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Abstract: Remote sensing images are subject to different types of degradations. The visual quality of
such images is important because their visual inspection and analysis are still widely used in practice.
To characterize the visual quality of remote sensing images, the use of specialized visual quality
metrics is desired. Although the attempts to create such metrics are limited, there is a great number
of visual quality metrics designed for other applications. Our idea is that some of these metrics can
be employed in remote sensing under the condition that those metrics have been designed for the
same distortion types. Thus, image databases that contain images with types of distortions that are of
interest should be looked for. It has been checked what known visual quality metrics perform well
for images with such degradations and an opportunity to design neural network-based combined
metrics with improved performance has been studied. It is shown that for such combined metrics,
their Spearman correlation coefficient with mean opinion score exceeds 0.97 for subsets of images in
the Tampere Image Database (TID2013). Since different types of elementary metric pre-processing
and neural network design have been considered, it has been demonstrated that it is enough to have
two hidden layers and about twenty inputs. Examples of using known and designed visual quality
metrics in remote sensing are presented.

Keywords: image quality assessment; visual quality metrics; neural networks; combined metrics

1. Introduction

Currently, there are a great number of applications of remote sensing (RS) [1,2]. There are
many reasons behind this [3,4]. Firstly, modern RS sensors are able to provide data (images) from
which useful information can be retrieved for large territories with appropriate accuracy (reliability).
Secondly, there exist systems capable of carrying out frequent observations (monitoring) of given
terrains that, in turn, allow the analysis of changes or development of certain processes [5,6]. Due to
the modern tendency to acquire multichannel images (a set of images with different wavelengths
and/or polarizations [7–10]) and their pre-processing (that might include co-registration, geometric
and radiometric correction, calibration, etc. [1]), RS data can be well prepared for further analysis
and processing.

However, this does not mean that the quality of RS images is perfect. There are numerous factors
that influence RS image quality (in wide sense) and prevent the solving of various tasks of RS data
processing. For example, a part of a sensed terrain can be closed by clouds and this sufficiently decreases
the quality (usefulness) of such optical or infrared images [11]. This type of quality degradation
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may be very troublesome not only because of necessary cloud cover detection and removal [12,13],
but due to its specificity, since in natural RGB images captured by cameras, clouds are typically not
considered as a distortion. Hence, there are no such kinds of distortion in any dataset that may be
used for the verification of image quality metrics with the use of subjective scores, as it is done in this
paper. Unfortunately, the lack of such appropriate datasets significantly limits the studies related to
the evaluation of cloud cover in terms of image quality assessment.

Noiseofdifferentoriginandtypeis, probably, oneofdegradingfactorsmet themostoften[8–11]. Different
types of smearing and blur can be frequently encountered as well [11,14,15]. Lossy compression,
often used in remote sensing data transferring and storage [16–19], can also lead to noticeable
degradations. Image pre-filtering or interpolation can result in residual and/or newly introduced
degradations [8,10,20]. The presence of multiple degradations is possible as well, like blurred noisy
images or noisy images compressed in a lossy manner [21,22].

Therefore, in practice, different situations are possible:

• an image seems to be perfect, i.e., no degradations can be visually detected (sharpness is satisfactory,
no noise is visible, no other degradations are observed);

• an image is multichannel and there are component images of very high quality and component
images of quite low quality [9,23]; for RS data with a large number of components, i.e., hyperspectral
images, this can be detected by component-wise visualization and analysis of images;

• an acquired image is originally degraded in some way, e.g., due to the principle of imaging system
operation; good examples are synthetic aperture radar (SAR) images, for which a speckle noise is
always present [8,24].

This means that the quality of original (acquired) images should be characterized quantitatively
using some metrics. An efficiency of RS image pre-processing (e.g., denoising or lossy compression)
should be characterized as well. In this sense, there are several groups of metrics (criteria) that can
be used for this purpose. Firstly, there are practical situations when full-reference metrics can be
applied. This happens, for example, in lossy compression of data when a metric can be calculated
using original and compressed images [17–19]. Secondly, no-reference metrics can be used when
distortion-free data are not available [11,24]. Usually, some parameters of an image are estimated to
calculate a no-reference metric in that case. Note that there are quite successful attempts to predict
full-reference metrics without having reference images [25,26]. Finally, there are many metrics that
characterize image quality (or efficiency of image processing) from the viewpoint of quality of solving
the final tasks [27–29]. These can be, e.g., the area under the curve [30] or the probabilities of correct
classification [31].

It is obvious that many metrics are correlated. For example, RS image classification criteria depend
on the quality of the original data, although the efficiency of classification is also dependent on a used
set of features, an applied classifier and an used training method. In this paper, we concentrate on
metrics characterizing the quality of original images or images after pre-processing, such as denoising
or lossy compression, focusing on full-reference metrics and, in particular, visual quality metrics.

Conventional metrics, such as mean square error (MSE) or peak signal-to-noise ratio (PSNR), are still
widely used in the analysis of RS images or evaluation of the efficiency of their processing [29,32–34].
Meanwhile, there is an obvious tendency to apply visual quality metrics [33,35–40]. There are several
papers utilizing the Structural SIMilarity (SSIM) [41], which is probably the oldest—except for the
Universal Image Quality Index (UQI) [42], being its direct predecessor—visual quality metric [33,35,36];
some other visual quality metrics have been designed and tested recently [37–40] for particular
applications, such as image pan-sharpening, fusion, and object detection. However, the number of
papers where visual quality metrics are employed is still limited [33–40,43–45].

Nevertheless, there are several reasons to apply visual quality metrics. It is known that the human
vision system (HVS) pays primary attention to image sharpness [46–49], being highly correlated
with both HVS-based visual quality metrics and many tasks of image processing, such as denoising,
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lossy compression, edge detection, segmentation, and classification. So, it is obviously reasonable
to know what known metrics can be applied, which are the best among them, and if the metric
performance can be further improved. Similar problems have already been partly solved in multimedia
applications where: (a) a lot of HVS-metrics have been proposed [46–49]; (b) methodologies of their
testing (verification) have been proposed [46–49] (c) databases for the metrics’ verification have
been created [46–52]; (d) preliminary conclusions have been drawn [46–50] that allow finding good
metrics for particular type(s) of distortions; (e) ways to improve metrics’ performance have been put
forward, including the design of combined metrics [53–57] or neural network (NN)-based metrics
(some examples are given in [58–60]).

However, this potential has not been exploited in RS imaging. In our opinion, there are several
reasons behind this. Firstly, there are no special databases of RS images that can be used to evaluate
the quality metrics. Secondly, different people (not professionals) participate in metric verification
for grayscale or color images since the opinions of any kind of customer are important and they are
processed in a robust manner [47–50]. Meanwhile, the situation is different for RS images as the number
of channels can be other than one or three and multichannel data may be visualized in a different
manner, and this can influence their perception. It is also difficult to find a lot of people trained to
analyze and classify RS images offering their opinions concerning image quality (carrying out image
ranking). These factors restrict research directed towards visual metric design and verification for
RS images.

Nevertheless, we believe that a preliminary analysis of metrics’ applicability for characterization
of RS image visual quality can be performed. For this purpose, it is possible to use existing databases
containing some images degraded by distortions typical for RS applications. Here, two aspects are
worth mentioning. Firstly, a database that has images with all or almost all types of distortions that
take place in remote sensing has to be chosen, hence the Tampere Image Database (TID2013) [50] is a
good option in this sense (see details in the next Section). Secondly, one can argue that the analysis
and perception of traditional color images and RS images are different things. We partly agree with
this statement, but it should be stressed that there is an obvious tendency towards convergence of
these types of images. For example, digital cameras are installed on modern unmanned aerial vehicles
(UAVs) with flight altitude of about 50 m. Hence, there is a question as to whether an acquired image
is still a photo or RS data. If there is almost no difference, an application of known quality metrics for
RS images seems to be worth investigating.

Taking this into account, TID2013 has been considered in more detail and the types of distortions
have been selected for further studies (Section 2). Then, Spearman rank order correlation coefficients
(SROCCs) are calculated for many known metrics and the best of them are determined (Section 3).
The ways to combine several elementary metrics into combined ones are introduced in Section 4,
and their design with the use of trained neural networks is discussed in Section 5. The obtained results
are analyzed, and preliminary conclusions are given in Section 6, followed by the examination of
computational efficiency (Section 7), whereas Section 8 contains additional verification results. Finally,
the conclusions are drawn.

2. TID2013 and Some of Its Useful Properties

Since the research community that mainly deals with remote sensing is usually less interested in
the latest results in multimedia and color imaging, some important tendencies in the latter area should
be briefly described. There are two slightly contradictory desires observed in research and design.
On the one hand, good (the best, the most appropriate) HVS-metrics are needed for each particular
application where the term “good” or “appropriate” includes a complex of properties, such as: (a) high
values of a correlation factor (e.g., SROCC) between a metric and mean opinion score (MOS) obtained
as the result of specialized perceptual experiments with volunteers, (b) simplicity and/or high speed of
the metric’s calculation, (c) the metric’s monotonous behavior (e.g., a better visual quality corresponds
to a larger metric value) and clear correspondence of visual quality to the metric’s value (e.g., it is
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often desired to establish what metric value corresponds to invisibility of distortions [61]). On the
other hand, there is a desire to create a universal metric capable of performing well for numerous and
various types of distortions. In this case, researchers try to get maximal SROCC values for universal
databases like TID2013.

In general, TID2013 was created to present a wide variety of distortion types, namely: Additive
Gaussian noise (#1), Additive noise in color components (#2), Spatially correlated noise (#3), Masked
noise (#4), High frequency noise (#5), Impulse noise (#6), Quantization noise (#7), Gaussian blur
(#8), Image denoising (#9), JPEG compression (#10), JPEG2000 compression (#11), JPEG transmission
errors (#12), JPEG2000 transmission errors (#13), Non eccentricity pattern noise (#14), Local block-wise
distortions of different intensity (#15), Mean shift (intensity shift) (#16), Contrast change (#17), Change
of color saturation (#18), Multiplicative Gaussian noise (#19), Comfort noise (#20), Lossy compression
of noisy images (#21), Image color quantization with dither (#22), Chromatic aberrations (#23), Sparse
sampling and reconstruction (#24). As can be seen, there are types of distortions that are atypical for
remote sensing applications (e.g., ##15, 18, 22, 23) whilst there are many types of distortions that are
more or less typical for multichannel imaging [62] (see brief discussion in Introduction).

There are 25 test color images in TID2013 and there are five levels of each type of distortion.
In other words, there are 25 reference images and 3000 distorted images (120 distorted images for
each test image). For each test image, 120 distorted images are partly compared between each other
in a tristimulus manner (a better-quality image is chosen among two distorted ones having the
corresponding reference image simultaneously presented on the screen). This has been done by many
observers (volunteers that have participated in experiments) and the results are jointly processed.
As the result, each distorted image has a mean opinion score that can potentially vary from 0 to 9, but,
in fact, varies from about 0.2 to about 7.2 (the larger the better).

Many visual quality metrics have been studied for TID2013. A traditional approach to analysis
or verification is to calculate a metric value for all distorted images and then to calculate the SROCC
or Kendall rank order correlation coefficient (KROCC) [63] between metric values and MOS. SROCC
values approaching unity (or −1) show that there is a strict (although possibly nonlinear) dependence
between a given metric and MOS and that such a metric can be considered a candidate for practical
use. A metric can be considered universal if it provides high SROCC for all considered types of
distortion. For example, both PSNR and SSIM provide a SROCC of about 0.63 for a full set of
distortion types (see data in Table 5 in [50]). These are, certainly, not the best results since some
modern elementary metrics produce a SROCC approaching 0.9 [50]. The term “elementary metric” is
further used to distinguish most metrics considered in [50] from the combined and NN-based metrics
proposed recently.

A slightly different situation takes place if SROCC is determined for a particular type of distortion
or the so-called subsets that include images with several types of distortion. There are several subsets
considered in [50] including, for example, the subset called “Color”. Considering the similarity
of distortions with those encountered in RS images, two subsets are of prime interest. The first
one, called “Noise”, includes images with the following types of distortions: Additive Gaussian
noise (#1), Additive noise in color components (#2), Spatially correlated noise (#3), Masked noise
(#4), High frequency noise (#5), Impulse noise (#6), Quantization noise (#7), Gaussian blur (#8),
Image denoising (#9), Multiplicative Gaussian noise (#19), Lossy compression of noisy images (#21).
The second subset, called “Actual”, includes images with distortions ##1, 3, 4, 5, 6, 8, 9, 10 (JPEG
compression), 11 (JPEG2000 compression), 19, and 21.

In practice, RS images can be degraded by additive Gaussian noise (it is a conventional noise
model for optical images [11]), by noise with different intensities in component images [9], and by
spatially correlated noise [64]. Due to image interpolation or deblurring, images corrupted by masked
or high-frequency noise can also be met [14]. A quantization noise may occur due to image calibration
(range changing). There are also numerous reasons why blur can be observed in RS images [11,14].
Image denoising is a typical stage of image pre-processing [9,10] where specific residual noise can be
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observed, whereas a multiplicative noise is typical for SAR images [7,8]. Distortions due to compression
take place in many practical cases. Certainly, JPEG and JPEG2000 considered in TID2013 are not the
only options [17–19] but they can be treated as representative of the Discrete Cosine Transform (DCT)
and wavelet-based compression techniques.

Hence, TID2013 images in general, and the subsets “Noise” and “Actual” in particular, provide
a good opportunity for preliminary (rough) analysis of the applicability of existing metrics to the
visual quality assessment of RS images. Nevertheless, among the known metrics, only some of them
are particularly suitable for color images. The other ones can be determined for grayscale images
and their mean value is usually calculated if this metric is applied component-wise to color images.
Nevertheless, both types are analyzed since they are of interest for our study.

3. Analysis of Elementary Metrics’ Performance for TID2013 Subsets

Currently, there is a great number of visual quality metrics. Some of them were designed 10 or even
20 years ago, some other ones were proposed recently. Some can be considered as the modifications
of PSNR (e.g., PSNR-HVS-M [65]) or SSIM (e.g., Multi-Scale Structural SIMilarity—MS-SSIM [66]).
Some other metrics have been designed based on the other principles. Some metrics are expressed in
dB and vary in wide limits, whereas the other ones vary in the range of 0 to 1. There are metrics for
which smaller values correspond to better quality (e.g., DCTune [67]) as well. However, a detailed
analysis of the principle of operation for all of the elementary metrics considered here is outside of
the scope of this paper, since what is most important of all is their performance for the subsets under
interest. To avoid the presentation of many mathematical formulas in a long appendix, similarly as in
the paper [68], a brief description of the metrics is summarized in Table 1.

The SROCC values for fifty elementary metrics are presented in Table 2 for all types of distortions
in descending order, as well as for the subsets “Noise”, “Actual”, and “Noise&Actual” that includes
images with all types of distortions present, at least, in one subset. As can be seen, there are a few
quite universal metrics, e.g., the Mean Deviation Similarity Index (MDSI) [69], Perceptual SIMilarity
(PSIM) [70], and Visual Saliency-Induced Index (VSI) [71], for which SROCC almost reaches 0.9.
As expected, the SROCC values for subsets are larger than for all types of distortions. The “champion”
for the subset “Noise” is MDSI (SROCC = 0.928), the best results for the subset “Actual” (SROCC = 0.939)
are provided by several metrics (MDSI, PSNRHA [72], PSNRHMAm [73]); for both subsets together,
the largest SROCC (equal to 0.937) is again provided by MDSI. Nevertheless, the performance of some
of the metrics applied for color images is dependent on the method of color to grayscale conversion.
However, the results presented in the paper for the NN-based metrics have been obtained assuming
the same type of RGB to YCbCr conversion for all individual metrics, using the first component Y as
the equivalent of the greyscale image. Such results can be considered appropriate for many practical
applications. Nevertheless, it is still interesting if SROCC values can be further improved.

4. Design of Combined Image Quality Metrics

The idea of combined (hybrid) metrics for general purpose IQA assumes that different metrics
utilize various kinds of image data and therefore different features and properties of images may be
used in parallel. Therefore, one may expect good results for a combination of metrics that come from
various “families” of metrics, complementing each other. This assumption has been initially motivated
by the construction of the SSIM formula [41] where three factors representing luminance, contrast
and structural distortions are multiplied. Probably the first approach to the combined full-reference
metrics [54] has been proposed as the nonlinear combination of three metrics: MS-SSIM [66], Visual
Information Fidelity (VIF) [74] and Singular Value Decomposition-based R-SVD [75], and verified for
TID2008 [76], leading to SROCC = 0.8715 for this dataset. Nevertheless, in this research, the optimization
goal has been chosen as the maximization of the Pearson’s linear correlation coefficient (PCC) without
the use of nonlinear fitting. The proposed combined metric is the product of three above mentioned
metrics raised to different powers with optimized exponents.
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Since the correlation of the R-SVD metric with subjective quality scores (MOS values) is relatively
low, similarly to MSVD [77] (see Table 2), better results may be obtained by replacing it with
Feature SIMilarity (FSIM) [78], leading to the Combined Image Similarity Metric (CISI) [55] with
SROCC = 0.8742 for TID2008, although again optimized towards the highest PCC. Nevertheless,
the highest SROCC obtained by optimizing the CISI weights for the whole TID2013 is equal to 0.8596.
Another modification [56], leading to SROCC = 0.9098 for TID2008, has been based on four metrics,
where FSIMc has been improved by the use of optimized weights for gradient magnitude and phase
congruency components with added RFSIM [79].

Table 1. Brief descriptions of the elementary metrics used in experiments.

Year Full-Reference Metric Description

- MSE Classical pixel-based mean square error

- PSNR Peak signal-to-noise ratio based on MSE expressed in dB

1993 WSNR [80] Classical SNR with weighting appropriate to the HVS

2000 NQM [81] Noise Quality Measure based on degradation model

2002 UQI [42] Universal Image Quality Index measuring the local
differences in mean, standard deviation and correlation

2004 SSIM [41] Structural Similarity being the improved version of UQI

2003 MS-SSIM [66] Multi-scale version of SSIM

2005 IFC [82]
Information Fidelity Criterion utilizing the Natural Scene
Statistics (NSS) originating from statistical models in an
information-theoretic setting

2006 VIF [74]

Visual Information Fidelity metric based on the
measurement of the mutual information between the
subbands of the wavelet transform for reference and
distorted images

2006 VIFP [74] Pixel-domain version of VIF with lower computational cost

2006 QILV [83] Quality Index based on Local Variance (SSIM-inspired)

2006 MSVD [77] Metric based on the Singular Value Decomposition of
Image Blocks

2006 PSNRHVS [84] PSNR that takes into account less sensitivity of HVS to
distortions in high spatial frequencies

2007 PSNRHVSM [65] PSNR that takes into account less sensitivity of HVS to
distortions in high spatial frequencies and masking effect

2007 VSNR [85] Visual SNR-based metric calculated in the wavelet domain

2009 CWSSIM [86] SSIM-based metric utilizing similarity of components in
complex wavelet domain (Complex Wavelet SSIM)

2010 RFSIM [79]
Riesz-transform based Feature SIMilarity (extension of SSIM)
with feature mask defined as the edge regions of the image
considered as key locations

2011 FSIM [78] Feature Similarity metric based on phase congruency and
gradient magnitude measured similarly as in the SSIM

2011 FSIMc [78] Color version of FSIM with additional use of YIQ
chrominance components

2011 IWSSIM [87] SSIM-based metric utilizing the information
content weighting
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Table 1. Cont.

Year Full-Reference Metric Description

2011 PSNRHAy [72] Modification of PSNRHVS that takes into account contrast
change and mean shift of gray scale image

2011 PSNRHMAy [72] Modification of PSNRHVSM that takes into account contrast
change and mean shift of gray scale image

2011 PSNRHA [72] Modification of PSNRHVS that takes into account contrast
change and mean shift of color image

2011 PSNRHMA [72] Modification of PSNRHVSM that takes into account contrast
change and mean shift of color image

2011 ADM [88] Metric incorporating detail losses and additive impairments
with HVS processing

2012 GSM [89] SSIM-based metric utilizing the similarity of gradient images

2012 SR-SIM [90] Spectral Residual SIMilarity metric using a specific visual
saliency map closely related to perceived quality

2013 ESSIM [91] Metric based of the similarity of edge strength

2013 SFF [92]
Sparse Feature Fidelity metric utilizing Independent
Component Analysis (ICA) for training the features detector,
using visual attention and visual threshold

2013 WASH [93] Wavelet-based SHarp features metric utilizing the high
sensitivity of HVS to sharpness and zero-crossings

2013 IGM [94]
Metric utilizing the Internal Generative Mechanism
decomposing the image into predicted visual content and
the disorderly portion with the residual content

2014 VSI [71] Visual Saliency-Induced Index using the weighting function
to reflect the importance of a local region

2014 GMSD [95] Gradient Magnitude Similarity Deviation based on global
variation of gradient-based local quality map

2014 IQM2 [96] SSIM-inspired metric utilizing pyramid wavelet transform

2015 DSS [97] DCT Subband Similarity metric measuring and weighting
changes in structural information in subbands

2016 MCSD [98] Multiscale Contrast Similarity Deviation with a resorting of
the contrast features to multiscale representation

2016 ADD_SSIM [99] Analysis of Distortion Distribution affected by image content
and distortion used for pooling with SSIM

2016 ADD_GSIM [99] Analysis of Distortion Distribution affected by image content
and distortion used for pooling with GSIM

2016 UNIQUE [100]
Unsupervised Image Quality Estimation utilizing color
space transformation, mean subtraction, whitening and
linear decoder to obtain sparse representations

2017 MS-UNIQUE [101] Multi-model and Sharpness-weighted Unsupervised Image
Quality Estimation (extension of UNIQUE metric)

2017 PSNRHMAm [73] Modification of PSNRHMA that includes updated
HVS-model and masking effect

2017 PSIM [70] Perceptual SIMilarity based on fusion of micro- and
macro-structures and color information similarity

2018 HaarPSI [102] Haar Wavelet-based Perceptual Similarity Index

2018 RVSIM [103]
Riesz transform and Visual contrast sensitivity-based feature
SIMilarity index utilizing Log-Gabor filter and monogenic
signal similarity matrix
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Table 1. Cont.

Year Full-Reference Metric Description

2018 CVSSI [104]
Contrast and Visual Saliency Similarity-Induced Index using
local contrast quality map and the global vs. quality map
with their weighted standard deviation

2018 SSIM4 [105] Modification of SSIM that incorporates HVS ability to
reconstruct image fragments from non-local similarity

2018 CSSIM [105] Modification of SSIM for color images

2018 CSSIM4 [105]
Modification of SSIM for color images that incorporates HVS
ability to reconstruct image fragments from
non-local similarity

2018 DSI [106]
DisSimilarity Index for low contrast and noise-like textured
images considering the masking effect of non-predictable
energy of image regions

Table 2. Spearman rank order correlation coefficient (SROCC) values for all distortion types and three
subsets of the Tampere Image Database (TID2013).

Full-Reference Metric All Distortions Noise Actual Noise & Actual

1 VSI [71] 0.8967 0.9101 0.9258 0.9218
2 PSIM [70] 0.8926 0.9189 0.9309 0.9303
3 MDSI [69] 0.8897 0.9275 0.9387 0.9374
4 HaarPSI [102] 0.8730 0.9063 0.9168 0.9190
5 MS-UNIQUE [101] 0.8708 0.8812 0.8977 0.8981
6 UNIQUE [100] 0.8600 0.8607 0.8813 0.8799
7 PSNRHMAm [73] 0.8541 0.9221 0.9387 0.9315
8 SFF [92] 0.8518 0.8787 0.9059 0.8946
9 FSIMc [78] 0.8510 0.9022 0.9150 0.9164

10 CSSIM [105] 0.8417 0.8728 0.8878 0.8892
11 ADD_GSIM [99] 0.8310 0.9023 0.9151 0.9159
12 PSNRHA [72] 0.8198 0.9230 0.9388 0.9322
13 PSNRHMA [72] 0.8137 0.9151 0.9343 0.9250
14 ESSIM [91] 0.8121 0.8411 0.8866 0.8619
15 CVSSI [104] 0.8090 0.9248 0.9350 0.9341
16 SR-SIM [90] 0.8076 0.9070 0.9211 0.9206
17 MCSD [98] 0.8045 0.9224 0.9326 0.9323
18 GSM [89] 0.8028 0.8408 0.8841 0.8583
19 IGM [94] 0.8023 0.9099 0.9220 0.9227
20 ADD_SSIM [99] 0.8023 0.9008 0.9119 0.9120
21 FSIM [78] 0.8011 0.8969 0.9108 0.9117
22 GMSD [95] 0.8004 0.9211 0.9314 0.9318
23 IQM2 [96] 0.7955 0.8995 0.9103 0.9122
24 DSS [97] 0.7915 0.8766 0.8904 0.8945
25 ADM [88] 0.7861 0.9113 0.9201 0.9189
26 PSNRHAy [72] 0.7794 0.9184 0.9272 0.9275
27 MS-SSIM [66] 0.7872 0.8733 0.8872 0.8881
28 IWSSIM [87] 0.7775 0.8783 0.8934 0.8937
29 RFSIM [79] 0.7721 0.8731 0.8793 0.8847
30 SSIM4 [105] 0.7657 0.8743 0.8887 0.8902
31 PSNRHMAy [72] 0.7570 0.9107 0.9209 0.9226
32 CSSIM4 [105] 0.7394 0.8432 0.8668 0.8604
33 DSI [106] 0.7114 0.7493 0.7801 0.7838
34 VIF [74] 0.6816 0.8422 0.8585 0.8532
35 VSNR [85] 0.6809 0.8691 0.8817 0.8815
36 RVSIM [103] 0.6748 0.8192 0.8449 0.8423
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Table 2. Cont.

Full-Reference Metric All Distortions Noise Actual Noise & Actual

37 PSNRHVS [84] 0.6536 0.9172 0.9257 0.9263
38 PSNR 0.6396 0.8217 0.8246 0.8335
39 MSE 0.6396 0.8217 0.8246 0.8335
40 SSIM [41] 0.6371 0.7574 0.7877 0.7812
41 NQM [81] 0.6349 0.8362 0.8572 0.8527
42 PSNRHVSM [65] 0.6246 0.9061 0.9175 0.9188
43 VIFP [74] 0.6084 0.7835 0.8151 0.8056
44 QILV [83] 0.5975 0.6604 0.6948 0.7049
45 WSNR [80] 0.5796 0.8804 0.8966 0.8952
46 CWSSIM [86] 0.5551 0.7943 0.8160 0.8051
47 UQI [42] 0.5444 0.6482 0.6904 0.6824
48 IFC [82] 0.5229 0.7201 0.7598 0.7468
49 WASH [93] 0.2903 0.3290 0.4173 0.3139
50 MSVD [77] 0.1261 0.1123 0.1309 0.1424

Another idea [57], utilizing the support vector regression approach to the optimization of PCC for
five databases with additional context classification for distortion types, has achieved SROCC = 0.9495
for seven combined metrics with SROCC = 0.9403 using four of them. Nevertheless, al these results
have been obtained for the less demanding TID2008 [76], being the earlier version of TID2013 [50],
containing only 1700 images (in comparison to 3000) with a smaller number of distortion types
and levels.

Recently, another approach to combined metrics, based on the use of the median and alpha-trimmed
mean of up to five initially linearized metrics, has been proposed [53]. The best results obtained
for TID2013 are SROCC = 0.8871 for the alpha-trimmed mean of five metrics: Information Fidelity
Criterion (IFC) [82], DCTune [67], FSIMc [78], Sparse Feature Fidelity (SFF) [92] and PSNRHMAm [73].
Slightly worse results (SROCC = 0.8847) have been obtained using the median of nearly the same
metrics (only replacing IFC [82] with a pixel-based version of Visual Information Fidelity—VIFP [74]).

5. Neural Network Design and Training for the Considered Subsets

In recent years, neural networks (NN) have demonstrated a very high potential in solving many
tasks related to image processing. Their use is often treated as a remedy to get benefits in design and
performance improvement. Hence, the peculiarities and possibilities of the NN use for our application
are briefly considered, i.e., in the design of new, more powerful full-reference metrics for images
with the aforementioned types of distortions. For this purpose, the requirements for such metrics are
recalled below.

A good NN-based metric should provide a reasonable advantage in performance compared to
elementary metrics. Since we deal with SROCC as one quantitative criterion of metric performance,
it should be considerably improved compared to the already reached values of 0.93 . . . 0.94. Since the
maximal value of SROCC is unity, its improvement by 0.02 . . . 0.03 can be considered as sufficient.
The other relevant aspects are input parameters and NN structure. Since a typical requirement for a
full-reference metric is to perform rather fast, input parameters should be calculated easily and quickly.
Certainly, their calculation can be done in parallel or accelerated somehow, but anyway none of the
input parameters should be too complex. The structure of a used NN should possibly be simple as
well. A smaller number of hidden layers and fewer neurons in them without a loss of performance are
desired. A smaller number of input parameters can also be advantageous.

A brief analysis of existing solutions shows the following:

1. Neural networks have already been used in the design of full-reference quality metrics (see,
e.g., [58,107–110]); the metric [107] employs feature extraction from reference and distorted images
and uses deep learning in convolution metrics design, providing SROCC = 0.94 for all types of
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distortions in TID2013; E. Prashnani et al. [108] have slightly improved the results of [107] due to
exploiting a new pairwise-learning framework; Seo et al. [109] reached SROCC = 0.961 using
deep learning;

2. There can be different structures of NNs (despite the popularity of convolutional networks,
standard multilayer ones can still be effective enough) and different sets of input parameters
(both certain features and elementary metrics can be used).

Keeping this in mind, our idea is to use a set of elementary quality metrics as inputs and apply
the NNs with a quite simple structure for solving our task—to get a combined metric (or several
combined metrics) with performance sufficiently better than for the best elementary metric. Then, a set
of particular tasks to be solved arises, namely:

• how many elementary metrics should be used?
• what elementary metrics should be employed?
• what structure of the NN should be chosen and how to optimize its parameters?
• are some pre-processing operations of input data needed?
• what should be the NN output and its properties?

Regarding the last question, since we plan to exploit TID2013 in our design, it should be recalled
that the quality of images in this database is characterized by mean opinion score (MOS). The main
properties of MOS in TID2013 are determined by the methodology of experiments carried out by
observers. Potentially, it was possible that MOS could be from 0 to 9, but, as the result of experiments,
MOS varies in the limits from 0.24 to 7.21 [53]. Moreover, the analysis of MOS and image quality [53]
has shown that four gradations of image quality are possible with respect to MOS:

1. Excellent quality (MOS > 6.05);
2. Good quality (5.25 < MOS ≤ 6.05);
3. Middle quality (3.94 < MOS ≤ 5.25);
4. Bad quality (MOS ≤ 3.94).

This “classification” is a little bit subjective, hence some explanations are needed. Images are
considered to have excellent quality if distortions in them cannot be visually noticed. For images with
good quality, MOS values have the ranks from 201 to 1000 and distortions can be noticed by careful
visual inspection. If MOS values have the ranks from 1001 to 2000, the image quality is classified
as middle (the distortions are visible, but they are not annoying). The quality of the other images is
conditionally classified as bad—the distortions are mostly annoying.

Figure 1 illustrates the examples of distorted images for the same reference image (#16 in TID2013)
that has neutral content and is of a medium complexity, being similar to RS images. As it has been
stated earlier, there is an obvious tendency to convergence of these types of images. The values of MOS
and three elementary metrics are presented for them as well. The image in Figure 1a corresponds to
the first group (excellent quality) and it is really difficult to detect distortions. The image in Figure 1b
belongs to the second group and distortions are visible, especially in homogeneous image regions.
The image in Figure 1c is a good representative of the third group of images for which distortions are
obvious but they are not annoying yet. Finally, the image in Figure 1d is an example of a bad quality
image. The presented values of metrics show how they correspond to quality degradation and can
characterize the distortion level. As may be noticed, not all presented metrics reflect the subjective
quality perfectly, e.g., there is a higher PSNR value for the bad quality image (Figure 1d) than for the
middle quality image. Similarly, PSNRHA and MDSI metrics do not correspond to their MOS values
for almost unnoticeable distortions, i.e., excellent and good quality.
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Figure 1. Examples of the test image with different quality: (a) excellent (distortion type
#2—additive noise in color components)—mean opinion score (MOS) = 6.15, peak signal-to-noise
ratio (PSNR) = 40.773 dB, PSNRHA = 36.935 dB, Mean Deviation Similarity Index (MDSI) = 0.19;
(b) good (distortion type #5—high frequency noise)—MOS = 5.6154, PSNR = 34.799 dB, PSNRHA
= 39.5 dB, MDSI = 0.1892; (c) middle (distortion type #6—impulse noise)—MOS = 3.9737,
PSNR = 27.887 dB, PSNRHA = 29.208 dB, MDSI = 0.3413; (d) bad (distortion type #3—spatially
correlated noise)—MOS = 3.2368, PSNR = 28.842 dB, PSNRHA = 26.1 dB, MDSI = 0.3887.

Taking this into account, it has been decided that the NN output should be in the same limits as
the MOS. This means that error minimization with respect to MOS can be used as the target function in
the NN training. If needed, MOS (NN output) can be easily recalculated to another scale like, e.g.,
from 0 to 1.

The penultimate question concerns input pre-processing. It is known that it is often recommended
in the NN theory to carry out some preliminary normalization of input data (features) if they have
different ranges of variation [61]. This is true for elementary metrics, as for example, PSNR and
PSNR-HVS-M, both expressed in dB, can vary in wide limits (even from 10 dB to 60 dB) but, for distorted
images in TID2013, they vary in narrower limits. PSNR used for setting five levels of distortions,
has five values approximately reached (21, 24, 27, 30, and 33 dB) although, in fact, the values of this
metric for images in TID2013 vary from about 13 dB to ≈41 dB. Consecutively, PSNR-HVS-M varies
from 14 dB to 59 dB, which mainly corresponds to “operation limits” starting from very annoying
distortions to practically perfect quality (invisible distortions). The MDSI varies from 0.1 to 0.55 for
images in TID2013 where the larger values correspond to lower visual quality. Some other metrics
like SSIM, MS-SSIM, and FSIM vary in the limits from 0 to 1, where the latter limit corresponds
to perfect quality. In fact, most values of these metrics are concentrated in the upper third part of
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this interval (see the scatter plot in Figure 2 for the color version of the metric FSIM, referred to as
FSIMc). An obvious general tendency of the increase in FSIMc when MOS becomes larger is observed.
Meanwhile, two important phenomena may also be noticed. Firstly, there is a certain diversity of the
metric’s values for the same MOS. Secondly, the dependence of FSIMc on MOS (or MOS on FSIMc)
is nonlinear.
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Figure 2. The scatter plot of color version of Feature SIMilarity (FSIMc) vs. MOS (blue circles correspond
to images for which distortions have not been detected).

In this sense, linearization (fitting) is often used to get not only the high values of SROCC but
the conventional (Pearson) correlation factor (coefficient) as well [69]. Then, two hypotheses are
possible. The first one is that the NN, being nonlinear and able to adapt to peculiarities of input data,
will “manage” this nonlinearity of input–output dependence “by itself” (denote this hypothesis as
H1). The second hypothesis (H2) is that elementary metric pre-processing in the form of fitting can be
beneficial for further improvement of combined metric performance (optimization).

Concerning fitting needed for realization of H2, there are several commonly accepted options.
One of them is to apply the Power Fitting Function (PFF) y(x) = a · xb + c, where a, b, and c are the
adjustable parameters. The fitting results can be characterized by the root mean square error (RMSE)
of the scatter plot points after fitting with respect to the fitted curve (the smaller RMSE, the better).
The results obtained for the elementary metrics considered above (in Table 2) are given in the left
part of Table 3. As one can see, the best fitting result (the smallest RMSE) is obtained for the metric
MDSI (it equals to 0.3945). The results for the metrics that are among the best according to SROCC,
e.g., Contrast and Visual Saliency Similarity Induced index (CVSSI), Multiscale Contrast Similarity
Deviation (MCSD), PSNRHA, Gradient Magnitude Similarity Deviation (GMSD), see data in Table 2,
are almost equally good, too.

Another fitting model that can be applied is, e.g., Poly2 y(x) = p1 · x2 + p2 · x + p3, where p1, p2,
and p3 are parameters to be adjusted to produce the best fit. The results are very similar. For example,
for MDSI, the minimal RMSE equal to 0.3951 is observed. For PSNRHA, RMSE = 0.4013 is achieved,
i.e., slightly better than using the PFF. The detailed data obtained for Poly2 fit are presented in the
right part of Table 3. For clarity, the better of the two RMSE results are marked by the bold format in
Table 3. Then, three options are possible in combined NN design: 1) to use the PFF for all elementary
metrics; 2) to apply Poly2 for all elementary metrics; 3) to choose the best fitting for each elementary
metric and to apply it.

Earlier in [53], different possible monotonous functions including linear fitting have been
considered for combining elementary metrics. As practice has shown, they produce worse results with
higher RMSE in comparison to PFF and Poly2.

The next considered issue is what structures and parameters of NNs can be chosen and optimized.
As it has been noted above, we concentrate on conventional structures. We prefer to apply the
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multilayer NN instead of a deep learning approach because in this way many design aspects are clear.
It prevents the overtraining problems and allows for a good generalization. In particular, the number
of neurons in the input layer can be equal to the number of elementary metrics used. In addition, this
solution can be easily adopted by using TID2013, avoiding the need for a large training set of data.

Concerning this number, different options are possible, including the use of all 50 considered
elementary metrics. It is also possible to restrict to the best metrics from Table 2 and employ elementary
metrics that have certain properties, for example, metrics that have SROCC > 0.9 for the considered
types of distortions (there are 22 such metrics), SROCC > 0.92 (14 metrics), or SROCC > 0.93 (7 metrics).

Nevertheless, the theory of NNs states that it is reasonable to apply such input parameters that
can “add” or “complement” information to each other, i.e., are not highly correlated. One possible
approach is the evaluation of cross-correlation function to determine the similarity between all pairs of
metrics and after that to exclude the worst in highly correlated pairs.

Instead of that, in this paper, a very useful approach called Lasso regularization [111] (Lasso is an
abbreviation for Least Absolute Shrinkage and Selection Operator) has been applied for the selection
of the most unique metrics for NNs. In machine learning, Lasso and Ridge regularizations are used to
introduce additional limitations to the model and decrease the problem of overfitting.

The key feature of Lasso is that this method may introduce zero weights for the “noisy” and
the least important data. For the task of metrics combination, it means that Lasso regularization can
determine the elementary metrics that are the least useful for combining and leave the other (“most
informative”) ones. This study adopts the implementation of Lasso available in MATLAB® so that, for
different thresholds, zero coefficients for metrics that can be excluded can be estimated. According to
that, the number of such non-zero values (NNZ) for each metric has been determined, assuming the
following conditions: (a) NNZ > 20 (out of 100 values); (b) NNZ > 30; (c) NNZ > 40; (d) NNZ > 50;
(e) NNZ > 60.

Table 3. Metric fitting results and parameters for the Power Fitting Function (PFF) and second order
polynomial (Poly2); better RMSE values are shown in bold format.

Metric
PFF – y(x) = a · xb + c Poly2 – y(x) = p1 · x2 + p2 · x + p3

RMSE a b c RMSE p1 p2 p3

PSNR 0.6830 −126.636 −0.0554 109.1416 0.6777 −0.00447 0.47070 −5.81476
MSE 0.6811 −2.4997 0.1690 9.3328 0.6822 0.00002 −0.01776 5.59889

WSNR [80] 0.5216 103.726 0.0372 −113.987 0.5155 −0.00221 0.28682 −2.91023
NQM [81] 0.6037 0.8643 0.5904 −1.3442 0.6004 −0.00189 0.23355 −0.18685
UQI [42] 0.8393 6.5341 0.4358 −0.8949 0.8411 −2.21482 6.68761 1.12020
SSIM [41] 0.7645 3.2558 4.5929 2.8783 0.7611 11.54027 −11.10435 5.57541

MS−SSIM [66] 0.5536 3.5705 12.6686 2.2151 0.5828 58.28322 −87.43399 34.73077
IFC [82] 0.7404 30.6531 0.0374 −27.7813 0.7679 −0.03235 0.66730 2.26364
VIF [74] 0.5600 4.9142 0.6852 1.1082 0.5623 −1.19541 5.56502 1.65296

VIFP [74] 0.6514 11.1695 0.2507 −4.6922 0.6450 −6.69260 11.72200 0.58570
MSVD [77] 1.2091 463.362 −1.7245 4.0580 1.2091 0.00010 −0.02582 5.67944
QILV [83] 0.8924 2.1258 12.8721 3.2304 0.9399 3.37891 −0.84093 2.48204
VSNR [85] 0.5505 −40.9961 −0.1030 33.6452 0.5445 −0.00271 0.27019 −0.85345

PSNRHVS [84] 0.4176 −54.0574 −0.4961 14.4993 0.4116 −0.00463 0.45391 −4.93928
PSNRHVSM [65] 0.4472 −78.8179 −0.7655 9.8824 0.4356 −0.00347 0.37023 −3.98164

CWSSIM [86] 0.7294 2.4648 1858.3573 3.0546 0.9874 4040.905 −7844.04 3807.931
RFSIM [79] 0.5086 4.9998 0.8521 1.0324 0.5085 −0.46671 5.20948 1.29949

PSNRHAy [72] 0.4114 −79.7808 −0.7054 11.7318 0.4085 −0.00524 0.49796 −5.72493
PSNRHMAy [72] 0.4332 −120.791 −0.9339 9.0571 0.4247 −0.00380 0.39867 −4.58245

PSNRHA [72] 0.4057 −271.292 −1.1468 9.8101 0.4013 −0.00726 0.66096 −8.98189
PSNRHMA [72] 0.4296 −437.562 −1.3364 8.5281 0.4186 −0.00590 0.57515 −8.11850

FSIM [78] 0.4813 3.6227 13.3796 2.1510 0.5021 86.92251 −139.2986 58.00009
FSIMc [78] 0.4699 3.7012 11.1900 2.1265 0.4821 71.85416 −112.4054 46.25250

IWSSIM [87] 0.5336 3.4602 11.7455 2.2851 0.5653 48.88158 −71.94606 28.60147
ADM [88] 0.5133 5.2079 1.0584 1.1913 0.5116 −0.17437 5.53250 0.98740
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Table 3. Cont.

Metric
PFF – y(x) = a · xb + c Poly2 – y(x) = p1 · x2 + p2 · x + p3

RMSE a b c RMSE p1 p2 p3

GSM [89] 0.6085 3.8941 62.8385 2.0375 0.6108 2510.109 −4831.844 2327.548
IGM [94] 0.4154 4.8469 4.6108 0.3577 0.4183 27.89277 −34.32709 11.64504

SR−SIM [90] 0.4485 3.6224 26.1269 2.1720 0.4774 303.1233 −541.8017 244.300
SFF [92] 0.5037 4.3154 17.0200 1.4609 0.5255 189.9484 −324.4132 140.106

GMSD [95] 0.4201 −10.7552 0.5948 6.2403 0.4267 61.89223 −30.21982 5.84554
ESSIM [91] 0.5862 4.1907 794.155 1.7213 0.5924 469,230.2 −935,844.8 466,620.3
WASH [93] 1.1077 −3.9034 −0.8187 9.1013 1.0504 −29.57805 52.04451 −18.07274

VSI [71] 0.4577 3.5501 37.8918 2.3297 0.4783 583.2767 −1076.422 498.8442
IQM2 [96] 0.4716 3.6621 1.2572 2.1072 0.4685 1.16719 2.58221 2.04645
DSS [97] 0.5109 3.3472 3.2571 2.2928 0.5270 5.36353 −2.05047 2.23715

ADD_GSIM [99] 0.4544 3.7670 155.109 1.9912 0.4883 10,718.78 −21,043.36 10,330.15
ADD_SSIM [99] 0.4705 3.9271 142.763 1.8464 0.4977 10,885.49 −21,376.10 10,496.23

MCSD [98] 0.4123 −10.6097 0.5096 6.4149 0.4353 90.00587 −36.64613 5.78630
MDSI [69] 0.3945 −17.9432 1.6790 6.7208 0.3951 −15.49132 −3.91786 6.91601

UNIQUE [100] 0.6600 4.3775 0.4905 1.3221 0.6677 −1.93108 5.38180 2.21278
MS−UNIQUE [101] 0.6478 4.3483 0.6346 1.4211 0.6499 −1.21208 4.97049 2.01005

PSIM [70] 0.4144 3.9219 583.789 1.9809 0.4268 215,288.1 −428,850.3 213,567.9
CVSSI [104] 0.4137 −10.9029 0.5469 6.3852 0.4363 63.31016 −32.15855 5.81023

PSNRHMAm [73] 0.4086 −258.9957 −1.1396 9.7006 0.4042 −0.00702 0.64070 −8.57968
DSI [106] 0.7916 −2.4387 0.1568 7.6098 0.8908 0.00027 −0.06153 5.10611

CSSIM [105] 0.5238 3.3778 19.8756 2.2658 0.5439 152.6187 −260.5828 113.4502
CSSIM4 [105] 0.6121 2.8845 72.9625 2.6397 0.7174 351.6808 −635.0208 288.5030
SSIM4 [105] 0.5315 3.2548 9.2413 2.3957 0.5624 27.46582 −35.54652 13.56676

HaarPSI [102] 0.4347 4.5283 2.1854 1.4475 0.4357 5.15546 −0.66241 1.46847
RVSIM [103] 0.5678 5.5441 1.1196 −0.0078 0.5679 0.48043 5.25852 −0.20338

Since the network output is the combined metric, one neuron is present in the output layer,
but the number of hidden layers and the number of neurons in each hidden layer can be different.
Two variants have been analyzed—two and four hidden layers. Furthermore, two variants of the
numbers of neurons in the hidden layers have been considered, namely an equal number of neurons in
each hidden layer and a twice smaller number of neurons in each successive hidden layer.

As the activation function in hidden layers, the hyperbolic tangent sigmoid transfer function is
used, which also provides the normalization in the range (−1,1), whereas a linear function is used for
the output layer.

An example of the NN structure is presented in Figure 3. In this case, there are nine inputs and
the number of neurons in hidden layers decreases gradually.
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In addition to the NN structure, some other factors might influence its performance, such as
the methodology of NN training and testing, stability of training results, the number of epochs, etc.
Due to the limited set of 1625 images for the NN training and testing, this constraint complicates our
task. According to a traditional methodology, an available set should be divided into training and
verification ones in some proportion. In the conducted experiments, 70% of images have been used for
training and the remaining images for verification. Since the division of images into sets is random,
training and verification results can be random as well. To partly get around this uncertainty, the best
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data are presented below for each version of the trained NN (producing the largest SROCC at training
stage) of a given structure.

Concerning the training stage—each NN has been trained to provide as high SROCC as possible.
Obviously, some other training strategies are also possible. In particular, it is possible to use the
Pearson correlation coefficient (PCC) to be maximized. Nevertheless, the results of the additional use
of the PCC for the training are not considered in this paper.

To give more understanding of which NN structures have been analyzed and what parameters
have been used, the main characteristics are presented in Table 4, where the number of input elementary
metrics is provided in each case. As can be seen, there are quite a lot of possible NN structures.

Table 4. The numbers of elementary metrics used as the inputs for different configurations of neural
networks (NN)s under conditions of different fitting and restrictions imposed on an elementary
metric set.

Pre-Processing Setup Elementary
Metrics Used Without Fitting Power2 Best of PFF

and Poly2

ABSENT (NO LASSO)

All 50 50 50 50
SROCC > 0.8 43 43 43
SROCC > 0.9 22 22 22
SROCC > 0.92 14 14 14
SROCC > 0.93 7 7 7

LASSO

NNZ > 20 43 39 41
NNZ > 30 38 25 29
NNZ > 40 24 20 21
NNZ > 50 16 12 11
NNZ > 60 11 9 6
NNZ > 70 7 6 6

6. Neural Network Training and Verification Results

The main criteria of the NN training and verification are the SROCC values. Four SROCCs
have been analyzed: SROCCtrain(Max), SROCCtrain(Lasso), SROCCtest(Max), and SROCCtest(Lasso)
that correspond to the training and test (verification) cases using maximal and Lasso-determined
numbers of inputs. Starting from the NN with two hidden layers, where preliminary fitting is not
used, the obtained results are presented in Figure 4. Digits near each point in the presented plots show
the numbers of neurons in hidden layers. Data in Figure 4a relate to the case when the numbers of
neurons in hidden layers are the same, whilst the plots in Figure 4b correspond to situation when the
numbers of neurons steadily diminish.
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• If Lasso is not used, the increase in the number of metrics leads to a general tendency of increasing
both SROCCtrain and SROCCtest; meanwhile, for more than 40 inputs, the improvement is
not observed;

• If Lasso regularization is applied, the results are not so good if the number of inputs (Ninp)
is smaller than 20; but if it exceeds 20, the performance practically does not depend on Ninp;
this means that the Lasso method allows the simplification of the NN structure, minimizing the
number of inputs and neurons in the other layers;

• The best (largest) SROCC values exceed 0.97, demonstrating that a sufficient improvement
(compared to the best elementary metric) is attained due to the use of the NN and
parameters’ optimization;

• SROCCtrain and SROCCtest are practically the same for each configuration of the analyzed NN,
so training results can be considered as stable;

• No essential difference in results has been found for equal or non-equal numbers of neurons in
hidden layers.

Concerning another number of hidden layers, namely four, the obtained plots are given in Figure 5.
The analysis of the obtained data makes it possible to draw two main conclusions. Firstly, there are no
obvious advantages in comparison to the case of using NNs with two hidden layers. Secondly, for all
other conclusions given above, concerning SROCCtrain and SROCCtest, the influence of Ninp and
Lasso regularization are the same, i.e., it is reasonable to apply a limited number, e.g., 24 elementary
metrics determined by Lasso.

The next question to be answered is: “does preliminary fitting help?” The answer to it is presented
in Figure 6 with two sets of plots. Both sets are obtained for the NNs with two hidden layers and
with an equal number of neurons in them. The plots in Figure 6a are obtained for the PFF, and in
Figure 6b—for the best fit. A comparison of the plots corresponding to each other in Figure 6 shows that
there is no sufficient difference in the choice of fitting. Moreover, comparison to the corresponding plots
in Figure 4a indicates that preliminary fitting does not produce sufficient performance improvement
compared to the cases when it is not used. This means that the trained NNs provide this pre-processing
by themselves.

The other conclusions that stem from the analysis of the plots in Figure 6 are practically the same
as earlier. The lasso method ensures that the performance close to optimal can be provided for Ninp

slightly larger than 20. The maximal attained values of SROCC are above 0.97 and smaller than 0.975.
The results for four hidden layers and non-equal numbers of neurons in the hidden layers have been
analyzed as well, and the best results are practically at the same level.
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To prove that the number of hidden layers does not have any essential influence on the performance
of the combined NN-based metrics, the metric characteristics for three and five hidden layers of NNs
that used PFF for elementary metric pre-processing and equal numbers of neurons in all layers are
presented in Figure 7. The analysis shows that the maximal attained values of the SROCC are even
smaller than for NNs with two layers.
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Completing the analysis based on SROCC, it is possible to state the following:

• there are many configurations of NNs that provide approximately the same SROCC;
• keeping in mind the desired simplicity, the use of NNs with two hidden layers without fitting,

and with a number of inputs of about 20, is recommended.

Nevertheless, two other aspects are interesting as well—what are the elementary metrics
“recommended” by Lasso in this case, and are the conclusions drawn from SROCC analysis in
agreement with conclusions that stem from the analysis for other criteria? Answering the first
question, two good NN configurations can be found in Figure 4a, namely NNs with 16 and 24 inputs.
The elementary metrics used by the NN with 16 inputs, as well as with 24 inputs, are listed in Table 5.
As can be seen, all 16 metrics from the first set are also present in the second set.

The first observation is that the metrics MDSI, CVSSI, PSNRHA, GMSD, IGM, HaarPSI, ADM,
IQM2, which are among the top-20 in Table 2, are present among the chosen ones. Some moderately
good metrics, such as DSS, are also chosen. There are elementary metrics that are efficient according
to data in Table 2 but they are not chosen, for example, MCSD, PSNRHMAm, PSIM. Although for
PSNRHMAm, the reason for excluding this metric by Lasso may be its high correlation with PSNRHVS
and PSNRHA, the situation is not as clear for MCSD and PSIM. Meanwhile, the sets contain such
metrics as WASH and MSVD that, according to data in Table 2, do not perform well. In addition,
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both sets contain PSNR, and the second set also contains MSE, strictly connected to PSNR. This means
that, although Lasso allows making the sets of recommended elementary metrics narrower, the result
of its operation is not optimal.

Table 5. Elementary metrics used by the neural network for 16 and 24 inputs with SROCC values.

Full-Reference Metric SROCC
(All Distortions) Lasso (16 Inputs) Lasso (24 Inputs)

MDSI [69] 0.8897 X X
HaarPSI [102] 0.8730 X X

MS-UNIQUE [101] 0.8708 X
PSNRHA [72] 0.8198 X X
CVSSI [104] 0.8090 X X

IGM [94] 0.8023 X X
GMSD [95] 0.8004 X X
IQM2 [96] 0.7955 X X
DSS [97] 0.7915 X

ADM [88] 0.7861 X X
MS-SSIM [66] 0.7872 X

RFSIM [79] 0.7721 X X
CSSIM4 [105] 0.7394 X

DSI [106] 0.7114 X X
VIF [74] 0.6816 X

PSNRHVS [84] 0.6536 X X
PSNR 0.6396 X X
MSE 0.6396 X

NQM [81] 0.6349 X
QILV [83] 0.5975 X

CWSSIM [86] 0.5551 X X
IFC [82] 0.5229 X X

WASH [93] 0.2903 X X
MSVD [77] 0.1261 X X

Nevertheless, there are several positive outcomes of the design using Lasso. They become
obvious from the analysis of data presented in Table 6. It may be observed that there are several good
configurations of NNs that provide a SROCC of about 0.97 for the number of inputs of about 20 (this is
also shown in plots). Moreover, these NNs ensure RMSE values that are considerably smaller than for
the best elementary metric after linearization (see data in Table 3 where the best values are larger than
0.39). In addition, the values of the Pearson correlation coefficient (PCC) are also large and exceed 0.97,
indicating very good linearity properties of the designed combined metrics.

Having calculated the SROCC, RMSE and PCC values, it is possible to carry out a more
thorough analysis. The first observation is that SROCC, RMSE and PCC are highly correlated in
our case. Larger SROCC and PCC correspond to smaller RMSE. The best results, according to
all three criteria, are produced by the NN with configuration #3, although, considering the NN
complexity, the configuration #2 is good as well. The number of inputs smaller than 16 (e.g., 11 or
12 in configurations #1, #4, #5) leads to worse values of the considered criteria. The use of the NN
configurations with preliminary fitting, a decreasing number of neurons in hidden layers, and a larger
number of hidden layers (configurations ##4–9), does not produce improvements in comparison to
the corresponding configurations #1 and #2. Thus, the application of the NN configuration #2 will be
further analyzed.
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Table 6. Performance characteristics of designed NN-based combined quality metrics.

NN Configuration The Best Network Average of Top 5 Results
(with Standard Deviation)

SROCC RMSE PCC SROCC RMSE PCC

1
(NNZ60) 11 inputs, 2 hidden layers, equal

number of neurons, no fitting (11/11) 0.9683 0.2873 0.9706
0.9658 0.2919 0.9697
(0.0018) (0.0071) (0.0015)

2
(NNZ50) 16 inputs, 2 hidden layers, equal

number of neurons, no fitting (16/16) 0.9702 0.2699 0.9741
0.9666 0.2863 0.9708
(0.0022) (0.0105) (0.0021)

3
(NNZ40) 24 inputs, 2 hidden layers, equal

number of neurons, no fitting (24/24) 0.9712 0.2603 0.9760
0.9694 0.2698 0.9742
(0.0011) (0.0070) (0.0013)

4
12 inputs, 2 hidden layers, equal number of

neurons, power2 fitting (12/12) 0.9652 0.2933 0.9694
0.9649 0.2961 0.9688
(0.0003) (0.0026) (0.0006)

5
11 inputs, 2 hidden layers, equal number of

neurons, “best” fitting (11/11) 0.9656 0.2927 0.9695
0.9648 0.2992 0.9681
(0.0009) (0.0055) (0.0012)

6
16 inputs, 2 hidden layers, twice smaller

number of neurons, no fitting (16/8) 0.9672 0.2840 0.9713
0.9664 0.2890 0.9703
(0.0006) (0.0046) (0.0010)

7
16 inputs, 3 hidden layers, equal number of

neurons, no fitting (16/16/16) 0.9665 0.2912 0.9698
0.9654 0.2950 0.9691
(0.0007) (0.0034) (0.0007)

8
16 inputs, 4 hidden layers, equal number of

neurons, no fitting (16/16/16/16) 0.9664 0.2923 0.9696
0.9654 0.2982 0.9684
(0.0010) (0.0072) (0.0015)

9
16 inputs, 4 hidden layers, twice smaller
number of neurons, no fitting (16/8/4/2) 0.9674 0.2775 0.9726

0.9673 0.2841 0.9713
(0.0008) (0.0054) (0.0011)

Table 6 contains three columns marked by the heading “The best network” and three columns
marked by “The top 5 results”. It has been mentioned earlier that the results of the NN learning
depend on the random division of distorted images into training and testing sets. Because of this,
to analyze the stability of training, we have calculated the mean SROCC, RMSE and PCC values for the
top five results of NN training for each configuration as well as their standard deviations provided in
brackets. A comparison of SROCC, RMSE and PCC for the top five results to the corresponding values
for the best network shows that the difference is small. Moreover, the conclusions that can be drawn as
the result of the analysis of these “average” results concerning NN performance fully coincide with
conclusions drawn from the analysis for the best network.

7. Analysis of Computational Efficiency

In addition, the computational efficiency should be briefly discussed. For the NN-based metric
with 16 inputs, the calculation of PSNR, MDSI, PSNRHVS, ADM, GMSD, WASH, IQM2, CVSSI and
HaarPSI is very fast or fast, the calculation of IFC and RFSIM requires several times longer, whereas
the calculation of MSVD, CWSSIM, PSNRHA, IGM, and DSI, takes even more time (about one order of
magnitude). Thus, even with parallel calculations of elementary metrics, a calculation of the NN-based
metric needs sufficiently more time than for such good elementary metrics as MDSI, GMSD or HaarPSI.

Hence, further research directions should be directed to the combination of possibly fast elementary
metrics, providing a possibly good balance between the MOS prediction monotonicity (as well as
accuracy) and computational efficiency. The average calculation time of the considered elementary
metrics determined for 512 × 384 pixels images from the TID2013 dataset is provided in Table 7.
Time data was evaluated using a notebook with Intel i5 4th generation CPU and 8 GB RAM controlled
by the Linux Ubuntu 18.04 operating system, using MATLAB® 2019b software.
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Table 7. Average calculation time for the images from the TID2013 database.

Metric Calculation Time [s] Speed Use in the Proposed Metric

1 MSE 0.0622 very fast yes (only for 24 inputs)
2 GMSD [95] 0.0760 very fast yes
3 MCSD [98] 0.0794 very fast no
4 PSNRHVSM [65] 0.0819 very fast no
5 QILV [83] 0.0913 very fast yes (only for 24 inputs)
6 MDSI [69] 0.0918 very fast yes
7 CVSSI [104] 0.0920 very fast yes
8 SSIM [41] 0.1053 very fast no
9 SR-SIM [90] 0.1065 very fast no

10 GSM [89] 0.1094 very fast no
11 MS-SSIM [66] 0.1139 very fast yes (only for 24 inputs)
12 ESSIM [91] 0.1160 very fast no
13 UQI [42] 0.1180 very fast no
14 VIFP [74] 0.1277 very fast no
15 HaarPSI [102] 0.1280 very fast yes
16 PSIM [70] 0.1282 very fast no
17 SFF [92] 0.1400 very fast no
18 CSSIM [105] 0.1491 very fast no
19 PSNR 0.1538 very fast yes
20 ADD_SSIM [99] 0.1813 fast no
21 ADD_GSIM [99] 0.1837 fast no
22 WASH [93] 0.1854 fast yes
23 WSNR [80] 0.1874 fast no
24 PSNRHVS [84] 0.1932 fast yes
25 DSS [97] 0.2284 fast yes (only for 24 inputs)
26 IQM2 [96] 0.2331 fast yes
27 ADM [88] 0.2568 fast yes
28 VSNR [85] 0.2602 fast no
29 VSI [71] 0.2653 fast no
30 FSIMc [78] 0.2888 fast no
31 UNIQUE [100] 0.2938 fast no
32 FSIM [78] 0.3000 fast no
33 NQM [81] 0.3018 fast yes (only for 24 inputs)
34 PSNRHMAm [73] 0.4291 medium no
35 IWSSIM [87] 0.4500 medium no
36 PSNRHMAy [72] 0.5259 medium no
37 RFSIM [79] 0.6073 medium yes
38 PSNRHAy [72] 0.6239 medium no
39 MS-UNIQUE [99] 0.6917 medium yes (only for 24 inputs)
40 VIF [74] 0.8343 medium yes (only for 24 inputs)
41 IFC [82] 0.8574 medium yes
42 SSIM4 [105] 1.0142 slow no
43 RVSIM [103] 1.0736 slow no
44 PSNRHMA [72] 1.3862 slow no
45 PSNRHA [72] 1.4027 slow yes
46 CSSIM4 [105] 1.4421 slow yes (only for 24 inputs)
47 CWSSIM [86] 1.5497 slow yes
48 MSVD [77] 2.7140 slow yes
49 DSI [106] 2.8284 slow yes
50 IGM [94] 9.9101 very slow yes

8. Verification for Three-Channel Remote Sensing Images

The analysis of metrics’ performance and their verification for multichannel RS images is a
complex problem. Obviously, the best solution could be to have a database of reference and distorted
RS images and MOS for each distorted image. This way of a future research is, in general, possible and
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expedient but it requires considerable time and effort. Firstly, a large number of observers have to be
attracted to experiments. Secondly, these observers should have some skills in the analysis of RS data;
this is the main problem. Thirdly, the set of images to be viewed and assessed has to be somehow
agreed in the RS community.

Because of this, we are currently able to perform only some preliminary tests. The aim of the very
first test is to show that the designed metric (in fact, MOS predicted by the trained NN) produces
reasonable results for particular images. Regarding the images of Figure 1, for each of them the
true MOS value is available. Furthermore, processing the value of each metric (PSNR, PSNRHA,
MDSI) by using the linearization with the parameters previously processed (power fitting function) is
also possible to obtain the corresponding estimation of MOS. Comparing these values with the MOS
value predicted by NN (Table 8), it is clear that NN provides good results. Generalizing from this
specific case to the TID2013 Noise&Actual subset, an interesting scatter plot can be obtained (Figure 8).
A remarkable aspect is that the MOS values predicted from the selected elementary metrics can even
be negative, whereas this drawback is absent when the MOS values are predicted by using NN. It is
also seen that the NN-based metric provides high linearity of the relation between true and predicted
MOS. Problems of MDSI for small MOS values are observed as well.

Table 8. True and Predicted MOS Values.

Image True MOS
Estimated MOS Using the Single Metric MOS Predicted by the

Designed Neural NetworkPSNR PSNRHA MDSI

Figure 1a 6.08 6.4176 5.8410 5.9314 5.8329
Figure 1b 5.97 5.5941 6.1279 5.9685 5.8697
Figure 1c 4.67 5.6024 4.9626 4.7508 4.7202
Figure 1d 3.87 4.5033 4.5790 4.4500 4.2479
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The further studies relate to four test images presented in Figure 9. These are three-channel
pseudo-color images called Frisco, Diego2, Diego3, and Diego4, respectively, all of size 512 × 512 pixels,
24 bits per pixel, from the visible range of the Landsat sensor. The reasons for choosing them are twofold,
as these images are of different complexity and they have been already used in some experiments [112].
The images Frisco and Diego4 are quite simple since they contain large homogeneous regions, whereas
the image Diego2 has a very complex structure (a lot of small-size details and textures), and the image
Diego3 is of a medium complexity.
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A standard requirement of visual quality metrics is monotonicity, i.e., monotonous increasing or
decreasing if the “intensity” of a given type of distortion increases. This property can be easily checked
for many different types of distortions. These images have been compressed using the lossy AGU
method [113], providing different quality and compression ratios (CR). This has been performed by
changing the quantization step (QS) where a larger QS relates to larger introduced distortions and
worse visual quality, respectively. Nevertheless, considering the possible extension of the proposed
approach for multispectral RS images, as well as the highly demanded development of the RS image
quality assessment database in the future, some more typical approaches to RS data compression
should eventually be applied for this purpose, such as the CCSDS 123.0-B-2 standard [114].

The quality (excellent, good and so on) is determined according to the results in [61]. The collected
data are presented in Table 9. An obvious tendency is that all metrics including the designed one
become worse if QS (and CR, respectively) increases. The values of the NN-based metric are larger
than MOS values predicted from elementary metrics for the test image Frisco, but smaller for the test
image Diego2. Probably, this property is partly connected with image complexity. However, there are
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evidences that the designed metric “behaves” correctly. In Figure 10, the compressed images using
QS = 40 are presented, for which distortions are always visible. A visual inspection (comparison)
of these images to the reference images in Figure 9a,b shows that distortions are more visible for
the test image Diego2. This is clearly confirmed by the values of PSNRHA (36.32 dB and 32.63 dB,
respectively—see Table 9). PSNR shows the same tendency, although MDSI does not indicate this.
Hence, some cases may be encountered when conclusions drawn from the analysis of different quality
metrics can be different.

Table 9. Predicted MOS Values for Two RS Test Images Using Linearization.

RS Image QS Quality
PSNR PSNRHA MDSI

Designed
MetricValue Predicted

MOS Value Predicted
MOS Value Predicted

MOS

Frisco 10 excellent 43.0815 6.3461 44.8013 6.3442 0.1442 6.0263 6.5005
20 excellent 38.7741 5.7441 40.2754 5.8940 0.1920 5.5972 6.3730
30 good 36.5231 5.4008 37.9569 5.6184 0.2183 5.3271 6.2117
40 good 34.9522 5.1477 36.3188 5.4009 0.2371 5.1194 6.0510

Diego2 10 excellent 42.3026 6.2421 43.8623 6.2590 0.1250 6.1743 5.6921
20 good 36.4450 5.3885 38.0930 5.6356 0.1734 5.7735 5.4895
30 good 32.8438 4.7884 34.8640 5.1893 0.2082 5.4338 5.2050
40 middle 30.3845 4.3373 32.6321 4.8251 0.2347 5.1473 4.8780
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The analysis for the case of additive white Gaussian noise that has been added to the considered
four three-channel images has also been carried out. Four values of noise variance have been used to
correspond to four upper levels of distortions exploited in TID2013. The mean MOS values (averaged
for 25 test images in TID2013) have also been obtained that correspond to these values of noise variance.
For each image, PSNR, PSNRHA, and MDSI have been calculated and the corresponding predicted
values of MOS have been determined. The NN-based metric has been calculated as well. The obtained
results are presented in Table 10.
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Table 10. Predicted MOS values for four RS test images distorted by an additive white Gaussian noise.

RS
Image

Noise
Variance

Quality
PSNR PSNRHA MDSI

Designed
Metric

Mean
MOSValue Predicted

MOS Value Predicted
MOS Value Predicted

MOS

Frisco 32.5 good 32.99 5.40 34.33 5.62 0.21 5.38 5.86 5.67
65 middle 30.01 4.90 31.45 5.20 0.25 4.96 5.28 5.23

130 middle 27.03 4.36 28.46 4.40 0.29 4.48 4.86 4.85
260 bad 24.06 3.77 25.56 4.11 0.33 3.96 4.24 3.77

Diego2 32.5 good 32.95 5.39 34.42 5.61 0.18 5.75 5.45 5.67
65 middle 29.95 4.89 31.40 5.20 0.21 5.44 5.18 5.23

130 middle 26.96 4.35 28.41 4.70 0.24 5.04 4.81 4.85
260 bad 23.98 3.75 25.63 4.13 0.29 4.54 4.32 3.77

Diego3 32.5 good 32.94 5.39 34.49 5.61 0.19 5.67 5.71 5.67
65 middle 29.96 4.90 31.41 5.20 0.22 5.33 5.36 5.23

130 middle 26.97 4.35 28.42 4.70 0.25 4.92 4.93 4.85
260 bad 23.99 3.75 25.50 4.10 0.30 4.41 4.26 3.77

Diego4 32.5 good 32.94 5.39 34.40 5.62 0.16 5.91 6.18 5.67
65 middle 29.97 4.90 31.40 5.25 0.19 5.62 5.84 5.23

130 middle 26.98 4.35 28.42 4.70 0.23 5.25 5.52 4.85
260 bad 23.98 3.75 25.77 4.16 0.26 4.81 5.01 3.77

The analysis shows that all metrics become worse (PSNR, PSNRHA and the designed metric
decrease, and MDSI increases) if noise variance increases, i.e., the monotonicity property is preserved.
The predicted MOS values are quite close to the mean MOS, whereas for good and middle quality
PSNRHA, MDSI and the NN-based metric provide better MOS prediction than PSNR. However,
for bad quality images, the situation is the opposite.

9. Conclusions

The task of assessing the visual quality of remote sensing images subject to different types of
degradations has been considered. It has been shown that there are no commonly accepted metrics
and, therefore, their design is desired. The problems that can be encountered have been mentioned and
their solution has been proposed. The already existing database of distorted color images, for which it
is possible to choose images with the types of distortions often observed in remote sensing, has been
employed for this purpose. Its use allows the determination of existing visual quality metrics that
perform well for the types of degradations that are of interest. The best of such metrics provides a
SROCC with a MOS of about 0.93, which is considered as a very good result. Moreover, the database
TID2013 allows the design of visual quality metrics based on the use of elementary visual quality
metrics as inputs. Several configurations of NNs and methods of input data pre-processing have been
studied. It has been shown that even simple NNs without input pre-processing (linearization) having
two hidden layers are able to provide SROCC values of about 0.97. PCC values are of the same order,
meaning that the relation between NN output and MOS values is practically linear.

Some elementary metrics and the designed one have then been verified for three-channel remote
sensing images with two types of degradations, demonstrating the monotonicity of the proposed
metric’s behavior. Besides, it has been shown that the designed metric produces an accurate evaluation
of MOS that allows the classification of remote sensing images according to their quality. Since,
as shown in the paper, from the visual quality point of view, color images and RS images (after applying
the necessary operation to visualize them) have similar characteristics, this manuscript provides the
first evidence that a full-reference image quality metric, developed using a dataset (TID2013) that is
actually not a remote sensing dataset, works well when applied to RGB images obtained by remote
sensing data.

In the future, the ways of accelerating NN-based metrics by means of restricting the set of possible
inputs are planned to be analyzed, considering the computational efficiency of the input metrics as well.
We also hope that some perceptual experiments, with the help of some specialists in RS image analysis
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for image quality assessment, will be carried out. Although for different types of RS data, different
types of degradations can be important, we have considered only those ones that are quite general and
are present in TID2013. For example, the characteristics of clouds can be additional feature(s) used as
elementary metrics in the quality characterization of particular types of RS data in future research.

One of the limitations of the proposed method is the necessity of calculation of several metrics,
which are not always fast. To overcome this issue, some of them may be calculated in parallel, although
hardware acceleration possibilities should be provided in such cases.

Another shortcoming is the fact that many metrics are developed for grayscale images and
hence they may be applied for single channel only (or independently for three channels leading to
three independent results). Hence, a relevant direction of our further research will be related to the
optimization of color to greyscale conversion methods used for the individual elementary metrics.
In some cases, an appropriate application of elementary metrics for multichannel images may also
require changes of data types and dynamic ranges. Although the color to greyscale conversion based
on the International Telecommunication Union (ITU) Recommendation BT.601-5 (with the use of RGB
to YCbCr conversion in fact limiting the range of the Y component to the range [16,235]), has been
assumed in this paper, the results of individual elementary metrics obtained using various color spaces
and conversion methods may lead to further increases in the combined metrics’ performance.
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