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Abstract: Human interaction recognition technology is a hot topic in the field of computer vision,
and its application prospects are very extensive. At present, there are many difficulties in human
interaction recognition such as the spatial complexity of human interaction, the differences in action
characteristics at different time periods, and the complexity of interactive action features. The existence
of these problems restricts the improvement of recognition accuracy. To investigate the differences
in the action characteristics at different time periods, we propose an improved fusion time-phase
feature of the Gaussian model to obtain video keyframes and remove the influence of a large amount
of redundant information. Regarding the complexity of interactive action features, we propose a
multi-feature fusion network algorithm based on parallel Inception and ResNet. This multi-feature
fusion network not only reduces the network parameter quantity, but also improves the network
performance; it alleviates the network degradation caused by the increase in network depth and
obtains higher classification accuracy. For the spatial complexity of human interaction, we combined
the whole video features with the individual video features, making full use of the feature information
of the interactive video. A human interaction recognition algorithm based on whole–individual
detection is proposed, where the whole video contains the global features of both sides of action, and
the individual video contains the individual detail features of a single person. Making full use of
the feature information of the whole video and individual videos is the main contribution of this
paper to the field of human interaction recognition and the experimental results in the UT dataset
(UT–interaction dataset) showed that the accuracy of this method was 91.7%.

Keywords: human interaction recognition; whole-individual detection; parallel multi-feature fusion
network; Gaussian model downsampling

1. Introduction

Human motion recognition is a key technology for intelligent video surveillance. It is widely used in
various scenarios such as human–computer interaction [1], motion analysis [2–7], intelligent monitoring,
gesture recognition [8,9], and facial emotion recognition [10–13]. Human motion recognition is divided
into single-person motion recognition and multi-person interactive motion recognition. At present,
the research on human interaction recognition has gradually attracted the attention of researchers,
and has obtained certain research results [14–20]. The algorithm framework of human interaction
recognition is generally divided into whole human interaction recognition and individual human
interaction recognition. This paper combined the characteristics of the two ways, and proposed a
method of human interaction recognition based on whole and individual detection.
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1.1. Related Work

At present, there are many practical algorithms and networks that can be used for human motion
video recognition research. Zhao et al. [21] believe that convolution directly in the time dimension
implies a strong assumption that the features between frames are well aligned, but in fact, the person
or the object may perform large displacement or deformation in the video. They proposed considering
trajectory convolution as a special case of 3D deformable convolution, which provides the offset amount
by time series information, so that the trajectory convolution can be easily realized based on the code
of the deformable convolution. Silambarasi et al. [22] proposed a video representation method of 3D
volume space and human motion trajectory that projected the video onto three different views, called
the 3D space–time plane, and used time-view motion tracking to identify various human behaviors.
Du Tran et al. [23] proposed a new form of convolution to deal with spatiotemporal information and
used 3D convolution to process spatio-temporal information and made further improvements in the
form of 3D convolution. They proposed an improved model: 2D + 3D, called mixed convolution,
which has the benefit of reducing parameters and maintaining performance. Chen et al. [24] made the
convergence speed as fast as possible and proposed a multi-fiber network. This splits the complex
network into a lightweight network and uses the information flow between the fibers to introduce the
multiplexer module. Wang et al. [25] proposed a non-local operation as a generic family of building
blocks for capturing long-range dependencies. This was then a concrete introduction to their method,
which was inspired by the classical non-local means method of computer vision.

In the field of human interaction recognition, there are many practical algorithms and networks that
can be used in human interactive video recognition research. Nilar Phyo et al. [26] applied deep learning
technology over the skeleton motion history image (Skl MHI) [27] of human actions to implement HAR
(human action recognition) that can work independently on the problem domain. Li et al. [28] treated
the interactive actions as individual motions, combining global features and local features to identify
human interactions. The algorithm framework for human interaction recognition is generally divided
into whole body-based human interaction classification and individual-based human interaction
classification [29]. Among them, the whole recognition method refers to describing the human
interaction as a whole, including all the people involved in the interaction in the video. Guo et al. [30]
categorized the multi-person interaction as individual layer or interaction layer, and proposed a
hidden Markov model based on observation vector decomposition. Xiaofei Ji et al. [31] introduced
a hierarchical structure of interactive action recognition based on the process of human interaction.
According to chronological order, the actions are divided into action start time, action execution time,
and action end time. Vahdat et al. [32] proposed an interactive action recognition algorithm based on
chronological key poses by treating two interactions as two individuals, learning the model parameters
of each individual, and then identifying them. However, this method could not capture the human
interaction information. Such methods mainly deal with individual actions, which may interfere with
the action classification results due to the existence of individual occlusion and self-occlusion.

This paper focused on human interaction recognition in video. In the existing video research
algorithms for human interaction motion, many methods recognize the two sides of the action as
a whole and lose the characteristic information that the individual brings. There are also a few
algorithms that separate the two sides of the action into two separate individuals for recognition,
but they ignore the characteristic information that the whole brings. Therefore, this paper proposed a
human interaction recognition framework based on whole–individual detection. This method contains
the characteristics of the whole information and the characteristics of the individual information.
The whole video includes both sides of the action, and can extract global features such as the relative
position and orientation of the action, and the individual detection video contains a single person,
where the individual detailed action feature information can be extracted.
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1.2. Contribution

First, we propose an improved fusion time-phase feature of the Gaussian model to obtain video
keyframes and remove the influence of a large amount of redundant information. This method resolves
the problem of the differences in action characteristics at different time periods.

Then, we propose a multi-feature fusion network algorithm based on parallel Inception and
ResNet. This multi-feature fusion network not only reduces the network parameter quantity, but also
improves the network performance; it alleviates the network degradation caused by the increase in
network depth and obtains higher classification accuracy. This algorithm solves the problem of the
complexity of human interaction feature extraction.

We have noted that the whole video contains the global features of both sides of action, and that the
individual video contains the individual detail features of a single person. Therefore, we combined the
whole video features with the individual video features, making full use of the feature information of the
interactive video, which will help us solve the problem of the spatial complexity of human interaction.

2. Proposed Method

Due to the spatial complexity of human interaction, we propose a two-person interaction
recognition algorithm based on whole–individual detection. The video includes two individuals of the
action. Information can be extracted such as the relative position and orientation of the interactive
action, and the individual detailed action features can be collected from the individual action video.
As shown in Figure 1, in the motion video individual detection stage, the whole video is split into
individual video (left) and individual video (right). This paper used HOG (histogram of oriented
gradient) [33] and SVM (support vector machine) [34] and the Kalman tracking algorithm [35] to
obtain the position of individuals for video detection as the two algorithms can reduce the impact of
occlusion on pedestrian detection. In the feature extraction and model training stage, first, the image is
preprocessed by data enhancement and normalization. Then, the video downsampling algorithm based
on Gaussian distribution is used to improve the validity of the data. Finally, the parallel multi-feature
fusion network is proposed for model training. In the action video recognition stage, the preliminary
recognition results that are obtained by the whole video and the individual segmented video are fused.
Then, we combine the preliminary recognition results decision level to obtain the final results.
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Figure 1. Human interaction recognition based on whole–individual detection.

2.1. Motion Video Individual Detection

Due to the spatial complexity of interaction features, the motion characteristics of individual
movements and the characteristics of interaction movements, we proposed an interactive motion
recognition framework based on whole–individual detection. In the individual detection part of the
interactive action video, the moving target is detected for the action video. The video detection is
performed according to the detection result, and the algorithm block diagram used is shown in Figure 2.
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Figure 2. Block diagram of the individual detection algorithm for interactive video.

When the HOG feature descriptor and the pedestrian detection algorithm of the SVM classifier
are applied to the interactive action video, loss detection and false detection phenomenon may take
place. In this paper, a Kalman filter-based auxiliary tracking model was added to the pedestrian
detection process to track each individual in the human interaction video. The trajectory and other
information detected by consecutive frames provide reasonable prediction of the target’s next frame
position. Human body loss detection is greatly reduced by using target tracking. As shown in
Figure 3, a complete two-person interactive motion video is segmented into two individual motion
videos, recorded as individual video (left) and individual video (right). First, we input the human
interactive action video. Then, we extracted HOG features from the video. After that, we imported the
parameters into the SVM classifier for training. Finally, we used the Kalman tracking algorithm to
achieve individual detection.
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Figure 3. Video individual detection diagram: (a) Original video; (b) Individual video (left); (c)
Individual video (right).

2.2. Video Downsampling with Time-Phased Features

When using video images for feature extraction and training, the choice of video sampling
methods will directly affect the generalization ability of the classification model. If there is no video
downsampling, adjacent video will generate a lot of redundant information, which will increase the
burden on the network. Considering the difference in the phase characteristics of the action time,
this paper proposed a Gaussian model downsampling method that combines time-phase features.
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The Gaussian function is also called a normal distribution, and the expression of the probability density
function is as shown in Equation (1).

f (x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (1)

where µ is the expected value of the Gaussian distribution and σ is the standard deviation of the
Gaussian distribution, which is related to the magnitude of the Gaussian distribution. It can be
seen from the distribution curve that the closer to the expected value, the higher the probability
density value. There is a general rule in human interaction video: the closer to the trigger stage of
the target action, the higher the distinction between actions. We associated this rule with a Gaussian
probability density function that is very similar. In the public dataset taken in this paper, each action
video sample could be divided into the action start period, action execution period, and action end
period. Based on the analysis, it can be seen that the action execution period had significant feature
differences, which can help to classify the movements, and the action frame was concentrated in
the center. Analogous to the Gaussian model, we proposed a video downsampling method based
on Gaussian probability distribution. In the process of video downsampling, we adopted different
sampling methods according to the different action stages of the video. For the video from the
beginning to the end of the target action, we sampled at small intervals, and for the redundant video
outside the target action, we sampled at large intervals. The selection of the sampling interval needs to
be obtained through repeated experiments. The video features will also be more differentiated after
Gaussian downsampling processing.

2.3. Human Interaction Feature Extraction Based on Parallel Multi-Feature Network

In order to improve the accuracy of interactive action video recognition, a convolutional neural
network based on parallel multi-feature fusion was proposed for the extraction of interactive feature
information. The migration learning method is adopted in the feature extraction process [33]. A block
diagram of the algorithm based on an Inception [36] and ResNet (Residual Network) [37] parallel
multi-feature fusion network is shown in Figure 4.
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The Inception V3 [38] network is an important breakthrough in the history of convolutional neural
networks. We used the Inception pre-training network to obtain feature information. In general,
in order to improve network performance, the most common way for researchers is to increase the
depth and width of the network, but this approach will generate a huge number of parameters. As the
number of network layers increases, the training process will be more cumbersome and will easily
lead to over-fitting of the data. In order to ensure the performance of computing while expanding the
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network, the Inception network emerges. As shown in Figure 5, the network structure clusters the
sparse matrix into more dense sub-matrices to improve the computing performance. The depth and
width of the neural network are modified. The large convolution kernel is split into small convolution
kernels of different sizes such as 1 × 1, 3 × 3, and 5 × 5.
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The Inception structure uses different receptive fields to fuse different scale features, and the
obtained image feature information is more complete. At the same time, the series of networks
eliminates the full connection layer in the network output layer. This method greatly reduces the
parameters of the entire network and improves the efficiency of the training process. With the
rapid development of deep learning technology, the Inception network is constantly improving and
innovating. For example, Inception V2 network [36] introduces the batch normalization layer, and uses
two 3 × 3 convolution kernels to represent a 5 × 5 convolution kernel. The depth of the neural network
improves its nonlinearity. The concept of asymmetric convolution is proposed in the Inception V3
network structure. In this structure, the large convolution kernel is further decomposed. In order
to further reduce the number of parameters in the network and improve the speed of the operation,
the network further decomposes the N ×N scale convolution kernel and decomposes it into a 1 ×N
convolution kernel and an N × 1 convolution kernel. It can not only improve the operation speed, but
also alleviate the data over-fitting phenomenon.

We continued to explore the feature extraction method based on residual neural network [37].
As the convolutional neural network goes deeper and deeper, a series of problems have emerged.
In the process of network training, as the number of network layers deepens, gradient disappearance
or gradient explosion may occur. These problems make the network difficult to converge. Researchers
hope to increase the nonlinearity of neural networks by increasing the number of neural network
layers. At the same time, they are trapped by the phenomenon of network degradation. Figure 6
shows the principle framework of the deep residual network.

In the residual network structure diagram of Figure 6, the input of x is directly transferred to the
output as the initial result by ways of “shortcut connections”. The output result is H(x) = F(x) + x.
When F(x) = 0, then H(x) = x. This is identity mapping (the output is equal to the input). Therefore,
ResNet is equivalent to changing the learning goal, which is no longer to learn a complete output,
but the difference between the target value H(x) and x, called residual F(x) = H(x) – x. Therefore,
the following training goal is to approximate the residual result to 0, so that as the network deepens,
the accuracy does not decrease.

There is a residual unit that can be expressed in the form of Equations (2) and (3):

yl = h(xl) + F(xl, Wl)
(
Wl =

{
Wl,k|1 ≤ k ≤ K

})
(2)

xl+1 = f (yl) (3)



Sensors 2020, 20, 2346 7 of 18

where xl, yl represent the input and output values of the lth neuron; h(xl) is the representative identity
map; and f(yl) is the representation activation function. Under the condition of identity mapping: h(xl)
= xl, yl = f(yl), there is Equation (4).

xl+1 = xl + F(xl, Wl) (4)
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Similarly, when it is coming to the lth layer, Equation (5) can be obtained.

xL = xl +
L−1∑
i=l

F(xi, Wi) (5)

It can be seen that when the number of layers is deeper and deeper, the output value of the
network is related to the output of the residual in the previous layer and the output of the Lth layer is
the sum of the output values of the residuals of the previous layer. In back-propagation, calculation of
the partial derivative of the loss function ε is as Equation (6).

∂ε
∂xl

=
∂ε
∂xL

∂xL

∂xl
=

∂ε
∂xL

1 +
∂
∂xl

L−1∑
i=l

F(xi, Wi)

 (6)

It can be seen from the equation that the process of gradient derivation avoids the possibility that
the value in the multiply state is 0, thus avoids the trouble caused by the disappearance of the gradient.
After the network is improved in this way, even if the network is deeper, the results of network training
will not be too deviated. This improved method avoids the problems of gradient disappearance and
gradient explosion, which are caused by the increase in the number of network layers, which leads to
maintaining a good network performance.

Taking the interactive video in the UT dataset [39] as an example, we used the Inception V3
pre-training model based on the ImageNet dataset. According to the requirements of the model,
the image in the activity video was adjusted to a size of 299 × 299. The output of the last layer of the
average pooling layer was used as the result of the preliminary feature information extraction of the
Inception network. The results are stored as a series of feature files, each of which generates a feature
file. Each segment of the video generates a feature file. During the experiment, each group of action
videos was cut into 40 frames, so the output size of the network was 2048 × 40. During the experiment,
for the ResNet pre-training network, the image was cropped to a uniform 224 × 224 size at the feature
extraction stage due to the input data requirements of the pre-training model, Similarly, each video
will generate a feature file, which is extracted based on the residual neural network with a feature size
of 2048 × 40.
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The proposed network is a multi-feature fusion convolutional neural network based on Inception
and ResNet. At the feature extraction level, feature extraction is performed using the Inception V3
network and ResNet, respectively. Then, the two extracted features are fused at the fully connected
layer. Then, training is continued. After multi-feature network convergence, the image features will be
more abundant, which is conducive to improve the accuracy of human interaction video classification
and recognition. According to the name of the video, this paper fused two feature files generated by
each video file to form a feature file with a size of 4096 × 40 for later training and classification.

2.4. Whole-Individual Detection Based on Decision-Level Fusion

The decision-level fusion uses different features to obtain the classification results, and then the
experimental results are merged. In the classification recognition phase, the whole video, individual
video (left), and individual video (right) all produce a preliminary classification result based on
probability. In order to make better use of the feature information of video images and improve the
action recognition accuracy of interactive video, from the perspective of probability fusion, this paper
fused the preliminary classification results at the decision level to obtain the final classification results.
As shown in Equation (7), probabilistic weighting is used to fuse the three classification results of each
set of action videos to obtain the final classification result:

RFinal = ROverall × POverall + RLe f t × PLe f t + RRight × PRight (7)

Among them, RFinal is the final recognition result, Rwhole is the whole video classification result
of the double, RLeft represents the classification result after training using the individual video (left),
and RRight represents the classification result obtained by using the individual video (right) for model
training. Pwhole, PLeft, PRight are the weighted probability of the whole video classification result of
the two person, the weighted probability of the individual video (left) classification result, and the
weighted probability of the individual video (right) classification result, respectively. The weighted
probability value was obtained by comparing and analyzing the repeated experiments. A human
body interactive video recognition block diagram based on decision level fusion is shown in Figure 7.
As shown in Figure 7, after the video sequence is processed by a parallel multi-feature network,
we can obtain the global and individual features. After the global feature and individual features are
classified by Softmax, we can obtain a preliminary classification result based on probability. In the final
classification stage, in order to make better use of the feature information of video images and improve
the recognition accuracy of interactive video, this paper combined the preliminary classification results
from the perspective of probability fusion to obtain the final classification results.Sensors 2020, 20, x FOR PEER REVIEW 9 of 19 
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3. Results

3.1. Experimental Platform and Experimental Data

This paper conducted the experiments on a computer with a NVIDIA GTX 1080Ti graphics card.
The experiment used Tensorflow for the deep learning network framework, Python for programming,
MATLAB for other data analysis and preprocessing stages; the software used were Pycharm2018
and MATLAB2016.

This paper selected the UT interaction dataset. The UT dataset is a common human interaction
video dataset. In order to ensure the effectiveness of the algorithm, the original data are generally
divided into a training set and a verification set. This paper used K-fold cross validation (K-CV).
This method divides the original data into K groups on average (K is generally greater than or equal
to 2, the actual operation generally starts from 3, we only try to take 2 when the amount of raw data
is small. Therefore, in this paper, we selected K = 3 for the experiment.) Each subset of data is used
as a verification set, and the remaining K-1 subsets of data are used as training sets. In this way,
K models are obtained. Finally, we used the average number of classification accuracy of the final
validation set of these K models as the final result. This method is the most widely used as K-CV can
effectively avoid the occurrence of over-fitting and under-fitting and the final result has high reliability.
The UT-Interaction dataset contains videos of continuous executions of six classes of human–human
interactions: shake-hands, point, hug, push, kick, and punch. Ground truth labels for these interactions
are provided including time intervals and bounding boxes. There is a total of 20 video sequences
whose lengths are around one minute. Each video contains at least one execution per interaction,
providing us with eight executions of human activities per video on average. Several participants
with more than 15 different clothing conditions appear in the videos. The videos are taken with the
resolution of 720 × 480, 30 fps, and the height of a person in the video is about 200 pixels. We divided
videos into two sets. Set 1 was composed of 10 video sequences taken on a parking lot. The videos
of set 1 were taken with slightly different zoom rate, and their backgrounds were mostly static with
little camera jitter. Set 2 (i.e., the other 10 sequences) were taken on a lawn on a windy day where the
background is moving slightly (e.g., tree moves), and they contain more camera jitters. From sequences
1 to 4 and from 11 to 13, only two interacting people appear in the scene. From sequences 5 to 8 and
from 14 to 17, both interacting people and pedestrians are present in the scene. In sets 9, 10, 18, 19,
and 20, several pairs of interacting people execute the activities simultaneously. Each set has a different
background, scale, and illumination. As shown in Figures 8 and 9, UT set 1 is an example of an action
in the background of a parking lot, and UT set 2 was photographed on a windy lawn. For the entire
video dataset, the video capture had different backgrounds, different resolutions, and different lighting
conditions, which all bring challenges to the experiment of human interaction recognition.

In addition, in order to verify the applicability of this algorithm, we selected the interactive
action video in UCF101 [40] for extended experiments. Since we are interested in human interactive
videos, we selected a part of the interactive videos in the UCF101 dataset for training and testing.
Our experiment on the UCF101 dataset was only to verify the effectiveness and versatility of the
method. At present, the experiments of interactive action recognition are usually compared on the
UT dataset. UCF101 is an action recognition dataset of realistic action videos collected from YouTube,
having 101 action categories. This dataset is an extension of the UCF50 dataset, which has 50 action
categories. With 13,320 videos from 101 action categories, UCF101 had the largest diversity in terms of
actions and contained the presence of large variations in camera motion, object appearance and pose,
object scale, viewpoint, cluttered background, illumination conditions, etc., which made it the most
challenging dataset to date. As most of the available action recognition datasets are not realistic and
are staged by actors, UCF101 aims to encourage further research into action recognition by learning
and exploring new realistic action categories. The videos in 101 action categories were grouped into
25 groups, where each group can consist of 4–7 videos of an action. The videos from the same group
may share some common features such as similar background, similar viewpoint, etc. We randomly
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divided the original data of the UCF101 interactive video into two groups: one as the training set
and one as the verification set. We then used the training set to train the classifier, and then used the
verification set to verify the model, and recorded the final classification accuracy as the result.
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More experimental parameters are as follows. We chose the Adam optimizer in the experiment,
the learning rate = 10−5, and decay = 10−6. The loss function uses categorical cross entropy.
During training, batch size = 32. During the training process, the image in the action video was
adjusted to an image of size of 299 × 299. In the feature extraction stage, the image was cropped to
a uniform size of 224 × 224. During the experiment, each group of action video clips was 40 frames,
so the output size of the network was 2048 × 40.
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3.2. Analysis of Results

In order to verify the improved effect of video acquisition based on Gaussian downsampling,
we took the interactive video of UT dataset 1 as an example. We adopted equal interval downsampling
video processing and Gaussian model based downsampling video acquisition to perform UT whole
video preprocessing. In this paper, we selected the Inception network and ResNet for feature extraction
and classification recognition processing, and the experimental results are shown in Table 1.

Table 1. Comparison of recognition accuracy of different sampling methods.

Sampling Method Inception (%) ResNet (%) Multi-Feature Fusion (%)

Equal interval sampling 66.7 72.2 83.3
Downsampling based on Gaussian model 69.4 77.8 86.1

Equal interval sampling 66.7 72.2 83.3

It can be seen from Table 1 that the Gaussian model based downsampling method could improve
the accuracy of human interaction recognition. The experimental process found that the improved
fusion time-phased Gaussian model downsampling algorithm had an improved effect on the recognition
of punching and pushing human interaction. However, the recognition and improvement of other
actions were not obvious. This might be due to the limiting rules (some action video durations were
shorter) of the video in the chosen dataset. Furthermore, there was no big difference in the choice of
sampling methods.

In order to verify the human–interaction recognition algorithm based on the whole–individual
detection proposed in this paper, a comparative experiment was carried out on the UT dataset. The UT
interactive dataset generates individual video (left) and individual video (right) after the previous
interactive video detection process. In this paper, UT individual video (left), UT individual video
(right), and whole video were used for the experiments. In order to obtain reliable experimental
classification and comparison, the experimental process was based on an Inception and ResNet parallel
multi-feature fusion network algorithm. In the video downsampling process stage, we used a Gaussian
model with improved fusion time phase features.

The experimental results of the UT dataset 1 were analyzed. Among them, the preliminary
classification results of the individual actions obtained by the individual (left) video are shown in
Figure 10, and the preliminary classification results obtained by the individual video (right) are shown
in Figure 11. The preliminary classification results based on the whole video are shown in Figure 12.
Finally, we combined the whole video and preliminary classification results of two groups of segmented
video components for decision level fusion. The classification results of each action video after fusion
are shown in Figure 13. In our experiments, the vertical axis of the confusion matrix is the actual
actions, and the horizontal axis is the recognized actions.

The results of our experiments on the UT human interaction dataset are shown in Figures 14 and 15.
It can be seen from Figure 14 that the accuracy of the training set and the validation set steadily
increased, while Figure 15 is an image of the loss function. In terms of a specific sample, the loss
function refers to the gap between the value predicted by the model and the true value. For a sample
(xi, yi), yi is the true value and f(xi) is our predicted value. Use the loss function L(f(xi), yi) to represent
the gap between the true value and the predicted value. At the same time, it can be seen from Figure 15
that the loss function of the training set and the validation set both steadily decreased. In the end,
they tended to coincide.
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After the deciding level fusion, the whole accuracy of the video classification results is shown
in Table 2. In the UT set 1 human interaction dataset, the individual video (left) obtained 83.3%
recognition accuracy, the individual video (right) accuracy rate reached 75%, and the recognition
accuracy based on UT whole video reached 86.1%. In contrast, the recognition result of the UT dataset
was better than the video classification result after the individual split. The decline in recognition
accuracy after individual detection may be due to the easy loss of feature information of interactive
actions during video detection. In individual-split video, kicking, punching, and pushing actions
always have a side action performer in an evasive state, thus the motion discrimination degree is small.
Thus, the recognition accuracy of the individual split video is relatively low.
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Table 2. Comparison of the individual video and whole video recognition accuracy.

Recognition Methods UT Set 1 Recognition
Accuracy (%)

UT Set 2 Recognition
Accuracy (%)

UCF101 Interactive
Recognition Accuracy (%)

Individual (left) 83.3 77.8 75.6
Individual (right) 75.0 72.2 76.8

whole 86.1 83.3 81.8
Fusion of this paper 91.7 86.1 85.4
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The comparison experiment results are shown in Table 2. For the selection of the optimal weights,
we adopted the method of weight traversal. After the decision level fusion, the recognition accuracy
of interactive video was significantly improved. From the analysis of the recognition accuracy of
each action, it can be seen that the accuracy of the classification results of pointing and pushing was
higher. This was not hard to predict since the characteristics of these two actions were more obvious.
The classification result of the punching action needs to be improved because it is easily recognized as
a push action and a handshake action. The kicking action was easily confused with the pushing action
due to the low discrimination of degree of motion. The experimental results showed that when the
detection video and the corresponding original whole video classification results were fused according
to a certain probability, the classification accuracy of the handshake action and the push action was
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significantly improved in the human interaction. In addition, in order to prove the credibility of this
method, we also performed extended experiments on the UCF101 dataset. In the UCF101 human
interaction dataset, the individual video (left) obtained a recognition accuracy of 75.6%, the individual
video (right) obtained a recognition accuracy of 76.8%, and the UCF101 whole interactive video
obtained a recognition accuracy of 81.8%. Thus, it can be seen that the method of individual detection
and whole fusion proposed in this paper can improve the accuracy of human interaction recognition.

The experimental results of this paper were compared with the classification results of other
experimental methods on the UT dataset in recent years, and the experimental results obtained are
shown in Table 3. Huang et al. [30] used the HIS color space model to analyze the characteristics of
the direction gradient histogram for different channels. Then, multi-channel fusion yielded 81.7%
recognition accuracy. Mahmood et al. [41] proposed a new human interaction recognition (HIR)
method that analyzes from local features, captures intensity changes, and distance from point to
point. Time-based relationships identify key body points throughout the body contour and they
used this method to extract the spatiotemporal characteristics of each different interaction. In their
paper, the recognition in the UT set 1, two dataset experiments obtained an accuracy of 83.5% and
72.5%, respectively. Kong et al. [42] introduced an interactive phrase descriptor to represent the
human interaction movement relationship and obtained a recognition rate of 88.33% in the UT dataset
experiment. Shariat et al. [43] proposed a detection alignment model to improve the similarity measure
between different action sequences, where they obtained a recognition rate of 91.57%. Guo et al. [44]
proposed a new local descriptor based on the traditional descriptor LBP, and extended it to a space–time
space. They obtained a recognition accuracy of 91.42% by using the neighborhood information of
the three-dimensional cube. Using the method proposed in this paper, the experiment was carried
out with the UT dataset, and we finally obtained a recognition rate of 91.70%. In order to prove
the effectiveness of this method, we performed verification experiments on the UCF101 dataset and
obtained a recognition rate of 85.43%. Therefore, it can be seen that the human-interaction recognition
algorithm based on the whole–individual detection proposed in this paper can improve the accuracy
of human interaction recognition rate.

Table 3. Comparison of the recognition accuracy of different identification methods.

Recognition Methods UT Set 1 Recognition
Accuracy (%)

UT Set 2 Recognition
Accuracy (%)

UCF101 Interactive
Recognition Accuracy (%)

HIS color space model [30] 81.70 – –
Interactive phrases [42] 88.33 – –

detection alignment model [43] 91.57 – –
Novel 3D gradient LBP

descriptor [44] 91.42 – –

Method of this paper 91.70 86.10 85.43

4. Conclusions

In this paper, the human-interaction recognition algorithm based on whole–individual detection
was proposed. The experimental verification and analysis work was carried out with the human
interaction UT dataset. In the stage of feature information extraction of human interaction, we proposed
human-interaction recognition in a parallel multi-feature fusion network. Compared with a single
feature information extraction network, the fusion network improved the whole recognition accuracy of
interactions. Regarding the complexity of interactive action features, we proposed an improved human
body interaction recognition method based on the whole–individual detection. For the differences in
action characteristics at different time periods, a Gaussian-based video downsampling method was
proposed. This method makes the data acquisition more consistent with the characteristics of each
action time. The results show that the whole–individual detection human interaction recognition
method based on decision-level fusion proposed in this paper can improve the accuracy of classification
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recognition. In this paper, the complexity of the algorithm was relatively high. Subsequent work will
further improve the complexity of the algorithm to improve the efficiency of recognition.
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