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Abstract: Salinity is a critical parameter in the Arctic Ocean, having potential implications for climate
and weather. This study presents the first systematic analysis of 6 commonly used sea surface salinity
(SSS) products from the National Aeronautics and Space Administration (NASA) Aquarius and Soil
Moisture Active Passive (SMAP) satellites and the European Space Agency (ESA) Soil Moisture and
Ocean Salinity (SMOS) mission, in terms of their consistency among one another and with in-situ data.
Overall, the satellite SSS products provide a similar characterization of the time mean SSS large-scale
patterns and are relatively consistent in depicting the regions with strong SSS temporal variability.
When averaged over the Arctic Ocean, the SSS show an excellent consistency in describing the
seasonal and interannual variations. Comparison of satellite SSS with in-situ salinity measurements
along ship transects suggest that satellite SSS captures salinity gradients away from regions with
significant sea-ice concentration. The root-mean square differences (RMSD) of satellite SSS with
respect to in-situ measurements improves with increasing temperature, reflecting the limitation of
L-band radiometric sensitivity to SSS in cold water. However, the satellite SSS biases with respect to
the in-situ measurements do not show a consistent dependence on temperature. The results have
significant implications for the calibration and validation of satellite SSS as well as for the modeling
community and the design of future satellite missions.
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1. Introduction

Sea surface salinity (SSS) is a critical parameter in the Arctic Ocean for a variety of reasons,
e.g., since its variation controls seawater density variations at cold temperatures [1,2]. SSS is
essential to study Arctic and global ocean circulation, freshwater distribution and transports, mixing,
water-mass formation, ocean heat content, biogeochemical cycles [3–7], sea-ice formation, and ice
cover persistence [8], especially with the changes currently affecting the Arctic Ocean [9–11]. In turn,
all these phenomena have implications for ocean–ice–atmosphere interactions and thus, climate and
weather, including potential teleconnections with lower latitudes.

In-situ data are sparse in the Arctic basin, which limits our knowledge of salinity patterns in the
Arctic Ocean. On the other hand, modeling tools have been widely used to study the Arctic Ocean.
However, the lack of in-situ measurements makes it difficult to validate and constrain models. Recent
advances in the observation of SSS from space offer the potential to provide measurements of the
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ice-free Arctic Ocean on synoptic (a few days) and longer time scales. The European Space Agency
(ESA) Soil Moisture and Ocean Salinity (SMOS) mission [12,13] was launched in 2009 and has provided
SSS data since then. The National Aeronautics and Space Administration (NASA) Aquarius/SAC-D
mission was launched in 2011 and provided SSS data from mid-2011 until a hardware failure occurred
mid-2015 [14]. Finally, the NASA Soil Moisture Active Passive (SMAP) mission [15] has provided SSS
measurements since mid-2015. While SMAP has a spatial resolution of about 40 km and a 2–3-day
temporal repeat, SMOS has a spatial resolution of about 45–50 km and 3-day repeat, while Aquarius
has a lower spatial resolution of 100–150 km and a longer temporal repeat of 7 days.

All three SSS missions are based on L-band radiometry, which is a limitation at high latitudes due
to the much lower sensitivity to salinity in cold waters [16], resulting in much larger uncertainties in
polar oceans than at lower latitudes [16,17]. As shown in Reference [17], such sensitivity drops from
0.5 K/g of salt per kg of seawater to 0.3 K/g of salt per kg of seawater, when sea surface temperature
(SST) decreases from 15 ◦C to 5 ◦C. However, Arctic SSS variability (both spatial and seasonal) is
large [18], and therefore, L-band SSS may still have reasonable capability to detect significant Arctic
changes. The paucity of in-situ salinity measurements in the ice-free Arctic Ocean presents a great
challenge to the evaluation of satellite SSS in the Arctic Ocean. A few recent studies have attempted to
assess the quality of several satellite SSS products compared with in-situ measurements. However,
what is still lacking is a systematic evaluation of the full suite of commonly used satellite SSS products
in the Arctic Ocean in terms of their consistency among one another and the consistency with in-situ
data. The authors of Reference [19] performed a comparison of SMOS and Aquarius products with
in-situ measurements and models for the north Atlantic region up to 80◦N. They found a root mean
square difference (RMSD) of 0.9. However, they did not perform any comparison inside the Arctic
Basin. The authors of Reference [20] presented a comparison of three different Aquarius SSS products
and one SMOS SSS product in the polar and subpolar oceans. When the products are compared with
in-situ measurements, they found RMSD values ranging from 0.33 to 0.89. Overall, the products
agree well, although with large biases of 1. Further, the majority of their in-situ data were in the
subpolar oceans south of the Arctic Ocean. The authors of Reference [21] assessed the accuracy of
only the SMAP SSS product produced by the Jet Propulsion Laboratory (JPL) in the Arctic Ocean
through a comparative analysis with in-situ salinity data from Argo floats, ships, gliders, and in-field
campaigns. Their results show a RMSD between in-situ and SMAP JPL SSS lower than 1.2 north of
65◦N. The authors of Reference [22] presented a new method to retrieve SMOS SSS maps in the Arctic
Ocean. They used an extensive database of Argo and thermosalinographs (TSG) data to assess the
quality of their product dedicated to the Arctic Ocean. They found that the major features of interannual
SSS variations observed by the TSG are also captured by SMOS. They also found a standard deviation
of the difference between the new SMOS SSS maps and Argo SSS that ranges from 0.25 to 0.35. Finally,
a recent study from Reference [23] assessed the quality of only two SMOS SSS products in the Arctic
Ocean from 2011 to 2013 by comparing these products to in-situ data. They found that in the Beaufort Sea,
the SMOS product dedicated to the Arctic has the smallest bias (about 0.6) and the smallest RMSD (2.6).

Several studies have demonstrated the potential scientific capabilities and applications for satellite
SSS observations at high latitudes. The authors of Reference [24] studied the interannual variability
of the Ob’ and Yenisei River plume dynamics using multi-satellite observations. Aquarius SSS and
Aqua MODIS chlorophyll-a data for 2011–2014 permitted identification of the river plume and its
extension. The authors of Reference [25] used SMOS SSS data along with ocean color data in the Beaufort
Sea to discriminate freshwater sources and demonstrated that SSS estimates can be used to identify
riverine freshwater plumes. More recently, the authors of Reference [21] demonstrated the capability of
SMAP to capture interannual SSS variability in the Kara Sea associated with the Ob’ and Yenisei rivers.
The increasing amount of studies using satellite SSS observations in the Arctic Ocean show the need to
thoroughly assess the quality and the capability of satellite SSS measurements in this region.

To our knowledge, Reference [20] is the only study that compared several satellite SSS products
with each other. However, they only compared satellite data with a few TSG transects within the
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Arctic Ocean, the majority of their in-situ data being in subpolar seas. This study also did not include
any SMAP product and did not provide diagnostics, such as dependence on temperature and sea-ice
concentration. The importance of SSS for Arctic Ocean research and the lack of a systematic evaluation
of satellite SSS in the Arctic Ocean motivated the main objective of this study: to perform a systematic
evaluation of the commonly used satellite SSS products from all available satellite SSS missions, both
among the products and against a more extensive suite of in-situ measurements in the Arctic Ocean.
A main goal is to quantify the strengths and limitations of satellite SSS on various spatial and time
scales. Another goal is to provide feedback to the various satellite SSS teams so as to improve the
retrievals and the consistency among different products.

The paper is organized as follows. In Section 2, we provide a description of the satellite and in-situ
SSS datasets. The results of the intercomparison between the different satellite SSS observations and
the comparison between satellite and in-situ salinity measurements are presented in Section 3. Finally,
the findings and broader implications are discussed in Section 4.

2. Materials and Methods

Our study focuses on satellite SSS products in the Arctic. We use six different products from the
three satellite missions that are or were delivering SSS measurements: the ESA SMOS, NASA/SAC-D
Aquarius, and NASA SMAP missions. We also use a large amount of in-situ salinity data to compare
with satellite SSS data.

2.1. Satellite Sea Surface Salinity (SSS) Data

In this analysis, we use 2 different SMOS products. First, we use the Level 3 debiaised version 3
SMOS SSS product produced by LOCEAN/IPSL (UMR CNRS/UPMC/IRD/MNHN) laboratory and
ACRI-st company that participate in the Ocean Salinity Expertise Center (CECOS) of Centre Aval de
Traitement des Donnees SMOS (CATDS), at IFREMER, Plouzané (France) [26]. The 9-day running
mean maps on an EASE 25 km grid were provided from January 2010 to December 2017 every 4
days (https://www.catds.fr/Products/Available-products-from-CEC-OS/CEC-Locean-L3-Debiased-v3).
In the following, this product is referred to as SMOS LOCEAN.

We also use the Level 3 version 2 SMOS SSS product from the Barcelona Expert Center (BEC)
dedicated to high latitudes. This product consists of 9-day running mean, objectively analyzed, EASE
NL 25 km resolution gridded SSS maps, produced daily from January 2011 to December 2017 and
distributed by BEC [22] (http://bec.icm.csic.es/sss-arctic-product-version-2/). In the following, this
product is referred to as SMOS BEC.

Two different Aquarius products are also used. We use the Level 3 version 5 Aquarius
CAP SSS product from the Jet Propulsion Laboratory, with 7-day running means provided on a
1 × 1◦ daily grid [27] and distributed by NASA Physical Oceanography Distributed Active Archive
Center (PO.DAAC) (https://podaac.jpl.nasa.gov/dataset/AQUARIUS_L3_SSS_CAP_7DAY_V5). In the
following, this SSS product will be referred to as Aquarius CAP.

We also use the Level 3 version 5 Aquarius product, which is the official end-of-mission public
data release from the Aquarius/SAC-D mission. This product consists of 7-day running mean
SSS delivered on a 1 × 1◦ grid every day [28]. This SSS product is distributed by PO.DAAC
(https://podaac.jpl.nasa.gov/dataset/AQUARIUS_L3_SSS_SMI_7DAY-RUNNINGMEAN_V5). In the
following, this SSS product will be referred to as Aquarius.

Finally, we use two SSS products from the SMAP mission. The Level 3 version 4.2 SMAP SSS product
distributed by the JPL is used here, with a 60 km spatial resolution and an 8-day running mean on a
0.25 × 0.25◦ daily grid [29], distributed by PO.DAAC (https://podaac.jpl.nasa.gov/dataset/SMAP_JPL_L3_
SSS_CAP_8DAY-RUNNINGMEAN_V4). In the following, this product is referred to as SMAP JPL.

The Level 3 version 3.0 Remote Sensing Systems (RSS) SMAP SSS product is distributed by
RSS. This 40 km 8-day running mean product is provided on a daily 0.25 × 0.25◦ grid [30] (https:
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//podaac.jpl.nasa.gov/dataset/SMAP_RSS_L3_SSS_SMI_8DAY-RUNNINGMEAN_V3_40KM). In the
following, this SSS product is referred to as SMAP RSS.

All the satellite products use the Meisner and Wentz dielectric constant model [31] in order to
retrieve SSS, except SMOS LOCEAN, which uses the Klein and Swift model [32]. Therefore, this can be
a source of differences at high latitudes.

The masking of pixels due to the presence of ice is handled differently for each SSS product.
SSS retrievals are not only made in completely ice-free ocean, a small fraction of sea-ice is tolerated
over the satellite footprint for the SSS retrieval. For SMOS LOCEAN, the ice mask is based on the
dielectric constant and on the ECMWF SST. More details are provided in the SMOS ATBD (https:
//earth.esa.int/documents/10174/1854519/SMOS_L2OS-ATBD). The SMOS BEC product considers water
pixels with a sea-ice concentration lower than 15% by using the EUMETSAT Ocean and Sea-ice Satellite
Application Facility (OSI-SAF) sea-ice concentration product. For Aquarius and Aquarius CAP, ancillary
1/12◦ sea-ice concentration data from NOAA NCEP (https://polar.ncep.noaa.gov/seaice/index.html) are
used. The sea-ice concentration is then integrated over the Aquarius satellite footprint and weighted by
the antenna gain [33] to obtain an ice fraction. Then, pixels are flagged if the ice fraction exceeds 0.1% for
Aquarius and 3% for Aquarius CAP. The Aquarius CAP product provides the ice fraction at each grid
pixel whether there is an SSS retrieval or not. An equivalent method is used for SMAP RSS. The daily
0.25 × 0.25◦ AMSR-E/AMSR2 sea-ice concentration data (http://www.remss.com/missions/amsr/) give
an ice flag in each cell (0 = no sea-ice detected, 1 = sea-ice detected). Then, it is integrated over the
SMAP footprint and weighted by the antenna gain to give an ice fraction. Pixels are then flagged if
the ice fraction exceeds 0.1%. The ice fraction data are provided at pixels where SMAP RSS SSS is
retrieved. For SMAP JPL, the ice mask is based on 1/12◦ NOAA NCEP sea-ice concentration data that
are regridded on a 0.5 × 0.5◦. For each SMAP footprint, the nearest sea-ice concentration value is
found and pixels with a sea-ice concentration exceeding 3% are flagged. The sea-ice concentration is
provided at pixels where SMAP JPL SSS is retrieved. In the following, we will refer to the areas where
SSS retrievals are performed according to each ice mask as “ice-free” ocean.

2.2. In-Situ Salinity Data

We use a large amount of in-situ data gathered in the Arctic Ocean over the period 2011–2018,
as detailed below. In-situ data considered here are measurements of salinity and temperature.

In this study, we use the data from the Rabe database consisting of profiles made using
conductivity/temperature/depth (CTD) probes, bottles, mechanical thermographs, and expendable
thermographs. The data were collected by ships, ice-tethered profilers, profiling floats, and other
platforms [34] (https://doi.pangaea.de/10.1594/PANGAEA.872931).

We also use in-situ data collected by Argo, drifter, animals, profilers, XBT, CTD, bottles, drifting
buoys, and TSG at latitudes higher than 65◦N, East of 45◦E, and West of 45◦W and in the Hudson Bay
from 2011 to 2018. These data were retrieved from the Coriolis database [35] (http://www.coriolis.eu.
org/Data-Products/Data-Delivery/Data-selection).

We use ship CTD data gathered in the Beaufort Sea, Eastern Arctic, Fram Strait, Barents Sea,
and Davis Strait during the respective programs BGEP from Woods Hole Oceanographic Institution
(WHOI) (http://www.whoi.edu/beaufortgyre/data), NABOS from University of Alaska Fairbanks
(https://uaf-iarc.org/nabos/), Fram Strait from Norwegian Polar Institute (NPI) (http://www.npolar.no/

en/projects/fram-strait-arctic-outflow-observatory.html), IMR Barents from Bjerknes Center of Climate
Research (https://www.imr.no/en), and Davis Strait from the University of Washington. These data
were gathered respectively over 2011–2017, 2013 and 2015, 2013–2018, 2013–2017, and 2011–2015.

Underway CTD data were gathered in the Beaufort and Chukchi Seas in 2015 through the program
ONR SeaState. Airborne eXpendable Conductivity Temperature and Depth (AXCTD) data were
gathered in the Chukchi and Beaufort Seas over 2012–2017 through the programs ALAMO from NOAA
and SIZRS from the University of Washington. We also use glider data in the Beaufort Sea through
the programs ONR MIZ and CANAPE/CABAGE from University of Washington in 2014, 2016, and
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2017 (http://www.apl.washington.edu/project/project.php?id=miz; http://www.apl.washington.edu/

arcticseastate; http://psc.apl.uw.edu/research/projects/sizrs/; http://iop.apl.washington.edu/projects/ds/
html/program.html)

TSG data in the Beaufort, Chukchi, and Bering Seas were collected within the programs Ice
Breaker Laurier from the Canadian Institute of Ocean Sciences (http://science.gc.ca/eic/site/063.nsf/eng/

h_935CCA80.html) and Arctic Mix from the University of California, San Diego (http://icefloe.net/files/
Sikuliaq%202015%20MacKinnon%20arcticmix_cruise_report_reduced.pdf) over the period 2013–2017.
We also use TSG data from the Healy and GoSars cruises respectively, conducted in 2015 and 2013 in
the Bering, Chukchi, Beaufort Seas, and central Arctic and in Greenland Sea. These data are distributed
by the CLIVAR and Carbon Hydrographic Data Office (https://cchdo.ucsd.edu/search?bbox=-180,65,
180,90). In-situ salinity data were also collected during the cruises Fleuraus in 2015, FNCM in 2016,
FNFP in 2012, LaLouise in 2012, and Tara in 2013. These data are distributed by Global Ocean Surface
Underway Data (GOSUD) hosted by Coriolis (http://www.coriolis.eu.org/Data-Products/Catalogue#
/metadata/81117be9-7b90-4bab-9082-702301323028). Finally, we use TSG data collected in the Baffin
Bay, Labrador Sea, Greenland Sea, Norwegian Sea, and North Atlantic Ocean from 2011 to 2017 and
distributed by LEGOS (http://sss.sedoo.fr/#).

Surface-drifting buoy data were collected over 2013–2017 in the Beaufort and Chukchi Seas through
the program UpTempo/WARM from the University of Washington and Old Dominion University
(http://psc.apl.washington.edu/UpTempO/).

All in-situ data were binned within the upper 10 m at 1 m intervals centered on half-meter depths
(i.e., from 0.5 m to 9.5 m). For example, the 5.5 m bin is an average of all the data available between
5 m, included, and 6 m, not included. Deeper values were discarded. In the following, we will refer to
the average 0–10 m in-situ salinities as in-situ SSS.

We collocate each available in-situ observation with the closest satellite SSS measurements available,
if any, within a time window of 1 day (+/-12 h) centered on the time of the in-situ measurement.
With each satellite product having a different spatial resolution and grid resolution, the maximum
distance between the in-situ measurement and the satellite observation varies. An in-situ measurement
is collocated with the satellite value (if any) at the pixel the in-situ measurement “falls” into. Depending
on the satellite product, the size of the pixel can be 0.25 × 0.25◦ (SMAP RSS and SMAP JPL), 1 × 1◦

(Aquarius and Aquarius CAP), or 25 km (SMOS LOCEAN and SMOS BEC). The evaluation process of
satellite SSS against in-situ measurements is made complicated due to sampling errors. Indeed, there
are inherent differences in the samplings (temporal and spatial) of satellite and in-situ. While in-situ
measures salinity with 0–10 m depth in a single location and at a specific time, the satellite measures
SSS in the top few centimeters of the ocean over 40–150 km (satellite footprint size), averaged over
a week. Therefore, sampling errors due to near-surface stratification, sub-footprint variability, and
temporal aliasing strongly impact satellite versus in-situ salinity intercomparisons [36,37].

In this study, we also used the World Ocean Atlas 13, updated in July 2019 (https://www.nodc.
noaa.gov/OC5/woa18/). In particular we used the objectively analyzed annual mean salinity data at
0–5 m deep, gridded on a 0.25 × 0.25◦ grid [38].

3. Results

Figure 1a,b show the WOA13 annual mean and standard deviation salinity respectively, over
the domain, the Arctic Ocean, on top of which are represented the areas of interest discussed in this
study. We first compare several commonly used SSS products with each other in the Arctic Ocean to
examine their consistency. As the satellite SSS from different missions cover different time periods,
we separate the analysis into two periods: August 2011 to June 2015 (referred to as 2011–2015 hereafter
for simplicity) that is common for Aquarius and SMOS data, and April 2015 to December 2017 (referred
to as 2015–2017 hereafter for simplicity) that is common for SMOS and SMAP data. Figure 2 shows the
spatial distribution of the time mean SSS during these two periods for the six satellite SSS products:
SMOS BEC, SMOS LOCEAN, Aquarius, and Aquarius CAP for 2011–2015 and SMOS BEC, SMOS
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LOCEAN, SMAP RSS, and SMAP JPL for 2015–2017. This time mean is calculated with all the data
available, whether there is one or several data available in a pixel through the whole period due to the
presence of sea-ice for part of the year.
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Figure 2. Annual mean of sea surface salinity (SSS) over (a–d) 2011–2015 and (e–h) 2015–2017 from
(a,e) SMOS BEC, (b,f) SMOS LOCEAN, (c) Aquarius, (d) Aquarius CAP, (g) SMAP RSS, and (h) SMAP JPL.

These maps show that the ice masks can be quite different among the products. In particular,
the mask used in SMAP JPL data is more permissive than the other products (i.e., allowing SSS
retrievals closer to ice edges). In contrast, the mask used in SMAP RSS is the most conservative
among all products (i.e., excluding more SSS retrievals near ice edges). These maps also show the
qualitative, large-scale consistency of the time-mean SSS fields among different SSS products and with
the climatology salinity based on in-situ data from WOA13, as shown in Figure 1a. For example,
the inflow of saltier Pacific waters through the Bering Strait separates the freshwater waters in the
Beaufort Sea to the east and in the East Siberian Sea to the west. Both of these seas are significantly
affected by river discharges. All products (except for Aquarius CAP) show a relatively sharp transition
of higher salinity from the Barents Sea to lower salinity in the Kara and Laptev Seas. This reflects
the influence of river discharge on the Kara and Laptev Seas and the intrusion of saltier subpolar
North Atlantic waters through the Barents Sea (Aquarius CAP excluded the retrievals in the Kara
Sea and Laptev Sea, so it does not show such a transition). In Baffin Bay, most products show lower
SSS on western and northern parts because of Arctic Ocean outflow and river discharge, and higher
salinity on the eastern and southern sides because of the intrusion of the saltier subpolar North Atlantic
waters through the West Greenland Current. Despite the similarity in large-scale patterns discussed
above, there are regional differences among the products. For example, SMOS LOCEAN retrievals are
saltier in fresh regions, such as the Beaufort gyre, the Siberian shelf, and the Baffin Bay. The salty bias
(higher than 36) observed along the east coast of Greenland is due to sea-ice contamination (personal
communication from J. Boutin). Salty bias observed in SMOS LOCEAN could also be due to the use of
a different dielectric constant model [39]. These differences will inform the retrieval teams to identify
the underlying causes so as to improve the SSS retrievals at high latitudes.

The maps of temporal standard deviation (STD) of SSS for each of the two periods for the different
products are presented in Figure 3. The standard deviation is calculated when at least 10 data values
are available in a pixel through the whole period. In this figure, we chose different color scales for
various products in order to visualize the spatial patterns. The temporal variability of SMOS BEC SSS
is much smaller than those of other products. This is probably because in the SMOS BEC product,
an objective analysis scheme with radii of 321 km, 267 km, and 175 km are applied [22]. This produces
a smoothing which does not allow for capturing the small-scale variability. A new binned product
is being developed at BEC under the ESA contract Arctic+, which aims at better capturing the SSS
small-scale features. In contrast, the temporal variability of SMAP JPL SSS is much larger than those of
other products, most likely due to the more permissive algorithm allowing retrievals near ice edges
and land that are more subject to variability (e.g., runoff, sea-ice melt, and formation). However, most
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products, as well as the WOA13 product (Figure 1b), exhibit similar regions of high variability such
as the Kara Sea, the Siberian shelf, near the mouth of the Mackenzie River, Baffin Bay, and Eastern
Greenland, and the magnitudes of the STDs in these regions vary significantly among the products.
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Figure 3. Annual standard deviation of SSS over (a–d) 2011–2015 and (e–h) 2015–2017 from (a,e) SMOS
BEC, (b,f) SMOS LOCEAN, (c) Aquarius, (d) Aquarius CAP, (g) SMAP RSS, and (h) SMAP JPL. Note the
different colorbar amplitudes (0–1.5 for SMOS BEC, 0–4 for SMOS LOCEAN, Aquarius, Aquarius CAP,
and SMAP RSS, 0–10 for SMAP JPL).

To examine consistency among different SSS products for the Arctic Ocean as a whole, we computed
the monthly time series of average SSS within the Arctic Ocean (Figure 4a,b). The average was calculated
for latitudes above 65◦N over the ice-free ocean grid points that are common to all products for 2011–2015
(Figure 4a) and 2015–2017 (Figure 4b). These time series exhibit a seasonal cycle with minimum
SSS during August–September every year (corresponding to the ice melt season) and maximum SSS
during approximately December–June (corresponding to the ice freezing period). The time series
also show the excellent consistency among different products at monthly time scales with regard to
the interannual variation of minimum SSS: for example, the minimum SSS values during the falls of
2011 and 2012 are lower than those in 2013 and 2014. The minimum SSS values in 2017 are lower
than those in 2015 and 2016. These differences do not particularly correlate with the Arctic-wide time
series of September mean sea-ice extent (e.g., https://nsidc.org/arcticseaicenews/2019/09/arctic-sea-ice-
reaches-second-lowest-minimum-in-satellite-record/), indicating that SSS responds to a variety of forcings
from river discharge, sea-ice growth and melt, net precipitation, and ocean circulation, however this is
beyond the scope of this study. The monthly spread among products (grey shadings) is about 0.43 to 0.5,
which is 4 to 8 times smaller than the magnitude of the average seasonal cycle (2–4). Aquarius CAP is
excluded from this figure as there is no retrieval in the Kara and Laptev Seas, affecting the seasonal and
interannual variability. Therefore, the different SSS products have relatively good “signal-to-noise” ratio in
representing the seasonal cycle and interannual variability of SSS averaged over the Arctic ice-free oceans.

We next compare each satellite SSS product with available in-situ data in the Arctic Ocean
(Figure 5). Only observations that can be collocated with SSS satellite data (see Section 2.2 for the
collocation method) are represented, i.e., there are no satellite SSS measurements retrieved under the
ice, within 40 to 150 km from land (depending on the satellite product) or when sea-ice concentration
or sea-ice fraction within a satellite footprint exceeds the threshold considered for each SSS product
(see Data section). This map shows the striking sparseness of in-situ data in the Arctic Ocean. Over the
2011–2017 period, most of the Arctic Ocean was not sampled by in-situ instruments, only 40% of the

https://nsidc.org/arcticseaicenews/2019/09/arctic-sea-ice-reaches-second-lowest-minimum-in-satellite-record/
https://nsidc.org/arcticseaicenews/2019/09/arctic-sea-ice-reaches-second-lowest-minimum-in-satellite-record/
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Arctic Ocean sampled by SMAP JPL (above 65◦N and considering SMAP JPL ice and land mask) has also
been sampled by at least one in-situ instrument over 2011–2017. In most places sampled, the numbers
of measurements are single digit, within these 40% of the area sampled, about 46% contain less than 10
in-situ observations. Some places in the Bering Strait, the Beaufort gyre, and the Barents Sea have about
50–100 measurements over the seven years. Baffin Bay and the northern Atlantic Ocean are regions that
are routinely sampled with more than 500 measurements per 36 km grid cell over these seven years.
The paucity of in-situ measurements poses a significant challenge to the evaluation of satellite SSS.Remote Sens. 2019, 11, x FOR PEER REVIEW 9 of 21 
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Figure 5. Number of in-situ observations from 2011 to 2017 available to colocate with satellite SSS
observations within the upper 10 meters per 36 km grid cell (EASE36).

We first investigated the capability of satellite SSS to depict salinity gradients along TSG transects
(Figure 6). We considered three different transects among the 98 transects collected. These three
transects were the longest and the ones crossing the largest gradients within the two periods 2011–2015
and 2015–2017. The first transect corresponds to salinity measured all along the Arctic basin from
the 19 May 2013, the second one from Denmark to northern Baffin Bay and back starting on the
31 July 2013 and the third one, also from Denmark to Baffin Bay and back, stating on the 1 June
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2016. The sea-ice fraction or sea-ice concentration provided by the satellite SSS products along the
transects are shown under each plot. In the three cases presented here, large gradients along the
transects were well retrieved by the satellites when not contaminated by ice. Table 1 gathers all the
statistics from each of the three transects. We computed in particular the correlations and the root mean
square difference (RMSD) between each satellite product (when available) and in-situ measurement.
Correlation coefficients are larger than 0.9 and RMSD values range from 0.2 to 2.7 for the first transect
(Figure 6b, Table 1). Correlations are between 0.6 and 0.97 for the second transect and RMSD range
from 0.4 to 1.4 (Figure 6d, Table 1). For the third and last transect, correlations are about 0.5 to 0.9 and
RMSD range from 0.5 to 1.1 (Figure 6f, Table 1). RMSD values significantly drop for SMOS LOCEAN,
SMOS BEC, and Aquarius when only considering ice fraction or sea-ice concentration values lower
than 0.5% for the first transect, as well as for SMOS LOCEAN for the second and third transect (Table 1).
The correlations are all significant with p-values lower than 0.05.
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Figure 6. (a,d,g) SMOS BEC SSS maps of 19 May 2013, 31 July 2013, and 1 June 2016 respectively,
on top of which, represented as a black solid line, is the TSG transect trajectory starting on each of
these days respectively. (b,e,h) SSS from in-situ (black), SMOS BEC (cyan), SMOS LOCEAN (red),
Aquarius (green), Aquarius CAP (yellow), SMAP JPL (blue), and SMAP RSS (magenta) along the
transect represented on the maps on the left. The ice fraction (in %) from Aquarius CAP, SMAP JPL,
or SMAP RSS products along the transect are represented underneath each transect (c,f,i).
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Table 1. Root mean square difference (RMSD) and correlation coefficients between each satellite and
in-situ salinity along each of the three transects represented in Figure 5. The RMSD values within
parenthesis corresponds to the RMSD values when SSS values for which ice fraction is lower than 0.5%
are considered. The p-value significance of the correlations is shown within parenthesis.

Transect 1 Transect 2 Transect 3

RMSD (Ice
Fraction < 0.5%)

Correlation
(p-Value

Significance)

RMSD (Ice
Fraction < 0.5%)

Correlation
(p-Value

Significance)

RMSD (Ice
Fraction < 0.5%)

Correlation
(p-Value

Significance)

SMOS LOCEAN 2.06 (0.59) 0.91
(<0.0001) 1.47 (1.3) 0.56

(<0.0001) 1.13 (1.04) 0.53
(<0.0001)

SMOS BEC 1.63 (1.12) 0.91
(<0.0001) 0.78 (0.8) 0.85

(<0.0001) 1.02 (1.03) 0.85
(<0.0001)

Aquarius 2.71 (1.42) 0.93
(<0.0001) 0.61 (0.61) 0.88

(<0.0001) N/A N/A

Aquarius CAP 0.27 (0.27) 0.97
(<0.0001) 0.38 (0.38) 0.97

(<0.0001) N/A N/A

SMAP JPL N/A N/A N/A N/A 1.45 (1.43) 0.80
(<0.0001)

SMAP RSS N/A N/A N/A N/A 0.52 (0.52) 0.88
(<0.0001)

In the following, we compare each satellite SSS product with all the available in-situ data to
examine their respective consistency with the in-situ data. Figure 7 shows the maps of RMSD between
each satellite product and in-situ data per 1◦ bin as well as the scatter plot between each satellite SSS
product and in-situ SSS. Because SMOS retrieved data from the whole study period 2011 to 2017,
and because SMOS BEC provides daily data (with a 9-day running mean window), more colocations
between in-situ and satellite are available for SMOS BEC (Figure 7a). SMOS LOCEAN on the other
hand, only retrieves data every 4 days, so fewer colocations are available for SMOS LOCEAN than for
SMOS BEC (Figure 7b). SMAP JPL is only available from 2015 to 2017 but has a relatively permissive
ice mask, so more colocations are also available (Figure 7f). The RMSD between satellite and in-situ
is generally larger in the Arctic Ocean than in the subpolar North Atlantic Ocean and Barents Sea,
likely due to the larger gradients caused by runoff, sea-ice melting and formation, and sampling
differences between in-situ and satellite observations, especially large in highly variability regions
(Figure 7a–f; [36]). Also, the larger uncertainty of satellite SSS in the colder Arctic Ocean is a factor for
larger differences between satellite and in-situ in the Arctic Ocean compared to the subpolar region.

The scatter plots between satellite and in-situ show that at salinities lower than 25, SMOS BEC and
LOCEAN tend to overestimate SSS (Figure 2a,b,e,f; Figure 7g,h). Because of their less permissive ice
masks, both Aquarius CAP and SMAP RSS do not retrieve as fresh SSS as other products (lower than
25) (Figure 7k). SMAP JPL tends to underestimate lower SSS significantly (lower than 25), this might
be due to the contaminations by land and sea-ice signals (Figure 7l). From the scatter plots between
each satellite SSS product and in-situ salinity, we compute the bias, RMSD, and correlations between
satellite and in-situ SSS. We also compute the standard error by normalizing the standard deviation of
each satellite product compared with in-situ observations by the square root of the number of samples.
All the statistics are shown in Table 2. The bias between SMOS BEC and in-situ observations are
relatively small compared to other products (0.08 against –0.1 to –0.6). RMSD is smaller for Aquarius
CAP compared to other products, about 0.8 against 1.2 to 3.4 (Table 2). Correlation coefficients are
large for all products, from 0.7 to 0.9, and are significant with p-values lower than 0.05. The standard
error between satellite and in-situ is between 0.5 and 2.4. These statistics include both the uncertainties
of satellite SSS and the effect of sampling differences between satellite SSS and in-situ measurements.
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Figure 7. (a–f) Maps of root mean square difference (RMSD) per 1◦ bin between in-situ observations and
satellite SSS from (a) SMOS BEC, (b) SMOS LOCEAN, (c) Aquarius, (d) Aquarius CAP, (e) SMAP RSS,
and (f) SMAP JPL. (g–l) Scatter plots of satellite SSS ((g) SMOS BEC, (h) SMOS LOCEAN, (i) Aquarius,
(j) Aquarius CAP, (k) SMAP RSS, and (l) SMAP JPL) against in-situ SSS per 1◦ bin factor for larger
differences between satellite and in-situ in the Arctic Ocean compared to the subpolar region.
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Table 2. Bias, RMSD, correlation coefficients, and standard error between each satellite product and in
situ SSS above 65◦N.

Bias RMSD
Correlation

(p-Value
Significance)

Standard Error

SMOS LOCEAN −0.61 1.70 0.88 (<0.0001) 1.12

SMOS BEC 0.08 1.51 0.91 (<0.0001) 1.07

Aquarius 0.56 1.63 0.91 (<0.0001) 1.09

Aquarius CAP −0.24 0.77 0.95 (<0.0001) 0.52

SMAP JPL −0.12 3.37 0.76 (<0.0001) 2.38

SMAP RSS −0.16 1.20 0.93 (<0.0001) 0.84

In order to better understand the impact of temperature and sea-ice on satellite SSS validation,
in Figure 8a–f we show the average temperature (in color) per 1 × 1 bin of satellite against in-situ
salinity. The largest observed differences between satellite and in-situ SSS are often associated with
temperatures lower than 5 ◦C, especially for SMAP JPL, SMOS BEC, and SMOS LOCEAN. This shows
(1) the retrieval errors in cold waters, but also (2) the impact of natural variability of SSS that is not well
represented by the lack of ground truth measurements. Indeed, the SSS variability in the North Atlantic
Ocean and Barents Sea where waters are warm and salty is lower compared to the higher variability in
the Arctic basin, in fresh and cold waters, due to influences of runoff, ice melt, and formation. A similar
analysis is done for sea-ice fraction (for Aquarius CAP and SMAP RSS) or sea-ice concentration (for
SMAP JPL). In Figure 9a–c, we show the average sea-ice fraction or sea-ice concentration in percentage
(color) per 1 × 1 bin of satellite against in-situ SSS. However, sea-ice fraction or concentration data
are only available in Aquarius CAP, SMAP RSS, and SMAP JPL products. Because it allows more
retrievals near ice edges and land, SMAP JPL exhibits the largest differences with in-situ, especially
at fresher salinities. In Figure 9, we can see that the largest differences between satellite and in-situ
SSS occur for larger sea-ice fraction or concentration (on average, for about 0.3% sea-ice fraction or
concentration). In summary, the largest differences between in-situ and satellite are associated with
lower temperature and larger sea-ice fraction or concentration.
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of L-band radiometric sensitivity to SSS. These results are informative to retrieval teams to investigate 
the factors influencing the biases. Also, increasing efforts should be dedicated to improve the 
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Figure 8. Scatter plots of satellite SSS ((a) SMOS BEC, (b) SMOS LOCEAN, (c) Aquarius, (d) Aquarius
CAP, (e) SMAP RSS, and (f) SMAP JPL) against in-situ salinity per 1◦ bin. The colors represent the
mean temperature per 1 × 1.
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To provide further quantitative information on the impacts of temperature and sea-ice fraction or
concentration on the in-situ-satellite salinity comparisons, we analyzed the bias and RMSD between
satellite and in-situ SSS as a function of the minimum temperature considered (Figure 10). There is no
consistent decrease of bias as temperature increases, although two of the six products (Aquarius and
SMOS LOCEAN) do have systematically lower biases as temperature increases (Figure 10a). However,
there is a consistent reduction of RMSD across all products as temperature increases (Figure 10b). In other
words, the STD decreases consistently as temperature increases. The implication is that biases in the
satellite SSS are not necessarily related to the temperature dependence of L-band radiometric sensitivity
to SSS. These results are informative to retrieval teams to investigate the factors influencing the biases.
Also, increasing efforts should be dedicated to improve the dielectric constant models for cold waters.Remote Sens. 2019, 11, x FOR PEER REVIEW 16 of 21 

 

 
Figure 10. (a) Bias and (b) RMSD between in-situ observations and satellite SSS of SMOS BEC (cyan), 
SMOS LOCEAN (red), Aquarius (green), Aquarius CAP (orange), SMAP RSS (magenta), and SMAP 
JPL (blue) per 1 bin as a function of the minimum temperature considered. 

We next investigated the relationships of biases and RMSD of the satellite SSS with maximum 
sea-ice fraction or concentration within the satellite footprint considered (Figure 11). As sea-ice 
fraction or concentration values are only available for SMAP JPL and Aquarius, we only considered 
these products. Note that sea-ice fraction values are also available for SMAP RSS; however, because 
SMAP RSS SSS are only retrieved when the sea-ice fraction within the satellite footprint is below 
0.1%, we were not able to analyze the impact of the sea-ice contamination threshold on the 
comparison between SMAP RSS and in-situ SSS, the threshold being too low. For Aquarius CAP, 
RMSD between satellite and in-situ slightly increase from 0.5 to 1 with the sea-ice fraction threshold 
(Figure 11b), while the bias is constant (Figure 11a). For SMAP JPL, RMSD increase significantly 
above 0.5% of sea-ice concentration from 1.5 to 2.8 (Figure 11b), showing that considering SSS in 
pixels where there is more than 0.5% of sea-ice might not be reasonable. The bias however decreases 
from –0.7 to –0.4 (Figure 11a). 

 
Figure 11. (a) Bias and (b) RMSD between in-situ observations and satellite SSS of Aquarius CAP 
(orange) and SMAP JPL (blue) per 1 bin as a function of a maximum sea-ice concentration considered. 

4. Discussion 

Compared to previous studies, our in-situ database is much more extensive within the Arctic 
Ocean. In-situ data in other studies were generally biased more toward subpolar seas and the North 
Atlantic Ocean. One result of this new focus is that discrepancies between in-situ and satellite SSS are 
expected to be relatively large, owing to cold temperatures and ice contamination. In fact, we found 
satellite versus in-situ RMSD of 0.7–1.7 for SMOS and Aquarius, while References [19] and [20] found 

Figure 10. (a) Bias and (b) RMSD between in-situ observations and satellite SSS of SMOS BEC (cyan),
SMOS LOCEAN (red), Aquarius (green), Aquarius CAP (orange), SMAP RSS (magenta), and SMAP
JPL (blue) per 1◦ bin as a function of the minimum temperature considered.

We next investigated the relationships of biases and RMSD of the satellite SSS with maximum
sea-ice fraction or concentration within the satellite footprint considered (Figure 11). As sea-ice fraction
or concentration values are only available for SMAP JPL and Aquarius, we only considered these
products. Note that sea-ice fraction values are also available for SMAP RSS; however, because SMAP
RSS SSS are only retrieved when the sea-ice fraction within the satellite footprint is below 0.1%, we were
not able to analyze the impact of the sea-ice contamination threshold on the comparison between SMAP
RSS and in-situ SSS, the threshold being too low. For Aquarius CAP, RMSD between satellite and
in-situ slightly increase from 0.5 to 1 with the sea-ice fraction threshold (Figure 11b), while the bias is
constant (Figure 11a). For SMAP JPL, RMSD increase significantly above 0.5% of sea-ice concentration
from 1.5 to 2.8 (Figure 11b), showing that considering SSS in pixels where there is more than 0.5% of
sea-ice might not be reasonable. The bias however decreases from –0.7 to –0.4 (Figure 11a).
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4. Discussion

Compared to previous studies, our in-situ database is much more extensive within the Arctic
Ocean. In-situ data in other studies were generally biased more toward subpolar seas and the North
Atlantic Ocean. One result of this new focus is that discrepancies between in-situ and satellite SSS are
expected to be relatively large, owing to cold temperatures and ice contamination. In fact, we found
satellite versus in-situ RMSD of 0.7–1.7 for SMOS and Aquarius, while References [19] and [20] found
values generally lower than 1. Similarly, we found RMSD values of 1.5 and 3.3 for SMAP JPL and
SMOS BEC matchups, while References [21] and [22] found values of 1.2 and 0.35. However, biases
found in this study are between −0.6 and 0.5, which is comparable to 0.6 for SMOS in the Beaufort Sea
found in Reference [23] and lower than 1, found in Reference [20] in subpolar seas.

Our study also underlines the challenges of evaluating satellite SSS, given the paucity of in-situ
measurements. Enhancement of the in-situ observing system in the Arctic Ocean (e.g., Reference [40])
is important for improving satellite SSS for the Arctic Ocean. Improved satellite SSS in turn increases
the sampling and coverage of the Arctic Ocean SSS field significantly, paving the way for an effective
in-situ-satellite observing system for the Arctic Ocean. It is important to note that the statistics reported
here for the comparison of the satellite SSS and in-situ measurements should not be interpreted as the
uncertainties of the satellite SSS alone. This is because the statistics also include the effects of sampling
differences between satellite SSS and in-situ measurements. Satellite SSS represent the averages
within satellite footprints (ranging from about 40 km for SMOS and SMAP to 150 km for Aquarius),
whereas in-situ measurements are point-wise. In regions with strong small-scale gradients (e.g., near
river plumes and sea-ice edges), this difference in spatial sampling can cause significant apparent
discrepancies between satellite SSS and in-situ measurements (e.g., Reference [36]). In the Arctic Ocean,
where the dynamic scales are small compared with lower latitude oceans, the effect of spatial sampling
differences could be further enhanced. Near-surface salinity stratification, that we have not explored
in this study, can also cause differences between satellite SSS (representing the average over the top
1 cm of the ocean) and in-situ measurements (typically at the depths of meters) [36]. Unfortunately,
there are insufficient in-situ salinity measurements in the upper few meters in the Arctic Ocean to
examine the possible effect of the near-surface stratification. The sub-footprint horizontal SSS gradient
and the vertical stratification of salinity in the Arctic Ocean are not well understood. Also, colocations
between weekly satellite observations and instantaneous in-situ measurements are affected by temporal
mismatch. A process experiment in the future may shed light on these processes, using, for example,
a high-resolution model in which colocations with in-situ data are free from sampling differences.

Some consistent features observed by the satellite SSS products can be used to evaluate ocean
and climate models, for instance, the seasonal and interannual variability of the SSS averaged over
the ice-free Arctic Ocean. On the other hand, the discrepancies among different satellite SSS products



Remote Sens. 2019, 11, 3043 16 of 19

provide guidance to users of the current generation of satellite SSS to evaluate the suitability of specific
applications and the robustness of the results from such applications. Finally, our results provide
important feedback to the satellite SSS retrieval teams to work collaboratively to improve the products
(e.g., investigating the cause for and reducing the biases, sea-ice corrections). Indeed, more in-situ data
are needed in order to better evaluate SSS products near sea-ice edges (1%–3% ice fraction up to 15%)
during different seasons based on level 2 SSS data. A strategy within the different retrieval teams is
needed to develop in-situ campaign in the Arctic to allow a more robust validation of satellite SSS
products in the Arctic.

5. Conclusions

This study presented a systematic analysis of six commonly used satellite SSS products from
three different satellite missions (SMOS, Aquarius, and SMAP), including two products from each of
these missions. Overall, the satellite SSS products provide a similar characterization of the large-scale
patterns of the time mean SSS (Figure 2). They are also relatively consistent in depicting the regions
with strong temporal variability of SSS (Figure 3). When averaged over the Arctic Ocean, the satellite
SSS show an excellent consistency in describing the seasonal and interannual variation of the SSS
(Figure 4). In particular, the average spread among products for the Arctic-Ocean averages (0.4–0.5)
were much lower than the magnitudes of the seasonal cycle (2–4). Comparison of satellite SSS with
in-situ salinity measurements along TSG transects suggested that satellite SSS are able to capture the
salinity gradient away from regions with significant sea-ice concentration (i.e., ice fraction or sea-ice
concentration larger than 0.5%) (Figure 6, Table 1). Overall, the RMSD of satellite SSS with respect
to available in-situ measurements in the Arctic Ocean improves with increasing temperature, which
reflects the low sensitivity of L-band radiometry to SSS in cold waters (Figure 10). However, the lack of
in-situ data to represent the higher natural variability of SSS in fresh and cold regions in the Arctic
Ocean compared to the warm and salty regions of the Barents Sea has to be taken into consideration to
interpret these results. On the other hand, the bias of satellite SSS with respect to in-situ measurements
does not show a consistent dependence on temperature, suggesting that further investigation is needed
to understand the causes of satellite SSS bias. More in-situ salinity measurements in the ice-free Arctic
Ocean are clearly important to improve the assessment and retrievals of satellite SSS in the Arctic
Ocean, especially in the upper meter. Moreover, an intercomparison of satellite SSS retrievals from
different satellites using consistent ancillary data, such as sea ice mask, SST, and wind, as well as a
dielectric model, would be very helpful in identifying the causes for the discrepancies of satellite SSS
reported in this study.
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