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Abstract: As the global urban population grows due to the influx of migrants from rural areas, many 
cities in developing countries face the emergence and proliferation of unplanned and informal 
settlements. However, even though the rise of unplanned development influences planning and 
management of residential land-use, reliable and detailed information about these areas is often 
scarce. While formal settlements in urban areas are easily mapped due to their distinct features, this 
does not hold true for informal settlements because of their microstructure, instability, and 
variability of shape and texture. Therefore, detecting and mapping these areas remains a 
challenging task. This research will contribute to the development of tools to identify such informal 
built-up areas by using an integrated approach of multiscale deep learning. The authors propose a 
composite architecture for semantic segmentation using the U-net architecture aided by information 
obtained from a multiscale contourlet transform. This work also analyzes the effects of wavelet and 
contourlet decompositions in the U-net architecture. The performance was evaluated in terms of 
precision, recall, F-score, mean intersection over union, and overall accuracy. It was found that the 
proposed method has better class-discriminating power as compared to existing methods and has 
an overall classification accuracy of 94.9–95.7%. 

Keywords: remote sensing; informal settlements; multiresolution; deep learning; contourlet 
transform; semantic segmentation 

 

1. Introduction 

Due to rapid urbanization and population migration, many cities in developing countries such 
as India have large areas of unplanned development interspaced with planned areas. A forecast of 
the United Nations (UN) estimated that the population of India will be about 1.44 billion in 2024 and 
will surpass 1.66 billion around 2050 [1]. This increase, coupled with migration from rural areas to 
urban centres, will lead to the growth of both informal and formal urban settlements that include 
low-, medium-, and upper-class housing and commercial developments. Urbanization is often not 
accompanied by adequate development of infrastructure, including housing, sanitation, and 
transportation corridors. This lack of planning when coupled with the large share of informal low-
paid employment results in the growth of informal settlements in densely populated urban areas [2]. 
The identification and mapping of informal settlements plays an important role in many applications, 
such as urban analysis, updating geographical databases, land cover change assessment, disaster 
management, and extraction of thematic information. However, connecting reliable information for 
these areas with accurate detection and classification of informal settlements using remote sensing 
remains a challenge. Demarcating and differentiating urban structures is difficult due to the nature 
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and intermingling of these classes as opposed to the cleaner separation of standard land cover classes 
in planned areas with clearer differentiations in classes. This requires the extraction and analysis of 
textural and spatial features and dissimilar vegetation classes, along with urban structures lacking 
unique and easily distinguishable spectral signatures [3]. In other words, different urban classes may 
present similar spectral values that make it more challenging to accurately classify pixels when 
identifying informal settlements. 

2. Related Work 

Several studies have addressed this problem by focusing on the physical characteristics of 
informally settled areas when analyzing them using remotely sensed images [4–6]. Many of these 
methods use object-based [7,8] and pixel-based classification techniques [9,10]. In pixel-based 
methods, it is important to understand and infer objects and their spatial relationships in an image 
[11–13]. Spatial information extraction techniques such as those based on the grey level co-occurrence 
matrix (GLCM) have been employed to extract the underlying texture in the image to achieve more 
accurate classification, while texture-feature-based classification techniques were also explored in a 
few applications [14] in combination with support vector machines to improve performance [15,16].  

Multiresolution analysis (MRA) techniques have been used for textural analysis and semantic 
segmentation [17,18]. An MRA method decomposes an image into low- and high-frequency 
subbands at various scales for analysis and interpretation. Wavelet-based multiresolution features 
were utilized for semantic segmentation of remotely sensed images to capture multiscale 
characteristics of different objects [19,20]. Although the two dimensional orthogonal wavelet-based 
MRA captures linear directional information [21], it is generally used in many applications, including 
image segmentation [22,23]. A range of other basis functions have been used to extend traditional 
wavelets, which capture non-linear discontinuities at different scales and aspect ratios to better 
represent an edge. A conceptual extension of wavelet-based MRA is a contourlet transform [24], 
which aims to overcome the representational constraints of wavelets. The contourlet-based texture 
features are used for slum identification in remotely sensed images [20]. The contourlet-based 
segmentation provides improved performance over the wavelet-based method in [20]. In this work, 
the utility of contourlet subbands in a deep learning framework is investigated as an extension to the 
previous work on MRA-based segmentation [20] for the same problem. 

In the past, continued progress has been witnessed using deep learning, which has achieved 
state-of-the-art performance in image and information processing domains, including remote sensing 
applications [25–28]. A variety of neural network architectures have been studied, including 
convolutional neural networks and their variants [29–32]. These methods provide better results and 
show great potential in applying deep learning techniques to analyze remote sensing tasks. Deep 
neural networks have been used in remote sensing for classification [33,34] and urban analysis [35,36]. 
Various methods utilizing wavelet-based features in neural networks have also been explored to 
capitalize on multiscale features of wavelets in the computer vision domain [37–39]. Multiscale 
convolutional neural networks have also been used for classification [40,41]. Fully convolutional 
networks have shown improved performance for classification [42–44]. One such network was able 
to detect different classes and identify their shapes, such as built-up areas, road curvature, and 
vegetation boundaries. However, it was not capable of detecting small objects and classes with many 
internal boundaries, because the boundaries of these objects may be blurred or not properly oriented, 
meaning the results are comparatively degraded [45]. 

Several studies have aimed to improve the performance of segmentation using deep neural 
network structures by incorporating high-frequency data, which manifest the detailed information 
of an image [46–50]. However, studies have also shown that it is very difficult to train a deep 
architecture due to problems such as vanishing gradients. To overcome this problem, a U-net-based 
architecture that concatenates features at various scales is proposed in [51]. This architecture 
combines coarser and detailed semantic information at different scales to achieve better performance 
in biomedical image segmentation. 
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The architecture in [52] has the ability to work with small training data, yet provides improved 
results. The U-net is a convolutional network architecture without fully connected layers, which are 
found in most of the neural networks. It has an encoder and a decoder. The encoder consists of down-
samplers, convolutional units, and max-pooling layers. The U-net architecture is designed as an 
improvement of the fully connected neural network (FCN) specifically for semantic segmentation 
[53]. The architectural advantage of the U-net over FCNs is its symmetricity and bottleneck layers, 
which combine the information from encoders and decoders by the process of concatenation, whereas 
these are summed in FCNs. Additionally, while performing the down-sampling in FCN, the receptive 
field may reduce the resolution, which in turn results in loss of detailed information [52]. Unlike a 
general convolutional neural network, U-net does not include a fully connected layer, meaning it 
does not require large datasets. In this study, the U-net is modified to combine the directional 
subbands of contourlet transforms for semantic segmentation of informal settlement areas in 
remotely sensed images. 

Neural networks utilizing multiscale contourlet directional features for image semantic 
segmentation, particularly in the context of remotely sensed image analysis, have only been explored 
in a limited sense. This work aims to investigate the utility of directional features of contourlets in 
deep learning to identify informal settlements in remotely sensed images. The major contribution of 
this work is to propose a new model based on a set of multiscale contourlet masks as feature maps to 
include directional information in a deep learning framework with the help of approximation 
learning. Experimental results show that the proposed contourlet-assisted architecture is more 
effective than wavelet-assisted and plain networks in identifying informal settlements. 

3. Essential Concept—Contourlet Based MRA 

The central focus of this work is the utility of directional features of contourlet-based MRA in a 
deep learning framework. A machine learning approach basically learns various features that 
manifest different objects or classes in an image. The contourlet features have been used in different 
applications, including textural segmentation. The authors are motivated to utilize the directional 
features of the contourlet transform to assist a deep learning algorithm.  

The contourlet transform is implemented using a set of directional filters, which are designed 
using basis functions that have a choice of aspect ratios and directional orientations at multiple scales. 
In order to facilitate multiple scales, a Laplacian pyramid approach is combined with the directional 
filters [24]. The directional filter coefficients effectively capture the anisotropic relationship for 
curvilinear and disoriented edges.  

The implementation of a contourlet transform facilitates any level of decomposition, a seamless 
transition from one scale to another, and faithful reconstruction. The numbers of directions and 
angular resolutions get doubled at every subsequent finer scale. Figure 1 shows a conceptual 
viewpoint of multiscale directional decomposition in terms of band-pass and low-pass filters and a 
down-sampler. The implementation details can be found in [24]. The low-pass filter outputs 
approximation level information, whereas the band-pass filter extracts the detailed information from 
a band. The process of decomposition can further be iterated in the low-pass filtered band to extract 
details of an approximation. These decomposed subbands are augmented with the layers of the U-
net to provide multiscale learning, along with directional information.  
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Figure 1. Contourlet transform decomposition structure (adapted from [24]). 

4. Proposed Method 

In this paper, a modified version of the U-net [51] is used by augmenting contourlet masks of 
different sizes at different scales. During feature extraction, there are four steps, with the last three 
including several subbands. The feature maps in the same level have the same size, while the feature 
maps in the following level are half that of the previous level. For a 3-level decomposition, there are 
16, 8, and 4 subbands respectively. The expansive part aims to extract feature maps for informal 
settlements using contourlet masks. The number of stages in contracting and expansive parts is the 
same. Having a convolutional layer followed by a max-pooling layer helps in gathering contextual 
information present at each level of decomposition in terms of generating activation functions. The 
decoder expands these activation functions with the help of the up-sampler and convolutional units 
to obtain the original size of a band. The central aim is to enhance the receptive field of the model 
using the down-sampler. The residual information in the process is fed to the up-sampler for faithful 
reconstruction. This is attained by the skip connections in the network, while the features learned 
during down-sampling are used in the up-sampling part. In turn, this mechanism provides smoother 
edges than other fully connected convolutional networks.  

Informal settlement identification is considered as a binary classification. For training, logistic 
regression is used by optimizing the energy function. A gradient decent algorithm is used to 
minimize the error function. Both the softmax and cross-entropy functions are considered for the 
error function. The softmax layer outputs two lines as a probability indicator for informal settlements 
and rest of the classes. The last layer is a convolutional layer measuring 1 × 1, which is used to 
transform the features into two classes for the pixel under consideration. The concatenation in the 
expansive segment is able to learn the features at multiple scales. The feature learning at multiple 
scales enhances the ability to capture different properties of the classes and improves the 
classification accuracy. The proposed architecture is shown in Figure 2. 
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Figure 2. Proposed composite architecture (Conv: Convolution layer; ReLU: Rectified Linear Unit; 
MaxPooling: Maximum Pooling; Concat: Concatenation; Contourlet_x: Contourlet decomposed 
subband at level x). 

5. Results 

5.1. Dataset 

The dataset comprises high-resolution Worldview-2 ( 2 2m m× ) images of parts of Mumbai and 
Pune cities from Western India. The study area is densely populated with a mixture of informal and 
formal built-up areas. Informal settlements in the region provide housing and livelihood for the lower 
economic strata population. In general, these informal settlements are very dense with clusters of row 
houses (called chawls in Mumbai). However, there are several discernible differences: areas that have 
been rehabilitated near high-rise colonies and towers; long-established localities, which have regular 
small-scale shops (called kirana in Mumbai) and roof structures alongside; highly congested pockets 
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with only small lanes (parts of Govandi area in Mumbai); inner-city localities with high roof density 
(parts of PMG colony and Mankhurd) and small drainage lines (called nallahs in Mumbai). 

5.2. Implementation and Results 

The dataset comprises 1006 patches extracted from original images, including 878 patches for 
training, 38 patches for validation, and 90 patches for testing. These training patches were randomly 
sampled from the original images. For wavelet-based U-net, Daub (1, 2, 3, and 4) family and bi-
orthogonal 9/7 basis functions were used to obtain the approximation and detailed subbands for three 
decomposition levels. The Adam optimizer with the second norm loss function was used in the 
training phase. The initial learning rate parameter was kept at 0.001 and decreased by a factor of one-
tenth, with an epoch size of 20.  

In semantic segmentation, the low-pass filtered output is important, which approximates the 
input band while keeping the band-pass-filtered detailed information intact for better results [51,53]. 
With a limited number of samples, training a deep network might be very difficult. The authors in 
[53] used a pre-trained network to solve this problem. A quantum-inspired differential evolution 
method is used to fine tune the network parameters while training and to overcome premature 
convergence [54]. In order to achieve a reduced classification rule set, a particle swam optimization 
technique based on rough set theory is used to train a back-propagation network [55].  

In order to have a pre-trained network, the authors used the approximation subband of Haar 
wavelet instead of original images for the training phase in the first step. After training on the 
approximation subband, the network weights were saved and a new U-net was created and trained 
on the original images. This was the second phase of training, where the network was initialized 
using saved weights from the first phase instead of random initialization. Here, the mapping from 
the original images to the original ground truth was learned. The expected result was that the 
network would able to learn the mapping faster than it would if it were to be trained on the original 
images with random weight initialization. By means of this transfer learning from the approximation 
subband, the network was able to learn the important features for segmentation at a given resolution; 
some of those features would also be useful for higher resolution original images. 

The most common metrics used to evaluate a two-class classification method are precision and 
recall. The precision is calculated as the fraction of predicted informal settlement area pixels being 
labeled as informal settlements (IS), and recall is computed as the fraction of all labeled IS pixels that 
are correctly predicted. The precision and recall are also termed as correctness and completeness, 
respectively. F-score, mean intersection over union (mIoU), and overall accuracy (OA) are also used 
for quantitative assessment. With true positives (TP), false positives (FP), and false negatives (FN), 
the metrics are as follows:  

• Correctness (C1) = TP/(TP + FP); 
• Completeness (C2) = TP/(TP + FN); 
• F-score = 2.C1.C2/(C1 + C2). 

Figures 3 and 4 show the informal settlement identification results for Pune and Mumbai city 
images, respectively. Figure 3a,b show the original Pune city image and reference image, respectively. 
Figure 3c,d show the result using the U-net and wavelet-based U-net methods, in which it is observed 
that informal settlement areas were not identified properly and classes were misclassified in many 
locations. The misclassified portions are circled in red. The wavelet was found to be unsuitable for 
orientation and anisotropic properties of the classes, however the contourlet efficiently captured the 
curved boundaries and represented the disoriented and anisotropic properties of the structures. 
Figures 3e and 4e demonstrate the utility of the contourlet features from all three decomposition 
levels, which show detailed directional information in the image. It is observed that informal 
settlements were correctly identified with better accuracy and improved edge continuity. The class 
does not appear to be intermixed with partially built-up or formally built-up areas, as observed while 
using the plain U-net method. This is due to the fact that the contourlet features capture the 
directional and isotropic properties of these classes. The accuracy in the boundary shape and edge 
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continuity is observed to be better especially in the middle (reverse L-shape) and top-right potions of 
the image in Figure 3. Similarly, deviation from the reference image (Figure 4b) boundaries can be 
observed in the top-left and bottom-right portions of Figure 4c–e. Figures 3f,g and 4f,g show the 
identification results using contourlet- and wavelet-based texture features [20]. The work in [20] 
emphasizes the utility of texture-based moment and energy features computed from MRA 
coefficients and does not utilize deep learning approaches for classification. It is observed that 
contourlet-assisted U-net performs better than the texture-based classification in terms of accuracy 
and visual interpretation. The misclassified pixels are highlighted with red circles in Figures 3 and 4.  

The contourlet-assisted model performs better than the conventional U-net in terms of both pixel 
accuracy and mean intersection over union (mIoU). It is observed that Biorthogonal 9/7 is the best 
among all considered wavelet basis functions. However, the contourlet-assisted U-net outperforms 
all of the wavelet methods and the plain U-net method. The pixel accuracies and mIoU of the models 
for both the images using different methods are detailed in Table 1. As can be observed, the overall 
accuracy for Mumbai and Pune images improved by 3.04% and 3.76%, respectively. Additionally, 
precision and recall for informal settlements also improved compared to the results with plain and 
wavelet-based U-net methods. 

  
(a)  (b)  

  
(c)  (d)  
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(e) (f) 

  
(g)  (h) Legend 

Figure 3. Informal settlement identification for parts of Pune city: (a) original image; (b) reference; (c) 
using plain U-net, with misclassifications circled in red; (d) using wavelet-assisted U-net, with 
misclassifications circled in red; (e) using contourlet-assisted U-net; (f) using contourlet texture 
features [20]; (g) using wavelet texture features [20]. 

Table 1. Performance comparison. 

Model Mumbai City Image Pune City Image 
 C1 C2 FS OA mIoU C1 C2 FS OA mIoU 

U-net 0.9021 0.8812 0.8915 0.9194 0.79 0.9198 0.8878 0.9035 0.9202 0.81 
U-wnet 0.9201 0.8902 0.9049 0.9290 0.82 0.9367 0.9018 0.9189 0.9401 0.83 
U-cnet 0.9345 0.9101 0.9221 0.9498 0.89 0.9501 0.9198 0.9347 0.9578 0.91 

WTex [20] 0.8135 0.8010 0.8072 0.8228 0.72 0.8247 0.8192 0.8219 0.8402 0.74 
CTex [20] 0.9187 0.8992 0.9088 0.9201 0.82 0.9102 0.8994 0.9047 0.9224 0.81 

U-wnet: wavelet-assisted U-net; U-cnet: contourlet-assisted U-net; WTex: wavelet-texture-based 
method; CTex: contourlet-texture-based method; C1: correctness; C2: completeness; FS: F-score; OA: 
overall accuracy; mIoU: mean intersection over union. 

(a)  (b)  
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(c) (d) 

(e) (f) 

(g)  (h) Legend 

Figure 4. Informal settlement identification for parts of Mumbai city: (a) original image; (b) reference; 
(c) using plain U-net, with misclassifications circled in red; (d) using wavelet-assisted U-net, with 
misclassifications circled in red; (e) using contourlet-assisted U-net; (f) using contourlet texture 
features [20]; (g) using wavelet texture features [20]. 

6. Discussion 

As described in the methodology, a comparative analysis was carried out by considering 
augmentation applied to the MRA features in deep learning. 

1. U-cnet_1: Original Image + contourlet subbands at first level of decomposition; 
2. U-cnet_2: Original Image + contourlet subbands at first and second levels of decomposition; 
3. U-cnet_3: Original Image + contourlet subbands at first, second, and third levels of decomposition. 

The general trend was that the accuracies and mIoU for each image increased as the order of the 
decomposition increased. As observed in Figures 5 and 6, U-cnet_3 (U-cnet of Figures 3 and 4) 
outperforms other MRA methods, as it utilizes all 16 subbands containing directional details, which 
successfully capture the disoriented anisotropic features and irregular layouts of informal 
settlements. As observed from Figure 4, formal and informal settlements are mixed together in many 
places using U-net and wavelet-assisted U-net (U-wnet) models. This erroneous segmentation is due 
to the lack of finer details in plain U-net and wavelet-assisted U-net. This misclassification is also 
observed in U-cnet_1, as it does not incorporate all the subbands of the contourlet transform. 

Figures 5 and 6 compare the band-wise results for the contourlet-assisted U-net. As the level of 
aggregation of subbands increases, the ability to capture intrinsic geometrical details and directional 
selectivity also increases, which in turn improves the identification accuracy of informal settlements. 
The U-cnet_3 model can analyze and recognise very small features of different classes containing rich 
and dense detailed information. This is also demonstrated using band-wise overall accuracy in Figure 
7. Figure 8 presents mIoU with different levels of wavelet- and contourlet-decomposed subbands. 
For both the images, overall accuracy and mIoU using contourlet subbands is higher than that of 
wavelet subbands. Even the first level of the contourlet subbands (U-cnet_1) shows better 
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performance than those of third level of wavelet subbands (U-wnet_3) for both of the images. The 
trend of overall accuracy is in agreement with the mIoU for the number of MRA subbands utilized 
in deep learning. 

The results of a comparison with other methods using the same training and validation datasets are 
reported in Table 1. The proposed contourlet-assisted U-net method shows improvements in identifying 
informal settlements in both the datasets. The network extracts contourlet features at multiple scales, 
which works well in contraction, and it facilitates clear separation of disoriented boundaries. 

(a) (b) 

(c) (d) 

Figure 5. Effects of contourlet subbands for Pune image: (a) reference; (b) U-cnet_1; (c) U-cnet_2; (d) 
U-cnet_3. 

(a) (b) 
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(c) (d) 

Figure 6. Effects of contourlet subbands with U-net for Mumbai image: (a) reference; (b) U-cnet_1; (c) 
U-cnet_2; (d) U-cnet_3. 

 
Figure 7. Band-wise overall accuracy. 

 
Figure 8. Band-wise mean intersection over union (mIoU). 

7. Conclusions 

In this paper, a deep learning method utilizing contourlet MRA features for identification of 
informal settlements using remote sensing data was proposed and analyzed. The major change 
proposed is augmentation of the directional subbands of the contourlet transform with a deep 
learning model. The method progressively combines subbands at various scales to extract different 
disoriented details, which are key manifestations of informal subregions in remotely sensed images. 
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The proposed algorithm is tested on Worldview-2 images of Mumbai and Pune (India) covering 
different regions of formal and informal urban settlements. The results were compared with plain U-
net and wavelet-assisted U-net models. The performance was evaluated based on the visual 
interpretation, precision, recall, F-score, mIoU, and overall accuracy of these methods. 

The results showed that multiscale contourlet subbands in the proposed U-net yielded better 
class discrimination for both the datasets. The improved performance was because of the ability of 
the contourlet transform to capture directional features of linear and nonlinear discontinuities when 
compared with plain U-net and wavelet-assisted U-net models. The roof tops, boundaries of small 
lanes (chawls), irregular areas, and structures manifest as detailed edges in the image at different 
scales. These details are efficiently captured by the subbands of the contourlet transform, which show 
directional sensitivity and anisotropy. The contourlet subbands are capable of identifying the essence 
of informal areas—regions with particularly dense and jammed houses-which were not identified 
efficiently by the plain U-net model. The results for the contourlet-assisted model showed robust 
performance in terms of both visual interpretation and class identification, and are sufficiently robust 
against random pixels while preserving spatial regularity. An overall classification accuracy of 94.9–
95.7% was attained with proper boundary shapes and edge continuity. The proposed model would 
provide local bodies a better mechanism to identify informal settlements in order to carry out 
advanced analysis in urban planning. The proposed method provides an option to local municipal 
corporations to enhance the efficiency of their often limited resources, especially due to prohibitive 
software licensing cost in developing countries, and to target support and improvement measures. 
Other non-wavelet-based MRA, such as curvelet and shearlet transforms, will be explored in a deep 
learning framework in future studies. 
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