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Abstract: With the widespread nature of wireless internet and internet of things, data have bloomed
everywhere. Under the scenario of big data processing, privacy and security concerns become a very
important consideration. This work focused on an approach to tackle the privacy and security issue of
multimedia data/information in the internet of things domain. A solution based on Cryptographical
Digital Signal Processor (CDSP), a Digital Signal Processor (DSP) based platform combined with
dedicated instruction extension, has been proposed, to provide both programming flexibility and
performance. We have evaluated CDSP, and the results show that the algorithms implemented on
CDSP all have good performance. We have also taped out the platform designed for privacy and
security concerns of multimedia transferring system based on CDSP. Using TSMC 55 nm technology,
it could reach the speed of 360 MHz. Benefiting from its programmability, CDSP can be easily
expanded to support more algorithms in this domain.

Keywords: privacy and security; internet of things; very long instruction word (VLIW); DSP;
instruction set extension

1. Introduction

We have entered the era of Big Data. The widespread nature of internet of things and wireless
network, is making multimedia communication systems, such as on-line chatting, video conference
and surveillance systems, becoming more and more popular. Since the process of multimedia
communication systems involves data generation, storage, sending, receiving, sharing and so on,
various security issues should be concerned. Data encryption algorithms could be adopted in
multimedia communication systems to guarantee the security of data. Many kinds of data encryption
algorithms have been released. This provides people with more options to choose according to their
own needs. However, it also imposes a challenge for hardware design to have a large level of flexibility
to adapt to different kinds of data encryption algorithms with limited time.

In this work, we focused on solving the privacy and security issue of multimedia surveillance
system in internet of things domain, where high quality video and audio recorded by cameras needs
to be compacted, encrypted and transferred to the control center through network, and be replayed in
real-time on the monitors.

When evaluating the feature of the data stream of multimedia surveillance system, one finds that:

1. Data in the stream always contain private information, so encryption of the raw data is required
to protect the data stream from disclosure before transferring. Thus data encryption algorithms
need to be supported.
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2. Since surveillance audio and video can be used as legal evidence to justify the fact, it is necessary
to ensure the truth and reliability of the data stream. Hash functions and authentication could be
of use for this.

3. Sometimes it is required to verify whether the audio and video are from a specific user. Thus digital
signature should also be supported.

4. Requirement of real-time. Time delay from the scene to the control center should be less than
170 ms, which means that the work of video/audio encoding, encryption, decryption and
video/audio decoding should be finished in 170 ms. According to the practical application,
the peak throughput of the data stream should reach 150 Mbps.

Thus, the middleware platform of this kind of surveillance system should support a lot of
different kinds of data encryption algorithms. In this work, we present our middleware solution
based on CDSP, combining the programmability of DSP and the high efficiency of dedicated designed
special operations. Benefiting from the programmability of DSP, new kinds of algorithms can be easily
implemented, providing a high level of flexibility. Furthermore, the special operations designed
dedicated for some algorithms can significantly reduce the code size, and largely enhance the
performance. This is a new attempt in cryptographic DSPs, and the results show that our approach is
both feasible and efficient.

The remainder of this paper is organized as follows: Section 2 will introduce the proposed DSP
architecture. The design of dedicated special operations is discussed in Section 3. Related works are
presented in Section 4. Section 5 gives the result of the evaluation. Finally, we give a conclusion in
Section 6.

2. The Proposed CDSP Architecture

Our middleware solution is built based on a DSP called CDSP, which is designed as a 6-issue
VLIW DSP. It provides high instruction level parallelism, and can greatly improve the performance on
cryptographic algorithms execution. In this section we will introduce it in more detail.

2.1. Design of CDSP Core

CDSP core [1] is composed of four main parts: Memory, Instruction Fetch Unit (IFU), Instruction
Dispatch Unit (IDU), and Execution Unit (EU). The architecture of CDSP is shown in Figure 1.
CDSP adopts Harvard architecture and has separate Program Memory (PMEM) and Data Memory
(DMEM). PMEM is 24 KB SRAM, with a 256-bit width port. PMEM is used to store CDSP program,
and can be initialized using DMA. DMEM is 16 KB dual-port SRAM, and each port is 64-bit width.
DMEM is used to store data stream, and the data stream is transferred through AXI bus under the
control of DMA.

IFU reads instruction packets from PMEM. Each instruction packet is 256-bit width, containing
eight to 16 instructions.

IDU seeks available instructions in the package and hands them out to EU. At most, six instructions
can be dispatched each cycle.

EU is clustered, and the two clusters are named as X cluster and Y cluster. EU includes six function
units, which are named as XA, YA, XM, YM, XD and YD separately. XA, XM and XD belong to X
cluster. YA, YM and YD belong to Y cluster. XA and YA are arithmetic units, executing arithmetic
and logic instructions, such as ADD, SUB, AND, XOR, ASL and LSR. XM and YM are multiplication
units, executing multiplication instructions, and some arithmetic logic instructions. XD and YD
are load/store units, loading data from DMEM to register, or storing data from register to DMEM.
Some arithmetic logic instructions and branch instructions can also be executed in XD and YD units.
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Figure 1. CDSP architecture.

2.2. Design of Pipeline

CDSP includes 11 pipeline stages, as shown in Figure 2.
PCG (PC generation): This stage generates the next PC, which is chosen from the interrupt PC,

branch PC and PC + 4.
PCS (PC send): This stage passes the generated PC to the next stage.
PWT (PC wait): This stage checks whether the instruction is valid in the instruction cache or not.

If the instruction is invalid, instructions should be fetched from the PMEM.
IR (instruction return): We get the instructions in this stage.
EXP (instruction expansion): As the instructions are either 16-bit or 32-bit, we expand the

instructions to the same length in this stage.
IDP (instruction dispatch): Instruction dispatch is completed in this stage. Since the function unit

information is encoded in the instructions, we can get this information and dispatch the instructions to
the corresponding function units. This procedure can be interpreted as predecode and dispatch.

IDC (instruction decode): This stage decodes the instructions.
EX1∼EX4 (instruction execution): Instructions are executed in this stage. Different instructions

need 2∼4 stages to complete execution.
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Figure 2. Design of CDSP pipeline.

2.3. Design of Register Files

CDSP has three register files, which are also clustered. Register files are also shown in Figure 1.
X and Y cluster register files both contain 24 registers, which are named as X0∼X23 and Y0∼Y23
separately. There is a global register file G containing eight registers named as G0∼G7. All the registers
are 32-bit width. X unit instructions can use X cluster registers and G registers, and Y unit instructions
can use Y cluster registers and G registers. Two adjacent registers can be used as a register pair, forming
a bigger operand. For example, X1:X0 is a register pair and forms a 64-bit operand.

X and Y are two symmetrical clusters. Taking advantage of the symmetrical architecture, CDSP can
access 56 registers using only 5 bits of the instruction. Usually, 5 bits can only address 32 registers.
A large number of registers can help exploit Instruction Level Parallelism (ILP) and increase the
performance. Some algorithms can also take advantage of the symmetrical architecture to run
in parallel.

2.4. Design of General Instructions

CDSP is a RISC processor, and its Instruction Set consists of both general instructions and
dedicated designed special instructions. General instructions include arithmetic and logic instructions,
shift instructions, multiplication instructions, load instructions and branch instructions. Dedicated
instructions are designed for specific cryptographic algorithms in order to improve the performance.
General instructions will be described in this part.

Arithmetic instructions: Addition (ADD/ADC) and subtraction (SUB/SUBB). The operands could
be 32-bit signed or unsigned numbers, and the operation could be addition with carry or subtraction
with borrow.

Logic instructions: Bitwise AND, bitwise OR, bitwise XOR and bitwise Negate (NOT). Operands
can be immediate data or come from registers.

Move instructions: Move a data from one register to another (MOV).
Shift instructions: Arithmetic Shift Right (ASR), Logic Shift Right (LSR), Arithmetic Shift Left

(ASL), and Barrel Rotate Left (ROL).
Multiplication instructions: Multiplication (MUL) and Accumulation (ACC). Multiplication

instructions occupy two pipeline stages.
Pack instructions: Pack instructions switch the byte sequence in a 32-bit operand, or select some

bytes from two operands and build up a new word.
LOAD/STORE instructions: Load (LD) data from data memory to registers, or store (ST) data

from register to data memory. A RISC processor always uses powerful load-store instructions to finish
data transfer between registers and memory. CDSP LD instructions use base register and offset register
to calculate the memory address, and the base register can increase or decrease automatically.

Branch instructions: Branch to the target PC and flush the instructions in pipeline (B); Branch to
the target PC without flushing the instructions in pipeline (BD); Call subroutine (CALL); Return from
subroutine (RET).
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2.5. Design of Interfaces

The architecture of CDSP system is shown in Figure 3. There is an AXI-lite slave interface in CDSP,
which is used to control work flow, configure CDSP and check the status of CDSP. AXI is a widely
used bus standard, making CDSP easy to integrate.

An embedded Direct Memory Access (DMA) with an AXI master interface is designed in CDSP,
which is used to read and write data stream though AXI bus, with high bandwidth. The DMA can be
controlled either by CDSP or AXI-lite.

DMA

In
terface

PMEM

6-issue

VLIW CDSP

DMEM

AXI bus

AXI bus

Figure 3. Architecture of CDSP system.

3. Design of Dedicated Instructions

The CDSP platform we presented combines both the programmability of DSP and the high
efficiency of dedicated designed special instruction to: (1) provide flexibility for implementing of
different kinds of encryption algorithms, and (2) achieve high performance. Dedicated instruction
design for cryptographic algorithms is an important feature of CDSP, and is also an innovation in
cryptographic DSP design.

Many kinds of data encryption algorithms have already been implemented on our platform:

1. Block cipher algorithms [2–5], including DES, 3DES, AES and IDEA. We have designed dedicated
instruction for AES and DES, while IDEA is implemented using only general instructions.

2. Hash [6] functions and public key algorithms. The study of public key algorithms are mainly
focused on the ASIC approach in the literature. It is an innovation to realize these algorithms on
a DSP platform. These algorithms are implemented using general instructions.

In this section, the design of dedicated instructions for DES and AES algorithms will be introduced.

3.1. Design for DES Algorithm

3.1.1. Flow of DES Algorithm

DES encrypts 64-bit plain text, and generates a 64-bit cipher text, using a 64-bit key. DES algorithm
could be divided into three function units as shown in Figure 4. The first part is an Initial Permutation
(IP), which reorders the 64 bits of the plain text. The second part includes a Feistel (F) function and
an operation of adding round key, which is iterated 16 times. The last part is a Final Permutation (FP),
reordering the 64-bit intermediate data and outputting the final cipher text.

Figure 5 shows the process of DES round transformation. 64-bit intermediate text is divided into
2 parts, named as Li and Ri separately, both of which are 32-bit width. DES round transformation
mainly contains 4 steps, and The 4 steps are the Feistel function (F):

(1) Ri is transformed using a Expansion (E) permutation;
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(2) Result of step (1) xor with round key (Ki);
(3) Result of step (2) is substituted using lookup table S-box;
(4) Result of step (3) is rearranged with a new Permutation (P).
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Figure 4. Architecture of DES.
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Figure 5. Data Encryption Standard (DES) round transformation.
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3.1.2. Dedicated Instruction Design for DES

If only general instructions are used to implement the DES algorithm, then a large number of
instructions will be needed, considering the performing of the permutation, which would result in
large code size. And also the performance might be low.

Three dedicated instructions are designed for the implementation of DES algorithm:

1. DESIP: Deigned to implement the IP operation. The source operand is a 64-bit data from a register
pair, and the result is also 64-bit width and stored in a register pair.

2. DESFP: Deigned to implement the FP operation. Function of this instruction is the same as DSEIP.
3. DESRND: Designed to implement the DES round transformation. The source operand is a 64-bit

intermediate result and a 48-bit round key. The output is a 64-bit intermediate result for the
next round.

Table 1 shows the flow of DES algorithm with the help of dedicated designed special instructions.
DES encryption can be finished in 20 cycles. Similarly, 3DES can be finished in 57 cycles. Since CDSP
includes two clusters, two data blocks can be encrypted separately in X cluster and Y cluster in parallel,
thus the performance will be doubled.

The comparison of code size is shown in Table 2. By the using of dedicated instructions, the code
size can be more compacted, and the execution time also reduced.

Table 1. Assembly code for DES Algorithm.

Cycle Instruction

1 XD, G3:G2 = LD.D (X0++)

2 XD, G3:G2 = LD.D (X0++)

3 XA, G1:G0 = DESIP (G1:G0)
XD, G3:G2 = LD.D (X0++)

4 XA, G1:G0 = DESRND (G1:G0, G3:G2)

5 XA, G1:G0 = DESRND (G1:G0, G3:G2)

... ... ...

20 XA, G1:G0 = DESFP (G1:G0)

Table 2. Code size comparison for DES (instruction number).

Algorithm Dedicated Inst. General Inst.

DES_encryption 56 ∼500

DES_decryption 57 ∼500

3DES_encryption 155 ∼500

3DES_decryption 158 ∼500

3.2. Design for AES Algorithm

3.2.1. Flow of AES Algorithm

AES encrypts 128-bit plain text, and generates a 128-bit cipher text, using a 128-bit key.
AES consists of 10 round transformations. The intermediate result between two rounds is a 16-byte
data called mid-state, which is usually arranged in a 4 × 4 matrix. AES round transformation is based
on this matrix. AES could be divided into four main operations as shown in Figure 6:

1. SubBytes: Each byte is used as an address to look up a SubBytes table and output a new byte,
substituting for the initial byte.
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2. ShiftRows: The last three rows of the matrix shift left cyclically for 1 byte, 2 bytes and 3 bytes
separately, as shown in Figure 6.

3. MixColumns: Combines 4 bytes in each column. It can be implemented by using a fix value
matrix to multiply the mid-state, as shown in Figure 7.

4. AddRoundKey: Round key is a 128-bit key expanded from the initial key. AddRoundKey
conducts bitwise XOR operation between mid-state and the round key.

ShiftRows can be moved to the front of SubBytes, and the sequence will become
ShiftRows→SubBytes→MixColumns→AddRoundKey.
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3.2.2. Dedicated Instruction Design for AES

Using general instructions only to implement SubBytes, ShiftRows and MixColumns operations
will result in low throughput and large code size. Dedicated instructions are designed to enhance the
performance of AES.

Three dedicated instructions are designed for the implementation of DES algorithm:

1. AESSHF: AESSHF conducts ShiftRows, as shown in Figure 6. Each column of the matrix is stored
in a register, and two registers make up a register pair, a register pair is used as an operand.
AESSHF finishes the ShiftRows function using two source operands. The output is two new
columns. AESSHF should run two times to finish the ShiftRows operation.

2. AESSUBMIX: AESSUBMIX conducts two operations, SubBytes and Mixcolumns, as shown in
Figure 7. The instruction occupies two pipeline stages. At the first stage, 4 bytes are replaced
according S-box table, and at the second stage, a fix-value matrix is multiplied by the S-box output,
generating the result. Source operand is one column of the mid-state and the result is a column of
the next mid-state.
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3. AESSUB: AESSUB conducts SubBytes operation, as shown in Figure 8. AESSUB instruction
outputs the S-box result and uses one pipeline stage. AESSUB instruction is used in the final
round, because the final round dose not includes the MixColumns [7] operation.
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Figure 8. AES dedicated instructions AESSUB and AESSUBMIX.

Table 3 shows the flow of AES algorithm with the help of dedicated designed special instructions.
One AES round can be finished in five clock cycles, shown as cycle 5 to 9. AES encryption can be
finished in 59 cycles.

As shown in Table 4, code size can be noticeably reduced by using dedicated instructions.

Table 3. Assembly code for AES Algorithm.

1 XD, X1:X0 = LD.D (G7)
YD, Y1:Y0 = LD.D (G7++[#2])

2 NOP

3 NOP

4

XA, G0 = XOR (G0, X0)
XM, G1 = XOR (G1, X1)
XA, G2 = XOR (G2, Y0)
XM, G3 = XOR (G3, Y1)

XA, G1:G0 = AESSHF (G1:G0, G3:G2)
5 YA, G3:G2 = AESSHF (G3:G2, G1:G0)

Loop XD, X1:X0 = LD.D (G7)
YD, Y1:Y0 = LD.D (G7++[#2])

6 XA, G0 = AESSUBMIX (G0)
YA, G1 = AESSUBMIX (G1)

7 XA, G2 = AESSUBMIX (G2)
YA, G3 = AESSUBMIX (G3)

8 XA, G0 = XOR (G0, X0)
XM, G1 = XOR (G1, X1)

9 YA, G2 = XOR (G2, Y0)
End YM, G3 = XOR (G3, Y1)
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Table 4. Code size comparison for AES (instruction number).

Algorithm Dedicated Inst. General Inst.

AES_encryption 65 ∼300

AES_decryption 63 ∼300

4. Related Works

There is not much research reported on the implementation of cryptographic algorithms on a DSP
platform combined with dedicated instruction extension, while some are similar to ours. We divide
them into two categories.

4.1. Cryptographic Algorithms on a DSP

T. Wollinger et al. [8] research how well-suited high-end DSPs are for the AES algorithms. Five AES
candidates: Mars, RC6, Rijndael, Serpent and Twofish are investigated and realized on a TMS320C6201
DSP. They optimize the C code to speed up the algorithm. They provide single-block and multi-block
processing to enable the data blocks to be executed in parallel; this method is limited to be used under
certain confidentiality modes.

TMS320C6201 DSP has 32 32-bit registers and eight independent functional units. The architecture
of TMS320C6201 DSP is also divided into two parts and each part includes four functional units and
16 registers.

They compare the result with Pentium-Pro processor, both working under 200 MHz. It shows that
the performance of TMS320C6201 is better than Pentium-Pro processor by about 32.3% on average.

K. Itoh et al. [9] also implement public-key cryptographic algorithms on TMS320C6201 DSP,
including Rivest-Shamir-Adleman (RSA) [10–12], DSA and ECDSA [13]. The performances of RSA1024,
DSA1024 and ECDSA160 achieve 11.7 ms, 14.5 ms and 3.97 ms respectively. The result is achieved
mainly be optimization of modular multiplication and elliptic doubling operations. D. Xu et al. [14]
realize AES algorithm on a configurable VLIW DSP called Jazz DSP. The computation units can be
configured by software. They implement AES on three configurations and the best performance
reaches 10.56 cycles/byte, in which case, eight VLIW slots are configured and two functions SubByte
and Mixcolomn are converted to the designer defined computation unit to improve the performance.

Y. S. Zhang et al. [15] have designed a low-cost and confidentiality-preserving data acquisition
framework for IoMT. They first used chaotic convolution and random subsampling to capture multiple
image signals, assembled these sampled images into a big master image, and then encrypted this
master image based on Arnold transform and single value diffusion. The encrypted image is delivered
to cloud servers for storage and decryption service.

4.2. Instruction Set Extension for Cryptographic Algorithms

Intel proposes Advanced Encryption Standard (AES) new instruction set in 2010 [16]. The new
instruction set includes six instructions designed for AES, of which four instructions realize AES
encryption and decryption, and the other two support AES key expansion. The new instruction set
makes AES simple to implement with small code size. The performance of AES with 128-bit key
achieves 4.44, 4.56 and 4.49 cycle/byte under ECB, CBC and CTR mode respectively. The result comes
from a processor based on Intel microarchitecture running at 2.67 GHz.

The IBM Power8 [17] processor also improves the performance on data encryption. It adds 11 new
instructions to improve the performance of cryptographic algorithms, including AES, Galois Counter
Mode (GCM) of operation for AES, SHA-2, and CRC. Vector and Scalar Unit (VSU) is also added to
enhance the performance. Under CBC mode, the throughput of AES128 reaches about 680,000 KB/s
with the processor running at 3.59 GHz.

Our implementation combines the features of these two approaches, which realizes cryptographic
algorithms on a DSP with an extended instruction set.
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5. Experimental Results

5.1. Experimental Framework

Function simulation of CDSP is achieved by Synopsis VCS and Verdi joint simulation, working
under Redhat system. FPGA verification is conducted on XC5VLX330T from Xilinx vertex 5 series.
Verification is based on Synopsis VMM (Verification Methodology Manual), using system Verilog.
Using VMM, we can generate random test cases or test cases with constraints.

C language is used to build a C-model for certain cryptographic algorithm. Furthermore, we use
C-model to generate the correct result, called the golden result.

The programs implementing different cryptographic algorithms are written in CDSP assembly
language. The assembler of CDSP is designed based on GNU Binutils binary tool set. We compiled the
assembly programs, sent the firmware, together with the test cases, to the DSP, and got the simulation
result. The result will be compared with the golden result, and whether the result is correct will
be reported.

5.2. Results

5.2.1. Results for Block Cipher Programs

Table 5 lists the performance of DES, 3DES, AES and IDEA in CDSP. The clock cycles and
throughput for one block encryption are given, when CDSP is running at 360 MHz. The 3rd column
gives the performance with no encryption mode. The following columns give the performance
in different confidentiality modes, including ECB, CBC, CFB, OFB and CTR, which are defined in
FIPS [18]. In CFB and OFB confidentiality modes, the block length is select as 64-bit for DES, 3DES,
and IDEA, and 128-bit for AES. The programs running in CDSP can be easily modified to support
more confidentiality modes.

Table 5. Block cipher performance (360 MHz).

No Mode ECB CBC CFB/OFB CTR

cycles 21 41 43 43 NA
DES throughput (Mbps) 1097 562.0 535.8 535.8 NA

cycles 53 73 75 75 NA
3DES throughput (Mbps) 434.7 315.6 307.2 307.2 NA

cycles 59 71 73 73 75
AES throughput (Mbps) 781.0 649.0 631.2 631.2 614.4

cycles 57 69 71 71 NA
IDEA throughput (Mbps) 404.2 333.9 324.5 324.5 NA

Performance comparison of AES128 with general purpose processors is shown in Table 6.
We compare the performance of our implementation with ARM7 and ARM9. The result shows that
CDSP has dramatic advantage over the two ARM processors. In comparison, the architecture of our
design provides higher level of parallelism and the dedicated instructions are useful to speed up CDSP.

We also compare the performance of CDSP with other approaches of ISA extension, as shown
in Table 7. Power8 processor adds 11 instruction to enhance the efficiency of AES. Intel processor
adopts the AES new instruction set. The result shows that our implementation is better than Power8
in the performance of CPU cycles per Byte. According to Ref. [17], the throughput of Power8 for
128 bit encryption is about 680,000 KB/s, and the processor run under 3.59 GHz. We calculate that
the performance of CPU cycles per Byte is 5.53. The result of Intel is based on Intel microarchitecture
codename Westmere running at 2.67 GHz [16]. Our implementation shows close performance with
Intel under CBC mode. Power8 and Intel processors are both ASIC. ASIC always has higher frequency
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than DSP. The parameter of CPU cycles per Byte is not affected by frequency and it provides a more fair
comparison. The difference in the design of instructions and hardware results in different performance.

Table 8 shows the performance comparison of AES128 between CDSP and other DSP approaches.
The result shows that CDSP has far better performance than Ref. [8,14]. DSPs always provide
high level of parallelism, but the dedicated instructions make our design outweigh other DSPs in
cryptographic algorithms.

Table 6. AES128 performance comparison with general purpose processors (Cycles/Byte).

Ref. [19] ARM7 104.69

Ref. [19] ARM9 86.5

Ours CDSP 4.56

Table 7. AES128 performance comparison with other ISA extension methods (Cycles/Byte).

ECB CBC CTR

Ref. [17] Power8 - 5.53 -

Ours CDSP 4.44 4.56 4.49

Ref. [16] Intel 1.28 4.15 1.38

Table 8. AES128 performance comparison with other DSP implementations (Cycles/Byte).

Ref. [8] TMS320C6201 14.25

Ref. [14] Jazz DSP 10.56

Ours CDSP 4.56

5.2.2. Results for Hash Function

Table 9 lists the performance of MD5 [20,21] and SHA-1 in CDSP. The second column lists the
clock cycles consumed in one data block compression, which is 512-bit width. The third column shows
the time consumed compressing one data block. The forth column gives the throughput when CDSP
is running under 360 MHz. Since CDSP owns 6 function units, the arithmetic and logic operations
in SHA-1 and MD5 can run in parallel. The VLIW architecture with 6-issue is good at exploiting
instruction level parallelism and achieving better performance. CDSP can also implement other Hash
functions through software development, such as SHA-256 and SHA-512.

Table 9. Hash function performance (360 MHz).

Cycles Time (ns) Throughput (Mbps)

MD5 325 902.8 567

SHA-1 316 877.8 583

5.2.3. Results for Public Key Algorithms

Table 10 lists RSA and Elliptic Curve Cryptography (ECC) [22,23] performance when CDSP is
running under 360 MHz. The first column shows the algorithms, including RSA using a 1024-bit
key and a 2048-bit key, with and without applying CRT, and ECC using a 192-bit key and a 256-bit
key. The second column lists the clock cycles used in Montgomery modular multiplication. The third
column shows the number of multiplication operations used in these algorithms. The forth and the
fifth columns list the clock cycles and total time consumed. The last column gives the number of
executions of the algorithm per second.
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Table 10. RSA and ECC performance.

Cycles (MUL) MUL Operation Cycles Time (ms) Tran./s

RSA1024 2840 1536 4,367,000 12.13 82.0

RSA1024(CRT) 815 1536 1,223,000 3.397 294.4

RSA2048 10,512 3072 32,313,800 89.76 11.1

RSA1024(CRT) 2840 3072 8,751,000 24.31 41.1

ECC192 163 1920M + 1536S 742,200 2.062 485.0

ECC256 301 2560M + 2048S 1,651,000 4.586 218.1

In the third column, the number of multiplication operations are evaluated based on the
assumption that half of the binary bits in a big number are 1, which is a worst case. Choice of
the key and window width can affect the result significantly. In this paper, the window width is 2,
and the performance can be raised by 8.7% on average compared with the performance when the
window width is 1.

Table 11 shows that CDSP has equal RSA performance with Ref. [9]. Since both designs are DSPs
and there are not dedicated instructions for RSA in our design, the result is understandable. In Ref. [9],
the DSP works under 200 MHz, while our design works under higher frequency of 360 MHz.

Table 11. RSA performance comparison with other DSP implementations (ms).

RSA1024 RSA2048

Ref. [9] TMS320C6201 11.7 84.6

Ours CDSP 12.13 89.76

In conclusion, CDSP shows satisfactory performance in cryptographic algorithms. Compared
with other DSPs, CDSP shows far better performance for algorithms with dedicated instructions
and close performance for algorithms without dedicated instructions. Compared with processor
with dedicated cryptographic instructions, CDSP shows better performance than Power8 and close
performance with Intel under CBC mode.

5.3. Silicon Implementation

We have implemented the multimedia surveillance system based on CDSP platform. The chip
of the surveillance system is taped out and mass-produced. Using TSMC 55 nm technology,
the synthesized frequency of CDSP achieves 360 MHz. The critical path is in the instruction dispatch
stage. The dedicated instruction extension does not reduce the working frequency. The area is
186,000 gates and 40 KB SRAM (16 KB DMEM and 24 KB PMEM). Area consumption caused by ISA
extension are 7862 gates, which is about 4% of the total area. The power consumption is 58 mW.
Figure 9 is the layout of multimedia surveillance chip. At the bottom are 2 DSP clusters, each DSP
cluster consisting of a CDSP. The chip can output at least 1080P or 4 channel D1 video format in
real-time. Figure 10 is the photo of the chip.
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Figure 9. Layout of the multimedia surveillance system.

Figure 10. Photo of the chip.

6. Conclusions

This paper proposes our approach and experiences for designing a platform based on CDSP,
a clustered VLIW DSP with ISA extension for cryptographic algorithms. CDSP is designed to target
the solving of privacy and security issues in multimedia surveillance system. CDSP has 11 pipeline
stages, making it achieve high frequency of 360 MHz. CDSP has six function units, and can run up to
six instructions in one cycle, largely enhancing the calculation density. The architecture of CDSP is
advantageous in exploiting instruction level parallelism and achieving better performance.
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ISA of CDSP consists of both general instructions and dedicated instructions. In this work,
we presented our experience for design dedicated instructions for DES and AES algorithms.
The result shows that those dedicated designed instructions can significantly improve the performance,
and reduce software code size. Since cryptographic algorithms usually consist of special complex
computation-intensive operations, making software solution yield poor throughput, according to our
results, adding dedicated instructions is a good choice to improve performance, and is more convenient
compared with the co-processor scheme.

Many common cryptographic algorithms are already implemented in CDSP, including block
cipher algorithms, hash functions and public key cryptographic algorithms. Using our approach,
new data encryption algorithms could be easily implemented on CDSP platform, making CDSP
a practical solution for building, establishing a complete network security system.
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