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Abstract: Multi-scale object detection is a basic challenge in computer vision. Although many 
advanced methods based on convolutional neural networks have succeeded in natural images, the 
progress in aerial images has been relatively slow mainly due to the considerably huge scale 
variations of objects and many densely distributed small objects. In this paper, considering that the 
semantic information of the small objects may be weakened or even disappear in the deeper layers 
of neural network, we propose a new detection framework called Extended Feature Pyramid 
Network (EFPN) for strengthening the information extraction ability of the neural network. In the 
EFPN, we first design the multi-branched dilated bottleneck (MBDB) module in the lateral 
connections to capture much more semantic information. Then, we further devise an attention 
pathway for better locating the objects. Finally, an augmented bottom-up pathway is conducted for 
making shallow layer information easier to spread and further improving performance. Moreover, 
we present an adaptive scale training strategy to enable the network to better recognize multi-scale 
objects. Meanwhile, we present a novel clustering method to achieve adaptive anchors and make 
the neural network better learn data features. Experiments on the public aerial datasets indicate that 
the presented method obtain state-of-the-art performance. 

Keywords: aerial images; object detection; extended feature pyramid network (EFPN); adaptive 
scale training strategy; adaptive anchors 

 

1. Introduction 

With the rapid development of deep convolutional neural networks (CNNs) [1] in recent years, 
the conventional object detection methods [2,3] have made some remarkable achievements in natural 
images. However, due to the huge scale variations of the vast majority of objects and the compact 
distribution of many small objects in remote sensing images, it still remains a tremendous challenge 
for locating and predicting the target objects [4,5]. 

In order to detect objects at different scales, a basic method is to leverage a multi-scale featurized 
image pyramid (Figure 1a) [6], which is popular in both manual feature-based approaches [7,8] and 
deep CNNs-based approaches. Strong evidence [9,10] has shown that the current standard deep 
detectors can benefit from a multi-scale learning strategy. However, many object detectors based on 
deep learning have avoided this multi-scale image pyramid representation mainly because it requires 
a lot of calculations and memories. 

Thus, Lin et al. [11] exploited the multi-scale pyramid structure in deep CNNs to construct the 
Feature Pyramid Network (FPN) with a small amount of additional cost. In the FPN (Figure 1b), it 
adopts a bottom-up pathway, a top-down pathway and lateral connections for constructing the high-
level semantic information at each scale. This structure displays an obvious improvement as a 
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common feature extractor in some practical applications. However, since large-scale objects are 
usually produced and predicted in the deeper convolution layers of the FPN, the boundaries of these 
objects might be too fuzzy to obtain accurate regression. Furthermore, the FPN usually predicts 
small-scale objects in the shallower layers with low semantic information which might not be enough 
to identify the class of the objects. The designer of the FPN has been aware of this problem and 
adopted a top-down structure with lateral connections to fuse shallow layers and high-level semantic 
information to relieve it. However, if the small-scale objects disappear in the deep convolution layers, 
the context information cues will disappear at the same time. 

 
Figure 1. (a) Featurized image pyramid: features are calculated independently on each image scale. 
(b) Feature Pyramid Network. (c) DetNet Backbone: due to the limitations of the graphic size, we do 
not display stage 1 (with stride 2) feature map. 

Besides, Li et al. [12] presented a backbone network, called DetNet (Figure 1c), which is the first 
specifically dedicated to object detection. They pointed out that larger down-sampling factor can 
bring a larger effective receptive field, which is beneficial to image classification, but may damage 
the ability of the detector to locate. Therefore, DetNet includes the additional stages contrasted with 
the conventional backbone network only for classification, and retains high spatial resolution in 
deeper convolution layers. Due to the specifically designed backbone for object detection, DetNet is 
much more powerful, especially in finding the small objects and locating the boundaries of the large 
objects. However, it is useless for the location of small objects and has little contribution to find more 
ground-truth large objects. 

In this work, for solving the above problems, we propose a new FPN-based structure called 
Extended Feature Pyramid Network (EFPN) which considers huge scale variations of object 
instances. In the proposed EFPN, we first design a low complexity multi-branched dilated bottleneck 
(MBDB) module for capturing much more semantic information. The dilated convolution [13,14] is 
usually blended in the convolution network model to expand the receptive field without increasing 
the computational complexity. Therefore, the designed MBDB module combines multiple branches 
with different dilated convolution layers, and is added at the lateral connections of FPN to achieve 
the feature maps with more details at all scales. Unfortunately, the dilated convolution is likely to 
cause the loss of some local information due to the increase of the receptive field, which is not 
beneficial for locating the objects. Recently, some researchers [15] discovered that attention 
mechanisms can not only focus on the object of interests, but also promote the representation of 
interests. Thus, we further design an attention pathway to better locate the objects and promote the 
accuracy of detection. Furthermore, an augmented bottom-up pathway is conducted in the designed 
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EFPN for making shallow layer information easier to spread and further promoting the performance 
of small object detection. 

In addition, some aerial images are too large for training the CNNs. Therefore, reducing large 
images by resizing is a common process for saving computing and memory costs during training. 
However, the resizing process may result in small objects becoming smaller and more likely to be 
lost in the deeper layers. For solving this problem, the general solution is to simply cut large-scale 
images into small chunks [5,16]. However, when the cut images include relatively large objects, such 
as ground track field, these objects may be broken up into small pieces and make the network hard 
recognize. To better ease this problem, we present an adaptive scale training strategy to try to keep 
the large objects intact after cutting down in the remote sensing images by designing an adaptive 
adjustment rate for resizing the original images before dividing these images into smaller sub-images. 
That is to say, an image is likely to include some relatively large objects whose size may be larger 
than the sub-image size (we usually set to 800 or 1000 pixels). We can first multiply the original image 
size by the proposed adaptive adjustment rate to make the large objects with a proper size. Then, we 
divide the resized image into the smaller sub-images. By adaptively resizing before cutting down the 
original image, we can make the large objects more intact in the sub-images and promote the 
recognition ability of the neural network. 

Moreover, our proposed EFPN detection framework is built on the faster region-based 
convolutional neural network (Faster R-CNN) [2] and FPN [11]. For the anchors which are the 
initialization of candidate boxes in the Faster R-CNN, their aspect ratios and scales are generally set 
artificially and empirically to several initial values for object detection. The region proposal network 
(RPN) is presented by Faster R-CNN to replace the original selective search algorithm (SS algorithm) 
[17] to optimize the generation method for the regions of interest (ROI) [18]. The ROIs are a set of 
class-independent candidate boxes that may include any objects. By sliding a tiny network on the 
convolution feature map, the RPN can output a suit of rectangular object proposals called anchors, 
and each anchor is accompanied by an aspect ratio and a scale. Unlike natural images, some objects 
in aerial images are of very different shapes and large aspect ratios, such as bridges and harbors. 
Improper prior scales and aspect ratios setting generally affect the accuracy of the detection 
positioning. Therefore, it may not be appropriate to directly use the prior scales and the aspect ratios 
of natural images for remote sensing image detection. For solving this problem, we analyze the 
training data and propose a special clustering method to obtain the appropriate aspect ratios and 
scales of anchors. 

We did experiments on the public aerial datasets and the results indicate that the presented 
method obtain state-of-the-art performance. DOTA [19] is a large-scale dataset for object detection in 
aerial images and the DOTA-v1.5 is the latest version of DOTA-v1.0. NWPU VHR-10 dataset [20] is 
a publicly available 10-class geospatial object detection dataset. RSOD [21] is an open dataset for 
object detection in remote sensing images. 

The main contributions of this work are summarized as follows: 
1. We propose a new framework called Extended Feature Pyramid Network (EFPN) for object 

detection in aerial images. 
2. In the EFPN, we first design the multi-branched dilated bottleneck (MBDB) module in the lateral 

connections to capture much more semantic information. Then, for better locating the objects, 
we further design an attention pathway in the deeper layer of EFPN. Finally, an augmented 
bottom-up pathway is conducted for making shallow layer information easier to spread and 
further improving performance. 

3. We propose an adaptive scale training strategy to try to keep the large objects intact after cutting 
down in the aerial images and improve the recognition ability of the presented network. 
Meanwhile, we develop a new clustering method for getting adaptive anchors to replace the 
initial values which are set artificially. 

4. The presented method obtains optimal performance in the challenging DOTA-v1.5 dataset [19], 
NWPU VHR-10 dataset [20] and RSOD dataset[21]. 
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2. Related works 

2.1. Multi-scale Object Detectors. 

Object detection with various aspect ratios and scales is an extremely challenging problem in the 
domain of computer vision. In recent years, CNN has become one of the most effective techniques 
for object detection. Generally, these CNN-based methods are roughly summarized to two 
technology paths: one-stage detection methods and two-stage detection methods. Both of these two 
methods apply a variety of techniques to handle the scale variation problem in multi-category target 
detection tasks. 

In general, the one-stage detection methods are more efficient, because they can classify the 
predefined anchors directly and further refine them without the proposal generation step. YOLO9000 
[3] is a real-time object detection system that can detect over 9000 object categories, and it simply used 
multi-scale training by selecting new image size randomly per 10 batches to make the neural network 
model scale-invariant. The single-shot multibox detector (SSD) method [22] achieved multi-scale 
features by fusing different scale features from different layers without adding additional 
computation. RetinaNet [23] applied FPN as the backbone and used the focal loss to deal with the 
imperfection of one-stage object detection that the network suffers from an extreme class imbalance 
between foreground and background during training. RefineDet [24] selected four feature layers with 
different stride sizes to deal with objects of different scales. 

Besides, the two-stage detection methods first generate a suit of region proposals and then refine 
them through CNNs. Thus, they usually have better positioning accuracy than the one-stage 
detection methods. Faster R-CNN [2] improved the Fast R-CNN [25] by developing the RPN to 
replace the original SS algorithm [17] to optimize the generation method for the ROIs [18]. R-FCN[26] 
presented a region-based full convolution network and designed the position-sensitive score maps 
for accurate and efficient object detection. The unified multi-scale CNN (MS-CNN) [27] detected 
multi-scale objects at multiple layers. Faster FPN [11] is one of the predominant detectors for different 
scale object detection, which further introduced a top-down structure to promote the semantic 
information of low-level features. Besides, the presented EFPN is inspired by this architecture. 

2.2. Dilated Convolution. 

Nowadays, due to its powerful feature extraction ability, deep CNN has obtained great success 
in the field of object detection. However, there are still some defects in the deep CNN, especially in 
the design of up-sampling and pooling layers. There are some key problems in the design of up-
sampling and pooling layers. First of all, the up-sampling (e.g. bilinear interpolation) and pooling 
layers are deterministic, which means their parameters are unlearnable. Secondly, in the up-sampling 
and pooling process, the internal data structures and spatial hierarchy information may be lost and 
thus the information of small objects cannot be rebuilt. 

To solve the above problems, researchers provided many effective structures and the dilated 
convolution [13] is one of the most excellent structures. In the dilated convolution, it injects a hole in 
the convolution kernel to enlarge the convolutional kernel with original weights, and the number of 
the injected holes is determined by one dilation parameter called dilation rate. The purpose of this 
structure is to provide the greater receptive field without pooling and with the same amount of 
calculation. The dilated convolution has the characteristics of retaining the internal data structures 
and avoiding the use of down-sampling. Therefore, using the combination of layers with different 
dilation rates can improve semantic information. Dilated convolution has been proverbially used in 
the field of semantic segmentation [28] to better combine local and global context information [14]. 
In the object detection field, DetNet [12] designed a detection backbone network by introducing 
dilated convolution in the deeper layers, hence it can hold the spatial resolution and expand the 
receptive field simultaneously. In this work, we utilize dilated convolution in the presented multi-
branched dilated bottleneck (MBDB) module with different dilation rates to extract richer detail 
information. 
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2.3. K-means and Mini-batch k-means Algorithm [29]. 

In the k-means, the distance is used as an evaluation index of similarity, which indicates that the 
closer the two objects are, the greater the similarity. Considering that the cluster is comprised of close 
objects, thus the clustering algorithm takes the compact and independent cluster as its ultimate goal. 
Mini batch k-means algorithm is a variant of k-means algorithm, which utilizes a small-batch subset 
of data randomly selected to reduce computing time. Using the mini-batch k-means algorithm can 
greatly reduce the computation time and the results are usually similar to the standard k-means 
algorithm. The iterative steps of mini-batch k-means can be explained as follows: (1) randomly extract 
some samples from the dataset to form a small-batch subset and classify them to the nearest center of 
mass which means the clustering flat of the dataset; (2) update the center of mass. 

The mini-batch m-means has a faster convergence speed than the k-means algorithm, while 
keeping nearly the same clustering effect. K-means clustering has been used in some detectors to 
obtain the initial size of candidate boxes of the interest area. In order to automatically find the good 
prior anchors, YOLO9000 [3] ran a k-means clustering directly on the bounding boxes of the training 
data. In this paper, we obtain the adaptive scales and aspect ratios of anchors by the optimized mini-
batch k-means algorithm, which is liable to be realized and can effectively improve detection 
performance. 

3. Proposed method 

3.1. Extended Feature Pyramid Network 

Figure 2 is the whole architecture of the presented EFPN, which is built on Faster FPN [11] and 
improves it from different aspects. First, we design the multi-branched dilated bottleneck (MBDB) 
module in the lateral connections to capture much more semantic information. Then, we further 
devise an attention pathway to better locate the objects. Finally, an augmented bottom-up pathway 
is conducted for making shallow layer information easier to spread and further improving 
performance. On the whole, the proposed EFPN consists of a bottom-up pathway, lateral 
connections, a top-down pathway, an attention pathway and an augmented bottom-up pathway. The 
details are described in the following subsections. 
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Figure 2. Architecture of the proposed Extended Feature Pyramid Network (EFPN). RPN: region 

Proposal Network. 

Following the EFPN, the RPN is executed at each level of the EFPN output to produce the object 
proposals. Unlike previous methods using the RoI Pooling operator [2], we adopt the RoI Align 
operator proposed by Mask R-CNN [30] to extract RoI features. The final detection results are 
obtained by further precise location regression and fine classification. 

3.1.1. Bottom-up Pathway 

We adopt the aggregated residual transformations for deep neural networks (ResNeXt-101 32 ×

8𝑑)[31] as our backbone of the bottom-up pathway. Due to its superior performance in the field of 
image processing, it is widely used in many object detectors [4]. The backbone usually has many 
layers that generate feature maps with the same spatial size and we define these layers as stages. The 
ResNeXt-101 contains five stages. As can be seen from Figure 2, we only use the stage1, stage2, stage3, 
stage4 of the ResNeXt-101 in our backbone and keep these stages as the same as their original form. 
The outputs of the last residual block of each stage are expressed as {C2, C3, C4}, for which the strides 
are {4, 8, 16} pixels corresponding to the initial image. They will be extracted to construct the feature 
pyramid. We do not use stage1 in the pyramid, because it is memory-consuming. The reasons that 
we do not use the stage5 for the EFPN are as follows. For one thing, traditional backbone networks 
with the large down-sampling factor can bring a larger effective receptive field, which is beneficial to 
image classification, but may damage the ability of detector to locate. Thus, the stage5 with a scaling 
step of 32 is of little use in pinpointing larger objects and adding semantic information of the smaller 
objects that may have disappeared in this layer. For another, with the proposed MBDB module 
(described in the lateral connections bellow), we have enlarged the receptive field to get richer 
semantic information based on stage4. Thus, since the other stages are of little use to our neural 
network model, we can choose to discard them to save memory and computation. 
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3.1.2. Lateral Connections with MBDB Module 

Considering huge scale variations of aerial object instances and single receptive fields may not 
effectively learn all situations. The different dilation rates can obtain different scale receptive fields 
without pooling and with the same amount of calculation. Thus, for the lateral connections, the 
proposed EFPN employs the low complexity multi-branched dilated bottleneck (MBDB) module to 
capture much more semantic information. The details of the MBDB module are shown in Figure 3. It 
can be seen that the MBDB module combines the multiple branches with the dilated convolution 
layers of different dilation rates to achieve the feature maps with more details at all scales. The MBDB 
first reduces channel dimensions by a 1 × 1 convolution layer. Then the outputs are divided equally 
among the three branches, and each branch is a 3 × 3 dilated convolution layer with the different 
dilation rates that are 3, 2 and 1 respectively. Finally, we append a 1 × 1 convolution on the 
incorporated feature maps of three branches for producing the final feature map with 256 
dimensions. We have experimented with more dilated convolution layers and observed marginally 
better results. Thus, in order to achieve an approximate optimal effect without introducing too many 
parameters, we choose to introduce this MBDB module. At each level of the feature pyramid, the 
presented EFPN can hold the feature map with high spatial resolution and meanwhile retain the large 
receptive field due to the added MBDB module, thus it has better semantic information capture 
capability. 

 

Figure 3. Multi-branched dilated bottleneck (MBDB) module. 

3.1.3. Top-down Pathway 

For the top-down pathway, we first simply attach an MBDB module on C4 to generate a coarsest 
resolution map P4. Then, factor 2 is used to conduct spatial resolution up-sampling on the produced 
feature map P4. Finally, we merge the up-sampling map with its corresponding bottom-up map that 
has attached an MBDB module as the lateral connection. Note that we use nearest neighbor up-
sampling for simplicity and element-wise addition for merging here. Repeating this process until the 
finest resolution map is produced. The final set of feature map can be signed as {P2, P3, P4}, which 
with the same spatial sizes corresponding to {C2, C3, C4}, respectively. 

3.1.4. Attention Pathway 

The designed MBDB module in the lateral connections can capture much more details 
information. Unfortunately, some local information may be lost by the dilated convolution, which is 
not beneficial for locating the objects. Thus, to better locate the objects and promote the accuracy of 
detection, we further design an attention pathway with the attention module. Since the designed 
attention module can further refine the feature map, the network performs better and has better 
robustness to noise input. In addition, beyond the previous works [32,33], the proposed attention 
module can better fuse the global and the detail information at the pixel level through the novel 
concatenation. The details of the proposed attention module are illustrated in Figure 4. 
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Figure 4. The whole structure of the designed attention module. 

The attention module mainly consists of two parts: channel attention block (CAB) and spatial 
attention block (SAB). The designed details of each block are shown in Figure 4 and the whole 
attention process of CAB is calculated as follows: 

𝐹 = 𝜎(𝑀 (𝐹)𝐹) ⊕ 𝐹, (1) 

where 𝜎 is Rectified Liner Unit (ReLU) [34] activation function;  is element-wise dot product; ⊕ 
is element-wise addition; 𝑀 (𝐹) ∈ R × ×  is the channel attention weight; 𝐹 ∈ R × ×  represents 
the input feature map and 𝐹  represents the output feature map of the CAB. Concretely, in the CAB, 
the spatial dimension of the input feature is first compressed by max-pooling and average-pooling 
simultaneously. Then the generated max-pooling features 𝐹 ∈ R × ×  and average-pooling 
features 𝐹 ∈ R × ×  are followed by two weights-shared full connection layers. The size of the 
hidden activation layer is set to R / × ×  for reducing parameter overhead and a ReLU is followed 
by it. The reduction ratio (r0) is set as 16. The 𝐹  and 𝐹  can be computed as the following: 

 𝐹 (𝑢 ) =
1

𝐻 × 𝑊
𝑢  , 0 < 𝑙 < 𝐶 (2) 

𝐹 (𝑢 ) = max {𝑢 |0 < 𝑖 < 𝐻, 0 < 𝑗 < 𝑊} , 0 < 𝑙 < 𝐶 (3) 

where  𝐻 , 𝑊 , 𝐶  and 𝑢  are the height, width, channel and l-th element of feature maps, 
respectively. The output feature vectors of weight-shared full connection layers are merged via 
element-wise addition. Finally, the merged vector passes through a sigmoid function for producing 
our channel attention weight 𝑀 (𝐹), which can be summarized as: 

𝑀 (𝐹) = 𝜎 𝑊 (𝜎 𝑊 𝐹 ) + 𝑊 (𝜎 𝑊 (𝐹 ) ) , (4) 

where 𝜎  denotes the sigmoid function; 𝜎  is ReLU activation function; 𝑊 ∈ R / ×  and 𝑊 ∈

R × /  are shared for both max-pooling and average-pooling inputs. 
In addition, the whole attention process of SAB is calculated as follows: 

𝐹 = 𝜎(𝑀 (𝐹 )𝐹 ) ⊕ 𝐹, (5) 

where 𝑀 (𝐹 ) ∈ R × ×  is the spatial attention weight; 𝐹  represents the output feature map of the 
SAB and it is also the final refined output. Firstly, in the SAB, the feature map 𝐹 ∈ R × ×  and 
𝐹 ∈ R × ×  are produced by the max-pooling and average-pooling processes along the channel 
axis, respectively. They are calculated by: 

𝐹 (𝑢 ) =
1

𝐶
𝑢 , 0 < 𝑖 < 𝐻, 0 < 𝑗 < 𝑊 (6) 

𝐹 (𝑢 ) = max {𝑢 |0 < 𝑙 < 𝐶}, 0 < 𝑖 < 𝐻, 0 < 𝑗 < 𝑊. (7) 
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Then, these two produced maps are concatenated and a convolution layer is applied to reduce 
the dimension. Finally, a sigmoid function is added to generate the spatial attention weight 𝑀 (𝐹 ) ∈

R × × . In short, the spatial attention weight is computed as: 

𝑀 (𝐹𝐶) = 𝜎 𝑓 × [𝐹 ; 𝐹 ] , (8) 

where 𝜎 represents the sigmoid function; 𝑓 ×  is the convolution operation with a filter size of 3 ×

3. 

3.1.5. Augmented Bottom-up Pathway 

Generally, low-level features are advantageous to access accurate localization information. 
However, there is a long path passing through even about 100 layers from shallow-level to high-level 
features in bottom-up pathway of the backbone. Thus, for reducing the loss of information 
transmission and strengthening the precise position signals existing in the shallow layers, an 
augmented bottom-up pathway that consists of several layers is adopted in the proposed framework. 

Figure 2 shows the designed augmented bottom-up pathway, which is used to produce the new 
feature map Mi+1 through a higher resolution feature map Mi, a coarser map Pi+1 and Ci+1. Noting that 
M2 is produced only by P2 and C2, and the feature maps used in this structure are always with 256-
channels. The details are as follows. Firstly, the 3 × 3 convolution layer with stride 2 is used for 
reducing the spatial dimension of each feature map Mi and meanwhile getting a down-sampling map. 
Each corresponding convolutional layer follows a ReLU. Then the generated down-sampling map 
from Mi, the feature map Pi+1 which undergoes an MBDB module and Ci+1 which undergoes a 1 × 1 
convolution layer is added to produce the informative Mi+1. Repeating this process until reaching M4. 
Finally, in regards to reducing the aliasing effect, the 3 × 3 convolution layer is applied on each 
incorporated map for producing the final feature map {M2, M3, M4}. 

3.2. Adaptive Scale Training Strategy and Anchors 

3.2.1. Adaptive Scale Training Strategy 

In remote sensing images, when these are many large images, we may split them into small chips 
to alleviate the computational and memory cost. Generally, a constant sub-size of sub-images and a 
constant overlap (G) are set to divide the image from left to right and top to bottom of the original 
image into smaller sub-images. An example of the split process is depicted in Figure 5a. From Figure 
5a, the green box denotes one object in the image; h and w denote the height and width of this object, 
respectively. When the height and width of the object are less than the sub-size (such as 800 or 1000 
pixels), the object can be divided into up to four parts and each part exists in a different sub-image 
(denoted by the pink, blue, yellow and red dotted boxes respectively). We can call these parts as sub-
objects and two adjacent parts intersect each other. The overlap value of two sub-objects is the same 
as that of the sub-images and denoted by G. 

In this work, we propose an adaptive scale training strategy by designing an adaptive 
adjustment rate to resize the original images before dividing these images into smaller sub-images to 
keep the large object intact after cutting down and reduce the number of difficult samples for large 
targets. The definition and relative quantity of difficult samples have a great effect on the 
performance of the neural network model. When a certain category contains many difficult samples 
in the training data, the neural network model is difficult to learn the characteristics of this category 
and accurately identify it. Besides, we can use the ratio of the sub-object region to the original object 
region to define whether one object is a difficult sample or not. If the ratio of the sub-object region to 
the original object region is lower than a threshold 𝑁  (we generally set it to 0.7), the sub-object in 
the sub-image is difficult to be detected and we can call it a difficult sample, whereas we call it a 
simple sample. 
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Figure 5. Calculation for adaptive adjustment rate. (a) An example of the splitting process. (b) A 
larger version of one object of (a). 

The object denoted by the green box in Figure 5a is zoomed in to Figure 5b. Figure 5b indicates 
that the four sub-objects can be represented by the pink box A1, the blue box A2, the yellow box A3 
and the red box A4, respectively. In addition, x and y denote the width and height of the up-left sub-
object respectively. So, the areas of these four sub-objects can be expressed by the following formulas: 

𝐴1 = 𝑥 × 𝑦 (9) 

𝐴2 = (ℎ − 𝑦 + 𝐺) × 𝑥 (10) 

𝐴3 = (𝑤 − 𝑥 + 𝐺) × 𝑦 (11) 

𝐴4 = (ℎ − 𝑦 + 𝐺) × (𝑤 − 𝑥 + 𝐺). (12) 

If the maximum ratio of these four sub-objects to the original object size is larger than the 
threshold 𝑁  mentioned above, the object is easy to be detected and it is called as a simple sample. 
Thus, the condition that this object is a simple sample can be expressed by the following inequality: 

𝑟𝑎𝑡𝑖𝑜 =
𝑚𝑎𝑥 (𝐴1, 𝐴2, 𝐴3, 𝐴4)

𝑤 × ℎ
≥ 𝑁 . (13) 

The areas of these four sub-objects (𝐴1, 𝐴2, 𝐴3, 𝐴4) are arbitrarily distributed, thus the 𝑟𝑎𝑡𝑖𝑜  
is uncertain. Nevertheless, in all cases, when the minimum of 𝑟𝑎𝑡𝑖𝑜  is larger than the threshold 
𝑁 , all of the 𝑟𝑎𝑡𝑖𝑜  is larger than the threshold 𝑁 . From the mathematics, the minimum of 
𝑟𝑎𝑡𝑖𝑜  is expressed as the following: 

min (𝑟𝑎𝑡𝑖𝑜 ) =
𝑤

2
+

𝐺

2
× (

ℎ

2
+

𝐺

2
)/(𝑤 × ℎ). (14) 

Thus, the formula (13) can be expressed as below: 

𝑤

2
+

𝐺

2
×

ℎ

2
+

𝐺

2
/(𝑤 × ℎ) ≥ 𝑁 . (15) 

Therefore, for one image, we know the width and height of the object, and we can set the proper 
value of overlap G and threshold 𝑁 , then the adaptive adjustment rate (𝑟) can be calculated by the 
equation: 

𝑟 × 𝑤
2

+
𝐺
2

×
𝑟 × ℎ

2
+

𝐺
2

r × w × r × h
≥ 𝑁 . (16) 
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When the Equation (16) takes the equal sign and 𝑁 = 0.7, the adaptive adjustment rate (r) can 
be expressed as: 

r =
10𝐺(𝑤 + ℎ) + 𝐺 100(𝑤 + ℎ) + 720𝑤ℎ

36𝑤ℎ
. (17) 

From the mathematical reasoning, this adaptive adjustment rate is also applicable to other cases 
not discussed here. The adaptive adjustment rate (r) is a preset variable before image cutting, which 
is determined by the width (w), height (h), overlap (G) and threshold 𝑁 . The threshold of sub-object 
to the original object ratio (𝑁 ) is generally set to 0.7 to judge whether one object is a difficult sample 
or not. In general, when 𝑁  is given empirically, the adaptive adjustment rate (r) can be derived 
according to the width (w), height (h) and overlap (G). Using the proposed adaptive adjustment rate 
to resize the original image before dividing the images into smaller sub-images can ensure most of 
the sub-objects are the simple samples and improve the recognition ability of the neural network. 

3.2.2. Adaptive Anchors 

The aspect ratio represents the rate of the width of the anchor to its height. When an anchor is 
square, the scale is the side of this anchor. In practical applications, we may detect some objects with 
special shapes, such as bridges and harbors in remote sensing images. At this time, the general 
initialization of the anchor box size will have an impact on the accuracy of the final training model 
and we need to generate the corresponding anchor box size according to our own data instead of the 
default value. 

For the aspect ratios of anchors, when the amount of data is very huge in some remote sensing 
image detection tasks, it is a huge time drain and might not be necessary if we directly apply the k-
means algorithm for obtaining the appropriate aspect ratios of anchors by clustering the aspect ratios 
of training data. To solve this problem, we substitute mini-batch k-means algorithm for the k-means 
algorithm to reduce the calculation time. However, there are still the main two problems to cluster 
an exact result. (1) Because the mini-batch k-means algorithm is sensitive to the selection of initial 
centroids, the results of each training for clustering may not be the same and precise enough; (2) the 
number of cluster centers should be specified in advance and the different numbers of cluster center 
points will have very different results. The number of artificially assigned cluster centers, which also 
is the number of the adaptive aspect ratios of anchors at this time, may not be the best one for the 
optimal results. 

To address these problems, we first randomly initialize the cluster centroids for many times and 
calculate the values of the loss function every time. The value of the loss function represents the 
average Euclidean distance between every data sample and its corresponding closest cluster center. 
Then, the cluster centroids corresponding to the minimum result of the loss function are taken as the 
clustering results. The values of cluster centroids are the adaptive aspect ratios of anchors. The loss 
function is expressed as follows: 

J 𝑐( ), … , 𝑐( ), 𝑢 , … , 𝑢 =
1

𝑚
‖𝑥( ) − 𝑢  ‖  . (18) 

where m represents the number of the data; 𝑥( ) is one sample and 𝑢  is the corresponding closest 
cluster center of this sample; K represents the number of cluster centers and it is a pre-defined hyper-
parameter that we can set it from two to eight. Finally, the Elbow Method [35] is used to determine 
the appropriate number of cluster centers K which also is the number of the adaptive aspect ratios of 
anchors here, and it is a great tradeoff between high recall and complexity of the neural network 
model. 

For the scales of anchors, we use the mini-batch k-means algorithm with the Intersection of 
Union (IoU) distance [3] instead of the aforementioned Euclidean distance to obtain the adaptive 
settings. In [3], it expresses that if we utilize standard k-means with Euclidean distance directly, larger 
boxes bring forth more error than smaller boxes, but the IoU distance is independent of the box size. 
The IoU distance is denoted as: 
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D(box, centroid) = 1 − IoU(box, centroid). (19) 

We ran mini-batch k-means for various values of K. For one set K, as the same to get the adaptive 
aspect ratios of anchors, we also randomly initialize the cluster centroids for many times and calculate 
the value of average IoU distance every time. Then, we select the cluster centroids corresponding to 
the minimum of average IoU distance. With the various K and the corresponding minimum of 
average IoU distance, Elbow Method [35] is also used to determine the appropriate K. At this time, 
the cluster centroids represent the width and height of the prior anchors, and the scales of anchors 
can be acquired by calculating the side of the square which has the same area as the produced prior 
anchors. 

Furthermore, the mini-batch k-means algorithm is not only simple and liable to implement, but 
also can greatly promote the detection performance. Hence, it can be further explored and applied to 
other parameters of the neural network model in future work. 

4. Dataset and Experimental Settings 

To verify the effectiveness of the presented method, we execute comparative experiments on 
public aerial DOTA-v1.5 datasets [19], NWPU VHR-10 dataset [20] and RSOD dataset [21]. The 
dataset description, implementation details and evaluation criteria will be discussed in this section. 

4.1. Dataset Description 

4.1.1. DOTA-v1.5 Dataset 

The DOTA-v1.5 is the latest version of DOTA-v1.0. They all have identical aerial images, but 
DOTA-v1.5 modifies and updates the annotations of the object. In DOTA-v1.0, many small object 
instances of about 10 pixels or less were omitted, and additional annotations were made in DOTA-
v1.5. The DOTA-v1.5 dataset collates a total of 2806 aerial images and includes 400,000 annotated 
object instances in 16 categories, containing plane (PL), baseball diamond (BD), bridge (BR), ground 
track field (GTF), small vehicle (SV), large vehicle (LV), ship (SH), tennis court (TC), basketball court 
(BC), storage tank (ST), soccer ball field (SBF), roundabout (RA), harbor (HA), swimming pool (SP), 
helicopter (HC) and container crane (CC). Furthermore, all of the instances are in two forms of 
annotation: the oriented bounding boxes (OBB) and the horizontal bounding boxes (HBB). For 
ensuring that the distribution of training data and test data is roughly matched, 1/2 of the dataset is 
randomly selected as a training set, 1/6 as a verification set and 1/3 as a test set. Besides, the analysis 
result of the training part of the DOTA-v1.5 and DOTA-v1.0 datasets is shown in Table 1. It should 
be noted that the number of images in this table is not the actual number of the images of the training 
data, because one image may contain more than one category. As shown in Table 1, the main object 
instances added are small vehicles and large vehicles. In addition, the category of a container crane 
is added in the DOTA-v1.5. Therefore, it requires the neural network model to have more powerful 
capability for the detection of small objects and stronger robustness for the detection of multi-scale 
objects. 

4.1.2. NWPU VHR-10 Dataset 

In the NWPU VHR-10 dataset [20], it consists of 800 images (about 1000 × 1000) with 650 
positive objects and 150 negative objects. It includes ten categories, which are Airplane, Ship (SH), 
Storage tank (ST), Baseball diamond (BD), Tennis court (TC), Basketball court (BC), Ground track 
field (GTF), Harbor (HR), Bridge (BR) and Vehicle. In this paper, the dataset is randomly split into a 
training set, a verification set, and a test set according to the proportion of 20%, 20% and 60%. 
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4.1.3. RSOD Dataset 

The RSOD dataset [21] has 936 annotated images, including 4993 aircrafts, 191 playgrounds, 180 
overpasses and 1586 oil tanks. In this paper, the dataset is randomly split into a training set, a 
verification set and a test set according to the ratio of 25%, 25% and 50%. 

Table 1. Analysis results of the training part of the DOTA-v1.5 and DOTA-v1.0 dataset. The number 
of images in this table is not the actual number of images, because one image may contain more than 
one category. 

Object Classes 
Number of Images Number of Instances 

DOTA-v1.5 DOTA-v1.0 DOTA-v1.5 DOTA-v1.0 
Plane 198 197 8072 8055 

Baseball-diamond to 121 122 412 415 
Bridge 213 210 2075 2047 

Ground-track-field 180 177 331 325 
Small-vehicle 904 486 126,686 26,126 
Large-vehicle 545 380 22,400 16,969 

Ship 435 326 32,973 28,068 
Tennis-court 308 302 24,38 2367 

Basketball-court 116 111 529 515 
Storage-tank 202 161 5346 5029 

Soccer-ball-field 130 136 338 326 
Roundabout 182 170 437 399 

Harbor 340 339 6016 5983 
Swimming-pool 226 144 2181 1736 

Helicopter 32 30 635 630 
Container-crane 7 - 142 - 

4.2. Implementation Details 

The experiments are performed on the Detectron [36] platform. The proposed detector was 
trained on an Nvidia GTX 1080Ti GPU with 11 GB of RAM and optimized with synchronous 
stochastic gradient descent (SGD) by setting the 0.0001 for weight decay and 0.9 for momentum. In 
each mini-batch, there is only one image. For the DOTA-v1.5 dataset, we first chipped the images into 
1024 × 1024 sub-images and set the overlap value to 200 due to the high resolution of these images. 
Then for those cut sub-images of DOTA-v1.5 and the other two datasets with relatively not high 
resolution of the image (about 1000 × 1000), the short edge was resized to 800 pixels and the long 
edge was limited to 1000 pixels. Finally, the proposed network was learned a total number of 180k 
iterations on the DOTA-v1.5 dataset. Before 140k iterations, the learning rate was 0.001 and it was 
reduced by a factor of 10 every next 20k iterations. Besides, for the other two datasets, we also chose 
this learning policy of step with decay but only a total number of 45k iterations. Before 30k iterations, 
the learning rate was 0.001 and it was reduced by a factor of 10 for the next 15k iterations. All the 
experiments were initialized with common objects in context (COCO) [37] pre-trained weights. For 
data augmentation, we did not execute data augmentation processing except random flipping images 
during training. As for ROI generation, we first picked up 10,000 proposals with the highest scores 
and then got 2000 ROIs at most by the NMS procedure. Furthermore, the effective Group 
normalization (GN) [38] and ROI-Align [30] techniques were used in the proposed EFPN. 

4.3. Evaluation Criteria 

In the experiments, we utilized the precision-recall curve (PRC) and the average precision (AP) 
as the evaluation criteria. The PRC depicts the correlation between the precision value and the recall 
rate which can be formulated as follows: 

Precision =  𝑇𝑃/(𝑇𝑃 +  𝐹𝑃) (20) 
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Recall =  𝑇𝑃/(𝑇𝑃 +  𝐹𝑁), (21) 

where TP, FP and FN are the number of true positives, false positives and false negatives, respectively. 
In general, if the particular detector can maintain high precision with the increase of the recall rate, it 
is considered to be excellent in performance. 

The region area under the PRC is AP, which is the average precision of all recall values from 0 
to 1. The mean average precision (mAP) denotes the average precision value for all categories. Note 
that the higher the value of AP, the better the performance of the detector. In addition, we evaluate 
the detections of small, medium and large objects with different scales which range from 1 pixel to 
50 pixels, 50 pixels to 300 pixels and over 300 pixels, respectively. By calculating the average of the 
AP values of different scales in each category, the mean average precision of each scale is acquired, 
and the AP of the corresponding small, medium and large objects scales are represented by APS, APM, 
APL respectively. 

5. Results 

5.1. Ablation Experiments 

5.1.1. Ablation for EFPN 

To verify the effectiveness of each part of the presented EFPN, we compare the performance 
changes when separately adding the MBDB module, the attention pathway (AP) and the augmented 
bottom-up pathway (ABUP) to the baseline FPN on the DOTA-v1.5 validation set. The first to the 
fourth row of Table 2 demonstrate the comparison results. The combination strategies are FPN with 
the multi-branched dilated bottleneck module (FPN+MBDB), FPN with the attention pathway 
(FPN+AP), FPN with the augmented bottom-up pathway (FPN+ABUP). Compared with FPN, all 
combinations yield better results, increasing mAP by 2.46%, 2.87% and, 2.18% respectively. The EFPN 
achieves the best result with mAP value of 74.67%. In remote sensing images, there are objects with 
vastly different scales and the scale AP of some categories is small, so the average scale AP (APS, APM, 
APL) for all categories is generally smaller than mAP. As shown in Table 2, for the APS of each 
combination (FPN+MBDB, FPN+AP, FPN+ABUP), they all have a certain boost relative to FPN. In 
addition, we also compare the parameters (Params), computational cost (FLOPs) and average run 
time per image of the baseline FPN and the proposed EFPN as well as each combination (FPN+MBDB, 
FPN+AP, FPN+ABUP). Table 3 shows the detailed comparison results. As described in section 3.1.1, 
we discard the stage5 of the backbone for the EFPN to save memory because it is of little use to our 
neural network model. Thus, the EFPN and all combinations (FPN+MBDB, FPN+AP, FPN+ABUP) 
contain fewer parameters than the traditional FPN. Due to some extra operation, the floating-point 
operations (FLOPs) still increase for the final EFPN, but the average run time per image has only a 
small fluctuation. 

Table 2. The comparison results for the FPN and EFPN on the DOTA-v1.5 validation dataset. FPN: 
Feature Pyramid Network. FPN+MBDB: FPN with the multi-branched dilated bottleneck module 
which is described in section 3.1.2. FPN+AP: FPN with the attention pathway. FPN+ABUP: FPN with 
the augmented bottom-up pathway. EFPN: Extended Feature Pyramid Network. 

Method FPN MBDB AP ABUP APS APM APL mAP(%) 
FPN[11] √ - - - 52.91 62.38 38.41 69.51 

FPN+MBDB √ √ - - 64.72 65.21 46.31 71.97 
FPN+AP √ - √ - 60.93 64.62 48.97 72.38 

FPN+ABUP √ - - √ 63.32 63.78 42.89 71.69 
EFPN √ √ √ √ 66.11 70.16 50.38 74.67 

The precision-recall curves of the 5 object classes in Table 2 are shown in Figure 6. These 5 
categories are selected from all 16 categories and they have a visible distinction in performances 
between network architectures. The recall rate assesses the ability to detect more objects, but the 
precision measures the ratio of correct objects to all detected objects. Therefore, as the curve decreases 
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sharply, the higher the recall rate, the better the detection effect of the class. Due to the high similarity 
between the object and the background, and the lack of training samples, the container cranes are 
poorly recognized in the FPN and the proposed method can promote the detection effect to a certain 
extent. For each combination (FPN+MBDB, FPN+AP, FPN+ABUP), the small objects (such as small 
vehicles) and the large objects (such as ground track field) both get better detection results. From 
Figure 6e, for the presented EFPN, the recall curves of most object classes begin to decline sharply 
when the recall value exceeds 0.8. It is because the proposed EFPN has stranger semantic information 
extraction ability and nice detection performance. 

Table 3. The detailed comparison at each operation stage of EFPN. 

Method Params FLOPs Average Run Time (s) 
FPN[11] 8.98 × 10  2.34 × 10  0.20 s 

FPN+MBDB 6.64 × 10  3.24 × 10  0.21s 
FPN+AP 6.03 × 10  2.16 × 10  0.20s 

FPN+ABUP 6.59 × 10  3.19 × 10  0.21s 
EFPN 7.25 × 10  4.27 × 10  0.23s 
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Figure 6. The precision-recall curves of Table 2: (a) FPN: Feature Pyramid Network. (b) FPN + MBDB: 
FPN with the multi-branched dilated bottleneck module. (c) FPN + AP: FPN with the attention 
pathway. (d) FPN + ABUP: FPN with the augmented bottom-up pathway. (e) EFPN: Extended 
Feature Pyramid Network. 

5.1.2. Ablation for the Adaptive Scale Training Strategy and Anchors 

For assessing the validity of the adaptive scale training strategy and anchors which are described 
in section 3.2, we compare the baseline FPN with FPN+AS and FPN+AA on the DOTA-v1.5 validation 
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set, where the AS and AA are used to shortly represent the adaptive scale training strategy and 
adaptive anchors, respectively. In addition, we also tested the three combination methods with EFPN, 
which were EFPN+AA, EFPN+AS and EFPN++ (EFPN+AA+AS). The comparison results are 
exhibited in Table 4. It should be noted from Table 4 that after the proposed methods were added, 
the detection results can be improved with varying degrees. Compared with FPN, the incorporated 
FPN+AS and FPN+AA increase the total mAP by 2.36% and 2.17%, respectively. In the combination 
works, the EFPN++ achieves the highest mAP value 77.17% compared with EFPN+AS and EFPN+AA, 
increasing the mAP by 1.55% and 1.47%, respectively. In addition, compared with FPN and EFPN, 
the APL of FPN+AS and EFPN+AS both have improved because the proposed adaptive scale training 
strategy can promote the detection of the large object. The precision-recall curves of Table 4 over the 
5 classes are shown in Figure 7. From Figure 7a and Figure 7b, we can also see that the proposed 
FPN+AS can improve the detection of large objects, such as ground track field and soccer ball field. 
Moreover, Figure 7a and Figure 7c show that the proposed FPN+AA can promote the detection of 
objects with special shapes, such as bridge and harbor. 

Table 4. The results of comparison for using the adaptive scale training strategy and anchors on the 
DOTA-v1.5 validation dataset. EFPN: Extended Feature Pyramid Network. AS: adaptive scale 
training strategy. AA: adaptive anchors. EFPN++: EFPN with the adaptive scale training strategy and 
the adaptive anchors. 

Method AS AA APS APM APL mAP(%) 
FPN[11] - - 52.91 62.38 38.41 69.51 
FPN+AS √ - 65.93 64.87 49.40 71.87 
FPN+AA - √ 63.31 66.49 46.42 71.68 

EFPN - - 66.11 70.16 50.38 74.67 
EFPN+AS √ - 67.29 71.17 52.33 75.62 
EFPN+AA - √ 67.79 70.89 50.83 75.70 

EFPN++ √ √ 70.15 72.82 53.86 77.17 
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Figure 7. The precision-recall curves of Table 4: (a) FPN. (b) FPN + AS: FPN with the adaptive scale 
training strategy. (c) FPN + AA: FPN with the adaptive anchors. (d) EFPN + AS: EFPN with the 
adaptive scale training strategy. (e) EFPN + AA: EFPN with the adaptive anchors. (f) EFPN++: FPN 
with the adaptive scale training strategy and adaptive anchors. 

AS and AA are used to shortly represent the adaptive scale training strategy and adaptive anchors 
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5.2. Comparison with the-State-of-the-Art Methods 

5.2.1. Results on DOTA-v1.5 Dataset 

To compare with the existing advanced methods, we reimplement the RetinaNet [23], Faster 
RCNN[2] and FPN[11] on DOTA-v1.5 Dataset. All of them are applicable to multi-category object 
detection. For ensuring the accuracy and fairness of experimental results, all experimental data and 
parameter settings are strictly consistent. Table 5 displays the comparison results which are obtained 
by submitting the predictions of the test set images to the official DOTA-v1.5 evaluation server. From 
Table 5, our method achieve the best performance, which greatly exceeds the RetinaNet, Faster R-
CNN, FPN by 18.33%, 13.78%, 7.97% at mAP, respectively. For the small objects, such as small 
vehicles, our method remarkably outperforms the FPN by 16.49% at mAP due to its stronger ability 
of information extraction. The detection results of EFPN++ for each class on the DOTA-v1.5 test 
dataset are shown in Figure 8. 

   

(a) (b) (c) 

   

(d) (e) (f) 

   

(g) (h) (i) 
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Figure 8. Visualization detection results for 16-classes on the DOTA-v1.5 test dataset. Main display 
categories: (a) harbor; (b) baseball diamond and tennis court; (c) ship and harbor; (d) swimming pool 
and small vehicle; (e) ground track field and soccer ball field; (f) tennis court and basketball court; (g) 
roundabout; (h) plane and lLarge vehicle; (i) bridge; (j) helicopter; (k) container-crane; (l) storage tank 
and ship. 

5.2.2. Results on NWPU VHR-10 Dataset 

We further compare the related advanced methods with the presented method on the NWPU 
VHR-10 dataset [20] and the comparison results as displayed in Table 6. From Table 6, it is remarkably 
shown that the presented method obtains better performance, which greatly exceeds Faster R-CNN 
[2] by 13.2% at mAP. In addition, our method outperforms the two advanced methods R-FCN [26] 
and Deformable R-FCN [39], increasing the mAP by 9.8% and 7.5%, respectively. 

5.2.3. Results on RSOD Dataset 

We also certify the effectiveness of the presented method with existing methods on the RSOD 
dataset [21] and Table 7 shows the comparison results. Tayara et al. [40] proposed a uniform one-
stage model for object detection in aerial images and produced relatively competitive results with the 
mAP value of 94.19%. Overall, Table 7 shows that the proposed method is able to get better 
performance than the state-of-the-art methods. 

Table 5. Comparison results on the DOTA-v1.5 test set. The abbreviation names of categories follow 
[19] and are described in detail in Section 4.1.1. The bold numbers represent the best detection results. 

Method RetinaNet[23] Faster RCNN[2] FPN[11] Ours 
PL 69.45 71.31 77.49 86.75 
BD 75.91 75.47 79.93 84.17 
BR 42.45 48.8 55.12 61.28 

GTF 65.24 63.78 68.03 77.45 
SV 34.36 51.52 61.17 77.66 
LV 64.4 66.2 69.98 78.23 
SH 69.26 78.19 84.87 88.35 
TC 88.1 90.51 89.94 90.85 
BC 68.48 68.76 75.93 83.67 
ST 52.08 61.84 79.22 83.64 

SBF 47.96 51.45 60.83 63.42 
RA 63.84 69.63 71.24 76.70 
HA 70.36 74.88 75.21 80.98 
SP 65.41 66.83 74.51 80.99 
HC 43.86 50.91 57.97 77.58 
CC 25.06 28.93 30.49 47.74 

mAP(%) 59.14 63.69 69.5 77.47 
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Table 6. Comparison results on the NWPU VHR-10 dataset. The abbreviation names of the category 
are described in detail in section 4.1.1 and the bold numbers represent the best detection results. 

Method YOLOv2[3] SSD[22] 
Faster  

R-CNN[2] R-FCN[26] 
Deformable  
R-FCN[39] Ours 

Airplane 90.16 92.3 94.7 95.9 95.9 90.7 
SH 82.22 82.42 79.8 83.4 83.8 89.2 
ST 20.72 52.42 55.5 65 66.8 74.5 
BD 94.39 97.62 92.2 94.6 95.3 87.5 
TC 44.75 60.16 57.4 69.3 73.6 89.2 
BC 65.74 61.84 69.1 73.9 76.8 90.8 

GTF 99.85 98.67 99.5 97.4 98.1 99.3 
HA 66.45 75.68 72.9 77.5 77.9 88.2 
BR 66.45 72.27 62.9 47.8 57.8 77.7 

Vehicle 41.82 53.82 58 71.3 72.8 86.7 
mAP(%) 67.96 74.72 74.2 77.6 79.9 87.4 

Table 7. Comparison results on the RSOD dataset. The bold numbers represent the best detection 
results. 

Method YOLOv2 
[3] 

SSD 
[22] 

Faster  
R-CNN[2] 

R-FCN[26] Deformable  
R-FCN[39] 

Tayara 
et al. [40] 

Ours 

 Aircraft 64.8 72.5 76.6 84.3 84.1 86.25 96.3 
 Oil tank 93.77 92.83 95 95.7 96.8 95.98 96.9 
Overpass 90.85 91.43 68 74.9 82.4 94.67 89.1 

Playground 99.98 97.71 96 98 97.9 99.87 98.2 
 mAP(%) 87.35 88.62 83.9 88.2 90.3 94.19 95.1 

6. Discussion 

Extensive experimental results demonstrate that the presented method has achieved excellent 
detection performance in the multiple remote sensing datasets. The advantages of the proposed 
EFPN are illustrated as follows: (1) In the remote sensing images, numerous small-scale objects may 
be around or below 10 pixels, and when they are missing in the deep layers, the context cues will 
disappear simultaneously. Therefore, simply using the traditional feature pyramid structure can no 
longer improve performance in this case. Like the Feature Pyramid Network, the proposed EFPN 
also predicts small objects in the shallower layers. The difference is that through the proposed MBDB 
module and the added augmented bottom-up pathway, EFPN has better performance for detecting 
the small objects due to the stronger semantic information extraction capability; (2) Since large-scale 
objects are usually produced and predicted in deeper layers, the boundaries of these objects might be 
too fuzzy to obtain an accurate regression. However, the proposed EFPN can retain a high spatial 
resolution and have a larger receptive field in deeper layers, so it is more powerful in finding more 
ground-truth large objects and locating the boundary of the objects. 

Although the effect is obvious, the small objects which are particularly similar to the background 
are poorly recognized, such as container cranes. In addition, we can see from Table 1 that the sample 
number of the container cranes is very small. Figure 9 compares one detection result with its ground 
truth for the container crane. We can well see that there are some false alarms due to the high 
similarity between the object and the background, and the lack of training samples. In the future 
work, we will consider optimizing our network with stronger feature extraction ability, and adopting 
a better sample balance and data amplification strategy to further promote the detection performance, 
especially for the small-scale objects under complex background. 
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Figure 9. Visual contrast: (a) detection result. (b) ground truth. 

7. Conclusions 

In this paper, considering the huge scale variations of the object instances in remote sensing 
images, we proposed an Extended Feature Pyramid Network (EFPN) which has stronger semantic 
information capture ability to detect multi-scale targets especially dense small targets. Through 
reasonable design, the proposed EFPN has fewer parameters than the original faster FPN, and can 
achieve better detection effect. The ablation study demonstrated the performance improvement of 
each component of the overall architecture. When preprocessing images and objects to be of 
appropriate size for training, we also proposed an adaptive scale training strategy for making the 
neural network better learn the features of different scale objects. In addition, due to the huge 
differences of the object shapes in remote sensing images, we presented a novel clustering method to 
obtain the adaptive scales and aspect ratios of anchors and ulteriorly improve the detection 
performance. Extensive experiments were performed on the open-source DOTA-v1.5 dataset, NWPU 
VHR-10 dataset and RSOD dataset, and the results indicate that the presented method outperformed 
the state-of-the-art methods on the mAP both for small objects and large objects. 

Author Contributions: Conceptualization, W.G.; Methodology, W.G.; Software, W.G.; Validation, W.G. and 
J.K.C.; Formal Analysis, W.G. and J.K.C.; Investigation, W.G.; Writing-original draft, W.G. and J.K.C.; Writing-
Review & Editing, W.W.G. and W.H.L.; Supervision, W.W.G. and W.H.L.; Project Administration, W.W.G. and 
W.H.L.; Funding Acquisition, W.W.G.  

Funding: This work is supported by the Municipal Science and Technology Project of CQMMC, China 
(2017030502); National Science and Technology Key Program of China (2013GS500303); the Key Projects of 
Science and Technology Agency of Guangxi province, China (Guike AA 17129002). 

Acknowledgments: We are very grateful for the dataset provided by the relevant scholars. We also thank the 
peer reviewers for valuable suggestions and comments. 

Conflicts of Interest: The authors declare no conflict of interest. 



Remote Sens. 2020, 12, 784 23 of 24 

Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

References 

1. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural 
networks. In Proceedings of the International Conference on Neural Information Processing Systems 
(NIPS), Lake Tahoe, NV, USA, 3–8 December 2012; pp. 1097–1105. 

2. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards Real-Time Object Detection with Region 
Proposal Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 1137–1149. 

3. Redmon, J.; Farhadi, A. YOLO9000: Better, faster, stronger. In Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 7263–7271. 

4. Chen, C.; Gong, W.; Chen, Y. Object Detection in Remote Sensing Images Based on a Scene-Contextual 
Feature Pyramid Network. Remote Sens. 2019, 11, 339. 

5. Qiu, H.; Li, H.; Wu, Q. A2RMNet: Adaptively aspect ratio multi-scale network for object detection in remote 
sensing images. Remote Sens. 2019, 11, 1594. 

6. Adelson, E.H.; Anderson, C.H.; Bergen, J.R. Pyramid methods in image processing. RCA Eng. 1984, 29, 33–
41. 

7. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE 
Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, 20–26 
June 2005. 

8. Lowe, D.G. Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. 
9. Huang, J.; Rathod, V.; Sun, C. Speed/accuracy trade-offs for modern convolutional object detectors. In 

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–
25 July 2017; pp. 7310–7311. 

10. Liu, S.; Qi, L.; Qin, H. Path aggregation network for instance segmentation. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 2018; pp. 
8759–8768. 

11. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object 
detection. arXiv 2017, arXiv:1612.03144. 

12. Li, Z.; Peng, C.; Yu, G. Detnet: A backbone network for object detection. arXiv 2018, arXiv:1804.06215. 
13. Yu, F.; Koltun, V.; Funkhouser, T. Dilated residual networks. In Proceedings of the IEEE Conference on 

Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 472–480. 
14. Chen, L.-C.; Papandreou, G.; Kokkinos, I.; Murphy, K.; Yuille, A.L. Deeplab: Semantic image segmentation 

with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Anal. Mach. 
Intell. 2018, 40, 834–848. 

15. Vaswani, A.; Shazeer, N.; Parmar, N. Attention is all you need. In Proceedings of the Advances in Neural 
Information Processing Systems 30: Annual Conference on Neural Information Processing Systems, Long 
Beach, CA, USA, 4–9 December 2017; pp. 5998–6008. 

16. Yan, J.; Wang, H.; Yan, M. IoU-adaptive deformable R-CNN: Make full use of IoU for multi-class object 
detection in remote sensing imagery. Remote Sens. 2019, 11, 286. 

17. Uijlings, J.R.R.; Sande, K.; Gevers, T.; Smeulders, A.W.M. Selective Search for Object Recognition. Int. J. 
Comput. Vis. 2013, 104, 154–171. 

18. Girshick, R.; Donahue, J.; Darrell, T.; Malik, J. Region-Based Convolutional Networks for Accurate Object 
Detection and Segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 2015, 38, 142–158. 

19. Xia, G.S.; Bai, X.; Ding, J. DOTA: A Large-scale Dataset for Object Detection in Aerial Images. arXiv 2017, 
arXiv:1711.10398. 

20. Cheng, G.; Zhou, P.; Han, J. Learning Rotation-Invariant Convolutional Neural Networks for Object 
Detection in VHR Optical Remote Sensing Images. IEEE Geosci. Remote Sens. 2016, 54, 7405–7415. 

21. Long, Y.; Gong, Y.; Xiao, Z.; Liu, Q. Accurate Object Localization in Remote Sensing Images Based on 
Convolutional Neural Networks. IEEE Geosci. Remote Sens. 2017, 55, 2486–2498. 

22. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Fu, C.; Berg, A.C. SSD: Single Shot Multibox Detector. In 
Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 October 
2016; pp. 21–37. 

23. Lin, T.Y.; Goyal, P.; Girshick, R. Focal loss for dense object detection. In Proceedings of the IEEE 
International Conference on Computer Vision, Venice, Italy, 22–29 October, 2017; pp. 2980–2988. 



Remote Sens. 2020, 12, 784 24 of 24 

Remote Sens. 2020, 12, x; doi: FOR PEER REVIEW www.mdpi.com/journal/remotesensing 

24. Zhang, S.; Wen, L.; Bian, X. Single-shot refinement neural network for object detection. In Proceedings of 
the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–22 June 
2018; pp. 4203–4212. 

25. Girshick, R. Fast R-CNN. In Proceedings of the IEEE International Conference on Computer Vision, 
Santiago, Chile, 11–18 December 2015; pp. 1440–1448. 

26. Dai, J.F.; Li, Y.; He, K.M.; Sun, J. R-FCN: Object Detection via Region-based Fully Convolutional Networks. 
arXiv 2016, arXiv:1606.06409. 

27. Cai, Z.; Fan, Q.; Feris, R.S. A unified multi-scale deep convolutional neural network for fast object detection. 
In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands, 8–16 
October 2016; pp. 354–370. 

28. Zhang, Y.; Gong, W.; Sun, J. Web-Net: A Novel Nest Networks with Ultra-Hierarchical Sampling for 
Building Extraction from Aerial Imageries. Remote Sens. 2019, 11, 1897. 

29. Feizollah, A.; Anuar, N.B.; Salleh, R. Comparative study of k-means and mini batch k-means clustering 
algorithms in android malware detection using network traffic analysis. In Proceedings of the 2014 
International Symposium on Biometrics and Security Technologies (ISBAST), Kuala Lumpur, Malaysia, 26–
27 August 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 193–197. 

30. He, K.; Gkioxari, G.; Dollar, P. Mask R-CNN. IEEE Trans. Pattern Anal. Mach. Intell. 2017, 99, 1, 
doi:10.1109/TPAMI.2018.2844175. 

31. Xie, S.; Girshick, R.; Dollar, P.; Tu, Z.; He, K. Aggregated Residual Transformations for Deep Neural 
Networks. arXiv 2017, arXiv:1611.05431. 

32. Wang, F.; Jiang, M.; Qian, C. Residual attention network for image classification. In Proceedings of the IEEE 
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 22–25 July 2017; pp. 3156–
3164. 

33. Woo, S.; Park, J.; Lee, J.Y. Cbam: Convolutional block attention module. In Proceedings of the European 
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 3–19. 

34. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the 
27th International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 807–814. 

35. Syakur, M.; Khotimah, B.; Rochman, E.; Satoto, B. Integration k-means clustering method and elbow 
method for identification of the best customer profile cluster. IOP Conf. Ser. Mater. Sci. Eng. 2018, 336, 012017. 

36. Girshick, R.; Radosavovic, I.; Gkioxari, G.; Dollar, P.; He, K. Detectron. Available online: 
https://github.com/facebookresearch/detectron (accessed on 22 January 2018). 

37. Lin, T.Y.; Maire, M.; Belongie, S. Microsoft coco: Common objects in context. In Proceedings of the 
European Conference on Computer Vision, Zürich, Switzerland, 6–12 September 2014; pp. 740–755. 

38. Wu, Y.X.; He, K.M. Group Normalization. arXiv 2018, arXiv:1803.08494. 
39. Dai, J.; Qi, H.; Xiong, Y. Deformable convolutional networks. In Proceedings of the IEEE International 

Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 764–773. 
40. Tayara, H.; Chong, K.T. Object detection in very high-resolution aerial images using one-stage densely 

connected feature pyramid network. Sensors 2018, 18, 3341. 

 

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access 
article distributed under the terms and conditions of the Creative Commons Attribution 
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). 

 


