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Abstract: For effective monitoring and control of the fermentation process, an accurate real-time
measurement of important variables is necessary. These variables are very hard to measure in real-time
due to constraints such as the time-varying, nonlinearity, strong coupling, and complex mechanism
of the fermentation process. Constructing soft sensors with outstanding performance and robustness
has become a core issue in industrial procedures. In this paper, a comprehensive review of existing
data pre-processing approaches, variable selection methods, data-driven (black-box) soft-sensing
modeling methods and optimization techniques was carried out. The data-driven methods used
for the soft-sensing modeling such as support vector machine, multiple least square support vector
machine, neural network, deep learning, fuzzy logic, probabilistic latent variable models are reviewed
in detail. The optimization techniques used for the estimation of model parameters such as particle
swarm optimization algorithm, ant colony optimization, artificial bee colony, cuckoo search algorithm,
and genetic algorithm, are also discussed. A comprehensive analysis of various soft-sensing models
is presented in tabular form which highlights the important methods used in the field of fermentation.
More than 70 research publications on soft-sensing modeling methods for the estimation of variables
have been examined and listed for quick reference. This review paper may be regarded as a useful
source as a reference point for researchers to explore the opportunities for further enhancement in the
field of soft-sensing modeling.
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1. Introduction

Biotechnology is based on the principle of using metabolic processes in microorganisms or cells to
produce a desired product. For thousands of years, it has effectively been used to produce alcoholic
beverages, dairy products or bread, and pharmaceuticals can be added to this list in the last century [1].
By using cells, e.g., microorganisms, as a plant to produce a desired product either by the cells own
metabolism, or by introducing genetic information into the host cell and produce recombinant proteins.
As in any type of process industry, there is a demand of knowledge, precise data and automatic
feedback control to obtain a robust and consistent production process. The complex nature of chemical
and biological processes makes this even more difficult and when it comes to pharmaceuticals, it places
very high demands on quality. Automatic production process control has effectively been employed
for several years in other related industries [2], for example computer-aided process control, which has
established a new innovation that significantly expands the present scope of technical outcomes and it
is expected to revolutionize many facts of agricultural, chemical manufacturing medical practices, and
industrial. Biotechnology is currently in an incredible stage of development whose end is nowhere
in sight.
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According to the unique enzymological or bacteriolytic characteristics of the biological and
chemical processes such as the marine alkaline protease MP fermentation, marine lysozyme
fermentation, penicillin fermentation, L-lysine fermentation, it can be used in medicine, bioengineering,
food preservation, and chemical industry [3-5]. However, these processes are usually complex
nonlinear coupling systems with time-varying multiple variables. In order to realize the decoupling
and optimizing control of the fermentation process, the key biological variables should be measured
accurately in real-time. At present, the variables which can be automatically detected by appropiate
instruments mainly center on some physical and chemical variables such as temperature, tank pressure,
pH value, dissolved oxygen, stirring speed and so on. There are some essential key variables in
the biological and chemical processes which have a critical influence on productivity such as cell
concentration, substrate concentration, and product concentration that cannot be measured with
practical online measuring instruments. The offline testing has a time-lag problem, and cannot satisfy
the needs of real-time optimization control. Soft-sensing modeling is an important and effective way
to solve the above problems [6,7]. A soft-sensing modeling introduction to the estimation of crucial
variables for the process of fermentation is one of the hot research topics in the current academic and
engineering field.

Soft-sensing technology has been a new and popular method in the field of monitoring in recent
years. Its principle is to realize real-time estimation of quality variables that are difficult to measure
directly through easily detectable auxiliary variables and some corresponding mathematical models.
Therefore, soft-sensing technology has a very good effect on determining some difficult-to-measure
variables in industrial processes like fermentation, and has great application potential. Currently, in the
process industry or in the field of microbial fermentation, the commonly used soft-sensing methods are
soft-sensing methods based on mechanism analysis, data-driven soft-sensing methods and soft-sensing
methods based on hybrid modeling.

The purpose of this paper is to present a comprehensive review on the topic of soft-sensing
modeling methods used for the process industry and shows their usefulness in improving robustness
and increasing batch-to-batch reproducibility in process industries. Soft-sensing models and their
applications are critically reviewed and classified in different categories such as support vector
machine (SVM)-based soft-sensing models, neural network (NN)-based soft-sensing models, deep
learning-based soft-sensing models, fuzzy logic (FL)-based soft-sensing models, genetic algorithm
(GA)-based soft sensors, probabilistic latent variable models (PLVMs) and other useful methods.
The already published reviews on soft-sensing modeling in the technical literature have not much
focused on the most recent data-driven approaches as well as new optimization algorithms. In this
review, more than 70 research publications on soft-sensing modeling methods have been examined,
drawn in the form of figures separately, and listed for quick reference, so it may be regarded as a
useful guide for researchers who are interested in the field of soft-sensing and wish to discover the
opportunities offered by these methods for further enhancement in the field of soft-sensing modeling.

This review paper is divided into seven sections. Starting with an introduction in Section 1.
Sections 2 and 3 give a short introduction of soft sensor models and their development procedure.
Reviews of soft-sensing modeling methods and optimization techniques are presented in Sections 4
and 5, detailed descriptions/mathematical formulation of selected modeling methods are ignored here,
and readers can easily find in the cited published papers and books which are listed in the references
section. In Section 6, a comparative analysis of the soft-sensing modeling methods is described. Finally,
future perspectives and some concluding remarks based on the review paper are covered in Section 7.

2. Soft Sensor

The term soft sensor is a combination of two words: soft(ware) (i.e., computer programs) and
sensor (a hardware counterpart). It is also known as a software sensor, virtual sensor, intelligent
sensor, or inferential estimator. Software sensors are defined as the combination of hardware sensors
and software models [6,7] that use well-measured variables to estimate process variables which are
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hard to measure directly because of technical limitations, measurement delays, and complicated
environments. In the literature review, ‘difficult-to-measure’ variables are also referred to as target
variables, dependent variables, or model output, while ‘easily-to-measure’ variables are referred to as
process features, independent variables, or model inputs. Such soft sensors are generally employed
in real-time process monitoring and control, modeling, fault diagnosis, etc. mainly in a continuous
process. Nowadays, these soft-sensing methods are playing a key role in many industrial applications
such as food processing, chemical plants, nuclear plants, oil refineries, the paper and pulp industry
and surgical applications in various medical fields, etc., to estimate product quality parameters, and
they have become a major developing trend in both academia and the industrial sector [8,9]. The soft
sensor principle can be seen in Figure 1. As mentioned, this term is a combination of software and
sensors. A soft sensor uses easy-to-measure process variables to predict unmeasurable bioprocess
variables with software estimation algorithms.

—* Bioprocess | Sensor Estimator —
u | (Hardware) | Estimated
! lOXY
|
|
L e
operation
parameters
Process Soft sensor
variables

Figure 1. The concept of a soft sensor as presented in [10]. This figure describes the model of a soft
sensor with one hardware sensor and an estimator. Input from a bioprocess is measured through
the sensor (in reality this can be a combination of several hardware sensors) and new information
is estimated.

3. Soft Sensor Development Methodology

In order to estimate the quality variables in real-time, one can use mathematical models,
computation methods and previous knowledge to derive new process information. Today the
concept is well established in engineering science and parts of the process industry. The soft sensor
principle is based on hardware sensors monitoring a bioprocess in real-time and generating online
data used by the soft sensor model to estimate process variables. The estimated process variables can
then be used for monitoring purposes or be implemented in feedback control of the bioprocess. This
section describes the typical steps of data-driven soft sensor model development. There are many
steps in the development of soft sensor models in the literature [6,8], but in this review paper, soft
sensor development has the following main steps: (I) data collection and pre-processing, (II) selection
of variables, (III) soft-sensing model selection, training and validation and (IV) performance evaluation
of the soft-sensing model. The presented soft sensor development procedure is quite general and can
thus be applied to fermentation processes.

3.1. Data collection and Pre-Processing

During the initial stage of soft-sensor model development, an inspection of historical data is
performed, which leads to better process understanding, diagnostics, and improvement. The goal of
this phase is to recognize any obvious problems and attain an overview of the overall structure of data
which may be managed at the initial stage of development. This paves the road to the subsequent use of
collected plant data for model optimization, identification or other related black-box (e.g., data-driven)
methods. The next goal of this phase is to ascertain the necessities for the model complexity. A
well experience soft-sensing modeling developer can make a right decision at this stage whether we
should use a simpl linear model, complex model or non-linear NN model for the soft sensor prediction
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model. Sometimes the decision of the soft sensor model developer may not be correct in the first stage,
therefore the performance evaluation of the model should be compared with alternative soft sensor
models at the later stage of development [6].

Apart from soft sensor model evaluation, the following is an important question to be addressed
before we dive deeper into model development: how do you prepare the input data and output data
or targets before feeding them into actual soft sensor model? The goal of this step is to turn the data in
such a way that the actual model can process it more efficiently. This includes dealing with missing
values, outlier’s detection and replacement, data normalization, and feature extraction [8,11].

The problem of missing values is very essential to understand in order to effectively manage data.
This problem arises when no value is stored for one or more variables in an observation. There are
distinct approaches to deal missing values. The first approach is the removal of samples containing
null values. This approach is advised only when the number of missing values is small, otherwise
will not give the expected results while predicting the output [12]. In the second approach, fill-in
the missing values using some methods, for example, calculate either mean, median or mode of the
feature and replace it with the missing values. These two approaches are quite common to deal with
missing values. Some other useful approaches are also reported in the literature such as hot-deck
imputation [13], maximum likelihood (ML), and expectation-maximization EM [14,15].

The observation values of the sensor are called outliers. Outlier values deviate from the typical or
meaningful range of values. Outliers can be caused, for example, hardware failures, communication
errors, incorrect readings, the process working conditions, and so on. This can affect the performance
of the soft sensor model [6]. To alleviate the effects of outliers it is necessary first to identify them, and
then to treat them. There are different outlier detection methods reviewed in the literature such as the
3o outlier detection method [16], and the Hampfel identifier [16-18], which is a robust version of 3o
outlier method. The above methods are based on univariate outlier detection. In [8,19], the authors
presented multivariate outlier detection methods. Some other multivariate methods employed in the
soft sensor context is based on data projection such as Jolliffe parameters with PCA and PLS [8,20].
A comparison of different outlier detection approaches was provided in [21].

In NN and other data-driven soft sensor models we need to normalize the inputs; otherwise,
the model will be ill-conditioned. There are different normalization methods reported in the
literature such as min-max normalization, z-score normalization [8], and zero-mean normalization [22].
Data normalization means to have a value between 0 and 1, which is the simplest method of
normalization [23,24].

The significance of pre-processing is important because of the data characteristics. Data pre-processing
is the step that requires a large amount of manual work and expert knowledge about the underlying
process. A more detailed discussion is provided in [25] regarding pre-processing approaches with
real-world examples and their applications in the soft sensor context. A general overview of data
pre-processing approaches is also presented in [26].

3.2. Selection of Variables

The very next question a soft sensor model developer faces is with regards to the selection of input
variables that influence the model output. Generally, the number of input variables of soft sensor model
should not be too many; otherwise the model structure will be for more complex, there will be a large
probability of overfitting occurring, and it influences the model’s training speed and output. For NN
modeling a reduction in the input variable leads to a simplified NN architecture and reduced training
time [27]. There are many advantages in a reduced number of variables such as decreasing costs,
reduction of model development time, and enabling the feasibility of an application. Many researchers
have reported both supervised and unsupervised variable selection methods in the literature such as
principal component analysis (PCA) [28,29], filter methods (correlation coefficient), wrapper methods,
embedded methods [30], mean impact value (MIV) [31], and uniform incidence degree algorithms [24],
to give just a few examples. However, in most of the cases, the selection of most relevant variables for
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many soft sensor applications is made by system experts. Nonetheless, the selection of variables is an
effective procedure to increase the model performance, prevent overfitting, and also to avoid the curse
of dimensionality phenomena. Special attention is given to the judgement of the output variables such
as product concentration, cell concentration, and substrate concentration. The selected data is used for
the training and evaluation of the soft sensor model.

3.3. Soft Sensor Model Selection, Training and Validation

A soft sensor ‘model” can be a mathematical representation of a real-world process. Generally,
a soft sensor model is organized into two distinct categories, such as mechanistic models (first principle
or white-box) and data-driven (empirical or black-box) models. The mechanistic models belong to the
first category of soft sensors which are based on the first principle approach. Usually, mechanistic
soft sensor models focus on the description of the optimal steady states. This type of soft sensor
is mainly based on deriving equations that can describe the physical and chemical background of
the process. For example, the Kalman filters and extended Kalman filter techniques belong to this
category. The major disadvantages of mechanistic models is that they are considered to be rather
time-consuming, as most of the processes are very complex and they are unable to express the actual
process conditions [9]. As a result, the data-driven soft-sensing modeling algorithms are becoming
progressively popular in the process industry [6] because data-driven soft sensor models are based on
empirical observations and thus describe the real conditions of the process. Moreover, it requires few
knowledge about the system to be modeled, describes the input and output relation more accurately,
and producing reliable real-time estimation of unmeasurable process variables in the process industry.
For example, SVM, NN, FL methods belong to the second category of soft sensor models.

For soft-sensing modeling, the selection of a model is always an important matter that needs to be
paid much attention. Model selection is the critical process of selecting one final model from among a
collection of candidate models for the training dataset. As the model is the heart of a soft sensor, the
selection of the optimum kind is important for the soft sensor’s performance. The choice of models is
also often subject to the personal preference and past experience of the developers that can be of a
drawback for developing an optimum final soft sensor. This can be seen in the subject of published
applications for soft sensors, where several researchers concentrate strongly on a model type in their
field of expertise. Just to give a few examples, if the process variables are non-Gaussianly distributed or
they have a non-linear relationship with each other, a non-linear probabilistic latent variable modeling
method needs to be utilized; If the process variables are Gaussianly distributed or they have a linear
correlation with each other, then a linear Gaussian probabilistic/PCA should be employed [32]. Deep
neural network models demonstrate great performance in complicated highly-non-linear processes,
comprising richer information in deep layers of network and large training datasets [33]. With the
advantage of a small amount of data, SVM and LS-SVM enjoy high efficiency and robustness and thus
have been commonly used [34]. Another possible way for this task is to start with a simple model like
linear regression and gradually increase the complexity of the model until we consider that we have a
good model [6,35].

A large number of samples and the complex nature of the soft-sensing modeling methods need
very long training times. As such, it is typical to use a simple separation of sample data into training
and validation or training and test samples. By using the training samples, we train our selected
soft-sensing model (used to fit the model) and evaluate the model on the validation/test data. It is
essential to evaluate the soft sensor model performance on independent data while performing this
task. There are different approaches [36,37] to estimate the performance of soft sensor model on unseen
data such as automatically splitting a training dataset into train and validation datasets, manually and
explicitly, and evaluating the performance by using k-fold cross-validation.
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3.4. Performance Evaluation of Soft Sensor Model

After selecting the optimal soft sensor model structure and training the model, a trained soft
sensor model has to be evaluated on an independent/test dataset once again. The test data provides
the gold standard used to evaluate the soft sensor model. However, how to evaluate the performance
of the data-based model is still an open question because performance evaluation is highly related to
the selection of the soft sensor type. There are different criteria’s available for performance evaluation
of each monitoring model. In the case of numerical performance evaluation, mean square error (MSE)
or root mean square error (RMSE) loss function commonly used for such type of soft sensor models.
Recently, in [38] the authors proposed a novel fuzzy decision fusion system based on an analytic
hierarchy process (AHP) for online process monitoring. Seven different tools were suggested for the
evaluation of the model performance and tested on six different data-based process modeling methods.

The methodology presented in this review paper is the one most commonly used but is not the
only possible way for developing a soft sensor model. For example, the presented methodology of a
soft sensor model in [8] and [6] is detailed but consistent with our discussed methodology. In [39], in
addition to a general five-step soft sensor development methodology consisting of: (i) the collection
of historical data and pre-processing, (ii) variables selection, (iii) model selection and training, (iv)
validation, and (v) model maintenance, is more detailed but consistent with the methodology discussed
here. There is a significant difference between the discussed methodology and in other presented
works in that we have explained all the development procedures with the help of a real-time example
of the microbial fermentation process.

3.5. Use Case Implementation of Soft Sensor

In this review paper, a penicillin fermentation process is taken as a research example for a
better understanding of the development procedure of a soft sensor model. An experimental study
was conducted on the penicillin fermentation process in the biological fermentation tank of the
“National Key Discipline” laboratory of Jiangsu University. As we know, the penicillin fermentation
process is a time-varying and complex nonlinear biochemical process. There are many input variables
(auxiliary variables) available in the fermentation process, such as dissolved oxygen, CO, concentration,
temperature, reactor volume, pH value, stirring speed, substrate given rate, and so on. If all of them
listed as input variables, the proposed model would be more complicated and affect the training
speed. In order to determine the impact of input variables on soft-sensing model output, the concept
of incidence degree is employed to assess the incidence degree among input and output variables.

Every one minute the field test data is sampled: glucose flow fg (1), corn pulp flow rate
fes(u2), flow rate of potassium dihydrogen phosphate f,(u3), calcium carbonate flow rate fc(u4), flow
rate of gluten powder f,(x5), dissolved oxygen concentration Cy (x4), carbon dioxide concentration
Ccoy(x5), [H Jconcentrations [H*](x4), and fermentation broth volume V(x7). Every four hours, the
offline biological variables are obtained by sampling and testing: cell concentration X(x1), substrate
concentration 5(x;), and product concentration P(x3). The cell concentration, substrate concentration,
and product concentration are selected as the target variables. The growth of biomass cells depends on
several environment factors involving all the types of input control variables. Substrate concentration
was tested with a glucose analyzer and a UV altimeter is used to measure product concentration. A
total of 10 batches of fermentation process data were collected over a 200 hour span (between each
batch). In order to improve the measurement accuracy, the sample data should be normalized within
the range of [0,1].

In recent years, many data-based techniques have been introduced for real-time estimation or
process monitoring and fault detection, where every technique performs well under its own assumption.
In other words, a technique that performs well in a certain process condition may not provide a
reasonable performance under several other process conditions, because of different data features [38].
This review paper proposes a soft-sensing model based on Least Square Support Vector Machine
(LS-SVM). The proposed model is successfully applied to the estimation of cell concentration, substrate
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concentration, and product concentration in a penicillin fermentation process. LS-SVM is a machine
learning method based on statistical learning theory. It has excellent learning ability and prediction
ability with small sample data, low difficulty in training and has been widely used to predict the
quality variables in the fermentation process, steel, chemical and other industries [40,41]. Practice
demonstrates that the values of the kernel parameters and penalty parameters of LS-SVM play a
significant role in the generalization ability and accuracy of the model, and improper selection may
make the LS-SVM prediction model prone to over-fitting and poor generalization ability. To solve
this problem, many researchers have developed several optimization algorithms for LS-SVM model
parameter selection. In this work, the parameters (e.g., regularization parameter C and gamma) of the
LS-SVM model are optimized by using an evolutionary algorithm, namely particle swarm optimization
(PSO). The basic idea of the PSO algorithm is to discover the global best solution through provided
information and sharing among individuals in a group. A total of 10 batches (2,000 samples) of
fermentation data were used in this example, among which the first six batches (1200 samples) of the
experimental data were used to train the model for minimum error. The 7th and 8th batch (400 samples)
of the experimental data is used for k-fold cross-validation and the data of the last two batches was
used to test the final soft sensor model. The optimization algorithm has been iterated many times to
attain a global optimal point. The actual and predicted results of the soft-sensing model based on
PSO-LS-SVM and LS-SVM are shown in Figure 2, these results are compared with the LS-SVM model
to verify the effectiveness of the soft-sensing model. Figure 3 presents the error curve between the
PSO-LS-SVM soft-sensing value and the LS-SVM value. The simulation results demonstrate that the
prediction results of PSO-LS-SVM soft-sensing model are closer to the real values.
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Once the soft sensor model is ready for prime time, we test it one final time on the test dataset.
In this example, the proposed model is used to train the data, which verified the fitting degree and
prediction accuracy with the test dataset, and we select the mean absolute error (MAE) and root mean
square error (RMSE) as the evaluation criteria for model performance. Table 1 displays the prediction
MAE and RMSE results of the PSO-LS-SVM soft-sensing model and the LS-SVM soft-sensing model
on the test dataset. It can be seen that the error difference of the PSO-LS-SVM model is less than that
of the the LS-SVM model. This is because of the optimization algorithm used, as the PSO-LS-SVM
modeling method has excellent learning ability and prediction ability with small sample data and is
suitable for the penicillin fermentation process. A more detailed discussion on optimization techniques

will be described in Section 5.

Table 1. The performance difference between PSO-LS-SVM and LS-SVM.

. LS-SVM PSO-LS-SVM
Key Variables
RMSE MAE RMSE MAE
X 0.2114 0.139  0.1028 0.067
S 12761 0.741 0.2597  0.125
P 0.0339 0.022  0.0160 0.008

X: cell concentration, S: substrate concentration, P: product concentration
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4. Review of Modern Soft-Sensing Models and Optimization Techniques

This part presents an in-depth review of artificial intelligence-based soft-sensing models
(e.g., data-driven models) and research on model optimization for different kinds of industrial
processes. Al or machine intelligence merges a wide variety of innovative technologies to give
machines decision making, problem-solving, learning, perception, and reasoning ability [42]. This is
achieved using technologies such as those we mention in the section below. The tools and methods
reviewed here are ones that have proved to be useful with a sensor system. Currently, with profound
studies into the theory of soft sensor control and the ongoing advancement of engineering technology,
some modern methods have appeared and developed rapidly to solve the problems which are hard to
measure for soft sensor models, such as FL [43], partial least squares (PLS) [44], SVM [45], support
vector regression (SVR), radial basis function (RBF), NN [23], GA [46], and PLVMs [32]. Some important
soft-sensing modeling methods, shown in Figure 4 are used for the prediction of quality variables.
These novel methods have been widely used across many fields of the process industry such as the
chemical, pulp and paper and steel industry. The most common applications of soft sensors are the
prediction of values, process monitoring and control, and fault detection. A short summary of each
will be discussed as a soft-sensing model with different fermentation objects in the following part.

Soft-sensing modeling methods
commonly used in process

industry
. Genetic PLVMs & other
SVM ANN/NN/DL Fuzzy logic (FL) algorithm (GA) useful methods
LS-SVM/PLS/MLS & RBF/BP/MLP/ Decoupling Used with other PLS/ICA/RVM/JIT/
control methods FFNN control-FNN methods GPR-PCA

Figure 4. Soft-sensing models used in process industry (abbreviations used are listed in Table AT).

4.1. Support Vector Machine-Based Soft-Sensing Models

The most commonly used driving modeling methods mainly include modeling methods based on
SVM. This is a supervised machine learning algorithm that is used for regression problems, classification,
and time series prediction, as originally introduced by Vapnik [47]. The SVM algorithm is based on the
concept of structural risk minimization. It is a kernel-based method that enables linear, polynomial,
and radial basis functionality (RBF) to be used and others that fulfill Mercer’s condition. SVM has the
characteristics of being able to fully approximate arbitrarily complex nonlinear systems, and have the
ability to self-learn and adapt to the dynamic characteristics of uncertain systems. SVM has excellent
learning ability and prediction ability of small sample data and is suitable for the fermentation process
with fewer sample data. In SVM, giving a training datasetd = (x;, ¥;),i =1, ... , n, where n indicates
the number of samples. X; € R? are multi-dimensional inputs, y; € R is the continuous output data.
We seek to locate a continuous mapping function f : RN — R that best predicts the set of training points
with the function y = f(x). SVM based soft-sensing models are shown in Figure 5.
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SVM based Soft-
sensing models

— SVM & LS-SVM — |  PsSO-Ls-svm
PSO-SVM — SVM
> IPSO-SVM — MLS-SVM
. Inversion
LS-SVM with : GRA-LS-SVM
Cuckoo search
ABC-MLS-SVM

Figure 5. SVM based soft-sensing models (abbreviations are listed in Table A1).

In [45], the authors presented a soft-sensing model based on the SVM and LS-SVM for
microbiological fermentation processes. LS-SVM was proposed by [48] using the idea of SVM,
which is used to solve the problem of model decomposition and function estimation. The LS-SVM
soft-sensing model is selected due to an evidence for better generalization properties when compared
to an NN. In [49], authors apply the presented SVM black-box model to the estimation of quality
variables of antibiotic fermentation process. They used the Gaussian and polynomial function as
a kernel function with SVM. Kernel function takes data as input and transfers it into the required
output. SVM soft-sensing model was compared with the back-propagation NN model. SVM proves
effective to tackle problems with small datasets, while for large training samples the computation
cost is unaffordable. In [50], the authors proposed the generalized predictive control (GPC) method
based on LS-SVM. The particle swarm optimization algorithm was applied for the optimization of
the regularization parameter ‘C” and kernel parameter ‘g.” The performance was tested in terms of
a bacteria concentration prediction in a marine lysozyme fermentation process. The PSO-LS-SVM
soft-sensing model was compared with the LS-SVM model. In [51] authors developed and published
a soft-sensing model based on PSO-SVM. The performance of developed model is demonstrated by
applying it to biomass concentration in a lipid fermentation process. PSO-SVM soft-sensing model
was compared with the SVM model.

In a recent publication [52] a robust decoupling control method based on Multiple LS-SVM
inversion system has been proposed to the prediction of the quality variables (e.g., biomass
concentration, substrate concentration, enzyme concentration) in a marine alkaline protease MP
fermentation process. An intelligent optimization algorithm, namely artificial bee colony (ABC) is
used to optimize the MLS-SVM model parameters. The ABC algorithm is in more detail described in
Section 5. The proposed ABC-MLS-SVM based soft-sensing model has been compared with PID control.
Another very popular decoupling control method based on the LS-SVM inversion system was proposed
and published in [53]. The developed method is used for the modeling of an L-lysine fermentation
process. The authors were satisfied with the performance of the presented soft-sensing model.

In [54] researchers proposed a gray relational analysis LS-SVM soft-sensing model for glutamate
concentration. The GRA-LS-SVM soft-sensing model is compared with the RBF-NN model. The authors
of the above paper have presented another soft-sensing model based on Multi-Phase SVR for the
prediction of quality products in glutamate fermentation [55]. It is obviously demonstrated that the
performance of the presented soft-sensing model is superior to other models. The authors also define
the theoretical description of the performance advantages. In [56] authors introduced the improved
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version of the PSO algorithm (IPSO) to the selection of optimal parameters for the mixed kernel function
of the SVM model. In [57], studied the development of a soft-sensing model based on LS-SVM to
estimate the unmeasurable variables in industrial procedures. LS-SVM soft sensing model is compared
with the RBF-NN model.

In [58], a soft-sensing modeling method based on multiple output variable least squares support
vector machine (MLS-SVM) is published. This soft sensor is based on a combination of the inverse
system and SVM theory. The authors apply the presented model to the estimation of key variables
(e.g., product concentration, substrate concentration, biomass concentration) of L-lysine fermentation
process. The MLS-SVM inversion soft-sensing model was compared with the LS-SVM model. The
soft-sensing modeling method based on an accurate incremental online v-SVR learning algorithm
suggested in [59] for the concentration of biomass during the fermentation process. An important
data-driven soft-sensing model based on iteratively weighted LS-SVR by using a cuckoo search (CS)
optimization algorithm presented in [60]. Comparisons of different SVM based soft-sensing modeling
methods are provided in Table 2.

Table 2. Comprehensive analysis of soft sensor models based on SVM (for the list of abbreviations see

Table Al).

Ref  Prediction model Compared with RMSE/MSE MAXE Best Performance

[57] LS-SVM RBF-NN - - LS-SVM

[45] LS-SVM NN - - LS-SVM

[49] SVM BP-NN - - SVM

[50] PSO-LS-SVM 0.7835 0.486 PSO-LS-SVM
LS-SVM 0.1032 1.493

[51] PSO-SVM SVM - - PSO-SVM

[52] ABC-MLS-SVM PID control - - ABC-MLS-SVM

[54] GRA-LS-SVM 2.518 2.641 GRA-LS-SVM
RBF-NN 14.273 6.271
LS-SVM 3.219 2.847
GRA-RBFNN 4.162 3.594

[56] IPSO-SVM PSO - - IPSO-SVM

[58] MLS-SVM LS-SVM - - MLS-SVM Inversion

Inversion

Ref - References, RMSE — Root Mean Square Error, MAXE —Maximum Absolute Error, MSE — Mean Square Error

4.2. Neural Network-Based Soft-Sensing Models

A neural network consists of input and output layers, as well as (in most cases) a hidden layer
consisting of units that transform the input into something that the output layer can use. NN has been
implemented effectively to a wide spectrum of areas, including data mining, geology, finance and
insurance, forecasting, physics, engineering, biology,medicine, and other industrial applications. They
are excellent tools for regression, classification, data clustering, optimization and finding patterns that
are far too difficult or numerous for a human programmer to extract and teach the machine to identify.
The soft-sensing modeling methods based on NN has shown in Figure 6.

In [31], the NN-MIV soft-sensing model was presented for the estimation of the key variables
(e.g., marine enzyme activity) in a marine enzyme fermentation processf. The NN-MIV soft-sensing
model was compared with the NN model. Another GPR-NNMIV based soft-sensing model was
presented in [61]. In this work NN-MIV variable selection method is employed to get the most suitable
input variables with the highest contribution rate. Finally, the presented model based on NN-MIV with
gauss process regression (GPR) is used to the prediction of the marine enzyme fermentation process.
The GPR-NNMIV model performance is compared with a single GPR model, the authors conclude
that the presented method is capable of attaining a satisfactory prediction performance. In [23], the
authors proposed the RBF-NN soft-sensing model to the estimation of the key variables (e.g., cell
concentration, enzyme activity, matrix concentration) of marine alkaline protease MP fermentation
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process. A Gaussian function used as the basis function and method of formula and coincidence degree
algorithm used for the selection of input variables. In [62], studied the development procedure of
PSO-NN soft-sensing model. In [63], the authors proposed the robust NN based soft-sensing modeling
method for the biomass concentration in the process of fermentation. K-nearest neighbors (KNN)
algorithm used for the calculation of the anomaly degree of each modeling data set and the weight of
each modeling data sets are decided by the computed degrees of the anomaly. In [64], presented a
BPNN soft-sensing model for the lysine fermentation process.

NN based soft-
sensing models

e

—* NN-MIV —» RBF-NN

— GPR-NN-MIV | —>  PSO-NN

——  GRNN —— Novel SS-ANN

—  Dynamic-NN — BP-NN

—» KPCA & RBF-NN

Figure 6. NN-based soft-sensing models (abbreviations are listed in Table AT).

Another soft-sensing modeling method based on ANN was published in [65]. An ANN offers the
opportunity to deploy neurons which denote the process knowledge. The authors apply the presented
ANN soft-sensing model to the estimation of crucial variables (e.g., mycelia concentration, sugar
concentration, and chemical potency) of the erythromycin fermentation process. In [66], established the
generalized regression NN soft-sensing model to estimate the key biological variables (e.g., substrate
concentration, biomass concentration, enzyme activity) which are hard to measure in the marine
protease fermentation process. The GRNN soft-sensing model has been compared with RBFNN. The
researchers in [67] developed the feature extraction approach based on kernel principal component
analysis (KPCA) for nonlinear data, RBFNN method used in the modeling of biomass estimation in
the process of fermentation. In [68], the authors proposed the dynamic NN soft-sensing model to
control the enzyme activity during the fermentation process. The comparison of different NN based
soft-sensing modeling methods is provided in Table 3.
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Table 3. Comprehensive analysis of soft sensor models based on NN/ANN (for the list of abbreviations
see Table A1).

Ref  Prediction model Compared with RMSE/MSE MAXE Best Performance

[31] NN-MIV 27.512 - NN-MIV
NN 37.943

[61] GPR-NN MIV 0.0436 0.1440 GPR-NN-MIV
GPR 0.1082 0.4373

[23] RBF-NN BP - - RBF-NN

[62] PSO-NN BPNN - - PSO-NN

[65] Novel SS ANN General SS-ANN - - Novel SS-ANN

[66] GRNN RBF-NN - - GRNN

[67] KPCA-RBF-NN PCA - - KPCA-RBF-NN

Ref - References, RMSE — Root Mean Square Error, MAXE -Maximum Absolute Error, MSE — Mean Square Error.

4.3. Deep Learning Based Soft-Sensing Models

Various statistical and machine learning methods have effectively been utilized for data-driven
soft-sensing modelings, such as SVM, ANN, PCR, and PLS etc. SVM proves effective to tackle problems
with small datasets, while for large training samples the computation cost is unaffordable. ANN is a
machine learning technique extensively applied in pattern recognition, which has a non-linear structure
and can approximate a nonlinear continuous function by arbitrary precision, and thus is suitable for
nonlinear industrial process, but the problem is that the traditional gradient descent method is slow to
converge, and the noise in industrial data often causes local optima for ANN. In recent years, deep
learning based models are becoming more and more prominent in many fields such as computer
vision, speech recognition, image classification, bioinformatics, natural language processing (NLP) and
several other domains [69-71]. Deep learning, a subset of machine learning, is capable of learning
deep, hierarchical artificial neural networks efficiently. Compared to the traditional methods like SVM
and ANN, deep learning has more depth of layers, advance convergence method and stronger ability
to approximate [33].

In [72], the data-driven soft-sensing modeling method based on deep learning has been introduced
for the estimation of critical variables of streptokinase and penicillin fermentation processes. In this
work, a semi-supervised and supervised strategy is employed by using the unlabeled and labelled
dataset. The performance of the proposed method is compared with SVR model. The authors are
satisfied with the performance of deep architecture because it performs better for the large training
dataset. The deep probabilistic latent variable regression model based on variational auto-encoder
(VAE) is developed in [73] for soft-sensing application in the process industry. The VAE is a deep
generative model which can deal with complex nonlinear relationships among different variables.
In [74], the authors proposed the deep neural network (DNN) structure based on long short-term
memory (LSTM) as a soft-sensing model to deal with strong nonlinearity and dynamics of the industrial
process. LSTM is a recurrent neural network (RNN) architecture which contains memory and forgetting
structures. A semi-supervised deep learning model based on the hierarchical extreme learning machine
(HELM) for the estimation of critical quality variables is presented in [75]. The HELM contains the
supervised and unsupervised feature extraction components and it can be used in regression problems
and data classification. In [33], the deep learning method is employed to build a soft-sensing model
and applied to an industrial case to estimate the process variables. In [76], the authors presented a
soft-sensing modeling method based on a deep learning, which integrates denoising auto-encoders
(DAE) with SVR. In another paper [9], authors utilized the deep learning method with DAE and
improved version of the gradient descent algorithm is employed to update the model parameters.
In [77], the authors suggested the soft-sensing model based on stacking auto-encoders (SAE) in the way
of deep learning for the prediction of crucial process variables. Deep learning proves to be a promising
method for soft-sensing modelling in highly data-driven complex bioprocesses.
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With the recent development of advanced technologies, like the internet of things (IoT), smart
devices, wireless sensors, wireless communications and data acquisition systems, the large amount
of data collected from the process and stored in the industrial database. The era of big process data
has arrived [78,79]. Therefore, for data modeling and monitoring large-scale processes with big
data form multiple operating conditions, novel methods have been developed by many researchers.
In [80] authors proposed the distributed parallel process modeling method based on a MapReduce
structure for the quality prediction of large-scale datasets. A MapReduce is a programming framework
which can be used for the file storage system and data processing [81,82]. In [83] authors presented a
distributed parallel probabilistic modeling method based on scalable parameter server (PS) framework
for big data quality prediction. An efficient scalable PS is a distributed computing architecture which is
based on SGD optimization algorithm [84,85] and it can be used to handle industrial big data. A novel
variational inference semi-supervised Gaussian mixture model (VI-SSGMM) have been employed
in [86] for big data quality prediction. The presented method can efficiently take benefit of the extra
information contained in the unlabeled data to learn the data patterns, which would improve the
prediction accuracy of the model. In many soft-sensing applications, labeled data are usually limited
due to technical or economic reasons, which adds obstacles to model training. To overcome the above
problems, some semi-supervised machine learning methods have been developed by researchers and
examples are addressed in this review paper.

4.4. Fuzzy Logic Based Soft-Sensing Models

FL is a technique of reasoning that resembles human intellect. The method of FL emulates the
way of decision making in humans that includes all intermediate chances between digital values 1 and
0. The idea of FL was first invented by [87]. New computing techniques based on FL can be applied in
the advancement of intelligent approaches for decision making, identification, pattern recognition,
optimization, and control [88]. The soft-sensing modeling methods based on FL has shown in Figure 7.

Fuzzy logic based
soft-sensing models

: FNN Inverse :
1 system —  FLS-SVM
—  GD-FNN —  PSO-FNN

Fuzzy pruning
LS-SVM

s MNN-KFCM —

— ] FCM-LS-SVM

Figure 7. FL-based soft-sensing models (abbreviations are listed in Table AT).

A decoupling control method based on a fuzzy neural network (FNN) inverse system was
proposed and published in [43]. The proposed soft-sensing model merges the inverse system theory
with the intelligent control method. The performance was tested in terms of mycelia concentration
prediction, substrate concentration, and relative enzyme activity in a marine biological enzyme
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fermentation process. The proposed system is compared with the NN model, PID controller, and some
other control methods.

The researchers in [24] developed the generalized FNN soft-sensing model to the estimation of key
biological and chemical variables (e.g., product concentration, substrate concentration, and biomass
concentration) of the penicillin fermentation process. Uniform incidence degree algorithm used to
identify the input variables (e.g., dissolved oxygen, carbon dioxide, the flow rate of glucose).

Another method presented to soft-sensing modeling is the Generalized Dynamic fuzzy neural
network for microbial fermentation processes [89]. In [90], the authors proposed the multi-model
NN soft-sensing model based on modified kernel fuzzy clustering for the erythromycin fermentation
process. Feature selection done by PCA and fuzzy c-means clustering (FCM) algorithm based on PSO
is applied to group the principal data into overlapping clusters, and NN is used to build sub-models
based on the clusters. In [91], a fuzzy LS-SVM (FLS-SVM) soft-sensing model for the lysine fermentation
process was presented. In [92], the authors proposed the soft-sensing model based on PSO-FNN for the
lysine fermentation process. In [93], the fuzzy pruning LS-SVM soft-sensing model for the microbial
fermentation process was presented. Another very common and successful family of approaches
employed to soft-sensing [94] are the FCM algorithm and LS-SVM theory. In this work, FCM is utilized
for separating whole training samples into many clusters and every subset is trained by LS-SVM model.
The authors apply the presented model to predict the biological variables (e.g., mycelia concentration
and relative enzyme activity) in the marine alkaline protease fermentation process. The comparison of
different FL-based soft-sensing modeling methods is provided in Table 4.

Table 4. Comprehensive analysis of soft sensor models based on fuzzy logic (FL) NN/SVM (for the list
of abbreviations see Table A1).

Ref Prediction Model Compared with RMSE/MSE MAXE Best Performance

[43]  FNN Inverse System PID control - - FNN Inverse sys
[89] GD-FNN 0.0064
RBF-NN 0.0194 GD-FNN
[90] MNN-KFCM 0.1963 - MNN-MFKC
Single NN 0.5441
[91] FLS-SVM LS-SVM - - FLS-SVM
[92] PSO-FNN 0.1141 0.6151 PSO-FNN
FNN 1.3658 3.5640
[93] Fuzzy LS-SVM 0.0097 - Fuzzy LS-SVM
LS-SVM 0.0244

Ref - References, RMSE — Root Mean Square Error, MAXE -Maximum Absolute Error, MSE — Mean Square Error.

4.5. Genetic Algorithm-Based Soft Sensors

GA is a technique for solving optimization problems that are based on the mechanics of natural
selection and natural genetics. GA is a computing search algorithm used to discover accurate or
approximate results to optimization and search problems. At each phase, GA chooses an individual to
be a parent at random from the present population and use them for the next generation to produce
children. Over consecutive generations, the population evolves towards an ideal solution. The GA is
considered to be an excellent intelligent paradigm for optimization using a multipoint, probabilistic,
random and guided search mechanism [95].

In [96], the authors described a SVR soft-sensing model based on GA and Akaike information
criterion (AIC) for the erythromycin fermentation process. An estimation of the fermentation process
variables (e.g., biomass concentration) by using the GA-SVM soft-sensing model was presented in [97].
In [98], the authors proposed the GA-BPNN soft-sensing model for the germ concentration in the
process of fermentation. In another paper, a soft-sensing modeling method based on GA-BPNN was
presented [99]. The hybrid model based on GA and an ant colony optimization (ACO) is introduced
in [100] for the fed-batch fermentation process. The hybrid GA-ACO model was compared with the
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conventional GA and stand-alone ACO model. The comparison of different GA based soft-sensing
modeling methods is provided in Table 5.

Table 5. Comprehensive analysis of soft sensor models based on genetic algorithms (for the list of
abbreviations see Table A1l).

Ref Prediction Model Compared with RMSE/MSE MAXE Best Performance

[96] GA-SVR 0.1353 0.8872 GA-SVR
ANN 0.9217 2.3529
[97] GA-SVM NN - - GA-SVM
GA-BPNN - - - GA-BPNN
Conventional GA
[98] Hybrid GA-ACO and stand-alone - - Hybrid GA-ACO
ACO

Ref - References, RMSE — Root Mean Square Error, MAXE -Maximum Absolute Error, MSE — Mean Square Error.

4.6. Probabilistic Latent Variable Modeling Methods

Due to the high-dimensional nature of the process industry data, dimensionality reduction is
always needed, otherwise, data analysis could be quite difficult. As a solution, numerous data-driven
regression modeling methods based on latent variables such as partial least square (PLS) and principle
component regression (PCR) have been extensively applied for soft-sensing applications [101-104].
By projecting the process data into a lower-dimensional space from higher-dimensional space, latent
variable modeling methods would be able to extract the crucial information from the industrial
data. Nowadays, latent variable models have been rebuilt through probabilistic framework by many
researchers, for example, probabilistic PCA and probabilistic PCR [105-107]. The probabilistic data
model has several additional benefits on traditional methods. First, the expectation-maximization (EM)
algorithm can be used for the estimation of probabilistic models parameters. Second, the probabilistic
model can handle the problem of missing values in a practical dataset. Third, a single probabilistic
modeling structure can be straightforwardly extended to the mixture form, which can be used for
more complicated cases. Furthermore, probabilistic modeling can formulate Bayesian regularization
methods which can be used to automatically determine the dimensionality of the latent variable model.
Latent variable modeling methods have been employed for discriminant analysis, clustering, process
data monitoring, regression modeling, and classification etc. There are different probabilistic methods
have been reviewed in the literature such as probabilistic PCA, probabilistic independent component
analysis (ICA), probabilistic PLS, and factor analysis. A more detail discussion and research status of
different kinds of PLVMs is provided in [32].

The authors in [108] proposed the dynamic PLVM for regression modeling and soft-sensing
application in industrial processes. The EM algorithm has been utilized for parameter estimation of
dynamic PLVM. In [80] the authors presented the semi-supervised probabilistic principal component
regression (SSPPCR) model for big data quality prediction in the process industry. The semi-supervised
mixture of latent factor analysis (SSMLFA) model based on efficient EM learning algorithm is presented
in [109] for the estimation of key quality variables. In [110], a soft-sensing modeling method based
on semi-supervised probabilistic mixture of extreme learning machine (SSPMELM) was developed
for monitoring and control of crucial variables. The adaptive soft-sensing model based on streaming
parallel variational Bayesian supervised factor analysis (SP-VBSFA) model is proposed in [111] for
quality prediction with big process data.
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4.7. Other Useful Methods

In industrial process control, soft sensors have been commonly used to enhance product quality
and ensure manufacturing safety. Some other useful soft-sensing modeling methods shown in Figure 8.

Other soft-sensing

models
) PCA — nr
—  RVM-PCA —  GPR model
— MW & GMR — GPR-PCA
Estimation Filterin
— through element — b g
balance techniques
Adaptive
Observer

Figure 8. Some other useful methods (abbreviations are listed in Table A1).

The following methods are also used for soft-sensing modeling:

e  Filtering techniques, estimation through element balance and adaptive observer [112].

e  Relevance vector machine (RVM) based on the PCA algorithm for fermentation [113].

e  Gaussian mixture regression (GMR)-based soft-sensing modeling method presented in [114].

e  Soft-sensing modeling methods based on multi-model adaptive by using local learning and online
SVR for non-linear time-variant batch processes [115].

e Just-in-time (JIT) modeling with a combination of input and output similarity criteria for the
soft-sensing modeling in fermentation processes [116].

e  Dual learning-based online ensemble regression approach for adaptive soft-sensing modeling of
nonlinear time-varying processes [117].

e A soft-sensing model based on GPR for the erythromycin fermentation process is presented
in [118].

e A soft-sensing modeling method based on multi-model strategy by using GPR and PCA is
presented in [119].

e  Asoft-sensing modeling method for product concentration monitoring in a fed-batch fermentation
process based on dynamic principal component regression PCR proposed in [120].

5. Optimization Techniques

In order to ensure a better prediction accuracy of the model, the data-driven soft-sensing modeling
methods need to use some optimization algorithms to optimize the model parameters. In this review
paper, the optimization techniques used for the estimation of optimal parameters such as PSO, ABC,
ACO, CS algorithm, and GA, are also discussed. PSO is an evolutionary algorithm, which was
introduced by [121,122] based on swarm behavior such as birds flocking and fish schooling in nature.
The idea of the PSO algorithm is to discover the global best solution through provided information
and sharing among individuals in a group. In Zhu and Zhu [50], authors utilized the PSO algorithm
with GPC-LS-SVM soft-sensing model. In another research paper, the improved version of PSO was
utilized by [56], just given a few examples.
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The ABC algorithm belongs to the evolutionary family, and it can be applied for solving numerical
problems, optimization in dynamic and uncertain environments. The ABC optimization algorithm was
developed by [123], in which the author has simulated the behavior of honey bees. ABC has three types
of honey bees: workers, onlookers and scouts. The onlooker bees reside at the dancing area to decide
about food source selection after evaluating the received information, and worker bees are those who
provide information to onlookers and moving towards the food source (solution) visited by themselves
earlier. The random search is performed by scout bees. Only a single worker bee is assigned to a single
food source, and after collecting the detailed information in the first half of the algorithm, it shares
information with onlooker bees that perform their job in the second half. The worker bee will become
a scout after its food source is completely exhausted. The authors of this paper [52] have been utilized
the ABC optimization algorithm with the Multiple LS-SVM inversion soft-sensing model.

The ACO is a population-based optimization technique. It was inspired by the ethological studies
on the foraging behavior of ants. The ACO technique is implemented by instantiating a team of
software agents, which simulate the ant’s behavior, walking around the graph representing the problem
to solve [124]. The authors in [100] utilized the ACO algorithm to the parameter identification problem
in the fed-batch fermentation process.

The CS optimization algorithm belongs to the evolutionary family and it was proposed by [125].
The CS algorithm was motivated by the breeding habit of cuckooc that chose a host nest to lay their
eggc. The host may realize that it is an alien egg, and in that case, it may discard the strange egg or
abandon it to construct a new nest. It uses the Lévy flight concept to update the nest position, which
follows a random walk that is based on a truncated probability distribution step size [126]. In [60],
the authors presented a data-driven soft-sensing model based on iteratively weighted LS-SVR with a
CS optimization algorithm.

GA is a technique for solving optimization problems that are based on the mechanics of natural
selection and natural genetics. GA is used to discover accurate or approximate results to optimization
and search problems. At each phase, GA chooses an individual to be a parent at random from the
present population and use them for the next generation to produce children. Over consecutive
generations, the population evolves towards an ideal solution. GA based soft-sensing models have
been discussed above.

6. Comparative Analysis

A large number of soft-sensing modeling methods have been discussed in this paper. The literature
review demonstrates that the various optimization and data-driven methods have been combined
together to estimate relevant process variables. The comparison study of some of the main soft-sensing
modeling methods is given in Tables 2-5, respectively. According to the developed review, it can be
concluded that commonly used methods for the process of fermentation are, NN-, deep learning-, FL-,
PLVMs-, SVM-based regression and hybrid methods. The comparative study of these methods will
help in selecting the particular method for the fermentation process or specific application.

7. Conclusions and Future Perspective

Generally, soft-sensing modeling methods are becoming more and more popular in a broad
range of industrial applications such as process monitoring, process control, fault diagnostics, and so
forth. Such methods are very valuable to apply when physical or hardware sensors cannot be
employed or when direct measurements are not accessible. In this paper, a comprehensive review
of existing data pre-processing approaches, variable selection methods, data-driven (black-box)
soft-sensing modeling methods and optimization techniques was carried out. The data-driven methods
used for the soft-sensing modeling such as support vector machine, multiple least square support
vector machine, neural network, deep learning, fuzzy logic, probabilistic latent variable models are
reviewed in detail. The optimization techniques used for the estimation of model parameters such as
particle swarm optimization algorithm, ant colony optimization, artificial bee colony, cuckoo search
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algorithm, and genetic algorithm, are also discussed. Obviously, in the current manufacturing industry,
soft-sensing/soft sensors are hot subjects where a lot of research and development operations are
ongoing. Most of the existing or ongoing work is confined to simulation-based experiments and only a
few efforts have been accounted using soft sensors in industrial applications. Therefore, for the future
advancement of the production industry, it is really essential to expand the research and development
to develop soft sensors on the basis of industrial compatibility. The utilities of physical or hardware
sensors cannot be undermined as these will be employed in information gathering for the functionality
of the soft-sensing methods as well. Because of the prevailing circumstances, it can be estimated that
in the future the world would be more inclined towards adjustable, authentic, adaptive, efficient and
modern methods.
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Appendix A

Table Al. List of abbreviations.

Abbreviation Explanation
Methods
SVM Support Vector Machines
SVR Support Vector Regression
LS-SVM Least Square Support Vector Machine
PLS Partial Least Squares
MLS-SVM Multiple Output Least Squares Support Vector Machine

MSE Mean Square Error

RMSE Root Mean Square Error
NN Neural Network

DNN Deep Neural Network

ANN Artificial Neural Network
DL Deep Learning

NLP Natural Language Processing
DAE Denoising auto-encoders

SAE Stacking auto-encoders

HELM Hierarchical Extreme Learning Machine
MIV Mean Impact Value

BPNN Back-propagation Neural Network
RBF Radial Basis Function

GPC Generalized Predictive Control
PID Proportional-Integral-Derivative
GRA Gray Relational Analysis

PSO Particle Swarm Optimization

IPSO Improved Particle Swarm Optimization
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Table Al. Cont.

Abbreviation Explanation
ABC Artificial Bee Colony
ACO Ant colony optimization
CS Cuckoo Search
GA Genetic Algorithm
KNN K-nearest Neighbors
GPR Gaussian Process Regression
GRNN Generalized Regression Neural Network
KPCA Kernel Principal Component Analysis
PCA Principal Component Analysis
ICA Independent Component Analysis
FL Fuzzy Logic
FNN Fuzzy Neural Network
GD-FNN Generalized Dynamic Fuzzy Neural Network
MNN Multi-model Neural Network
KFCM Kernel Fuzzy c-means Clustering
FLS Fuzzy Least Square
FCM Fuzzy c-means Clustering
AIC Akaike information criterion
PLVM Probabilistic Latent Variable Models
RVM Relevance vector machine
GMR Gaussian Mixture Regression
JIT Just-In-Time
PCR Principal Component Regression
AHP Analytic Hierarchy Process
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