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Abstract: In the inland areas of Antarctica, the establishment of an unmanned automatic observation
support system is an urgent problem and challenge. This article introduces the development and
application of an unmanned control system suitable for inland Antarctica. The system is called RIOD
(Remote Control, Image Acquisition, Operation Maintenance, and Document Management System)
for short. At the beginning of this research project, a mathematical model of heat conduction in
the surface observation chamber was established, and the control strategy was determined through
mathematical relationships and field experiments. Based on the analysis of local meteorological data,
various neural network models are compared, and the training model with the smallest error is used
to predict the future ambient temperature. Moreover, the future temperature is substituted into
the mathematical model of thermal conductivity to obtain the input value of the next input power,
to formulate the operation strategy for the system. This method maintains the regular operation
of the sensor while reducing energy consumption. The RIOD system has been deployed in the
Tai-Shan camp in China’s Antarctic inland inspection route. The application results 4.5 months
after deployment show that the RIOD system can maintain stable operation at lower temperatures.
This technology solves the demand for unmanned high-altitude physical observation or astronomical
observation stations in inland areas.

Keywords: unattended; machine learning; long- and short-term memory; lumped parameter method

1. Introduction

The purpose of this research project is to combine the heat transfer modelling analysis and the
neural network prediction model algorithm to provide environmental prediction and support strategies
to support the work of automated observation equipment related to space physics in the region. So far,
China has established five research camps in Antarctica, of which the Tai-Shan field in the Princess
Elizabeth area is the only inland summer camp. Since Tai-Shan Camp is located inland in Antarctica,
520 kilometres from the coastline, the energy demand and fuel transportation costs are higher than
other coastal checkpoints. In the research process of the Antarctic continent, including glaciology,
geophysics, astronomy, and other disciplines, an essential reason for its progress is the improvement of
data quality. The need for more and better measurements along with advances in technical capabilities
is driving the ambition to deploy arrays of autonomous geophysical instrument platforms in remote
regions. Researchers have an even more urgent need for observations in the Antarctic region. Due to
remote areas, lack of infrastructure, and harsh environments, the current measurement is sparse [1].
The activity of the sun has always been very closely related to the change in the earth’s natural
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environment. The magnetic interaction between the high-speed solar particle flow (solar wind) and
the earth’s magnetosphere is a vital manifestation of the sun’s influence on the ground environment.
These interactions can initiate geomagnetic disturbances resulting in geomagnetic storms at Earth
that may have an impact on technology and endanger human activity and health [2]. This design
serves the physical observation of Earth space. The data obtained during the observation process
include aurora, ionosphere, and geomagnetism, which can reflect the activities of the sun and its
impact on the earth. There are natural, high-quality observation conditions in the Antarctic inland area,
and the development of related physical research in this area is less disturbed by human activities.
Taking neutrino detection as an example, the Antarctic is an excellent place for neutrino detection on
Earth. The Ice Cube project transforms 1 km3 of ultra-transparent Antarctic ice into a particle detector.
A total of 5160 optical sensors is embedded into a gigaton of Antarctic ice to detect the Cherenkov light
emitted by secondary particles produced when neutrinos interact with nuclei in the ice [3]. However,
the premise of this research is to carry out under the circumstances of someone on duty. For some
actions that require interannual observations or observations in an unmanned area in the polar night,
the unattended remote measurement and control system that replaces people is particularly important.
Besides, in the perennial unmanned area, the Antarctic inland environment is more special than other
regions, and the unique environment creates excellent observation conditions. Dome A, the summit
of the Antarctic Plateau, proved to be an excellent location for optical, near-infrared, and terahertz
astronomical observations. Gattini is a wide-field camera installed on the PLATO instrument module
as part of the Chinese-led traverse to Dome A in 2009 January [4]. No matter what the system is, we will
face the same problem in the interior of Antarctica: the observation in the interior of Antarctica is carried
out by automated observation equipment and automated sensors. Moreover, space observations and
astronomical observations involve more sophisticated equipment, and the environmental conditions
required are different from those of conventional sensors. In the application process, several factors
make the deployment of a network particularly complicated; these include difficulties of physical
access, extreme climate conditions, potential vandalism, as well as data quality and remote data access
in real-time [5]. The system is very stable in the Dome A area. In this research design, Professor Ashley’s
excellent field plan was also borrowed. Because of Ashley’s pioneering experiments, we can learn from
the advantages of many of its programs. Different from that scheme, the system designed in this paper
introduces an unmanned large-scale new energy network in the inland, and the environmental forecast
and support strategy of the observation cabin combined with an artificial intelligence algorithm.

The observation plan was specially designed during the research project under the framework of
the Antarctic High-Altitude Physics Research Program of the China Polar Research Center and has
been applied to high-altitude physical observations at the Tai-Shan Camp (73◦51′ S, 76◦58′ E) in the
Princess Elizabeth area.

The main goal of this paper is to explore the realization of an unmanned platform for safeguarding
the sensing observation system in the Antarctic region. The second section introduces the structure of
the entire system. The third section analyzes the surface weather of the Princess area Elizabeth and
establishes the heat transfer lumped parameter equation to develop the mathematical relationship
between the environment and energy. After comparing the five neural network prediction algorithms,
the neural network algorithm suitable for the situation is used to train the model pair. Ambient
temperature prediction, combined with the above two methods, has initially established a control
method to ensure the continuous low energy consumption of the surface observation chamber and
the observation quality of the observation system. The fourth part shows the results of the prediction
experiment. Moreover, the overall implementation effect and system performance of the entire site
during the unmanned observation period is introduced. The conclusion is presented in the last part.
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2. System Architecture

2.1. Overall System Architecture

The whole system is composed of five parts: energy control, remote interaction, data storage and
access, environmental control, and observation system. The atmospheric parameters, geomagnetism,
aurora, and ionosphere in various regions are noted through the observation system. The relevant
scientific analysis team will combine this data to analyze the sun’s activity to predict the impact on the
earth. The energy control system powers the measurement of the entire observation system, and the
remote interactive system provides instructions. The operation status of each observation subsystem
and the query and storage of observation data require an environmental control assurance system and
a data storage access system to ensure its regular operation. The block diagram of the complete system
is shown in Figure 1.
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Figure 1. Block diagram of the entire system.

In Figure 1, five parts are marked. Connect any two parts with double arrows or single arrows to
indicate the energy and data connection between them. The orange arrow represents the data flow,
and the red arrow represents the energy flow. The signal transmission method includes a wired
network and wireless network. The transmission method of energy is wired transmission. Currently,
it is not necessary to display renewable energy such as wind energy and light energy in the energy
transmission system. The direction of the signal flow can be seen. The remote communication and
on-site interactive system are interconnected in real-time with the domestic through the satellite
network. In addition to the signal connection between the remote interactive system and other systems,
there are also interactive signals between the data storage access system and the observation system.

For the energy flow, the energy input of the external environment and the energy loss of the
system are omitted in Figure 1. The red energy flow only expresses the transmission of electrical energy
between systems. The energy storage part of each system itself is included in the system. The total
power generation part of the entire system is included in the energy system, and the distributed power
part is included in the environmental protection control system. As the on-site signal gathering place,
the environmental protection control system and the other four systems have separate two-way signal
transmission, ensuring that the work of each system can be directly controlled through the remote
interactive system in China, and the status parameters and database document information of the
system can be directly obtained. The power generated by the energy system is first transmitted to
the environmental control system, and the power distribution module of the environmental system
distributes the power to the remaining three systems again.

2.2. Environmental Control, Data Storage Access and Observation System Hardware Configuration

The primary function of the environmental control assurance system is to realize the remote image
acquisition of the observation room on the ground, the temperature and humidity control in the cabin,
the environmental heating, and the power management of the ground equipment. The hardware
structure of the system is shown in Figure 2.
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The primary sensors include two all-sky imagers: imaging lens observation band 630.0nm (all-sky
monochromatic imaging, Keo Scientific Calgary, Calgary, AB, Canada) imager iKon-M (i Kon-M 934
Series, Oxford Instruments, Abingdon, UK) and imaging lens observation band 557.7nm (all-sky
monochromatic imaging, Keo Scientific Calgary, Calgary, AB, Canada) imager iKon-M (i Kon-M 934
Series, Oxford Instruments, Abingdon, UK), magnetic through-door magnetometer (LEMI-025, LC
ISR, Naukova St., Lviv, UKR), inductive magnetometer (LEMI-120, LC ISR, Naukova St., Lviv, UKR),
and TEC ionospheric scintillation Instrument (CJW-1H, CETC Xin Xiang, He Nan, China). The file
storage system is a NAS file storage (TS869L, QNAP, Xintai 5th Rd, Xizhi City, Taipei, China), a network
switch (TL-SG3226, TP-LINK, Guangming New District, Shenzhen, Guangdong, China) GPS timing
instrument (DNTS-8, Neutron, Tong Zhou District, Beijing, China). The related equipment types of the
sensing observation system and file storage system are shown in Table 1.

Table 1. Sensor information of the automatic weather station.

Equipment Mode Temperature Range Communication Mode

Ultra-Sensitive Imaging i Kon-M 934 Series, Oxford Instruments,
Abingdon OX13 5QX, UK −20~+25 ◦C USB 2.0

Wide-Angle
Monochromatic Imager

all-sky monochromatic imaging 557.7nm,
Keo Scientific Calgary, Alberta, CAN −80~+20 ◦C USB 2.0

Wide-Angle
Monochromatic Imager

all-sky monochromatic imaging 630.0nm,
Keo Scientific Calgary, Alberta, CAN −80~+20 ◦C USB 2.0

GNSS ionospheric
scintillator

CJW-1H, CETC
Xin Xiang, HN, China −40~+85 ◦C USB 2.0

Flux-Gate
Magnetometer

LEMI-025,LC ISR, Naukova St.,
Lviv, 79060, UKR −5~+30 ◦C RS-232

Induction coil
magnetometer

LEMI-120,LC ISR, Naukova St.,
Lviv, 79060, UKR −10~50 ◦C RS-232

NAS TS869L, QNAP, Xintai 5th Rd, Xizhi City,
Taipei, China 0~50 ◦C USB 2.0& USB

3.0&HDMI

Network switches TL-SG3226, TP-LINK, Guang Ming New
District, Shenzhen, GD China −40~70 ◦C Base-T RJ45

GPS timing devices DNS-8, Neutron, Tong Zhou District, BJ, China −40~85 ◦C Base-T RJ45

3. Method and Model Preparation

In the Princess Elizabeth area in the east of Antarctica, we obtained the temperature profile data
of 20 m under the snow and comprehensive data from surface weather stations. Meteorological data
provides a reference and analysis basis for the layout of ground observation facilities and the training
of neural network algorithms. According to the theory of heat conduction, a model is established to
determine the method of heating power and its relationship to maintaining the internal environment
of the interior surface cabin. From the data observed by the weather station in 2016, an interannual



Sensors 2020, 20, 4662 5 of 20

outdoor temperature data (hourly temperature data from 24 December 2015, 11:05 to 30 December
2016, 15:58) is selected as the total data set of the neural network model, the sliding time window is set
to 20, the ratio of the training sample to the test sample is 0.8 and 0.2, and the number of repeated
experiments is five times.

3.1. Surface Meteorological Analysis of Taishan Camp in Princess Elizabeth, Antarctica

In the Princess Elizabeth area, Tai-Shan Camp (76◦56′54.17” E, 73◦52′21” S) installed an automatic
weather station in 2015. The relevant information of sensors and automatic observation modules carried
by the meteorological automatic monitoring station are shown in Table 2 (including the manufacturer,
region, communication method, and sensor accuracy).

Table 2. Sensor information of the automatic weather station.

Sensors Mode Temperature
Range

Communication
Mode

Measurement
Accuracy

Wind speed 05103-45 R.M.Young,
Traverse City, MI, USA −40~60 ◦C RS-232 0.5 m/s

Wind direction 05103-45, R.M.Young,
Traverse City, MI, USA −60~30 ◦C RS-485 0.3◦

Temperature sensor DS28EA00, DALLAS
Sunnyvale, CA, USA −40~+85 ◦C Single bus 0.5 ◦C

Ranging sonar SR50AL, Campbell Scientific
Logan City, Utah, USA −45~+50 ◦C RS-232 0.5 cm

Pyranometer FR-TBQ, Purple Forain
Wuhan, Hu Bei, CHN −20~+40 ◦C RS-232 9.167µ

v/W·m-2

The four-blade screw propeller of the wind speed sensor generates the AC sine wave voltage
through rotation [6]. The temperature accuracy of the sensing unit EA00 can be detected as 0.5 ◦C.
Forty-one sensing units collect the ice temperature chain sensor at a distance of 0.5 m. The temperature
accuracy is sufficient to provide a good temperature gradient for the layout of the underground
energy cabin—the installation location of the automatic weather monitoring station (76◦58′19.19′′ E,
73◦51′5.25′′ S). The on-site installation situation is shown in Figure 3.Sensors 2020, 20, x FOR PEER REVIEW 6 of 21 
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Figure 3. Meteorological observatory deployed in the Antarctic inland during the 2016 Chinese National
Antarctic Research Expedition.

When installing the temperature profile sensor, the snowmobile PB300 (Pisten Bully–300 Polar)
pushed a 5-m snow pit, and then manually performed hot-melt drilling to obtain a 15-m deep snow
hole. The ice temperature chain is placed inside the drill hole. The wind speed and direction sensor
is located at the height of 3 m from the snow surface, and the ranging sonar sensor is situated at
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an altitude of 2 m from the snow surface. Also at this height is the light irradiance sensor, which is
installed two at the same height. Our primary concern is the interannual changes of the following two
parameters, the temperature of the battery box surface and the voltage of the power supply. It can be
seen in Figure 4 that the battery voltage continues to fall during the polar night. Two wind power
supplements make the voltage rise back into the perpetual day, and the tension rises to about 14.4 V.
During the perpetual day, it can be seen from Figure 4 that the surface temperature of the battery box,
the battery voltage, and the range and frequency of light irradiance change are higher than that of the
polar night, because the solar radiation intensity changes daily. The point at which each type of data
changes from rising to falling represents the most irradiated moment of the day. It can be seen from
the data throughout the year that the surface temperature of the battery box has reached –56 ◦C.
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Figure 4. (1) Battery case temperature, (2) Power supply voltage, (3) Solar radiation, and (4) Sonar
distance data observed by the weather station installed at Mount Tai in TYUT in 2016.

The meteorological station of the Chinese Academy of Meteorological Sciences measures the
wind speed and direction 200 m northeast of this weather station. At the same time, the wind speed
and direction data are shown in Figure 5. The wind speed and wind direction data of 2m and 4m
height were obtained, respectively. It can be seen that the highest wind speed of 19.7 m/s at 2 m
appeared on July 30. At this time, the annual maximum wind speed at 4 m above the ground was
22.4 m/s. The minimum wind speed at the two altitudes appeared on January 9 at 0 m/s. The annual
average wind speed at 4m height is 10.84 m/s, and the average yearly wind speed at 2 m is 10.17 m/s.
It can be seen from Figure 5 that the annual wind direction is mainly distributed between 40◦ and
100◦and combined with the data, the average yearly wind direction at 2 m is 76.94◦ and 69.61◦ at
4 m. The average wind speed and direction obtained here provide environmental conditions for the
subsequent establishment of the physical model. The physical model defaults the annual wind speed
and direction as the average value for calculation.

The wind direction data gives the characteristics of the on-site wind field, based on which the
most suitable placement method for the ground observation module is found. Comprehensive weather
data predicts that the local factors that affect the regular operation of the equipment may include the
following:

1. The low-temperature environment during the polar night makes the voltage of the lead-acid
wound battery continue to decrease. The transmitting current is not enough to make the Iridium
module transmit. This is the most critical one. We use the acquired temperature information to
heat the equipment to avoid this phenomenon.

2. There are strong winds in the Princess Elizabeth area in the east of Antarctica, which has a
significant impact on wind speed and direction and ground optical observation equipment.
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3. Continuous high radiation intensity may cause ageing of the equipment’s non-metallic enclosure.
4. In the absence of supplementary energy in the photovoltaic system, the wind turbine has a

high probability of failure, resulting in no supplement of renewable energy. In the case of
the continuous low battery voltage, the battery is eventually damaged and the system cannot
be restarted.
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3.2. Heat Conduction Model and Heating Strategy

The environmental temperature control of the surface observation cabin is the first condition
for the ordinary observation of the observation system, but Antarctica is different from the domestic
environment, without a real-time weather forecast. Because it is located inland of Antarctica.
The frequency of meteorological observations is low, and the accuracy brought by satellite observations
may not meet the needs of surface climate observations. Heating control devices that cannot predict
the future temperature mainly have the following three problems:

• The first affected object is the dome of the acrylic full-sky imager because this device is different
from other observation devices in the South Pole. A cabin temperature higher than 5 degrees
Celsius will cause water vapor to rise and condense inside the observation hood, affecting the
operation of the all-sky imager.

• The higher the temperature difference will bring more heat loss to the system. During the winter,
the fan is self-locking. During the wintering period (that is, from mid-March to mid-August each
year), all electrical equipment is only powered by diesel engines. Daily power and diesel demand
need to be compressed to a minimum.

• If you set a self-heater with a threshold in the room, for example, if the temperature threshold is
set from 0 to –15 ◦C, the temperature will continue to be –15 ◦C. The extreme temperature drop or
sudden strong wind outside the pole at night will cause the situation. The heat loss in the cabin is
too fast. Due to the slow heat transfer of the air commutation, the equipment that is powered on
will be shut down and cannot be restarted because the temperature is too low. Real-time classic
control algorithms, such as PID, are more cumbersome in the parameter adjustment process.
On the one hand, the heat transfer in the air is difficult to calculate in addition to radiant heat; on
the other hand, the time of convective heat transfer is not easy to determine.

Therefore, the on-site heating strategy is studied by establishing a lumped parameter model
of the surface observation cabin, and the relationship between the temperature difference and the
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heating power is determined by combining the relationship between the model parameters and the
experimental field data.

Construction of Lumped Parameter Model and Establishment of Mathematical Relationship

First, a lumped parameter model that conforms to the surface observation module is built.
The heating model diagram and on-site photos are shown in Figure 6.
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arrangement of the surface observation chamber at the Antarctic site in December 2019.

The temperature of observation cabin is affected by many factors, and the reflection of the snow
surface and the solar radiation is discarded (to ensure the lower temperature limit of the system).
Because the cabin is closed, the internal equalizing fan can ensure the uniform distribution of the
indoor air temperature in the space. Figure 6a is a diagram of the thermal network node of the research
object, and Figure 6b is the actual diagram of the research object.

Since l/λ� 1/h, l is half the thickness of the observation cabin wall, λ is the thermal conductivity
and h is the surface heat transfer coefficient. The entity satisfies the lumped parameter method and can
construct a lumped parameter temperature node model of the surface observation cabin. The equalizing
fan and the normal heating placement position make each lumped internal temperature difference
extremely small, simplifying a thermal system into a few discrete “lumps”. Among them, Ts1-Ts5

respectively represent the temperature of heating zone No. 1, No. 2, No. 3, No. 4, and No. 5 of the
electric heating furnace. Tw1, Tw2, Tw3 represent the temperature of the entire inner wall, interlayer,
and outer wall, respectively. Moreover, Toutdoor, Tin refer to the temperature of outside air and inside
air. As such, we can obtain the thermal network map as shown in Figure 7.

Sensors 2020, 20, x FOR PEER REVIEW 9 of 21 

 

wall, interlayer, and outer wall, respectively. Moreover, outdoorT , inT  refer to the temperature of 
outside air and inside air. As such, we can obtain the thermal network map as shown in Figure 7. 

 
Figure 7. Heat transfer lumped parameter equation of surface observation cabin. 

The nodal temperature equation of air inT is: 

( ) 1

, 1

in w in
in in in

in w

dT T Tm c Q
dt R

−= + , (1) 

where inT  = internal air node temperature; 1wT  = internal wall node temperature; inm  = total 

inner air mass; inc  = civil air specific heat capacity; and , 1in wR  = thermal resistance between interior 

air and interior wall. The second term on the right side of Equation (1) represents the total heat input 
from the surface observation chamber. 

Similarly, the nodal equations for the inner wall, interlayer and outer wall can be obtained. The 
control equation of the interior wall node is: 

( ) 1 1 2 1 1
1 1

, 1 1,

1

2 1, 1

1 1

2, 1 3, 1

1 1

4, 2 5, 2

2 3

4 5

w s

s

in w w w w
w w

in w w w s w

w w

s w s w

w w

s w s w

s

s s

dT T T T T E Em c
d R R R

E E E E
R R
E E E E
R R

τ
− − −= + +

− −+ +

− −+ +

. (2) 

The control equation of mezzanine node is: 

( ) 2 1 2 3 2
2 2

1, 2 2, 3

w w w w w
w w

w w w w

dT T T T Tm c
d R Rτ

− −= + . (3) 

The control equation of external wall node is: 

( ) 3 2 3 3
3 3

2, 3 3,

w w w out w
w w

w w w out

dT T T T Tm c
d R Rτ

− −= + . (4) 

xE  in the above control equation is the emission power of a black body at temperature xT . There 
are following equations to solve the specific energy. The meaning of this expression is radiation heat 
flux between the surface of an object with temperature aT and object with temperature bT . Where σ  

Figure 7. Heat transfer lumped parameter equation of surface observation cabin.



Sensors 2020, 20, 4662 9 of 20

The nodal temperature equation of air Tin is:

(mincin)
dTin
dt

=
Tw1 − Tin

Rin,w1
+ Qin, (1)

where Tin = internal air node temperature; Tw1 = internal wall node temperature; min = total inner
air mass; cin = civil air specific heat capacity; and Rin,w1 = thermal resistance between interior air and
interior wall. The second term on the right side of Equation (1) represents the total heat input from the
surface observation chamber.

Similarly, the nodal equations for the inner wall, interlayer and outer wall can be obtained.
The control equation of the interior wall node is:

(mw1cw1)
dTw1

dτ = Tin−Tw1
Rin,w1

+ Tw2−Tw1
Rw1,w2

+ Es1−Ew1
Rs1,w1

+Es2−Ew1
Rs2,w1

+ Es3−Ew1
Rs3,w1

+Es4−Ew1
Rs4,w2

+ Es5−Ew1
Rs5,w2

. (2)

The control equation of mezzanine node is:

(mw2cw2)
dTw2

dτ
=

Tw1 − Tw2

Rw1,w2
+

Tw3 − Tw2

Rw2,w3
. (3)

The control equation of external wall node is:

(mw3cw3)
dTw3

dτ
=

Tw2 − Tw3

Rw2,w3
+

Tout − Tw3

Rw3,out
. (4)

Ex in the above control equation is the emission power of a black body at temperature Tx.
There are following equations to solve the specific energy. The meaning of this expression is
radiation heat flux between the surface of an object with temperature Ta and object with temperature
Tb. Where σ = blackbody radiation constant; ε = emissivity; A = surface area; Xa,b = radiation angle
coefficient from surface a to b; Ea,b = emission power of blackbody at temperature T; and Ra,b = radiation
heat transfer resistance between surfaces a and b.

q f =
σT4

a − σT4
b

1−εa
εaAa

+ 1
AaXa,b

+
1−εb
εbAb

=
Ea − Eb

Ra,b
. (5)

From Equations (1)–(5), we can see that the surface area, radiation angle, and other parameters do
not change with the temperature. The emissivity and temperature of the material in a small range of
low-temperature changes linearly and the proportional coefficient can be regarded as a constant.

Before pushing to the following formula, we must introduce a concept, called excess temperature,
which refers to the temperature difference between two adjacent nodes at time t. It can be expressed
as θ, for example, the excess temperature of Tin and Tw1 at time 0 is θ0 = Tin(0) − Tw1(0). From this,
we can obtain the following equation:

mincin
dθ
dt

= −
θ0

Rin,w1
+ Qin = −

(
Tin(0) − Tw1(0)

)
1−εin
εinAin

+ 1
AinXin,w1

+ 1−εw1
εw1Aw1

+ Qin. (6)

Thus, the equation can be obtained from Equation (6):

θ∫
θ0

dθ
θ

= −

t∫
0

1−QinRin,w1/θ
cinminRin,w1

dt. (7)
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Thus, the equation to be iterated for the first time is obtained:

θ
θ0

=
Tin(t) − Tw1(t)

Tin(0) − Tw1(0)
= exp

(
−

1−QinRin,w1/θ
mincinRin,w1

t
)
. (8)

Through Equation (8), the mathematical relationship between the time, the temperature difference
between the indoor air and the inner surface, and the heat input are established. Since the outdoor
temperature is known (because we have adopted a neural network to predict the temperature of the
object for 24 h, after doing so, we assume that the average temperature in the next hour is known and
unchanged), we can establish the equation:(

Tin(0) − Toutdoor(0)

)
−

(
Tin(t) − Toutdoor(t)

)
= Tin(0) − Tin(t) = (θ0 − θ). (9)

By the heat equation, we can get the indoor temperature Tin, the time t, and the heat input Qin
relationship. The comparison is as follows:

Qin −Qout = mc
(
Tin(0) − Tin(t)

)
= mc(θ0 − θ)

= mcθ0
(
1− θ

θ0

)
= mcθ0

[
1− exp

(
−

1−QinRin,w1/θ
mincinRin,w1

t
)]

= mcθ0

[
1− exp

(
−

1
mincinRin,w1

t + Qint/θ
)]

= 0

. (10)

In the field test heating experiment, a set of heating data with constant temperature difference
under no wind condition is selected (the data sampling frequency is 15 min/time indoors and 1 h/times
outdoor). At this time, the heating power is 383 W, reaching thermal equilibrium (θ = θ0). After two
iterations, thermal stability is reached and Equation (11) can be determined. At this time, the excess
temperature is set as θ = Tin(t) − Toutdoor(t), and Equation (11) is written as:

Qin −Qout = mc
(
Tin(0) − Tin(t)

)
= mc(θ0 − θ)

= mcθ0
(
1− θ

θ0

)
= mcθ0

[
1− exp

(
−

1−QinRin,outdoor/θ
mcRin,outdoor

t
)]

= mcθ0

[
1− exp

(
−

1
mcRin,outdoor

t + Qint/θ
)]

= 0

, (11)

where Qin and Qout represent the input and output energy of the entire system,Rin,outdoor represents the
equivalent thermal resistance between internal air and external air, and mscs represents the product of
the mass and specific heat of the equivalent thermal resistance itself. Thus, the following is available:

Qin/θ =
1

mscsRin,outdoor
. (12)

Through the field test data, it can be found that under the heating power of 383 W, the thermal
balance is reached when the indoor and outdoor temperature difference is 20 ◦C. It can be seen from
Equation (10) that the heat exchange per unit time is determined by the temperature difference between
the outside environment and the initial time. When the heating time is fixed, and the default material
properties do not change with temperature, the heating power is linearly related to the temperature
difference at the first moment. Based on this, it can be determined that the heating power at different
temperature differences has the following table. At this time, the heating method is 1 h; the temperature
of the air in the cabin is maintained at around –5 ◦C. This table applies to other temperature differences.
The heating power in Table 3 corresponds to the heating power to maintain the ambient temperature.
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Table 3. Corresponding heating power table under different temperature differences.

Temperature Difference (◦C) Input to the System Over 1 h Heat (KJ) Heating Power (W)

0–5 0–344.7 0–95.75
5–10 344.7–689.4 95.75–191.5

10–15 689.4–1034.1 191.5–287.25
15–20 1034.1–1378.8 287.25–383
20–25 1378.8–1723.5 383–478.75
25–30 1723.5–2068.2 478.75–574.5
30–35 2068.2–2412.9 574.5–670.25
35–40 2412.9–2757.6 670.25–766

The characteristics of air and related materials are shown in Table 4 (the conditions listed are 2600
altitudes,−23 ◦C). It can be seen that the specific heat of materials Cyanuramide, 2,4,6-Triamino-s-Triazine,
Asbestine and PU is the same, because Cyanuramide, 2,4,6-Triamino-s-Triazine in the list is the liquid
density under normal pressure, which is a mixture. The thickness is uncertain, so no parameter
substitution calculation is performed. It is feasible to determine the heating strategy according to the
heat transfer Equation (12).

Table 4. Properties of materials in heat conduction networks.

Materials Specific Heat Capacity
c(kJ/(kg×

◦

C))
Density
ρ(kg/m3)

Heat Transfer Coefficient
λ(W/m · ◦C)

Air 1.4036 1.4527 0.02234
Cyanuramide,2,4,6-Triamino-s-Triazine 0.9707 1095.27 0.159

Asbestine 0.84 [140,200] 0.043
PU 0.75 125 0.024

3.3. Experiment Preparation and Machine Learning Model

Next, we need to obtain a prediction of the future temperature, that is, the temperature value
within one or several hours in the future. To a certain extent, machine learning models, leveraging the
correlations among parameters, can be trained to quickly and automatically identify alterations and
faults [7]. The original input time series data formed by time and temperature and the single output
time-series data generated by machine learning and prediction have become the main parameters of
the future environment in this design. Although many methods use long-term and short-term memory,
we use three latest methods of LSTM. We also analyzed the prediction results of the BP neural network
and the ELM neural network.

3.3.1. BPNN (Back Propagation Neural Network) & ELM (Long Short-Term Memory)

BP neural network is the most basic neural network, and its output results adopt forward
propagation, and errors adopt backward propagation (Back Propagation). BP neural network has a
three-layer structure of the input layer, hidden layer, and output layer. The input layer receives data,
and the output layer outputs data. The neurons of the previous layer are connected to the neurons of
the next layer, information transmitted by the neurons of the previous layer is collected, and the value
is passed to the next layer after “activation”.

The weights of the hidden layer nodes of the ELM network are randomly generated or manually
defined. The learning process only needs to calculate the output weights. Through such rules,
the generalization performance of the model is excellent, and the speed is much improved. The most
prominent feature of ELM is that for traditional neural networks, it is faster than conventional learning
algorithms under the premise of ensuring learning accuracy.
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3.3.2. LSTM (Long Short-Term Memory)

The full name of LSTM is Long Short-Term Memory, which is a kind of RNN (Recurrent Neural
Network). LSTM is very suitable for modelling time series data due to its design characteristics.
Recently, a new neural network was proposed, called LSTM [8]. The three core arithmetic structures
contained in LSTM determine that it can achieve long- and short-term memory based on RNN.
The algorithm structure is shown in Figure 8.
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3.3.3. Bi LSTM (Bi-directional Long Short-Term Memory)

LSTM can only predict the output at the next time based on the timing information of the previous
time, but in some problems, the production at the current time is not only related to the former state but
may also be associated with the future state. The forward LSTM can obtain the past data information
of the input sequence, and the backward LSTM can collect the following data information of the input
sequence. [9] This can be expressed by the following formula:

→

ht =
−−−−→
LSTM(ht−1, xt, ct−1), t ∈ [1, T]

←

ht =
←−−−−
LSTM(ht+1, xt, ct+1), t ∈ [T, 1]

Ht =
[
→

ht,
←

ht

] . (13)

The algorithm structure is shown in Figure 9.
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3.3.4. SAE (Stacked Autoencoder)

AE (Autoencoder) has only one hidden layer. More specifically, the input layer and output layer of
AE are equal [10]. SAE is the superposition of multiple AEs. After the first AE is executed, subsequent
AEs are performed in order until the Nth, and the output result is the SAE superimposition result.
The algorithm flow chart is shown in Figure 10:
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Table 5 shows the computer configuration.

Table 5. Computer configuration.

Name Settings

Hardware Desktop computer
CPU Intel(R) Core (TM) I5-9600K 3.70GHz
RAM DDR4 8G 2666MHz

Hard drive 2T
Software& Operating system MATLAB R2019a, Windows 10

In the design process of related algorithms, the structure has been introduced in this section. ME, GT,
HL1, HL2, AF, ILR, LRDP, LRDF, V, ETF, DTF, L2R, L2WR, SP, MINON, MAXON, MINLN, and MAXLN
are the abbreviation of Max Epochs, Gradient Threshold, Hidden Layer 1, Hidden Layer 2, Activation
Function, Initial Learn Rate, Learn Rate Drop Period, Learn Rate Drop Factor, Verbose, Encoder
Transfer Function, Decoder Transfer-Function, L2Regularization, L2WeightRegularization, and Sparsity
Proportion, etc. [8,11–14] and need to be set. Table 6 shows the settings of the related parameters.

Table 6. Parameter setting of the neural networks.

Algorithm Parameter Settings

BP ME = 1000, GT = 1.0 × 10−7, HL1 = 20, HL2 = 20. AF = S
ELM ME = 1000, AF = S

LSTM ME = 250, GT = 1, ILR = 0.01, LRDP = 125, LRDF = 0.1, V = 0, L2R = 0.0001
Bi LSTM ME = 250, GT = 1, ILR = 0.01, LRDP = 125, LRDF = 0.1, V = 0, L2R = 0.0001

SAE-LSTM ME = 250, GT = 1, ILR = 0.01, LRDP = 125, LRDF = 0.1, V = 0, ETF = satlin,
DTF = purelin, L2R = 0.0001, L2WR = 4, SP = 0.6

So far, we have completed the model establishment, environment construction, and parameter
setting in the prediction experiment. The next step is to prepare the experimental data. First, a data
set is selected with a large sample size as a one-dimensional matrix input, and then the values in the
matrix are normalized (matrix row minimum and maximum values to [–1, 1]). The set is divided
after normalization; 80% of the data (including the data of the validation set) is the training set input,
and 20% of the data is the test set input. Subsequent experiments do not require a verification set
because the parameters of the test results do not need to be adjusted. In the selection process of the
settings in Table 6, we refer to the research methods of long-term memory and bio-signal feature
compression to identify negative emotions. In the comparison of algorithms [15], the next section
analyzes related training results and experimental results.
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4. Results

4.1. Optimal Model Result

As shown in Figure 11, the training set and test set of five kinds of neural networks are shown.
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There are 8106 sets of data in the data sample; that is, the period is 8106 h, from 11:05 on
24 December 2012, to 7:45 on 27 December 2013. After much training and comparisons, the Bi LSTM
error (RMSE, MAE, U1, U2) is the smallest. It is preliminarily believed that the Bi LSTM algorithm
model is suitable for training and predicting temperature and weather factors in this area of Antarctica.
The performance parameters of each model shown in Figure 11, including RMSE (Root Mean Square
Error) and MAE (Mean Absolute Error) which are shown in each small graph. Compared with other
algorithms, the RMSE of the Bi LSTM training set is 0.14683, which is the minimum of all root mean
square errors. Because the training set RMSE is too small may be caused by overfitting, but the RMSE
of the test set is equal to 0.086538 less than the training set, so the possibility of overfitting is ruled out.
We choose Bi LSTM as the method to predict temperature data in the next few hours. However, if a
small sample is subsequently used for short-term prediction, the RMSE of other algorithm models is
lower. It is recommended to combine Bi LSTM with this minimum prediction algorithm to generate
the final operation [16–20].

The prediction result is shown in Figure 12, which uses the Bi LSTM training model, and the
enlarged part in the chart is the prediction part. In Figure 12, the temperature data for the next 24 h
is obtained (blue is sample data, and red is predicted data). Historical data can predict future time
series. After comparing different data sizes of different samples, the more complete the time series data,
the more accurate the forecast. The primary purpose of Figure 12 is to show the predictive function of
the model and the expression of the results.
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4.2. Operation Ticket Generation

In the process of obtaining temperature data, sometimes the sensor is encountered by the wind and
snow. We found that there were a lot of incomplete, inconsistent, and abnormal values in the original
temperature profile data from the ice-tethered, seriously affecting the efficiency of the algorithm.
During data mining, the original data preprocessing process was also viewed as data cleaning [21].
Figure 13 shows the process of obtaining a heating operation ticket in the cabin. It is roughly divided
into three parts:

1. Input sample data: data acquisition, then data preprocessing, unusable data culling, and filtering
after thresholding.

2. Determination of the prediction method: Separate the amount of data by 80% and 20%.
After normalization and regularization, it is input as a training set and test set. During the
training and testing of five neural networks (BPNN, ELM, Bi LSTM, SAELSTM, and LSTM),
no overfitting occurred in each system. Loop three times and select the algorithm corresponding
to the smallest error.
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3. According to the corresponding temperature prediction, based on the current temperature and
the temperature in the next two hours, a heating operation ticket is generated, and the lower
temperature is used as the predicted temperature to represent the average temperature in the next
hour. The prediction result is compared with the prediction result of the Bi LSTM model, and then
the result with a lower temperature in the next hour is selected as the parameter generated by the
temperature difference. Then check the table and heat accordingly.
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4.3. RIOD’s On-Site Operation Status

In order to verify the previous method and model, the most recent temperature observation data
was selected. The data collection date is from 24 February 2020, to 29 July 2020, with a total of 953
temperature data (collect once every four hours). After training the prediction with short-term data,
the five test set data are put together for comparison, as shown in Figure 14.
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The evaluation parameters of each model including RMSE, MAE, U1, and U2 are shown in Figure 15:
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It can be seen from the test set that due to the reduction in sample size, the relevant evaluation
indicators have become worse than before. However, it is still in the same order of magnitude, and the
two indicators of Bi LSTM are the lowest. Therefore, when using the prediction algorithm, the algorithm
is still used to predict the temperature.

The most important indicators for evaluating the state of the system are cabin temperature, sensor
collection rate, and data storage capacity. By monitoring the status of the ground observation cabin
and the temperature data obtained in the cabin every day, it is most appropriate to get the sensor host
at an ambient temperature of −10 to 0 ◦C, which can ensure the operation of the all-sky imaging sensor
in the polar night. There is a small amount of frost on the dome cover of the all-sky imager, which does
not affect the auroral observation. As shown in Figure 16.

The sealing time for the surface observation module is 31 January 2020. No one has entered since
then, and the subsequent operating state is unattended. It can be seen that the temperature maintained
by the internal ambient temperature sensor during the unattended process is between 0 and −10 ◦C.
Due to the personnel activities during the initial installation of the main engine, a high-power 3000 W
electric heater was installed in the cabin, so the temperature reached 20 ◦C. After entering the polar
night, the internal monitoring images we observed after entering the polar night in April 2020 are
shown in Figure 16. It can be seen that the observation cabin cover has less frost and does not affect the
auroral observation. Moreover, the file storage and file information form show that all the sensors are
working correctly.
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The on-site implementation plan follows three principles:

1. The design needs to ensure the quality of the observation data of the complex sensor network.
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2. Under the premise of guaranteeing observation, the energy system and control system need to
operate stably.

3. It is necessary to ensure that the surrounding environment is not polluted and damaged.

According to these three basic principles, the site layout of the main building was carried out on
December 20, 2019. The entire system is divided into the surface control communication observation
part, the underground energy part, and the surface new energy power generation part. Because the
underground part has been landfilled, it is impossible to see the whole from the perspective of aerial
photography. Figure 17 shows the aerial photography of the entire camp before the evacuation of
personnel. In the figure, the underground energy control section is marked. The small picture shows
the photos taken while laying the underground energy section. The position of the photovoltaic panel
in the image and the direction of the surface cabin are placed according to the minimum contact surface
of the annual average wind direction. This way can reduce heat loss, and the elevated box can prevent
the accumulation of snow.Sensors 2020, 20, x FOR PEER REVIEW 19 of 21 
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5. Conclusions

The purpose of this research is to find a relationship between on-site heating power and outdoor
temperature, through neural network model training to obtain the optimal model for temperature
prediction, combined with a heating strategy to ensure the stable operation of the on-site equipment.
The following conclusions are drawn through the above results and experimental process:

(1) In the algorithm training experiment, based on different error indicators, the prediction
accuracy of Bi LSTM is higher than that of the other four neural networks, especially in the annual
data. This shows that Bi LSTM improves the shortcomings of LSTM for time series prediction.

(2) Field heating experiments have determined a set of experimental data of internal heating
power corresponding to the air temperature when the outdoor wind speed is 10m/s. Equation (12)
shows the relationship between input energy and temperature difference derived from the heat transfer
model. The experimental data is combined to get Table 3, and combined with the optional internal
heating method, the relationship between 8 groups of air temperature and power is determined.
Besides, the discontinuous adjustment of heating power and the delay of remote-control satellite
communications determine the necessity of predicting the temperature.

Accurate predictions of environmental parameters are of considerable significance to many
activities on the Antarctic site. Climate predictions in small Antarctic areas can provide strong
support for local scientific research activities. The establishment of a heat conduction network in
traditional modelling is a standard method to control the target temperature threshold. This paper
proposes an environmental maintenance method for a space physics observation module based on
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heat transfer physics model combined with a neural network prediction algorithm. In this paper, some
advanced prediction models (such as Bi LSTM, SAE LSTM, etc.) are introduced into the experimental
process, and the best prediction model is obtained by establishing evaluation indicators (such as
RMSE). Combined with the traditional heat conduction network model, the energy of the system to
maintain the system temperature can be determined, maintaining a constant temperature difference
between indoor and outdoor per unit time. Combining these two models, a method for generating an
on-site heating strategy operation ticket is proposed. This method and related hardware equipment
can guarantee the operation of precision equipment (such as all-weather imagers) for astronomical
observations and space physical observations in the Antarctic region. It provides an effective solution
for other unmanned observation systems in the Antarctic area. The method is not limited to temperature
prediction and heating. When combined with other physical models, the corresponding reference can
also be provided based on the relevant observation data. The introduction of artificial intelligence
algorithms can offer more solutions in this field. In future research, if more sample parameters (such as
wind speed, and air pressure) are introduced to form a multiple-input single-output neural network
and corresponding data processing (such as wavelet transform) is added, more accurate prediction
and evaluation may be obtained.
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Acronyms

RIOD Remote Control, Image Acquisition, Operation Maintenance and Document Management System
PDU Power Distribution Unit
PB300 Pisten Bully–300 Polar
PRIC Polar Research Institute of China
TYUT Taiyuan University of Technology
NAS Network Attached Storage
BP Back Propagation
ELM Extreme Learning Machine
LSTM Long Short-Term Memory
SAE LSTM Stacked Auto Encoder Long Short-Term Memory
Bi LSTM Bi-directional Long Short-Term Memory
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