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Abstract: Recently, issues of climate change, environment abnormality, individual requirements,
and national defense have caused extensive attention to the commercial, scientific, and military
development of unmanned surface vehicles (USVs). In order to design high-quality routes for a
multi-sensor integrated USV, this work improves the conventional particle swarm optimization
algorithm by introducing the greedy mechanism and the 2-opt operation, based on a combination
strategy. First, a greedy black box is established for particle initialization, overcoming the randomness
of the conventional method and excluding a great number of infeasible solutions. Then the greedy
selection strategy and 2-opt operation are adopted together for local searches, to maintain population
diversity and eliminate path crossovers. In addition, Monte-Carlo simulations of eight instances are
conducted to compare the improved algorithm with other existing algorithms. The computation
results indicate that the improved algorithm has the superior performance, with the shortest route
and satisfactory robustness, although a fraction of computing efficiency becomes sacrificed. Moreover,
the effectiveness and reliability of the improved method is also verified by its multi-sensor-based
application to a USV model in real marine environments.

Keywords: particle swarm optimization; greedy mechanism; 2-opt operation; path planning problem;
unmanned surface vehicle

1. Introduction

Unmanned Surface vehicles (USVs), also known as autonomous surface crafts, have attracted
worldwide attention in commercial, scientific and military fields recently. USVs have the advantages
of low operation and maintenance costs, reduced casualty risk, and good maneuverability and
deployability for different operating conditions [1]. With the aid of effective and reliable navigation
equipment, such as global positioning systems (GPS), wireless communication units, and various types
of sensors, USVs can be employed cost-efficiently for a variety of applications, including underwater
surveying [2], pollutant tracking [3], acoustic navigation [4], marine rescue [5], and obstacle detection [6].
Although rapid progress of corresponding techniques for USV systems have been achieved in recent
times, it is still challenging in promoting the level of USV autonomy when faced with complex or
hazardous environments. Key issues, including hull hydrodynamics, communication techniques, and
navigation, guidance and control (NGC) strategies, require further developments.

As a vital component of USV guidance systems, path planning is of critical importance in designing
and updating feasible and optimal trajectories for the control system on basis of navigation information,
mission demands, and environmental conditions. Its effectiveness not only determines the autonomy
of unmanned vehicles, but also affects the reliability and efficiency of mission execution. From the
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literature, plenty of intelligent techniques have been employed in the USV path planner [7]. Meanwhile,
it is a research hot pot to propose an algorithm having fast convergence speed, admirable robustness,
low computation consumption, and satisfactory route planning.

The USV path planning problem is normally formulated as a travelling salesman problem (TSP),
which is a typical combinatorial optimization problem. The specific description is to find a shortest loop
that passes through all target cities without repetition. However, when a USV performs multi-objective
tasks in a complex marine environment, the number of possible paths increases exponentially with
the increase of target points’ number, resulting in the so-called “exponential explosion”. In this
circumstance, traditional algorithms, such as the exhaustive method and branch-and-bound algorithm,
are unable to find the optimal solution within reasonable time cost. Hence, it is vital to develop
efficient and feasible heuristic algorithms instead of traditional methods to solve this kind of problem,
although the optimality, accuracy, and completeness becomes sacrificed for running speed to some
degree. Commonly used heuristic algorithms include elephant search algorithm (ESA) [8], genetic
algorithm (GA) [9], particle swam optimization (PSO) [10], firefly algorithm (FA) [11], grey wolf
optimizer (GWO) [12], and so on.

However, the conventional type of each method has its inherent limitation. For instance, it is
known that the ESA provides a random and improper replacement for an elephant with the worst
fitness, which is likely to result in the deterioration of search space. The conventional GA has
inherent issues of slow convergence speed, poor capability of local search and easy occurrence of
premature convergence. In other words, the loss of population diversity is likely to appear during the
implementation of GA, making individual genes tend to be same and terminating the search at local
optimum. Additionally, the use of a real-number code also generates repetitive genes during crossover
operations, which affects convergence speed greatly. For the PSO, the lack of a balanced mechanism
would lead to the loss of population diversity and finally being trapped into the local optimum. In
addition, the FA only considers the distance and maximum attractive force between two fireflies, and
has intrinsic shortcomings of poor search capability during early iterations and severe oscillations
around the optimal solution during later iterations. In terms of the GWO, the search mechanism of
judging distance from prey would lead to a slow convergence speed for later iterations. Nowadays,
it has become a tendency to combine two or more algorithms, making full use of their respective
advantages to enhance the algorithm effectiveness.

Inspired by the combination strategy, this work optimizes the conventional PSO method by
introducing a greedy mechanism to generate partial particles and 2-opt operation to eliminate
path-crossing phenomena. Comparative study with some state-of-the-art algorithms is conducted to
verify the effectiveness and reliability of the improved method in terms of solution quality, algorithm
robustness, and computing efficiency. Then the improved algorithm is adopted to generate a feasible
closed trajectory for a self-developed USV to follow in real marine environments.

It is worth noting that this work has certain connections and essential differences with our two
recently published works [13,14]. In the first work, we optimized GA by multi-domain inversion
for the purpose of increasing the number of offsprings. The inspiration comes from the biological
theory foundation, where the number of offsprings needs to be larger than the number of parents so
as to prevent species extinction and maintain species diversity in the process of biological evolution.
In the other work, we optimized PSO by iteratively adjusting the control parameters of the PSO
algorithm, such as inertia weight and acceleration coefficients, and introducing merit-based selection
and uncertain mutation. The optimization is from the point of view of global searching. However, in
this work, we start form the inspiration of the combination strategy of several intelligent algorithms
and introduce the greedy mechanism and 2-opt operation in order to optimize the local search of PSO.

The main contributions of this work are as follows: (1) a greedy black box is established to
generate the initial swarm of particles which avoids the randomness of the traditional method; (2) the
strategy of greedy selection guarantees particles to move towards a higher fitness level and keeps the
swarm diversity; (3) the 2-opt operation performs effectively in maintaining locally optimal fragments
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of relatively inferior particles and eliminate path crossovers; (4) the improved algorithm has been
successfully applied to the path planning subsystem of a USV model with the aid of multi-sensors.

The rest of the paper is organized as follows. A brief literature review is presented in Section 2 on
the research status of the GSM and PSO methods. The conventional and improved PSO algorithms
are introduced concisely in Section 3. Results of Monte-Carlo simulations and sea trials are given in
Section 4. Conclusions are drawn and future researching interests are suggested in Section 5.

2. Literature Review

2.1. Greedy Algorithm

The principle of a greedy algorithm is generally depicted as making a choice which seems locally
optimal at present and intending to find a satisfactory solution in a reasonable amount of time. The
choice may refer to previous decisions, but never depends on future choices or the other choices
inherent to the subproblem. In other words, the greedy algorithm is short sighted and never reconsiders
its decisions. This is totally different from dynamic programming which would reconsider the previous
decisions, and is guaranteed to find the optimal solution after exhaustive operations. In addition,
the greedy algorithm mostly fails to achieve the global optimum. Nevertheless, it is still widely
used as an auxiliary strategy or to give good approximations of the optimum for some problems
with time constraints. Meanwhile, the greedy algorithm performs effectively for problems of optimal
substructure whose globally optimal solution contains locally optimal solutions to subproblems.

For solving the TSP, the greedy algorithm is implemented by choosing the nearest unvisited
city as the salesman’s next target until a completely closed route is generated. Since achieving the
optimum for the TSP is typically time-consuming, the greedy algorithm has been integrated into
various algorithms to accelerate algorithm convergence and to enhance the search efficiency in recent
times. Pan et al. proposed a hybrid algorithm which employed immune algorithm for global searching,
a greedy algorithm for population initialization, and a delete-cross operator for eliminating path
crossovers. Results verified that this hybrid method enhanced the reliability, global convergence speed,
and search ability of immune algorithm [15]. In order to reduce computational time with the premise
of guaranteeing solution quality, Basu et al. adopted a randomized greedy contract method as the
preprocessing step for image sparse in advance of using tabu search to solve the asymmetric TSP.
Comparative study with other success heuristics methods found that the optimization exhibited the
potential to shorten the time cost by 1%–5% [16]. Mestria integrated the greedy randomized adaptive
search procedure (GRASP), iterated local search, and variable neighborhood descent, proposing a
hybrid method for clustered TSP. The hybrid heuristic outperformed several existing methods in terms
of optimal solution and reasonable computational time for medium and large size instances [17].

2.2. Particle Swarm Optimization

PSO was proposed by Eberhart and Kennedy in 1995, inspired by the bird flight model [18].
Aiming at obtaining the global optimal solution, a flock of birds was abstracted to a swarm of random
particles without quality and volume parameters to prevent the collision phenomenon of real birds.

Each particle moves around in the search space under the dynamic guidance of its own flight state,
its own experience and the swarm’s experience. By use of a fitness function for solution evaluation, the
swarm is expected to advance towards the most satisfactory solution. Moreover, it is prevalently known
that the PSO has advantages of fast convergence, simple parameter settings, and easy implementation,
and has been widely applied to a large number of discrete and continuous optimization problems,
such as the TSP [10], the molecular docking problem [19], electrochemical machining [20], image
recognition [21], semi desirable facility location problem [22], sheet metal forming [23], and so on.

For the purpose of enhancing the PSO effectiveness in solving the TSP, plenty of valuable research
has been conducted on the combination of two or three heuristic algorithms. Shuang et al. modified
the ant colony optimization (ACO) algorithm by introducing the PSO to expand the search space and
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to use the swarm experience for convergence acceleration [24]. The similar strategy of introducing
PSO into ACO was also verified by Mahi et al. in order to optimize the city selection parameters [25].
Another improved PSO, proposed by Zhang et al., adopted a priority coding method to code the
solution, set the velocity range dynamically and to eliminate the side effect of discrete search-space,
which applied the k-centers method to avoid being trapped into the local optimum. This combinational
algorithm had a good performance in the reservation of swarm diversity [26]. In the work by Feng
et al., the large-scale search space was first divided into subspace by the adaptive fuzzy C-mean
algorithm. Thereafter, transform-based PSO and simulated annealing methods were used together for
finding the locally optimal solution. The complete route was finally rebuilt by the max-min merging
algorithm [27]. Admirable results were also achieved by the trials of combining PSO with the genetic
algorithm and artificial fish swarm method, respectively [28,29].

2.3. Combinations of Greedy Algorithm with PSO

As mentioned above, on the one hand, the PSO has inherent limitations whereby the algorithm is
easyily trapped into the local optimum, and is not that effective at solving discrete problems. On the
other hand, the greedy algorithm has a relatively simpler principle, easier implementation, and higher
efficiency, though it is not guaranteed to produce a globally optimal solution. Therefore, based on
the idea of complementary advantages, it seems entirely feasible to combine the two algorithms for
various optimization problems.

Bajwa et al. developed a hybrid method for jobs scheduling on a single machine in a group
technology system, aiming at minimizing tardy jobs without preemption. The GRASP was adopted
to enhance search efficiency, and the resulting suitable solutions were further employed as particles
by the PSO algorithm to achieve local and global solutions. This hybrid heuristic was proved to be
effective for 63% of problem instances [30]. In order to solve vehicle routing problems with time
windows, Marinakis et al. presented a new variant of PSO based on three strategies: GRASP for
solution initialization, adaptive combinatorial neighborhood topology for particles movement, and
adaptive calculation of parameters. By comparing with other effective algorithms from the literature,
the proposed method was proved to be more flexible, faster, and more effective [31]. Furthermore,
an improved PSO was proposed by Pathak et al. for minimum zone form error evaluation. Greedy
selection procedure was used to guide the update of newly-generated solutions at each iteration. Results
validated the effectiveness of the new algorithm, especially in improving exploitation capability [32].
Another successful application of the greedy algorithm to the PSO method could be found in the work
by Ali-Askari et al., aiming at addressing a location-allocation problem for a capacitated bike sharing
system with demand uncertainties [33].

3. Algorithms

3.1. Particle Swarm Optimization

The conventional PSO scatters N particles randomly within an S-dimensional search space at the
beginning of evolutionary process. For the i-th particle, its position and velocity can be represented
by two vectors Xi = (xi1, xi2, ..., xiS)T and Vi = (vi1, vi2, ..., viS)T, respectively. The fitness function
is defined as 1/Di (Di stands for the route length), and the individual best-known position (Pis) and
swarm best-known position (Pgs) are updated during every iteration. At the same time, the velocity
and position of each particle are updated as [34,35].

vm+1
is = wvm

is + c1rm
1

(
Pm

is − xm
is

)
+ c2rm

2

(
Pm

gs − xm
is

)
, (1)

xm+1
is = xm

is + vm+1
is , (2)

where m stands for the current number of iteration and s is the s-th dimension, respectively. r1 and r2

are random numbers which are iteratively-updated and uniformly distributed between 0 and 1. c1 and
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c2 are the personal cognition coefficient and social cognition coefficient, and are usually suggested
with 2. w is the inertia weight. The pseudocode of conventional PSO is described in Algorithm 1.

It should be noted that PSO control parameters determine the balance degree between exploration
(searching a broader space) and exploitation (moving to the local optimum), which has a significant
impact on the algorithm performance. For instance, acceleration coefficients c1 and c2 play an important
role in balancing the effects of personal cognition and social cognition on guiding particles towards
target optimal solution. The stochastic characteristics of r1 and r2 can maintain population diversity
and avoid premature convergence to some degree. Nonetheless, the choice or dynamic adjudgment of
PSO parameters are not the focus of this work.

Algorithm 1: Conventional Particle Swarm Optimization for TSP
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3.2. Improved Particle Swarm Optimization

It is known that the conventional PSO generates an initial swarm of particles in a random way,
and that this results in some infeasible solutions and consequently restricts convergence speed and
search efficiency. Hence, it is expected to enhance the algorithm’s effectiveness by integrating two local
strategies, greedy mechanism and 2-opt operation, into the PSO. In our new algorithm, a greedy black
box is utilized for the stage of particle initialization and particle generation at each iteration. However,
since the greedy mechanism only considers current circumstances for local searches, it has inherent
shortcomings that path crossovers are easy to arise. Hence, it is subsequently necessary to adopt 2-opt
operation in order to enhance the probability of satisfactory combinations between locally optimal
fragments, and to eliminate path crossovers.

3.2.1. Greedy Black Box for Particles Initialization

A greedy black box is established based on the greedy mechanism. It has the function to build
a locally optimal solution once the departure city is determined. For the TSP with N cities, we can
discover C cities which are nearest to the i-th city through distance ranging. Thus, a matrix AN × C is
defined with the size of N × C. The element Aij represents the code of city which is the j-th nearest city
to the i-th city. The line A[i] is the code of C cities which are nearest to the i-th city.

In this work, the value of C is set as 3. By using burma14 from the library of sample instances
for traveling salesman problem (TSPLIB) as an example, the mechanism of the greedy black box can
be described as follows. If the salesman starts from the third city, the code of 14 is selected from line
A[3] as the next city to visit. Then from line A[14], the twelfth city is the nearest one and should be
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chosen as the next target city. The next target city is the sixth city as shown in line A[12]. By analogy,
the following cities would be selected one by one to form the travelling route. During this process,
repeatability inspection is conducted to guarantee that each city would be visited only once. Usually,
three columns could satisfy the requirement of generating a new solution. However, if repetition is
inevitable, the next target city would be selected randomly for a repeatability inspection until a closed
route is formed. Based on this principle, the initial travelling route could be represented by a string of
city code L= {3, 14, 12, 6, 7, 13, 8, 1, 11, 9, 10, 2, 5, 4}, and is illustrated in Figure 1.
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The matrix A14 × 3 is given as:

A14×3 =



8 11 9
1 8 11

14 4 12
12 3 14
6 12 7

12 7 14
13 12 6
1 11 9

11 1 8
9 11 1
9 8 1
6 14 7
7 8 12

12 3 6



(3)

On the one hand, the utilization of the greedy black box excludes a great number of infeasible
solutions resulted from the randomness of the traditional method, and creates an initial swarm of
particles with a relatively higher quality. On the other hand, the strategy of the greedy black box
makes the newly planned route consist of several locally optimal fragments, with advantages of short
distance, low order, and high adaptability. Hence, it seems feasible and reasonable to adopt the greedy
black box for the particles initialization.

3.2.2. Greedy Selection Strategy and 2-opt Operation for Local Search

Local search is used further to improve the quality of generated solutions. After the update of
particles’ velocity and position during an iteration, all the particles are scrambled and divided into sub



Sensors 2019, 19, 4620 7 of 22

groups of four. The “out of order” execution avoids repeating the later replacement of a same particle
as much as possible. Meanwhile, the operation of grouping helps establish a communication platform
within a subgroup or between arbitrary two subgroups. Then two particles with lower fitness values
in each sub group are chosen. Their first cities are utilized by the greedy black box to generate two
new particles. If the new generated particles have higher fitness values, they will replace the old ones;
otherwise, the replacement will not be conducted. This operation results in the survival of the fittest to
some degree and prevents the swarm of particles being generated entirely by the greedy black box,
and is also called greedy selection strategy. Furthermore, since the particle generation by greedy black
box only considers the locally optimal code, selection and non-repeatability, certain route crossovers
are likely to occur, for instance, a crossover around the sixth city, as shown in Figure 1. Therefore, 2-opt
operation is employed in each iteration in order to eliminate the path-crossing phenomenon. Our
expectation is to maintain solutions having locally optimal fragments, and to enhance the probability
of satisfactory combinations between these fragments.

The 2-opt operation was first proposed by Croes in 1958 [36]. Its mechanism is illustrated in
Figure 2. Two edges are randomly deleted, dividing the closed route into two parts. Then, ends of the
two parts are reconnected in the other appropriate way, creating a new solution route. In other words,
from the point of view of path encoding, two non-adjacent city nodes are selected randomly. The route
fragment between them will be integrally inversed and connected back to the original encoding string,
reproducing a new solution. This procedure will be repeated until the shortest route is found.
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Theoretically, on the one hand, the 2-opt operation ensures that the newly generated solution
would preserve the excellent fragment of encoding strings from the old one. On the other hand, the
greedy selection strategy guarantees the unidirectionality of optimizing the solution quality, namely,
that particles keep moving towards a higher-fitness level.

3.2.3. Procedures of Improved PSO

The pseudocode of improved PSO is shown in Algorithm 2. First, the greedy black box is built
to generate the initial swarm of particles which consists of several locally optimal solutions. During
each iteration, the fitness of each particle would be calculated to update the individual and best social
solutions. Then, the velocity and position of each particle are updated according to Equations (1) and
(2). Moreover, the greedy selection strategy is applied along with the 2-opt operation for the local
search. The algorithm will be terminated when the maximum number of iterations has been reached
or the adequately short route is found.
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Algorithm 2: Improved Particle Swarm Optimization for TSP
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The advantages of improved PSO are evident. First, the particles initialization by the greedy
black box overcomes the randomness of traditional methods, and excludes several infeasible solutions
at the beginning of optimization. Moreover, in order to keep the population diversity and maintain
the locally optimal fragments of relatively inferior particles, four steps are conducted: disordering
particles, dividing them into sub groups, sorting the fitness, and generating particles for the next
iteration by greedy selection strategy. In addition, the application of the 2-opt operation remedies the
defect that the greedy black box only focuses on the locally optimum, and enhances the probability of
satisfactory combinations between excellent fragments. The improved method is expected to enhance
the probability of obtaining the optimal solution and to improve the solution quality at the same time.

However, the improved algorithm has certain disadvantages from theoretical perspective. Once
the code of departing city is determined, the particle generated by the greedy black box is unique. It
is an inherent shortcoming since the greedy mechanism only focuses on locally optima, rather than
consider its decisions from a global respective. Furthermore, the maximum number of iterations could
not be decided exactly when more planned points are considered. In order to guarantee the successful
execution of 2-opt for completely eliminating path crossovers, we usually adopt an obviously excessive
number base on experience. Meanwhile, we obtained a preliminary relationship between the number
of planned points and the reference maximum number of iterations through early tests, as shown in
Figure 3.
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4. Results and Discussions

In this section, the computational results are presented in detail. First, a quantitative comparison
between the improved PSO and three existing algorithms is depicted in Section 4.1. Then, in Section 4.2,
the improved PSO is applied to design feasible paths for a self-developed unmanned surface vehicle
(USV) in real marine environments. Note that all algorithms are implemented in MATLAB® using a
i7-7700hq laptop (brand: ASUS, model: FX53VD) with 2.80 GHz and 8.0 GB RAM.

4.1. Comparison between Improved PSO with Existing Algorithms

Two other existing algorithms, the conventional genetic algorithm (CGA) and ant colony
optimization (ACO) algorithm, are selected to compare with conventional PSO (CPSO) and improved
PSO (IPSO) in this section. Eight instances from TSPLIB are used: eil51, rat99, kroa100, lin105, ch150,
kroa200, tsp225, and lin318. For the purpose of eliminating algorithm randomness in MATLAB®

operation environment, one hundred Monte-Carlo simulations are performed to obtain the data set
of the optimal route distance (D) for each instance and each algorithm. Furthermore, the control
parameters for each algorithm are shown in Table 1 to facilitate the replicability of this work. It is worth
highlighting that the maximum number of iterations (MAX) depends on the number of planned points.
It is determined through preliminary tests, pursuing the balance between complete convergence and
economical time consumption. Corresponding with the eight instances, the MAXs are 300, 400, 500,
600, 700, 800, 900, and 1000, respectively.
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Table 1. Parametrization of the conventional particle swam optimization (CPSO), conventional genetic
algorithm (CGA), ant colony optimization (ACO), and improved particle swam optimization (IPSO).

Algorithm Parameters Settings

CPSO

population size R 500
personal cognition coefficient c1 constant, 2

social cognition coefficient c2 constant, 2
inertia weight w constant, 0.9

CGA
population size R 500

crossover probability PC constant, 0.9
mutation probability PM constant, 0.1

ACO

population size R 30
information heuristic factor α constant, 1
expectation heuristic factor β constant, 5

pheromone evaporation ratio ρ constant, 0.2

IPSO

population size R 500
personal cognition coefficient c1 constant, 2

social cognition coefficient c2 constant, 2
inertia weight w constant, 0.9

Figure 4 presents the comparative results in the form of box-and-whisker plots. The legend refers
to the explanation by Spear [37]. In every plot, a blue range bar is drawn to represent the interquartile
range of the data set. It could reflect the degree of data dispersion, or the algorithm robustness to some
extent. Moreover, a red line and a plus symbol are drawn in the bar to identify the median and average
values of data set. There are also two whiskers extending on both sides of the bar, whose ends stand
for the best and worst values, respectively. Results of ACO and IPSO is enlarged at the top right due to
their minor difference. Furthermore, detailed information is provided in Table 2, including the known
optimal solution (KOS) form of, average value (AVG), standard deviation (SD), relatively percentage
error (RPE) and critical iteration number (Mcri). It should be noted that the SD is calculated to show
how far all the data points (Dk) depart from the average which is the quantification of algorithm
robustness. In addition, the RPE is defined to reflect the gap between the average solution with the
KOS from TSPLIB. The best values of the AVG among the four algorithms for the eight instances are
given in bold and highlighted in grey. The SD and RPE are defined as:

SD =

√
1

100

∑100

k=1
(Dk −AVG)2, (4)

RPE(%) =
(AVG−KOS)

KOS
× 100 (5)
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Table 2. Computational results of CPSO, CGA, ACO and IPSO.

Methed Problem Eil51 Rat99 Kroa100 Lin105 Ch150 Kroa200 Tsp225 Lin318

KOS 426 1211 21,282 14,379 6258 29,368 3916 42,029

CPSO

AVG 823.89 4153.66 85,243.19 60,624.7 30,769.4 195,276.5 25,161.71 381,854.1
SD 45.09 171.43 4241.85 2977.68 981.38 6794.39 678.94 8776.39

RPE (%) 93.40 242.99 300.54 321.62 391.68 564.93 542.54 808.55
Mcri 46 66 62 70 62 76 71 82

CGA

AVG 555.24 2442.2 48,702.81 34,357.11 18,775.58 120,657.6 16,473.08 266,979.7
SD 32.17 166.74 3442.36 2280.54 721.97 5189.39 643.00 8550.38

RPE (%) 30.33 101.66 128.84 138.93 200.02 310.84 320.66 535.22
Mcri 224 384 446 567 662 745 875 905

ACO

AVG 455.41 1339.64 23,166.06 15,253.3 6994.37 33,016.26 4300.29 48,473.74
SD 5.92 13.75 269.04 132.12 51.75 553.96 52.99 465.02

RPE (%) 6.91 10.62 8.85 6.08 10.17 12.42 9.81 15.33
Mcri 75 87 108 103 120 127 246 249

IPSO

AVG 443.68 1312.05 22,981.74 15,241.78 6836.46 31,976.55 4188.00 45,868.84
SD 5.85 26.27 587.36 318.33 37.43 598.57 53.31 520.49

RPE (%) 3.51 8.34 7.98 5.93 9.24 8.88 6.94 9.13
Mcri 46 100 113 112 135 179 263 285

* KOS is known optimal solution from TSPLIB; AVG is average route length; SD is standard deviation; RPE (%) is
relatively percentage error; Mcri is critical iteration number.

In general, the CPSO and the CGA obtain worse solutions with larger average values and larger
degrees of data dispersion for all the eight instances. There is a vast promotion room for their
effectiveness. By contrast, the ACO and the IPSO show similar and satisfactory performance especially
when more planned points are considered. By observing enlarged images, the IPSO could find a
shorter route despite a relatively worse robustness. For the instance of lin105, the CPSO gives an
exaggerated solution with the AVG of 60625 m and the SD of 2978 m. However, with the aid of the
greedy mechanism and 2-opt, the IPSO effectively reduces the AVG by 74.9%, and the SD by 89.3%. For
tsp225, the average optimal route distance of the ACO and IPSO are 4300 m and 4188 m, respectively.
The SD value of the IPSO is only 0.6% larger than that of the ACO. In addition, it is found that the
difference between the AVG of the IPSO and the KOS from TSPLIB is below 10% for all the instances.

Moreover, Figure 5 shows the evolution history of the optimal path distance (D) against iteration
(m) for each algorithm. Overall, the curve of each algorithm has similar development tendency. An
obvious decrease in D occurs with the increase of iterations until a critical iteration number (Mcri) after
which the solution achieves convergence. In this work, the criterion of Mcri is utilized to evaluate the
convergence speed or computing efficiency of each algorithm. It is found that the CPSO converges
rapidly and terminates at a smallest Mcri. Obviously, it results in being trapped into the local optimum
with the longest path distance. The CGA has incredibly slow convergence speed for all instances when
compared with the other three algorithms. This behavior helps to find a relatively better solution than
the CPSO. Meanwhile, the IPSO and ACO are neck to neck in convergence speed and optimal route
distance after convergence. For the instance of kroa100, 446 iterations are required for the CGA to
achieve the convergence, seven times more than that for the CPSO. As a result, the CGA could reduce
the average optimal route distance by about 42.9%. Moreover, the critical iteration numbers for the
IPSO and CPSO are 113 and 62, respectively. The 82% increase of Mcri makes the AVG value reduce
from 85243.19 to 22981.74 m. It seems necessary to slow down the convergence speed appropriately in
exchange for a high-quality solution.
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Since the CPSO and CGA would present chaotic routes for the eight TSPLIB instances, only the best
trajectories generated by the ACO and IPSO are shown in Figures 6 and 7, respectively. It can be visualized
that the routes of ACO have different levels of path-crossing phenomenon, especially when considering
more planned points. However, no path-crossing exists in the routes of the IPSO. It is the application of
the 2-opt operation and the greedy selection strategy that helps avoid the intersection of route effectively
and reduce the path complexity. This is also the reason why a longer path is obtained by the ACO than the
IPSO under the same condition. The results indicate that it is crucial to retard the progress of convergence
in order to improve the solution quality and to avoid being trapped into local optima.
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Figure 7. Best route for eight TSPLIB examples using the IPSO: (a) eil51; (b) rat99; (c) kroa100; (d)
lin105; (e) ch150; (f) kroa200; (g) tsp225; (h) lin318.
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4.2. Multi-Sensor-Based Application to USV Path Planning

The USV model is self-designed and constructed by Qingdao Municipal Engineering Laboratory
of Intelligent Yacht Manufacturing and Development Technology, Qingdao University of Science
and Technology (QUST). In the design stage, the USV is expected to be used in fields of military
development, scientific research, and environmental protection to execute tasks, such as autonomous
cruise, water quality sampling, water quality monitoring, and garbage collection. It is of crucial
importance to design the feasible and shortest trajectories covering all preset points for the purpose
of reducing costs and enhancing efficiency. Generally, path planning can be simplified into the TSP
if the prior environmental information is inaccessible and the collision-free restriction is not taken
in to account. Hence, in this section, the proposed IPSO is applied to the navigation, guidance and
control (NGC) system of a self-developed unmanned surface vehicle, designing feasible trajectories to
follow under real sea conditions. Note that the factors of wind, current, waves, and obstacles are not
considered in this preliminary work.

The USV model is 1.8 m long and 0.9 m wide, and consists of five underwater bodies. Figure 8 gives
a schematic diagram of the USV NGC system. It involves three module subsystems: the navigation
data processing subsystem, path planning subsystem, and autopilot subsystem. When the planned
points are chosen in a personal computer, the improved PSO algorithm is adopted in the path planning
subsystem, generating feasible trajectories for the USV to follow. The planned trajectories will be
transferred to the autopilot subsystem, together with navigation information of the direction of the bow
and the location data of the USV gathered by multi-sensors such as the electronic compass and GPS.
Then a closed-loop controller is adopted to determine the heading and speed of the vehicle until the
next target point is reached. More detailed information is provided in our previous published works.
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Figure 8. Navigation, guidance and control system of the self-developed unmanned surface
vehicle (USV).

The test site is located at the Qingdao Olympic Sailing Center in Fushan Bay. Due to the limited
space, three testing conditions with three numbers of planned points are considered: Q = 30, Q = 40,
and Q = 50. The location coordinates of all planned points refer to Tables A1–A3. The swarm size is set
as 500 and the maximum number of iterations is 300.

Optimal trajectories generated by the ACO and IPSO are presented by solid lines in Figure 9 with
detailed information listed in Table 3. Certain self-crossing phenomena occur in the planned paths of
the ACO for Q = 40 and 50, as marked in blue circles. Whereas, the IPSO generates feasible routes with
satisfactory lengths and no path-crossing. Since the number of planned points is not beyond 100, the
IPSO performs better than the ACO in both the critical iteration number and optimal path distance.
When the number is 30, the two algorithms provide the same route with the length of 1100 m. For Q =

40, the IPSO converges at Mcri = 33 with the optimal path distance of 1200 m, while the ACO terminates
at a larger iteration of 59 with a longer distance of 1214 m. By comparison, the route designed by the
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IPSO is delivered to the USV model to follow under real sea conditions. The actual paths for the three
sets of planned points are shown using the red dashed lines. It could be observed that the real path is
smoother than the planned path. The path between any two planned points deviates from the planned
trajectory to some degree due to the impact of wind, waves, and currents. However, the successful
application of heading correction to the autopilot subsystem would finally guide the USV model to
return to the planned points. The feather of this site-specific cruise would play an essential role in the
fields of ocean ranching and multi-point water quality monitoring and sampling in vast water.
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Figure 9. Comparison between USV trajectories planned by the ACO, IPSO algorithms, and the actual
path in real sea environment: (a) Q = 30; (b) Q = 40; (c) Q = 50.



Sensors 2019, 19, 4620 18 of 22

Table 3. Simulation results of ACO and IPSO for three numbers of planned points.

Q Algorithm mcri D (m)

30
ACO 47 1100.23
IPSO 27 1100.23

40
ACO 59 1214.34
IPSO 33 1200.35

50
ACO 78 1726.94
IPSO 58 1661.23

5. Conclusions

When the conventional particle swarm optimization algorithm is applied to solve the TSP or path
planning problem for a USV, the population is normally initialized in a random way, which would
generate a great number of infeasible solutions and restrict computing efficiency. Hence, this work
introduces the greedy mechanism and 2-opt operation inspired by a combination strategy. The purpose
is to optimize the conventional algorithm, enhance the probability of obtaining the optimal solution
and improve solution quality at the same time. Monte-Carlo simulations for eight TSPLIB instances
and application tests to a self-developed USV are conducted to verify the effectiveness and reliability
of the improved method. Results are concluded in the following.

1. Particle initialization by the greedy black box overcomes the randomness of conventional method
and excludes several infeasible solutions; this helps to enhance optimization efficiency.

2. The greedy selection strategy guarantees that particles would keep moving towards a higher
fitness level, and helps to maintain population diversity to some degree. Meanwhile, the 2-opt
operation is constructive to preserve excellent fragments of encoding strings from old solutions,
and remove path crossovers effectively.

3. Compared with conventional algorithms, the improved algorithm could enhance robustness
greatly and decrease the optimal route length drastically, although a fraction of computing speed
is sacrificed for solution quality.

4. The improved algorithm could be successfully applied to the path planning subsystem of the
USV model with the aid of multi-sensors. Although actual paths in real sea are not completely
consistent with planned paths due to the impact of wind, waves, and currents, the application of
heading correction to the autopilot subsystem would finally guide the USV model to return to
specified points.

It is noted that the introduction of 2-opt operation adds certain complexities to the algorithm. Hence,
more efforts would be made to further reduce the time consumption in the future.
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Nomenclature

Aij the code of city which is the j-th nearest city to the i-th city
A[i] the code of C cities which are nearest to the i-th city
C the column number of greedy black box matrix
c1, c2 acceleration coefficients
Dk optimal route length at k-th Monte-Carlo simulation
Di optimal route length of i-th particle
Mcri critical iteration number
m current number of iterations
N numbers of particles
PC crossover probability
Pgs global optimum position
PM mutation probability
Pis individual optimum position
Q the number of planned points
R population size
r1, r2 random number
s the s-th dimension
Vi velocity vector
vis individual velocity vector
w inertia weight
Xi position vector
xis individual position vector
α information heuristic factor
β expectation heuristic factor
ρ pheromone evaporation ratio

Abbreviation

ACO ant colony optimization
AVG average value of data set of optimal route length
CGA conventional genetic algorithm
CPSO conventional particle swam optimization
ESA elephant search algorithm
FA firefly algorithm
GA genetic algorithm
GPS global positioning system
GRASP greedy randomized adaptive search procedure
GWO grey wolf optimizer
IPSO improved particle swam optimization
KOS known optimal solution
MAX maximum number of iterations
NGC navigation, guidance and control
PSO particle swam optimization
QUST Qingdao University of Science and Technology
RPE relatively percentage error
SD standard deviation
TSP traveling salesman problem
TSPLIB a library of sample instances for traveling salesman problem
USV unmanned surface vehicle
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Appendix A

Table A1. Location coordinates of 30 planned points.

No. Longitude Latitude No. Longitude Latitude

1 E120◦25′32.80” N36◦3′21.32” 16 E120◦25′36.04” N36◦3′22.74”
2 E120◦25′33.48” N36◦3′22.21” 17 E120◦25′37.69” N36◦3′23.43”
3 E120◦25′32.47” N36◦3′22.85” 18 E120◦25′36.36” N36◦3′23.99”
4 E120◦25′33.12” N36◦3′23.43” 19 E120◦25′37.25” N36◦3′24.71”
5 E120◦25′32.76” N36◦3′24.22” 20 E120◦25′36.60” N36◦3′25.43”
6 E120◦25′33.97” N36◦3′24.99” 21 E120◦25′39.11” N36◦3′25.33”
7 E120◦25′35.17” N36◦3′25.28” 22 E120◦25′38.60” N36◦3′24.33”
8 E120◦25′35.17” N36◦3′24.47” 23 E120◦25′39.20” N36◦3′23.79”
9 E120◦25′34.20” N36◦3′24.15” 24 E120◦25′38.38” N36◦3′23.02”
10 E120◦25′34.95” N36◦3′23.50” 25 E120◦25′39.42” N36◦3′22.27”
11 E120◦25′34.26” N36◦3′22.86” 26 E120◦25′37.98” N36◦3′21.77”
12 E120◦25′35.32” N36◦3′22.18” 27 E120◦25′38.33” N36◦3′21.06”
13 E120◦25′34.47” N36◦3′21.02” 28 E120◦25′40.19” N36◦3′21.20”
14 E120◦25′36.45” N36◦3′21.37” 29 E120◦25′41.10” N36◦3′22.76”
15 E120◦25′37.24” N36◦3′22.21” 30 E120◦25′40.16” N36◦3′24.71”

Table A2. Location coordinates of 40 planned points.

No. Longitude Latitude No. Longitude Latitude

1 E120◦25′32.46” N36◦3′21.21” 21 E120◦25′36.96” N36◦3′25.37”
2 E120◦25′33.28” N36◦3′22.03” 22 E120◦25′37.64” N36◦3′25.00”
3 E120◦25′32.20” N36◦3′22.56” 23 E120◦25′37.21” N36◦3′24.09”
4 E120◦25′33.00” N36◦3′23.21” 24 E120◦25′37.77” N36◦3′23.58”
5 E120◦25′32.59” N36◦3′24.06” 25 E120◦25′36.94” N36◦3′23.26”
6 E120◦25′33.92” N36◦3′24.54” 26 E120◦25′37.98” N36◦3′22.61”
7 E120◦25′33.63” N36◦3′25.34” 27 E120◦25′36.90” N36◦3′22.28”
8 E120◦25′35.35” N36◦3′25.34” 28 E120◦25′37.52” N36◦3′21.64”
9 E120◦25′34.89” N36◦3′24.86” 29 E120◦25′37.11” N36◦3′21.12”
10 E120◦25′34.36” N36◦3′23.87” 30 E120◦25′39.14” N36◦3′21.34”
11 E120◦25′34.86” N36◦3′23.25” 31 E120◦25′38.63” N36◦3′22.01”
12 E120◦25′33.88” N36◦3′22.81” 32 E120◦25′39.31” N36◦3′22.95”
13 E120◦25′34.75” N36◦3′22.48” 33 E120◦25′38.74” N36◦3′23.20”
14 E120◦25′33.74” N36◦3′21.63” 34 E120◦25′39.40” N36◦3′23.84”
15 E120◦25′35.00” N36◦3′21.19” 35 E120◦25′38.51” N36◦3′24.30”
16 E120◦25′35.77” N36◦3′21.67” 36 E120◦25′39.09” N36◦3′25.28”
17 E120◦25′35.12” N36◦3′21.91” 37 E120◦25′39.92” N36◦3′24.98”
18 E120◦25′36.26” N36◦3′22.86” 38 E120◦25′40.59” N36◦3′24.47”
19 E120◦25′35.67” N36◦3′23.62” 39 E120◦25′39.94” N36◦3′24.30”
20 E120◦25′36.09” N36◦3′24.37” 40 E120◦25′40.52” N36◦3′21.94”
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Table A3. Location coordinates of 50 planned points.

No. Longitude Latitude No. Longitude Latitude

1 N120◦25′32.44” E36◦3′21.29” 26 N120◦25′37.14” E36◦3′22.87”
2 N120◦25′33.53” E36◦3′22.28” 27 N120◦25′38.11” E36◦3′23.59”
3 N120◦25′32.78” E36◦3′22.91” 28 N120◦25′39.25” E36◦3′23.00”
4 N120◦25′32.47” E36◦3′23.95” 29 N120◦25′40.71” E36◦3′23.61”
5 N120◦25′33.74” E36◦3′24.45” 30 N120◦25′41.26” E36◦3′23.04”
6 N120◦25′33.21” E36◦3′25.20” 31 N120◦25′42.22” E36◦3′23.70”
7 N120◦25′35.05” E36◦3′25.26” 32 N120◦25′43.11” E36◦3′22.92”
8 N120◦25′35.84” E36◦3′24.54” 33 N120◦25′42.36” E36◦3′22.15”
9 N120◦25′36.95” E36◦3′25.38” 34 N120◦25′41.84” E36◦3′22.73”
10 N120◦25′37.73” E36◦3′24.79” 35 N120◦25′40.58” E36◦3′22.31”
11 N120◦25′38.74” E36◦3′25.52” 36 N120◦25′38.67” E36◦3′22.64”
12 N120◦25′39.25” E36◦3′24.96” 37 N120◦25′37.98” E36◦3′22.19”
13 N120◦25′40.58” E36◦3′25.58” 38 N120◦25′36.18” E36◦3′22.45”
14 N120◦25′40.85” E36◦3′25.03” 39 N120◦25′34.44” E36◦3′21.87”
15 N120◦25′42.16” E36◦3′25.76” 40 N120◦25′35.23” E36◦3′21.33”
16 N120◦25′43.06” E36◦3′24.63” 41 N120◦25′36.30” E36◦3′21.72”
17 N120◦25′42.12” E36◦3′24.23” 42 N120◦25′37.36” E36◦3′21.31”
18 N120◦25′41.56” E36◦3′24.79” 43 N120◦25′38.73” E36◦3′21.84”
19 N120◦25′40.33” E36◦3′24.00” 44 N120◦25′39.41” E36◦3′21.01”
20 N120◦25′38.82” E36◦3′24.51” 45 N120◦25′40.18” E36◦3′21.79”
21 N120◦25′37.20” E36◦3′23.98” 46 N120◦25′40.91” E36◦3′21.22”
22 N120◦25′35.27” E36◦3′24.17” 47 N120◦25′41.59” E36◦3′21.93”
23 N120◦25′34.21” E36◦3′23.59” 48 N120◦25′41.84” E36◦3′20.73”
24 N120◦25′34.81” E36◦3′22.82” 49 N120◦25′42.61” E36◦3′21.72”
25 N120◦25′35.94” E36◦3′23.45” 50 N120◦25′43.44” E36◦3′20.98”
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