large training set.

5.5. Brief Summary

To separate the abnormal areas from the image background of different complexity is the significant
purpose of defect detection. In this section, the algorithms are divided into four detection methods
based on statistical, spectrum, model, and machine learning according to their characteristics, and the
existing technologies of each method are reviewed and discussed. In addition, the fundamental
significance of online defect detection lies in the rapid and accurate detection of abnormal areas on
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the surface of high-speed moving targets, and the high-performance real-time and anti-interference
detection algorithm has always been the target of defect detection. Most of the strip surface defect
detection algorithms outlined in this section are tested on exposed offline databases. For example, in the
literature [127], Song et al. applied an end-to-end defect detection network (DDN), which combined
ResNet and RPN for accurate defect detection and location and tested them on the database NEU defect
detection dataset (NEU-DET). The experiment indicates that the mean average precision of DDN for
defect detection task reaches 82.3. Liu et al. [53] put forward a Haar–Weibull-Variance (HWV) model
detection method; they conducted the experiment on the database containing 100,000 defect images
and reached the accuracy rate of 96.2% and the calculation time of 52 ms on each 864 × 864 test image,
which proves the high calculation efficiency of this method. In particular, the surface defect detection
based on the offline databases is much less difficult in terms of stability, robustness, and real-time
performance than the surface defect detection based on the actual production line; consequently,
the actual application performance of the algorithm cannot be truly and comprehensively demonstrated.

It is noteworthy that in recent years, the surface defect detection literature of plate and strip steel
shows that the research trend has gradually moved from purely theoretical research to field application.
For example, Ghorai et al. [5] developed a set of automated visual detection systems for real-time
surface image acquisition to detect surface defects of hot-rolled strip steel. The system is capable of
surface defect detection for hot-rolled strip with a running speed of 5 m/s, and the testing time of
200 images is only 16.4 s, which is shorter than the industry regulation of 20 seconds. Luo et al. [9]
also developed an embedded algorithm hardware-accelerated automated optical detection system for
the surface defect detection task of hot-rolled strip steel and tested it on 18,071 continuous images.
The accuracy rate of 92.11% and the processing time of each image is 1.180 s proved that the system
meets the requirement of the maximum rolling speed of 20 m/s in the industrial field. The harsh
industrial environment (such as high temperature, shaking, dust, water drops, etc.) brings a great
challenge to defect detection in the actual industrial production line. The high-speed rolling process
requires not only high accuracy but also calculation time. To better illustrate the characteristics of each
taxonomy, Tables 2–8 list typical examples of each type of taxonomy and compare their advantages
and disadvantages.

The surface defect detection research based on the existing offline database tests the performance
of the new proposed algorithm easily and accelerate the iterative updating speed of the theoretical
algorithm, and at the same time, rich and diversified data are needed to ensure the overall performance
of the algorithm. Unfortunately, the number and variety of samples contained in the steel surface defect
dataset are far from sufficient, and there are few publicly available steels surface defect texture databases.
Therefore, because there is no uniform database standard, the methods of many articles cannot be
compared fairly. The widely used steel surface defect databases include NEU [81], Dragon [11],
and RSDDs [128].

(1) NEU database
The NEU database is a public database of surface defects of the hot-rolled strips collected by the

Northeastern University research team. Six typical surface defects of the hot-rolled strips are collected,
namely, roll-in scale (RS), patch (Pa), crack (Cr), pitting surface (PS), inclusion (In), and scratch (Sc).
The database includes 1800 gray images (300 samples for each of 6 typical surface defects). Figure 7 is
an example of some drawings of the NEU database.

(2) Dragon database
Dragon contains 18 categories of defects obtained from an actual hot rolling production line,

and each class contains 300 non-overlapping samples. Figure 8 shows a partial pattern example of the
Dragon database.

(3) RSDDs database
RSDDs consists of two types of datasets: the first type is the type I RSDDs dataset captured from

the fast track, which contains 67 challenging images. The second is the TYPE II RSDDs dataset, which is
captured from common heavy-duty tracks and contains 128 challenging images. Each image from both
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datasets contains at least one defect and includes a complex background and various noise. Figure 9
shows a partial sample of the RSDDs database.Sensors 2020, 20, x FOR PEER REVIEW 23 of 37 
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6. Taxonomy of Three-Dimension Defect Detection Methods

Two-dimensional detection methods mainly rely on gray images to obtain the surface morphology
of flat metal and employ gray field change to realize surface defect detection. Due to the lack of
height/depth information, these kinds of methods are frequently susceptible to natural light, shadow,
water, and oil stains, resulting in false defects. In spite of this, the surface defects of metal planar
materials are generally accompanied by height anomalies, such as pits, bumps, depressions, and so on.
High reflective spots and dark areas appear in the two-dimensional image after illumination, which is
unconducive to the accurate identification of defects. Therefore, the defect detection methods led
by 3D imaging technology or 3D reconstruction technology attract wide attention. Making full use
of the gray, elevation, and geometric characteristics of the defects, new detection techniques are the
development trend of the surface defect detection technology of metal planar materials.

Three-dimensional (3D) data measurement is commonly divided into contact measurement
and non-contact measurement. The former shows the characteristics of high destructiveness,
high cost, and slow detection speed, and the latter mainly includes penetration measurement and
reflection measurement. Penetrating measurement of radioactive substances causes potential hazards.
Consequently, the non-contact and high-security advantages of reflection-type measurement turn into
the choice of most people, and outstanding results have been obtained in the surface detection of 3D
objects. Non-optical measurement is a type of reflection measurement, from early radar and sonar
to ultrasonic imaging [129,130], magnetic imaging [131,132], pulsed eddy current imaging [133–136],
and so on. Non-optical measurement needs to be close to the detected surface and generates blind
spots if the rough surface or noise interference occurs. Another momentous reflective measurement
is an optical measurement, which is also a 3D technique that will be reviewed in detail in this paper.
The number of literatures on 3D detection methods of metal planar materials surface defects is limited,
and researchers have different opinions on the classification of optical 3D measurement methods.
Pernkopf and O’Leary [137] summed up two range imaging methods: light sectioning and photometric
stereo. The former uses projected light to calculate distance, while the latter obtains static scene
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distance from several grayscale intensity images. Koch et al. [138] divided existing 3D detection
research into (1) 3D reconstruction methods using 3D laser scanning and stereo vision and (2) target
reconstruction methods based on vibration using acceleration sensors. Song et al. [139] believed 3D
information acquisition could be divided into two types: passive stereo vision and active structured
light. Passive stereo vision is well applied to areas with large texture variation. Active structured light
replaces a camera with a projector and actively projects the required texture on the object surface for
stereo matching, which has high spatial resolution and accuracy. According to the method of 3D data
measurement, 3D detection technology is divided into four types in this paper: stereoscopic vision
measurement, photometric stereo, laser scanner measurement, and structural light measurement,
the comparison of these four measurement methods is given in Table 9.

Table 9. The comparison of three-dimensional detection approaches.

Approaches Reference Advantage Disadvantage

Stereoscopic vision [140–144]
Suitable for areas with large texture
variations and is very sensitive to

normal surface disturbances

Depends on the intrinsic
texture information of the

object surface

Photometric stereo [145,146]

There is no need to know the precise
3D relationship between the test

object and the camera, or to use two
cameras to capture 3D data

Limitations of detecting
non-Lambertian surfaces such

as glossy metals

Laser scanner [147–153]
Reproduce the surface shape so that it

is non-contact, non-destructive,
and has high precision

The equipment cost is high and
the calculation amount is large

Structural light [154–159] High spatial resolution and accuracy Complex calculation and
difficult to calibrate accurately

6.1. Stereoscopic Vision Measurement Methods

Non-contact, non-destructive measurement, high precision, high speed, and high reliability are
major advantages of the two-dimensional vision system, as an advanced stage of a 2D vision system,
passive stereo vision system uses multi-view 2D images for 3D reconstruction; that is, it calculates the
relationship between the camera image coordinate system and world coordinate system, and then
uses the information in multiple 2D images to reconstruct 3D information. As shown in Figure 10,
with two cameras (or more) we can infer depth, by means of triangulation, if we are able to find
corresponding (homologous) points in the two images. Monocular, binocular, and multilocular 3D
vision measurement systems are developed to meet different application requirements. Wen and
Song et al. [140] used binocular stereo vision camera to obtain original gray images and depth images
of a steel surface with complex background, false ROI interference, and weak contrast edge, and they
established a detection method that fuses gray images and 3D depth information. The superpixel
segmentation method maintains the target boundary and accuracy, the compact measurement method
of fusion depth information suppresses the clutter background, and the ROI seed extraction and
local contrast operation are utilized to obtain a fine significant ROI image. The experimental results
show that the running time of this method for a test image is shorter than that of other methods that
fuse the 2D image and 3D depth information. Using robots to shoot from multiple perspectives and
template matching technology to detect local defects of 3D objects [141,142] is also a general method.
For example, Tsai et al. [141] first acquired images of each perspective of a defect-free object, stored
them as comparison templates, compared each acquired image with the corresponding template image,
and then used template matching technology to identify the local defects of two comparison images in
each perspective. For quickly calculating the large dataset of a 3D point cloud, Enzberg et al. [143]
provided a reference surface to measure the measured surface with a model-based surface quality
detection method, compared its 3D coordinate data with reference data, and accelerated the calculation
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of 3D point cloud data through dual-eigenvalue decomposition. Niu and Song et al. [144] proposed an
unsupervised stereoscopic saliency detection method based on a binocular line-scanning system to
detect rail surface defects in complex background information. The experimental results on dataset
(RSDDs-113) presented that precision is 0.95, recall is 0.81, and F-measure is 87.16. Stereoscopic vision
measurement methods can be well applied to areas with large texture changes and are highly sensitive
to normal surface disturbances.
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6.2. Photometric Stereo Measurement Methods

Photometric stereo refers to a method of estimating the surface normal by using multi-intensity
images obtained with different lighting conditions. Figure 11 shows a schematic diagram of the classic
photometric stereo principle. The key components include three light sources and a camera. The object
to be measured is placed in the field of view of the light source and the camera. The three light sources
illuminate the object in turn, and the camera collects three images respectively. Ren et al. [145] used
a single camera to carry out three-dimensional reconstruction of multiple images under multiple
illumination directions to detect the defects on the smooth steel surface. The camera captures the
image of the target surface under different directions, and the surface normals of each point on the
target surface are restored by using the pixel values under different light directions, which detects a
defect with a diameter of 0.87 mm on the smooth steel surface, which is equivalent to 9 pixels.

Sensors 2020, 20, x FOR PEER REVIEW 25 of 37 

 

precision is 0.95, recall is 0.81, and F-measure is 87.16. Stereoscopic vision measurement methods can 
be well applied to areas with large texture changes and are highly sensitive to normal surface 
disturbances. 

p≡q

π1 

P

Q

O1

q’

p’

O2

View 1 View 2

π2 

 
Figure 10. Schematic diagram of stereoscopic vision. P and Q are two objects with different heights; 
they are imaged at the same point on plane π1 and at different two points on plane π2. 

6.2. Photometric Stereo Measurement Methods 

Photometric stereo refers to a method of estimating the surface normal by using multi-intensity 
images obtained with different lighting conditions. Figure 11 shows a schematic diagram of the 
classic photometric stereo principle. The key components include three light sources and a camera. 
The object to be measured is placed in the field of view of the light source and the camera. The three 
light sources illuminate the object in turn, and the camera collects three images respectively. Ren et 
al. [145] used a single camera to carry out three-dimensional reconstruction of multiple images 
under multiple illumination directions to detect the defects on the smooth steel surface. The camera 
captures the image of the target surface under different directions, and the surface normals of each 
point on the target surface are restored by using the pixel values under different light directions, 
which detects a defect with a diameter of 0.87 mm on the smooth steel surface, which is equivalent to 
9 pixels. 

Camera

Object surface

l1
l2

l3
n

 
Figure 11. A schematic diagram of the classic photometric stereo measurement with three light 
sources and a camera. 

Kang et al. [146] developed a plane steel surface detection system based on multispectral 
photometric stereo vision technology. The surface data were captured by a multispectral camera and 
an illumination system with different color channels. The surface was reconstructed by integrating 
the estimated gradient field so that the 3D shape information of the surface could be obtained, and 
defects with a depth of 0.025–0.48 mm could be detected. The system is first implemented in a 

Figure 11. A schematic diagram of the classic photometric stereo measurement with three light sources
and a camera.

Kang et al. [146] developed a plane steel surface detection system based on multispectral
photometric stereo vision technology. The surface data were captured by a multispectral camera and
an illumination system with different color channels. The surface was reconstructed by integrating the
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estimated gradient field so that the 3D shape information of the surface could be obtained, and defects
with a depth of 0.025–0.48 mm could be detected. The system is first implemented in a three-channel
structure and then expanded to a six-channel system, where more than three light sources are used to
increase the flexibility of practical applications; for example, highlighting or shading can be ignored
when measuring. There is no need for photometric stereo measurement methods to know the precise
3D relationship between the test object and the camera or to use two cameras to capture 3D data.

6.3. Laser Scanner Measurement Method

Based on triangulation, the laser scanner works by projecting laser points (lines) onto an object
and capturing its reflection with a sensor (camera). Millions of 3D point cloud data could be accurately
captured to represent the surface of the target object. The working principle of triangulation is shown
in Figure 12. Erkal and Hajjar [147] use a camera-integrated laser scanner to capture building surface
point clouds, extract local surface features and color information, and more accurately detect cracks,
corrosion, and other related defects. Reyno et al. [148] applied 3D laser scanning technology to obtain
the geometric point cloud data corresponding to the surface of the object being scanned. The laser
point, camera, and laser transmitter formed a triangle, so as to carry out the damage assessment of the
aircraft panel. The laser scanner is one of the more common measurement tools in the application field
of 3D surface detection of metal planar materials [149–153]. Landstorm and Thurley [150] developed a
crack detection strategy for steel plates with 3D surface contour data collected by laser triangulation.
The system first uses mathematical morphology to segment the data and then assigns a crack probability
to the structural connectivity area by the logistic regression model, which detects 70% of the total
length of the manually labeled cracks in the connectivity area. Zhao et al. [151] established a 3D
quantitative detection method for surface defects of continuous casting slab using an optimized laser
fringe imaging algorithm by using a laser beam and two-beam array charge-coupled cameras (CCD).
By comparing CCD camera and image data fusion technology, the optimal imaging method of laser
fringe projection on the hot plates surface was studied, and the detection accuracy of 3D shape defects
was improved. In order to overcome the weakness that a laser scanner is vulnerable to changes in
the surface properties of the object under test, Martin et al. [152] built an intelligent visual detection
system based on laser diode diffuse lighting to detect the iron scale defects on the surface of stainless
steel. The vision system illuminates the entire detection area with diffuse illumination, shining a
high-intensity beam on the surface. The diffuse laser illumination eliminates the shadow generated by
the surface roughness in the acquired image, solves the problem of high reflectivity on the surface,
and is able to find defects with a diameter of 50 microns on the surface of the stainless steel moving
rapidly at 1 m/s. The millions of data points captured by 3D laser scanners are called high-density
data. Generalized likelihood ratio (GLR) technology to automatically identify the potential failure of a
high-density dataset is most likely related to the position, size, and shape; Wells et al. [153] optimized
the generalized likelihood ratio (AGLR) technology to identify the high-density data that are most
likely to contain the fault data, which converts the current special visual inspection method to one that
is statistically viable to automatically check the solution. The method can almost completely reflect the
external geometry of the tested object, and the false alarm rate is only 4.4%. Laser scanners reproduce
surface shapes without contact, damage, and accuracy, but there are also challenges such as high
equipment cost, large computation, and difficulty in balancing resolution and acquisition speed.

6.4. Structural Light Measurement Methods

Different from the single or multiple cameras and laser scanners of the stereo vision method,
the active structured light method uses an optical projector to project a certain pattern of structured
light onto the surface of an object and then forms a three-dimensional image modulated by the surface
shape of the object to be measured. The main principle is shown in Figure 13; a sinusoidal fringe
is generated by computer, the sinusoidal fringe is projected to the object to be measured through
a projection device, the camera is used to capture the degree of bending of the fringe modulated
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by the object, and the phase is obtained by demodulating the curved fringe, which is followed by
converting the phase into the height of the whole field. Structural optical scanning systems have been
applied to many aspects of surface defect detection. For example, Zhang et al. [154] identified the
stem and calyx based on the change of image pattern of infrared linear array structural light when it
was projected on an apple. Chu et al. [155] used laser projectors to generate a kind of structural light,
which was projected onto the welded surface. By calibrating the spatial relationship between the laser
projector and the camera, the 3D weld surface was reconstructed. Structured light can be divided
into many types; its essence is to structure light. The simple structure includes point structure light,
line structure light [156,157], and simple surface structure light; the more complicated structure rises to
the coding of the optical pattern. Cao et al. [157] collected the point cloud pattern by high-precession
structured laser sensors based on line-structured light, and it can achieve megapixel resolution to meet
the precision requirement for rail surface defect detection. Grating projection technology is a kind of
widely used structured light that actually belongs to the generalized surface structured light. Grating
projection technology is actually a kind of surface structured light in a broad sense, which generates
sinusoidal fringe through computer programming, projects the sinusoidal fringe to the measured
object through the projection device, uses a CCD camera to shoot the bending degree of the fringe
adjusted by the object, demodulates the bending fringe to get the phase, and then converts the phase
to the height of the whole field [158,159]. Although the active structured light approach contains
many advantages (for example, high spatial resolution and accuracy), it embodies several problems:
Firstly, active structured light usually requires spatial or temporal phase unwrapping, which increases
the computational complexity and reduces the detection speed. Secondly, the projector is accurately
calibrated by an active structured light method. There are many different kinds of projector calibration
methods, but accurate projector calibration is still very difficult. In addition, active structured light
methods usually need to calibrate the nonlinear projection and compensate for the errors associated
with it.
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6.5. Brief Summary

The stereo vision methods rely on the intrinsic texture information of the object surface; photometric
stereo methods have the limitations of detection of non-Lambertian surfaces; laser scanning equipment
shows the high cost and a large amount of computation; they are unsuitable for on-line or real-time
monitoring of metal planar materials. The projector calibration of the structured light method is
complicated and easy to cause errors. In order to solve the above problems, Wen and Song tried to
combine the stereo vision method and structural light method to detect the surface height information
of high-temperature steel products. They designed a set of static object 3D detection systems [160]
and established the mapping from the 3D point of the detection surface to the camera coordinate
system through camera calibration and a stereo vision principle by using structural light technology,
and they obtained the surface sample height information by using stereo correction and cylinder
coding methods. The actual experimental results of this method are very close to the real height,
with a minimum error of 1 mm and an average error of less than 2 mm. In addition, the hexagon grid
census (Hg census) transform is proposed to improve the robustness of stereo matching. In order to
avoid phase unrolling, a passive stereoscopic parallax map was used as the constraint condition to
achieve phase matching. Meanwhile, the local phase matching and subpixel parallax thinning method
were proposed to obtain higher measurement accuracy [139]. Due to the special surface information
acquisition mechanism of the 3D detection method, compared with the 2D detection method, height
information is obtained, so defects that cannot be detected by the 2D detection method can be detected
and the detection accuracy can be improved. However, 3D information measurement equipment is
highly complex, and the magnitude of 3D point cloud data collected is extremely high. Therefore, it is
urgent to develop 3D computational imaging technology with high-speed data concurrency and 3D
visual detection algorithm with strong timeliness.

7. Summary and Discussion

From simple binary image processing to high-resolution multi-gray image processing, and from
general 2D information processing to 3D vision processing, machine vision, as an emerging and
rapidly developing discipline, has moved from laboratory research to practical application. Different
from previous reviews, this paper focuses on planar metal materials with similar quality control
requirements, and it is the first one to comprehensively summarize defect detection methods from
two-dimensional and three-dimensional aspects. This paper summarizes the research results of the
automated visual defect detection of metal plates and strip surfaces in the last 30 years, most of which
were published in last 10 years. In Sections 5 and 6, four kinds of 2D detection technologies and
four kinds of 3D detection methods are reviewed respectively. The learning methods, theoretical
discussion, and application development of surface defect detection of industrial metal planar materials
is introduced and summarized. Based on the inspiration from the above literature and the accumulation
of the author’s experience in developing the surface defect detection system [9], the challenges and
research suggestions that still exist in this field are listed as follows.

(1) Compared with other surface defect detection tasks based on computer vision, in real-world
metal planar materials industrial manufacturing, in addition to the balance between detection accuracy
and computational efficiency, the more important thing is to ensure the stability of the detection
algorithm, especially the robustness to environmental changes. In addition, it is also necessary to have
the ability to detect the diversity of defects, especially deformation defects without edge features.

(2) The rapidity and generality of the algorithm are two key problems in the application of
a real-world AVI system. As for the algorithm itself, compared with a complex learning network,
online surface defect detection, as an unsupervised real-time detection task, is more inclined to use a
lightweight algorithm, while machine learning or a deep network is more suitable for dealing with
complex multi-class classification problems with rich datasets (namely, defect classification). As far
as hardware is concerned, the concept of edge computing can be used for terminal acceleration;
for example, application specific integrated circuit (ASIC), similar to field programmable gate array
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(FPGA), can be placed in the front end of image acquisition to complete the preprocessing of original
data in real time, so as to prevent the complicated information from affecting the subsequent processing.

(3) Noise smoothing and edge enhancement are important preprocessing operations for defect
detection, which should be arranged as close as possible to the sensor side of imaging. In addition,
the most effective denoising method of the AVI system is to make the image as clean as possible through
some feasible engineering measures. For example, a blower or an ion air gun should be installed on
the lens side and the surface side of the target to remove water drops, dust, fibers, etc. on the optical
surface caused by the harsh industrial environment, and a light source with uniform and moderate
brightness should be applied on the target side to overcome the influence of uneven light caused by
the variation of illumination during the day and night. In addition, some cost-effective measures
of cooling configuration and security protection for imaging devices are also of great significance
for avoiding imaging degeneration caused by harsh environments such as high-temperature and
mechanical vibration.

(4) The latest machine learning technology provides a new way to handle this problem of data
imbalance. For example, the GAN has achieved great success in generating defect samples. To avoid
the problem of poor interpretability in a GAN, it can be connected with reinforcement learning, and a
GAN can be applied to reverse reinforcement learning and simulation learning to improve the efficiency
of the reinforcement learning, the ability to transform images and texts, and the ability of machines to
understand. Since researchers conduct experiments with different methods on different datasets, it is
difficult to fairly compare the detection performance of different technologies. Inspired by the research
in the field of biometric identification, it will be a long-term work in this field to construct a rich and
diversified database of surface defects of metal planar materials.

(5) The automated visual detection of metal planar materials surface defects should strive to adapt
to the new adjustment of world industrial competition pattern and seize the commanding heights of
future industrial competition. Efforts should be made to promote the deep integration and organic
collaboration of multiple technologies, and the study of metal planar materials surface defect detection
algorithms and instruments with high detection accuracy, strong real-time performance, and high
stability play an important role in the automated control and whole process management of surface
quality of industrial metal planar materials.
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