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Abstract: Nonuniformly-rotating ship refocusing is very significant in the marine surveillance of
satellite synthetic aperture radar (SAR). The majority of ship imaging algorithms is based on the
inverse SAR (ISAR) technique. On the basis of the ISAR technique, several parameter estimation
algorithms were proposed for nonuniformly rotating ships. But these algorithms still have problems
on cross-terms and noise suppression. In this paper, a refocusing algorithm for nonuniformly rotating
ships based on the bilinear extended fractional Fourier transform (BEFRFT) is proposed. The ship
signal in a range bin can be modeled as a multicomponent cubic phase signal (CPS) after motion
compensation. BEFRFT is a bilinear extension of fractional Fourier transform (FRFT), which can
estimate the chirp rates and quadratic chirp rates of CPSs. Furthermore, BEFRFT has excellent
performances on cross-terms and noise suppression. The results of simulated data and Gaofen-3 data
verify the effectiveness of BEFRFT.

Keywords: nonuniformly rotating ships; inverse synthetic aperture radar (ISAR) technique;
multicomponent cubic phase signal (CPS); bilinear extended fractional Fourier transform (BEFRFT)

1. Introduction

In the marine surveillance of satellite synthetic aperture radar (SAR), nonuniformly-rotating ship
refocusing is very significant for the detection and identification of ships. In complex sea conditions,
the movements of ships are very complicated. In addition to the self-powered translation, ships also
nonuniformly rotate by the influence of sea waves and other factors, which leads to the defocusing of
ship images. Many SAR imaging methods [1–6] were proposed for moving target refocusing. However,
these methods are inapplicable for rotating targets. The inverse SAR (ISAR) algorithm based on the
rotatable model has advantages for moving target imaging, especially for rotating targets. Hence, ISAR
technique has been widely applied in SAR ship imaging. The range-Doppler (RD) algorithm based
on the ISAR technique can be utilized to coarsely focus rotating ship images. The key process of the
RD algorithm is motion compensation which includes the range migration and phase compensation.
However, due to the time-varying Doppler frequency, nonuniformly rotating ships cannot be finely
focused by the RD algorithm. To overcome the Doppler frequency spread, the range-instantaneous
Doppler (RID) algorithm utilizes time-frequency transformations [7] instead of Fourier transformations.
But this class of algorithms has problems of loss of resolution and cross-terms, which appear as false
points in ship images.

In the last decade, many parameter estimation algorithms were proposed in the literature.
In [8–13], the received signal is modeled as a multicomponent linear frequency modulated (LFM)
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signal. Radon–Wigner transform (RWT) [9] and Radon-ambiguity transform (RAT) [10] utilize the
Radon transform to detect LFM signals. Fractional Fourier transform (FRFT) [13] is also applied to
estimate parameters of LFM signals in SAR imaging [5,6]. For gently rotating ships, the above LFM
parameter estimation algorithms can be applied.

However, under severe conditions, the rotations of ships could be violent. Therefore, the LFM
signal model would no longer be applicable [14,15]. For violently rotating ships, the received signal
can be modeled as a multicomponent cubic phase signal (CPS) in [14–20]. Many cubic phase functions
(CPF) [14–16,19–22] were proposed to estimate the parameters of CPSs. In order to reduce cross-terms
and enhance auto-terms, the product operation [16] and integrate operation [12,17] were proposed.
However, under a rough sea situation with a low signal-to-noise ratio (SNR), the above operations also
accumulate noise, which disturbs the detection of auto-terms and causes a bad antinoise performance.
The coherent integration was utilized in the coherently integrated generalized cubic phase function
(CIGCPF) [19] and the coherently integrated modified cubic phase function (CIMCPF) [20] for a better
antinoise performance. With the characteristics of auto-terms parallel to the time axis, the coherent
integration utilizes fast Fourier transform (FFT) to separate auto-terms, cross-terms and noise. But
the four-order multilinear transformations in CIGCPF and CIMCPF lead to the cross-terms problem,
which is also a limitation to antinoise performance.

In this paper, a refocusing algorithm for nonuniformly rotating ships based on the bilinear
extended fractional Fourier transform (BEFRFT) is proposed. Different from FRFT, which is a LFM
estimator, BEFRFT is a bilinear extension of FRFT and is proposed to estimate the parameters of CPSs.
BEFRFT can effectively reduce the disturbance of cross-terms and noise, which is adaptive to low SNR
conditions. Combining with RID algorithm, a finely refocused ship image can be obtained.

This paper is organized as follows. Section 2 describes the ISAR imaging model of
nonuniformly rotating ships. Section 3 proposes a novel algorithm for the estimation of CPS
parameters—BEFRFT—and elaborates on the performances of cross-terms and noise suppression.
Section 4 illustrates the implementation procedures of nonuniformly rotating ship refocusing based on
BEFRFT. In Section 5, the simulated data and Gaofen-3 data are utilized to illustrate the effectiveness
of BEFRFT. Section 6 draws the conclusion of this paper.

2. ISAR Imaging Model of the Nonuniformly Rotating Ship

SAR imaging is widely utilized in stationary target imaging. However, it has a limitation for
complex moving targets, especially for nonuniformly rotating ships [5,6,23]. Hence, the SAR imaging
result of a nonuniformly rotating ship is usually unfocused. As mentioned in Section 1, the ISAR
technique can be utilized in SAR images. Before applying the ISAR technique, the inverse azimuth
operation (i.e., FFT firstly and then the inverse operation of dechirping) must be utilized to transform
the azimuth of SAR image from image domain to time domain.

The ISAR imaging geometry of a nonuniformly rotating ship is shown in Figure 1. The ship is
located in the Cartesian coordinate XYZ and nonuniformly rotates around the geometric center O.
The rotation of ship can be expressed as a synthetic rotation vector ~Ω. The radial direction ~R from
the radar to the geometric center O is the radar line-of-sight (LOS). ~Ω can be decomposed into the
co-directional component ~ΩR and quadrature component ~Ωe. ~Ωe has the only contribution to Doppler
effect. The plane viewed from the direction of ~Ωe is the ISAR imaging plane.

Assume that the position of a scattering point p is at the distance~rp from the geometric center O.
The Doppler frequency of p can be written as

fp =
2
λ
(vp + (~Ωe ×~rp) · ~R), (1)

where λ denotes the wavelength of transmitted radar signal and vp denotes the radial translational
velocity between radar and p.
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Figure 1. ISAR imaging geometry of a nonuniformly rotating ship.

Due to the nonuniform rotation of the ship, ~Ωe can be expressed as the Taylor expansion

~Ωe = ~Ω
(0)
p + ~Ω

(1)
p t +

1
2!
~Ω

(2)
p t2 +

1
3!
~Ω

(3)
p t3 + ..., (2)

where ~Ω
(n)
p denotes the n-order derivative of ~Ωe and n = 0, 1, 2, 3...

After the range migration and phase compensation, the translational velocity can be removed,
and the ship signal in a range bin can be written as

s(t) =
P

∑
p=1

σp exp
{

jθ0,p + j
4π

λ
(~Ω

(0)
p t + ~Ω

(1)
p t2 +

1
2!
~Ω

(2)
p t3 + ...) · (~rp × ~R)

}
, (3)

where P denotes the number of scattering points in a range bin, σp denotes the magnitude of the pth
scattering point and θ0,p denotes the initial rotation angle of the pth scattering point.

Here, we approximate s(t) as

s(t) ≈
P

∑
p=1

σp exp
{

jθ0,p + j
4π

λ
(~Ω

(0)
p t + ~Ω

(1)
p t2 +

1
2!
~Ω

(2)
p t3) · (~rp × ~R)

}
. (4)

From Equation (4), we can find that the ship signal in a range bin has the form of a multicomponent
CPS. Therefore, we rewrite the ship signal in a general expression as

s(t) =
P

∑
p=1

Ap exp
[
j2π(a1,pt + a2,pt2 + a3,pt3)

]
, (5)

where Ap = σp exp(jθ0,p), a1,p, a2,p and a3,p denote the center frequency, chirp rate and quadratic chirp
rate, respectively.

3. Bilinear Extended Fractional Fourier Transform

Fractional Fourier transform (FRFT) [13] is a generalized form of the Fourier transform, which
is equivalent to rotating the time axis of the Wigner–Vile plane at an angle and performing a Fourier
transformation at zero frequency. LFM signals can be accumulated into straight lines in the Wigner–Vile
plane. Hence, FRFT can be utilized to estimate the parameters of LFM signals. However, CPSs are
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presented as curves in the Wigner–Vile plane, which is inconvenient for estimating their parameters.
The bilinear extended FRFT (BEFRFT) is proposed to estimate the parameters of CPSs in Equation (5).

3.1. Principle of BEFRFT

Consider a noisy multicomponent CPS.

s(t) =
P

∑
p=1

Ap exp
[
j2π(a1,pt + a2,pt2 + a3,pt3)

]
+ n(t). (6)

The bilinear correlation function can be written as

R(t, τ) = s(t + τ)s(t− τ) = Rauto(t, τ) + Rcross(t, τ) + Rnoise(t, τ), (7)

where

Rauto(t, τ) =
P

∑
p=1

s2
p(t) exp

[
j2π(2a2,p + 6a3,pt)τ2] (8)

denotes the auto-terms; Rcross(t, τ) and Rnoise(t, τ) denote the cross-terms and noise, respectively.
The cubic phase function (CPF) [12,22] based on NUFFT [24] of Rauto(t, τ) can be written as

CPFauto(t, fτ2) =
∫

Rauto(t, τ) exp(−j2πτ2 fτ2)dτ2

=
P

∑
p=1

s2
p(t)δ

[
fτ2 − (2a2,p + 6a3,pt)

]
. (9)

We utilize the modulus form to eliminate the influence of s2
p(t) in Equation (9) as

MCPFauto(t, fτ2) = CPFauto(t, fτ2)�
[
CPFauto(t, fτ2)

]∗
=

P

∑
p=1

A2
pδ
[

fτ2 − (2a2,p + 6a3,pt)
]
, (10)

where � denotes the Hadamard product and ∗ denotes the complex conjugation.
From Equation (10), we can find that if we rotate the coordinate axis and perform FFT in the

direction of fτ2 = 2a2,p + 6a3,pt, the auto-terms can be accumulated at zero frequency and the noise
in Equation (7) will spread out over all frequencies. Based on the above statement, the expression of
BEFRFT can be written as

BEFRFT(α, u, f ) =
∫

MCPF(u cos α− v sin α, u sin α + v cos α) exp(−j2π f v)dv, (11)

where α denotes the rotation angle; u and v respectively denote the new coordinate axes corresponding
to t and fτ2 ; f denotes the FFT of v.

The BEFRFT of auto-terms can be written as

BEFRFTauto(α, u, 0) =
P

∑
p=1

A2
p

∫
δ
[
u(sin α− 6a3,p cos α) + v(cos α + 6a3,p sin α)− 2a2,p

]
dv. (12)

The auto-terms turn into peaks by Equation (12). a2,p and a3,p can be estimated as

(â2,p =
u

2 sin α
, â3,p = −cot α

6
) = arg max

(α,u)
|BEFRFT(α, u, 0)|. (13)
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3.2. Cross-Term Characteristic

Due to the nonlinear transformation, the cross-terms are generated under a multicomponent CPS
in Equation (7).

Here, we consider two noise-free CPSs to analyze the characteristic of cross-terms of BEFRFT

s12(t) = s1(t) + s2(t)

= A1 exp
[
j2π(a1,1t + a2,1t2 + a3,1t3)

]
+ A2 exp

[
j2π(a1,2t + a2,2t2 + a3,2t3)

]
. (14)

The auto-terms can be expressed as the form of Equation (8), and the cross-terms can be written as

Rcross(t, τ) = s1(t + τ)s2(t− τ) + s2(t + τ)s2(t− τ)

= 2s1(t)s2(t) cos{2πη(t, τ)} × exp
{

j2π[(a2,1 + a2,2) + (a3,1 + a3,2)t]τ2}, (15)

where

η(t, τ) =
[
(a1,1 − a1,2) + 2(a2,1 − a2,2)t + 3(a3,1 − a3,2)t2]τ + (a3,1 − a3,2)τ

3. (16)

Obviously, only if η(t, τ) = 0 is established, can cross-terms in Equation (15) be accumulated into
the form of impulse functions in Equation (9). However, η(t, τ) = 0 is hard to be satisfied, especially
for real data. Additionally, the following modulus operation and Fourier transform would not generate
cross-terms. Hence, BEFRFT is a strict bilinear transformation, which has strong suppression to
cross-terms.

Here, we give an example to illustrate the aforementioned content.

Example 1. Two noise-free CPSs are denoted by Au1 and Au2. The sampling frequency is 256 Hz and the
sampling number is 512. The parameters of CPSs are, respectively, as follows: A1 = 1, a1,1 = 30 Hz, a2,1 =

20 Hz/s, a3,1 = 10 Hz/s2 for Au1; A2 = 1, a1,2 = 40 Hz, a2,2 = −15 Hz/s, a3,2 = −5 Hz/s2 for Au2.

The simulation results are shown in Figure 2. Figure 2a shows the relative time t–relative
frequency fτ2 space of CPF in Equation (9). As indicated in Figure 2a, the auto-terms are accumulated
into straight lines. However, the cross-terms also exist in a certain form, which increases the difficulty
of distinguishing auto-terms. After BEFRFT in Equation (12), it can be seen from Figure 2b,c that
the auto-terms are accumulated into peaks and the cross-terms are hardly observed, which means
suppression to cross-terms.

Au1

Au2

Cross-terms

(a)

Au1

Au2

(b)

Figure 2. Cont.
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Au1

Au2

(c)

Figure 2. Simulation results. (a) Contour of the relative time t–relative frequency fτ2 space of CPF.
(b) Contour of α–u space of BEFRFT. (c) Stereogram of (b).

In terms of a N-component CPS, the BEFRFT of bilinear transformation generates (N2 − N)

cross-terms in Equation (7), while four-order multilinear transformations like CIGCPF and CIMCPF
generate (N4 − N) cross-terms. For real data, the generation of cross-terms is greatly reduced by
BEFRFT, which can improve the veracity of parameters estimation.

3.3. Antinoise Performance

In this subsection, we utilize the input-output SNR [14,18] and mean square error
(MSE) [14,15,17,18,21,25] to assess the antinoise performance of BEFRFT. An example is given
as follows.

Example 2. We considered a mono-component CPS with zero-mean white Gaussian noise denoted by Bu.
The sampling frequency was 256 Hz and the sampling number was 256. The parameters of Bu were as follows:
A = 1, a1 = 31 Hz, a2 = −23 Hz/s, a3 = 10 Hz/s2. The input SNR was SNRin = [−8 : 1 : 8].
Two-hundred Monte-Carlo simulations were performed for each input SNR.

Figure 3a shows the comparison of the input-output SNR of BEFRFT, CIGCPF, CIMCPF and
matched filter. When SNRin ≥ −5 dB, the input-output SNR curve of BEFRFT coincides with the
matched filter line, which means the input SNR threshold of BEFRFT is −5 dB. The same as BEFRFT,
the input SNR thresholds of CIGCPF and CIMCPF are −2 dB and −3 dB, respectively. We compare the
MSEs of chirp rate a2 and quadratic chirp rate a3 with the Cramer–Rao bounds (CRB) in Figure 3b,c,
respectively. Obviously, the input SNR thresholds of BEFRFT, CIGCPF and CIMCPF in Figure 3b,c
match the results of Figure 3a. When the input SNR is above the threshold, the MSEs of chirp rate and
quadratic chirp rate are close to the CRBs, which indicates the chirp rate and quadratic chirp rate can
be estimated accurately.

Hence, we can draw a conclusion that BEFRFT has a better antinoise performance. There are
two main reasons: (1) BEFRFT is a bilinear transformation, but CIGCPF and CIMCPF are four-order
multilinear transformations. The higher order of transformations lead to the generation of more
cross-terms between signal and noise. (2) Unlike the two step estimation of BEFRFT for a CPS, CIGCPF
and CIMCPF need three steps, which causes more error propagations.
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(a) (b)

(c)

Figure 3. Antinoise performance. (a) Input-output signal-to-noise ratio (SNR) comparison.
(b) Comparison of mean square errors (MSEs) of chirp rate. (c) Comparison of MSEs of quadratic
chirp rate.

4. Nonuniformly Rotating Ship Refocusing Based on BEFRFT

The main idea of BEFRFT is estimation of CPS signals’ parameters. Firstly, we utilize BEFRFT to
estimate the chirp rate and quadratic rate. Then, we utilize the dechirp technique and FFT to estimate
the center frequency and amplitude. The implementation procedures of nonuniformly-rotating ship
refocusing based on BEFRFT are illustrated by the flowchart in Figure 4 and described in detail
as follows.

Step 1 Perform the inverse azimuth operation to the original ship image, as mentioned in Section 2.
Apply the range migration and phase compensation to turn the received signals into the
turntable form.

Step 2 Get the received signal sh(t) of the hth range bin, where 1 ≤ h ≤ H and H is the number of
range bins.

sh(t) =
P

∑
p=1

Ap exp
[
j2π(a1,pt + a2,pt2 + a3,pt3)

]
. (17)

Step 3 Apply BEFRFT to estimate the chirp rate a2,p and quadratic rate a3,p.

(â2,p =
u

2 sin α
, â3,p = −cot α

6
) = arg max

(α,u)

∣∣∣BEFRFT
{

MCPF[sh(t)]
}∣∣∣. (18)
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Step 4 Dechirp sh(t) with a2,p and a3,p and utilize FFT to estimate the center frequency a1,p and
amplitude Ap.

(Âp =
D
N

,â1,p = ft) = arg max
(D, ft)

∣∣∣FFT
{

sh(t) · exp[−j2π(â2,pt2 + â3,pt3)]
}∣∣∣, (19)

where D and ft denote the amplitude and the frequency of the peak after FFT, respectively.
Step 5 During the elimination of multicomponent CPSs, the CLEAN technique is utilized [14–17,19,20].

To prevent the degradation of performance in a low SNR, we subtract each CPS in the frequency
domain. The process can be written as

sre f (t) = exp[−j2π(â2,pt2 + â3,pt3)] (20)

sh(t) = IFFT
{

Win(â1,p)FFT[sh(t)sre f (t)]
}

, (21)

where

Win(â1,p) =

{
0, fL,p < â1,p < fR,p

1, otherwise
. (22)

Step 6 Repeat steps 3–5 until the energy of residual signal is under the energy threshold. The energy
threshold ξ can be set to 5% of the original signal energy [14,15]. Then, the estimated ŝh(t)
is obtained.

Step 7 Repeat steps 2–6 until the received signals of H range bins are estimated. Combining RID
algorithm, the refocused ship image can be obtained.

SAR ship image

Inverse azimuth operation  

Range migration and 

phase compensation

h=1

Model signal of hth 

range bin as P 

multicomponent CPSs

p=1

      Estimate        and        

by BEFRFT

      Estimate        and  

   by dechirping and FFT

Subtract the estimated 

pth CPS from the 

previous signal

Residual energy

      
p=p+1

h=H

Refocused ship 

image

h=h+1

No

Yes

Yes

No



2, pa
3, pa 1, pa pA

Figure 4. Flowchart of nonuniformly-rotating ship refocusing based on BEFRFT.
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5. Expeimental Results of Nonuniformly Rotating Ship Refocusing

In this section, the results of ship target simulation are given to illustrate the refocusing
performance of proposed BEFRFT, and the Gaofen-3 data are utilized to verify the effectiveness
of BEFRFT.

5.1. Nonuniformly Rotating Ship Refocusing With Simulated Data

The parameters of radar system and ship target are listed in Table 1. In Figure 5, the ship target
model consists of 42 ideal scatters, and threww representative point targets, PT1, PT2 and PT3, are
marked in red. Figure 6 shows ship images in the situation of SNRin = 5 dB. From Figure 6a, it
can be seen the ship image based on ISAR algorithm is blurred in azimuth bin due to the Doppler
frequency spread. After applying BEFRFT, the ship in Figure 6b is well-focused. To further illustrate
the performance of proposed BEFRFT, contour plots and azimuth profiles of PT1, PT2 and PT3 are
given in Figure 7. It can be seen that three point targets are all well-focused after applying BEFRFT.

Peak sidelobe ratio (PSLR) and integral sidelobe ratio (ISLR) are utilized as criteria to assess the
quality of refocusing. The imaging quality parameters of PT1, PT2 and PT3 based on ISAR algorithm
and BEFRFT are listed in Table 2. It can be seen that the imaging quality parameters of BEFRFT are
very close to the theoretical values (i.e., PSLR (−13.26 dB) and ISLR (−9.8 dB)). Both the contour
results and imaging quality parameters indicate that the proposed BEFRFT has a good performance on
nonuniformly-rotating ship refocusing.

-150 -100 -50 0 50 100 150
X-axis /m

-150

-100

-50

0

50

100

150

 

PT1

PT2

PT3

Y
-a

x
is

 /
m

Figure 5. Ship target model.

(a) (b)

Figure 6. Ship images. (a) Ship image based on ISAR algorithm. (b) Refocused ship image based
on BEFRFT.



Sensors 2020, 20, 550 10 of 14

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 7. Contour plots and azimuth profiles of PT1, PT2 and PT3. (a,e,i) Contour plots of PT1, PT2
and PT3 based on the ISAR algorithm, respectively. (b,f,j) Azimuth profiles of PT1, PT2 and PT3 based
on the ISAR algorithm, respectively. (c,g,k) Contour plots of PT1, PT2 and PT3 based on BEFRFT,
respectively. (d,h,l) Azimuth profiles of PT1, PT2 and PT3 based on BEFRFT, respectively.

Table 1. Parameters of radar system and ship target.

Parameters Values

99825Carrier frequency 10 GHz
Bandwidth 120 MHz

Sampling frequency 150 MHz
Pulse repetition frequency 420 Hz

Range of scene center 5 km
Echo pulses 1024

Translational velocity 40 m/s
Translational acceleration 2 m/s2

Translational acceleration rate 1 m/s3

Rotational velocity 0.01 rad/s
Rotational acceleration 0.01 rad/s2

Rotational acceleration rate 0.01 rad/s3

Table 2. Imaging quality parameters of PT1, PT2 and PT3.

Target PSLR (dB) ISLR (dB)

ISAR algorithm
PT1 −12.51 −10.62
PT2 −3.48 −0.42
PT3 −0.84 2.98

BEFRFT
PT1 −12.95 −10.80
PT2 −12.64 −10.79
PT3 −13.82 −10.82



Sensors 2020, 20, 550 11 of 14

5.2. Nonuniformly Rotating Ship Refocusing with the Gaofen-3 Data

Two Gaofen-3 single-look complex (SLC) images of Singapore port were utilized to verify the
effectiveness of the proposed BEFRFT, as shown in Figure 8. The latitudes and longitudes of center
of images are (E104.0, N1.3) and (E104.1, N1.3), respectively. The Gaofen-3 SAR worked in the
sliding spotlight mode and its partial parameters are as follows: radar center frequency f0 is 5.4 GHz,
the bandwidth B is 240 MHz, the pulsewidth Tr is 55.0 µs, the pulse repeat frequency is 3125 Hz and
the azimuth resolution is 1 m.

From Figure 8, we can find that the majority of ships are relatively big and well-focused, and
some of relatively small ships are slightly rotated, which can be refocused by ISAR algorithm. Hence,
we selected four small ships, which were nonuniformly rotated, to verify the refocusing performance
of BEFRFT. The selected ships, S1, S2, S3 and S4, were framed in red and enlarged in Figure 8. The size
of ship image slices was 180 m (range) × 176 m (azimuth).

Figure 9 shows ship images of S1, S2, S3 and S4 based on different methods. As we can see from
Figure 9a–d, the original ship images of S1, S2 and S3 are seriously unfocused, and the shape of the
ships can hardly be seen. After the inverse azimuth operation and motion compensation mentioned in
Section 2, the ship images based on ISAR algorithm are shown in Figure 9e–h. The ship images are
still unfocused and the rotation of ships can still be seen. In Figure 9i–l, the classical LFM estimator
RWT is utilized to refocus the ship images. The ships are very blurred and the details of ships can
hardly be seen. LFM estimators like RWT only estimate the center frequencies and chirp rates of ship
signal. Hence, the high-order phase terms cannot be estimated by RWT, which leads to the defocusing
in Figure 9i–l. The defocused ship images based on RWT indicate the inadequacy of LFM estimators.

We utilized the CPS estimators to obtain the refocused ship images. Figure 9m–p are the refocused
ship images based on CIGCPF. Figure 9q–t are the refocused ship images based on CIMCPF. Figure 9u–x
are the refocused ship images based on BEFRFT. Compared to Figure 9m–p and Figure 9q–t—there are
less false points around the ships and the details of ships can be seen more clearly in Figure 9u–x.

S2

S3

S1

(a)

S4

(b)

Figure 8. Gaofen-3 images of Singapore. (a) Image location: (E104.0, N1.3). (b) Image location:
(E104.1, N1.3).
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

(u) (v) (w) (x)

Figure 9. Gaofen-3 ship images of S1, S2, S3 and S4. (a–d) Original ship images of S1, S2, S3 and S4.
(e–h) Ship images of S1, S2, S3 and S4 based on ISAR algorithm. (i–l) Refocused ship images of S1,
S2, S3 and S4 based on RWT. (m–p) Refocused ship images of S1, S2, S3 and S4 based on CIGCPF.
(q–t) Refocused ship images of S1, S2, S3 and S4 based on CIMCPF. (u–x) Refocused ship images of S1,
S2, S3 and S4 based on BEFRFT.

Here, we utilize the entropy [5,14–17,19,20] and contrast [5] to assess image quality in Figure 9.
An image with a smaller entropy has better image quality. The entropy of an image I can be written as

E = −
P

∑
p=1

H

∑
h=1

|I(p, h)|2
S

ln
|I(p, h)|2

S
. (23)
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Contrary to the entropy, a higher contrast means better image quality. The contrast of an image I
can be written as

C =
std(|I(p, h)|2)

mean(|I(p, h)|2) (24)

where I(p, h) denotes pixel value at location (p, h), S = ∑P
p=1 ∑H

h=1 |I(p, h)|2.
Table 3 shows the entropies and contrasts of ship images of S1, S2, S3 and S4 corresponding to

Figure 9. From Table 3, we can find that Figure 9u–x showed the smallest entropies and the highest
contrasts, which means better image quality resulted from BEFRFT than from the others. As analyzed
in Section 3, BEFRFT has better performances on cross-terms and noise suppression. Hence, BEFRFT
has excellent performance on refocusing of nonuniformly rotating ships.

Table 3. Entropies and contrasts of ship images.

Original ISAR Algorithm RWT CIGCPF CIMCPF BEFRFT

Entropy

S1 6.4257 5.2922 6.1753 5.2798 4.0857 3.5972
S2 7.8618 7.3830 7.1361 6.7992 5.9165 5.5283
S3 8.1299 8.5094 7.3393 7.0753 6.5629 6.0525
S4 8.0640 8.0056 7.2224 6.7422 6.4991 6.1282

Contrast

S1 8.8720 9.9634 12.8649 13.5705 13.6443 15.4737
S2 9.0490 10.0178 13.2321 14.6903 14.8947 16.3034
S3 9.8960 9.7195 12.4923 14.3366 14.2703 15.7992
S4 8.5627 9.1625 13.8116 16.6948 16.1005 18.3155

6. Conclusions

This paper proposes a refocusing algorithm based on BEFRFT for nonuniformly rotating ships.
The received signal is modeled as a multicomponent CPS for each range bin. BEFRFT estimates the
chirp rates and quadratic chirp rates of CPSs. Compared with some other algorithms, (1) BEFRFT
generates less cross-terms, which reduces the number of false points; (2) BEFRFT has a better antinoise
performance for a lower SNR situation. Combining BEFRFT with RID algorithm, the finely refocused
ship image can be obtained. Both the simulated data and Gaofen-3 data verify the practicability of
proposed algorithm.
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