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Abstract: The unmanned aerial vehicle (UAV) sensors and platforms nowadays are being used in
almost every application (e.g., agriculture, forestry, and mining) that needs observed information from
the top or oblique views. While they intend to be a general remote sensing (RS) tool, the relevant RS
data processing and analysis methods are still largely ad-hoc to applications. Although the obvious
advantages of UAV data are their high spatial resolution and flexibility in acquisition and sensor
integration, there is in general a lack of systematic analysis on how these characteristics alter solutions
for typical RS tasks such as land-cover classification, change detection, and thematic mapping.
For instance, the ultra-high-resolution data (less than 10 cm of Ground Sampling Distance (GSD))
bring more unwanted classes of objects (e.g., pedestrian and cars) in land-cover classification; the often
available 3D data generated from photogrammetric images call for more advanced techniques for
geometric and spectral analysis. In this paper, we perform a critical review on RS tasks that involve
UAV data and their derived products as their main sources including raw perspective images, digital
surface models, and orthophotos. In particular, we focus on solutions that address the “new” aspects
of the UAV data including (1) ultra-high resolution; (2) availability of coherent geometric and spectral
data; and (3) capability of simultaneously using multi-sensor data for fusion. Based on these solutions,
we provide a brief summary of existing examples of UAV-based RS in agricultural, environmental,
urban, and hazards assessment applications, etc., and by discussing their practical potentials, we share
our views in their future research directions and draw conclusive remarks.

Keywords: UAVs; remote sensing applications; data analysis

1. Introduction

Unmanned aerial vehicle (UAV) applications have become an ever-expanding area in remote
sensing (RS) in recent years, driven by their both academic and commercial successes [1]. However,
these practices are highly disparate even for the same or similar application, primarily due to the fact
that data acquisition and sensors to be used are featured to be more flexible than traditional ways.
These practices are often developed through a learn-by-doing process, and there exist a few papers
that review current works of domain-specific urban and environmental applications [2–4], as well as
methodologies (e.g., feature extraction and classification for specific objects) [4–6]. Although these
can be valuable in their respective fields, there is in general a lack of systematic analysis on how these
characteristics alter solutions for typical RS tasks such as land-cover classification, change detection,
and thematic mapping etc. Thus, this raises challenges in identifying common practices and feasibilities
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of UAV to be used for specific tasks, as well as ways of benchmarking these for researchers in community.
We found that in many cases, end-users simply adopt the same methods used for traditional RS
sources with lower resolution, while not considering the unique characteristics of UAV-based images.
For instance, most of the existing methods for RS image classification normally focus on extracting 2D
(2 dimensional) image features, while when classifying UAV-based image products, the often available
digital surface model (DSM) can be integrated and consistently improve the classification accuracy [7].
Furthermore, the development of UAV platforms and various sensors has motivated RS applications
such as object detection and real-time tracking at finer scales [8,9], where advanced data analysis
techniques developed in computer vision and machine learning elevate the ability of automated UAV
data analysis. In this review, we present a comprehensive discussion on UAV data analysis methods
for UAVs RS applications based on the challenges and potentials brought by the “new” aspects of
the UAVs data, being (1) ultra-high resolution (UHR); (2) high availability of geometric and spectral
data; and (3) integrated multi-sensor data fusion. Specially, the RS aspect of this review focuses on
the use of UAV-derived product, including the raw imageries, photogrammetrically derived DSMs,
and orthophotos for object interpretation, scene analysis, and change detection. For reviews of the
photogrammetric processing and hardware development, the readers may refer to Reference [10].

UAVs are generally categorized based on several related key attributes, including weight, flying
altitude, payload, endurance, and range [11,12]. A typical classification instance provides 5 different
groups of UAVs according to their maximum gross takeoff weight (MGTW) and normal operating
altitude and airspeed [13]. Since we would like to present an overview of the new methods and civil
RS applications brought by several distinct characteristics (e.g., low cost, flexibility, and customization)
of UAVs, this paper will primarily focus on small UAVs (0–20 lbs, <1200 ft, <100 knots).

Due to the low flying altitude, UAVs can easily acquire very detailed information of observed
objects with a spatial resolution under one decimeter (UHR), which allows for accurate geometrical
and semantic analysis for a reasonably broader area than a single site, while the increased resolution
may not always bring the same level of improvement in terms of data interpretation: details of the
objects may increase the within-class texture complexities that often lead to classification errors [14].
Moreover, when the sizes of objects in the scene vary significantly, multi-scale approaches [15] should
be used in order to reduce unnecessary computation, especially for UHR imageries, and selecting a set
of appropriate scales can be particularly challenging [7].

UAV aided by Global Positioning System/inertial measurement unit (GPS/IMU) and autopilot
systems are able to very easily capture photogrammetric image blocks, and a UAV data acquisition
mission very often refers to taking either full motion videos or high-resolution photogrammetric
images. With advanced photogrammetric processing pipelines [16,17], 3D (3 dimensional) geometric
information such as triangular meshes and DSMs are nowadays becoming standard products for
UAV-based RS missions. Given that these ready-to-fly UAV platforms are much more flexible than
traditional platforms, the access to orthophoto and DSM products from UAV flight missions can
be seamless [18]. In addition, associated light-weight/low-cost sensors such as multispectral and
hyperspectral cameras are becoming more available, which has brought new opportunities for UAVs to
attempt multi-source data fusion solutions with much higher spatial resolution. While such data fusion
is traditionally cost-prohibitive in other platforms [18,19], these benefits also demand more advanced
co-registration algorithms dealing with sensor integration and calibration, as well as the efforts for
implementing new/specific camera models for low-cost sensor data (i.e., linear-array hyperspectral
cameras and rolling shutters), which may not be readily accessible.

As a means of RS data collection, UAV data and its derived products feature sounding promises
to serve typical RS data analysis practices, of which two techniques/applications are mostly commonly
used in the RS community: (1) land cover/image classification or object detection; and (2) change
detection. At a first glance, these applications can be intuitively inherited by applying existing
techniques, while we argue that if the UAV data would be under-utilized, because the ultra-high
spatial/temporal resolution, as well as the accessible geometric data associated with it (multi-modal
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data), creates much more opportunities and solutions, algorithms and techniques that are particularly
suitable for such data are worth reconsideration. This review tends to provide a specific summary on the
algorithmic and application aspects of RS data processing particularly related to UAV data by analyzing
past literature and extrapolating potential trends and issues to be considered under general frameworks.
Our contribution is providing a stage update to colleagues in the community to indicate where potential
resources are, as well as the branched issues and essences when processing UAV data as an RS resource,
rather than explicit scientific discoveries. In general, we hypothesize the geometric aspects of the
standard photogrammetric processing for the UAV-based RS products are well handled, such as
bundle adjustment, DSMs and orthophotos, and co-registration (an excellent review describing how
standardized such procedures are can be found in Reference [18]). Therefore, the review might cover
the geometric aspects only when necessary. The rest of the review is organized as follows: Section 2
generally introduces the recent development of sensors that fuels the diverse data sources. In Section 3,
we present the state-of-the-art UAVs remotely sensed data analysis techniques and practices related to
(1) land use/land cover (LULC) classification and (2) change detection, as well as discussing potential
improvements and algorithmic aspects to be considered for the high-spatial/temporal-resolution and
multi-modal UAV data. Note here we consider object detection taking a similar framework (often
learning-based) as image classification, and thus we take image classification as the primary category
for review. In Section 4, we turn our discussion to the current status of UAVs RS applications by
demonstrating the potential efforts in utilizing UAV-based RS data for tasks traditionally refraining
aerial/satellite RS data. Section 5 summarizes this review and provides recommendations to inform
future research works.

2. Overview of UAV Sensors

UAV datasets are mostly understood as drones with RGB cameras, it is worth noting that there
exists a wide range of sensor options when considering professional applications. Many existing
(and expensive) RS instruments for aerial and satellite platforms are now embracing their miniature
and low-cost versions for UAV platforms, such as multispectral, hyperspectral, short/mid-wave
range cameras (e.g., thermal) and light-weight LiDAR (light detection and ranging). Knowing the
characteristics of these sensors and their specifications will better inform engineers and scientists when
performing specific RS tasks. General descriptions of available sensors suitable for low-payload aircraft
platforms can be found in Colomina and Molina’s review paper [19], and other in-depth discussions
of these sensors can be found in Reference [1]. However, amongst these relevant works, a close
tie between the characteristics of the sensor data and the potential applications is largely missing:
UAV data should be better processed and analyzed given their resolution advantages for either the
traditional or novel RS applications. Our introduction to these sensors and their data will lean towards
the goal of better informing researchers who design processing algorithms for typical RS analysis
tasks including image classification and change detection. The discussed sensors and specifications
as well as relevant applications and their advantages and disadvantages are summarized in Table 1,
and details of these sensors are introduced in the following subsections.

2.1. RGB Cameras

Modern UAV-based RS starts with remotely controlled plane models mounting normal RGB
cameras [20]. Basically, a consumer-grade camera mounted on a drone, integrated with/without
navigation sensors such as GPS/IMU constitutes necessary components of a UAV-surveying system.
Such a system, being highly engineered in terms of (low-cost) sensor integration is becoming accessible
and has nowadays emerged to be applied in other popular uses such as entertainment and television
(e.g., DJI drones). As compared to other types of sensors (introduced in Sections 2.2–2.5), there exist a
wide range of RGB cameras on the market, and for different applications, selecting appropriate RGB
cameras mounted on a UAV can be a key to success. Common parameters for selecting RGB cameras
include camera lens (better lens come with less geometric distortions), and resolution and quality of the
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charge coupled device (CCD)/complementary metal oxide semiconductor (CMOS) chips (pixel size and
noise level). High-quality cameras ensure good photogrammetric products and low-signal/noise-ratio
data for RS data analysis (such as image segmentation and classification). Normally, highly integrated
UAV-systems are easy to transport and operate, while the mountable RGB cameras are often confined
to a few models allowing for seamless control. Sometimes, professional photogrammetric users favor
customized/less integrated systems in order to be able to access a larger collection of RGB cameras
for different applications. In general, many of the existing RS applications still largely rely on RGB
camera-based products (e.g., orthophotos and DSMs), such as analyses for tree crowns detection,
vegetation growth monitoring and change analysis in a local scale. There exists a large body of
works on UAV-based photogrammetric surveying, where the selection of camera models/parameters is
well discussed [2,10], and many of these can be applied as well when determining parameters (e.g.,
lens distortion, focal length, and pixel size) for other types of camera systems (e.g., multispectral,
hyperspectral cameras).

2.2. Light-Weight Multispectral Cameras

Multispectral cameras are one of the most commonly used sensors in addition to RGB cameras in
the UAV sensors family, because of their benefits of obtaining spectral information in the red-edge
and near-infrared band for vegetation applications in an extremely high resolution (comparing to
available products from other platforms). Although the RGB cameras are able to provide information
related to the vegetation, e.g., the normalized greenness indices [21,22] for vegetation analysis. Their
spectral sensitivity to the chlorophyll level of the vegetation is, however, limited for more sophistically
analysis such as plant health quantification and disease detection. Near-infrared cameras (e.g., Canon
PowerShot SX260) can be used to derive vegetation indices (VIs) such as Normalized Difference
Vegetation Index (NDVI) and others such as Green Normalized Difference Vegetation Index (GNDVI)
and Enhanced Normalized Difference Vegetation Index (ENDVI) [23].

The multispectral cameras mounted on a UAV may contain up to a few tenth of bands in addition
to normal RGB bands. Likewise, such multispectral cameras are still metric cameras by design and thus
can be easily processed using photogrammetric methods to output standard orthophotos and DSMs.
A great benefit for UAV-based multispectral sensors is the yielded data with much higher resolution
(better than 30 cm Ground Sampling Distance (GSD)) that are normally not attainable in traditional
multispectral RS. This may drive the novel applications seeing through more details in farming and
water quality assessments, such as leaf level disease assessment [24] and pads level Harmful algae
bloom studies [25].

Different from RGB cameras, multispectral cameras usually come with a higher cost due to the
additional hardware needed for wiring additional bands to the RGB bands, and since the multispectral
cameras are mainly for professionals on vegetation and agriculture, the number of available products
are far fewer than RGB cameras. Additional barriers for such cameras are the data format compatibilities
with capable software packages. Since the market is still relatively small and various manufacturers
are producing multispectral cameras with images in different formats, seamless processing software
packages, particularly handling data preprocessing (e.g., photogrammetrically), are relatively limited
to certain multispectral camera models at this point, while there is, in general, a good trend that these
data are becoming standardized and easier to deal with.



Remote Sens. 2019, 11, 1443 5 of 22

Table 1. Overview of unmanned aerial vehicle (UAV) sensors and examples of these sensors.

Common and/or Example Camera and Its Spectral Range, Resolution, and Payload Applications Benefits and Obstacles in Practical Applications

RGB cameras

Sony A9 ~400–700 nm 24.2 MP 588 g
Visual analysis, mapping, land
cover/land use, classification,
pedestrians and vehicles detection
and tracking, etc.

Canon EOS 5D mark IV ~400–700 nm 30.4 MP ~800 g

Nikon D850 ~400–700 nm 45.7 MP 915 g

Advantages: (1) high availability in products ranging across different
levels of cost, resolution, and weight; (2) easy to be integrated in different
platforms (3) well-modeled camera geometry with a large number of
software solutions; and (4) videos.
Disadvantages: (1) Often come without radiometric/geometric calibration;
and (2) lack of spectral information for many tasks.

Light-weight multispectral
cameras

Sentera Quad
Multispectral Sensor

~400–700 nm

1.2 MP 170 g
Visual analysis, vegetation detection
and analysis, crop monitoring,
mining,
soil moisture estimation, fires
detection, water level measurement,
land cover/land use mapping, etc.

Advantages: (1) wider spectrum range and narrower bandwidth; (2) often
come with means of radiometric calibration; (3) most of the sensors still
follow a perspective model that can be well-processed for geometric
reconstruction; and (4) allow for sub-decimeter multispectral mapping.
Disadvantages: (1) data format compatibility (sometimes 12 or 16-bit) for
software packages; (2) as a component of a UAV system, its cost remains to
be relatively high; (3) sensor compatibility to drones may be limited; and
(4) videos may not be available.

~655 nm
~725 nm
~800 nm

Quest Condor5-UAV 400–1000 nm 2048 × 1088 (2.2 MP) ~1450–1950 g

Phaseone iXU/iXU-RS
1000 Aerial Cameras ~400–700 nm 100 MP 1430–1700 g

Hyperspectral sensors

Rikola Hyperspectral
Camera 500–900 nm 1.05 MP <600 g

Resonon Pika NIR-640 900–1700 nm 640 pixels 2700 g

High-Efficiency
Hyperspec SWIR 1000–2500 nm 384 pixels 4400 g

Land cover/land use mapping,
vegetation indices estimation,
biophysical, physiological, or
biochemical parameters estimation,
agriculture and vegetation disease
detection, disaster damage
assessment, etc.

Advantages: abundant spectral information, 10 nm-level bandwidth for
more advanced applications in material identification and so on.
Disadvantages: (1) high cost; (2) most of them are linear-array and require
specialized software, and the users may take care of the data format and
geometric corrections; (3) dimension reduction is needed for typical
classification tasks; (4) sensor compatibility to drones may be limited; and
(5) videos may not be available.

Light-weight thermal
infrared sensors

FLIR Vue Pro 7.5–13.5 µm 640 × 512 pixels 72 g

Tracking creatures, volcanos
detection, forest fire detection,
hydrothermal studies, urban heat
island measurement, etc.

Workswell WIRIS 640 7.5–13.5 µm 640 × 512 pixels <390 g

YUNEEC CGOET
thermal imaging camera
and low-light camera

8–14 µm 2.1 MP 278 g

Advantages: (1) well-targeted sensor for surface temperature
measurement that drives a lot of new applications; (2) the camera model is
normally perspective, and relatively easy to be processed than linear-array
cameras.
Disadvantages: (1) lack of texture information of its imageries brings
difficulties in 3D reconstruction tasks; (2) for direct temperature
measurement, it needs careful calibration; (3) cost is relatively high
comparing to that of RGB cameras; (4) comparatively lower resolution
than that of RGB cameras due to sensor design; (5) sensor compatibility to
drones may be limited.

UAV LiDAR

RIEGL VUX-240 Near
-infrared Up to 1,500,000 per second ≤3800 g Vegetation canopy analysis,

estimation of forest carbon
absorption, mapping cultural
heritage, building information
modeling, etc.

Velodyne Puck LITE 903 nm Up to ~600,000 per second ~590 g

Livox Mid-40 905 nm 100,000 per second 760 g

Advantages: (1) direct geometric measurement; (2) multiple returns of the
signals are useful for terrain modeling under thin canopies.
Disadvantages: (1) high equipment cost; (2) highly dependent on
expensive onboard GPS/IMU measurement (potentially with external
reference stations); (3) increased payload for surveying quality LiDAR; (4)
may not work in GPS-denied regions.
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2.3. Light-Weight Hyperspectral Sensors

Hyperspectral cameras in RS are often very capable while they are comparably less accessible due
to their high cost and constraints in sensor compatibility to drones. In order to capture images with
hundreds of narrow bands (5–10 nm bandwidth), most of the current light-weight hyperspectral sensors
are linear-array cameras [26,27]. Undoubtedly, the hyperspectral sensors capturing such high volumes
of information are extremely useful for many applications [23,28–31], while the hyperspectral sensors
by design have certain limitations: (1) the high spectral resolution is at the expense of spatial resolution,
which is normally lower than that of RGB cameras with equivalent specifications (payload level);
(2) the linear-array sensory model, although it has been mathematically well-interpreted, is practically
complicated given limited meta-information that sensor manufacturers offer; and (3) light-weight
hyperspectral cameras normally come with half spectral ranges (400–1100 nm or 1100–2500 nm)
as compared with airborne hyperspectral cameras due to the payload limit, meaning if wider
spectral ranges are needed, two or more light-weight hyperspectral cameras might be needed, either
simultaneously or sequentially (with different flights) [32]. Limitation (1) is not a critical issue for a
UAV-based hyperspectral camera, as with a certain effort in flight design (i.e., with a very low flying
altitude and a long focal length) and at the expense of limited ground coverage, the resolution of the
acquired images can reach up to 2–5 cm levels or lower [33]. Limitation (2) is particularly problematic in
a UAV-based hyperspectral camera, since different manufacturers follow their own standards and very
often they only expect the users to use an undistorted image coarsely geo-referenced using the onboard
GPS/IMU information. This becomes technically complicated when an expert uses the camera for
accurate geo-referencing, such as bundle adjusting the observations to have per scan-line orientations
in order to project them to a currently available high-accuracy product (e.g., DSM). The accurate
registration among scans becomes necessary when there are multiple flights acquiring information of
different spectral bands. The hyperspectral information, combined with other modality data, such as
data obtained with the DSM, can be used for more accurate classification and plant phenology in
agricultural applications with a much higher spatial/temporal resolution [34].

2.4. Light-Weight Thermal Infrared Sensors

As one of the mid-infrared-range passive sensors (wavelength between 3 and 35 µm) [35,36],
the thermal infrared sensors are broadly used in various surface temperature and thermal emission
measurements. The classical issue on kinetic temperature and emissivity determination through the
intensity and its distribution over the wavelength region [36] of UAV-borne sensors can be slightly
different from the airborne or spaceborne thermal sensors. As for UAV-borne sensors, the atmospheric
effects are ignorable, lab-level calibration are more accessible [37], and the temperature measurements
are theoretically more accurate. However, in consideration of the limited payload, light-weight thermal
infrared sensors generally do not come with cooled detectors, thus resulting in lower capture rates,
lower spatial resolution and lower sensitivity as a compensation to a reduced signal-to-noise ratio.
The resolution benefit of the UAV-borne sensor data brought by a low flying altitude still increases
the capability of thermal cameras for accurate quantification of small objects such as human [38],
fire centers [39], and pipe-leaking detection [40]. Since temperature is highly dynamic, the thermal
sensors are frequently used for real-time detection with a prior decision of the qualified capture
rate. This, on the other hand, could be useful in RS and mapping when being integrated with
sensors acquiring information from other spectrum ranges (i.e., visible bands and hyperspectral
bands), and thermal infrared data are also employed for various agricultural [41,42] and environmental
applications [43,44]. Examples include crop biophysical parameter estimation for precision farming [41]
and the use of UAV-based thermal camera to estimate water evaporation in a much finer spatial scale
for irritation and water resource management [45].

Theoretically, the geometric model of a thermal camera is exactly the same as that of a normal
perspective camera. On the other hand, the thermal pictures normally come with much fewer textures
than the RGB images [46], and a modern photogrammetry/structure from motion process will likely
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fail due to the lack of interest points. Therefore, when the geometric aspects of the camera are involved,
it is recommended to have an RGB camera calibrated and fixed relative to the thermal camera and take
images simultaneously for the use of recovering the poses of the thermal camera.

2.5. UAV LiDAR

LiDAR sensors have been known as one of the most accurate ways for geometric data acquisition.
Widely used in forestry, cultural heritage, and building information modeling (BIM), the airborne,
mobile, and terrestrial LiDAR nowadays have been well established in both the academia and
industry. Their advantages over photogrammetry are their high reliability and the ability to penetrate
thin forests through multiple returns [47]. However, as a sensor depending strongly on the direct
positioning accuracy of the host platform, UAV-borne LiDAR is rather rudimentary as compared
to UAV photogrammetry. The GPS/IMU sensors in a UAV platform are very often inaccurate with
respect to the sensor resolution, and the platform is also more instable when flying. Thus, even with
well-calibrated light-weight LiDAR sensors, the obtained point clouds accuracy is comparatively low.
Reported highly accurate UAV-borne LiDAR systems are normally those coming with differential
GPS stations [48], where high-accuracy GPS measurements are obtainable [49] in addition to highly
accurate IMU measurements. On the other hand, an advantage of UAV-based RS and mapping is their
relative low cost. LiDAR sensors, even those with relatively low cost, are still order-of-magnitude
higher than RGB cameras and require higher payloads (up to a few kilograms). Therefore, in terms
of the cost and needed sensors for integration, the UAV LiDAR system is not yet as accessible as
UAV-based photogrammetric mapping systems. Despite the needed consideration of payload and cost,
potentials for the use of both RGB and LiDAR sensors are still very promising, since it has been shown
already that well-registered RGB + LiDAR sensory data can readily improve both measurement and
interpretation accuracy [50,51].

3. UAVs Remote Sensing Data Analysis

RS data acquired through UAV platforms with their sensors are intended to be no different
from those traditionally used in airborne and spaceborne RS sensors. While as per argued in our
first section in this manuscript, this UAV sensor data world embraces higher likelihood of distinct
characteristics: (1) UHR; (2) high availability of geometric and spectral data; and (3) integrated
sensor data for multi-dimensional and multi-modal data analysis. These lead to completely different
application scenarios, data quality, and availability of different dataset that call for more targeted
analysis techniques. Many existing approaches to UAV-based RS data processing either simply adopt
or lightly refine traditional analysis techniques. We do agree that many of the existing methods that
are used for RS analysis are reusable and can be fine-tuned to deal with UAV-based RS data, while
this has not yet been systematically discussed particularly for UAV data. In this section, we aim to
close this gap by discussing expected issues and existing works on two topical applications typically
used in traditional RS: A) ULC mapping and B) change detection, with sensor data acquired from UAV
platforms. A summary of the discussed topics and their characteristics are listed in Table 2.

3.1. Land-Use/Land-Cover (LULC) Mapping

LULC mapping, even after many years of research, is still not fully achieved via a standard
approach with various types of satellite images (spectral/spatial resolution). LULC mapping using UAV
images is non-trivial as per observed by the resolution crisis: since the 1970s, the spatial resolution of
remotely sensed multispectral, panchromatic images has increased dramatically [52], and the relevant
processing methods are ever challenged as the resolution moves to new eras [53]. It is a stretch for
researchers to turn pixel-based methods to object-based methods as the resolution (i.e., GSD) goes
from tenths of meters to half a meter, and nowadays problems associated with it are still in active
research [54–56]. The UHR RS data with centimeter-level GSD from UAV-borne sensors presents
an equivalent level of resolution increase [10,57–59]. Small objects and events that are normally
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unobservable on conventional platforms are now becoming objects of interest, such as pedestrians on
the street, cars, infected plants [60], weed patches [61], and dustbins [62].

Table 2. Algorithmic considerations for data acquired using different remote sensing platforms.

LULC Mapping Change Detection

Low-to-moderate-resolution
satellite RS data

• Pixel-based classification;
• Data transformation such as principal

component analysis or empirical
object indices;

• Occasionally applied object-based
analysis for very large objects;

• Objects can be approximated by
single pixels;

• Mixed pixel effects.

• Pixel-based analysis approaches;
• Radiometric normalization or reflectance

computations are essential;
• Object-based analysis is occasionally used for

large objects;
• Post-classification methods.

High-to-very high-resolution
satellite or airborne data • High inter-pixel similarity and high

intra-pixel variance;
• Pixel-based methods are still used;
• Object-based methods with

textural features;
• Semantic/contextual information can

be implemented;
• Deep learning-based methods are

used for scene analysis.

• Co-registration of images is essential and
algorithms handling misalignment can be a key
for images with suboptimal camera networks
for dense matching;

• Object-based methods are primarily used, as it
is slightly more robust to misalignment;

• Shape/textural features are important for
difference analysis;

• 3D change detection can be applied for stereo
data, while stereo data might not often
be available.

Ultra-high-resolution
UAV-borne data

• Very high inter-pixel similarity and
high intra-pixel variance;

• Object-based analysis is essential and
Super-pixel based methods are
often used;

• The need for fusing 3D information
such as height, geometric and oblique
information for remote
sensing analysis;

• Contextual information and deep
learning methods are essential for
accuracy improvement.

• Data co-registration is less problematic as most
of the UAV data are photogrammetrically
acquired and comes with associated 3D
information by applying rigorous multi-view
matching methods;

• The need for analyzing the 3D uncertainty for
geometric comparison;

• The need for fusing 3D and spectral
information for change determination;

• Contextual information and deep learning
methods are essential for
accuracy improvement.

It has been reported that for UAV-based RS data, a lower spatial resolution may provide the best
results using a traditional pixel-based classification method and the classification accuracy will decrease
as the resolution increases [61,63]. The increased spatial resolution provides information with a great
level of detail, but does not necessarily offer the same level of improvement in terms of classification
accuracy for traditional methods, as this leads to much higher within class variation and inter-class
similarities [64,65]. As compared to traditional pixel-based LULC classification, researchers working
with UAVs imagery are more inclined to use Object-Based Image Analysis (OBIA) [66] methods.
The idea of OBIA is to aggregate information through coherent and spatially connected pixels into
diverse image segments, where analyses are performed through these segments, which additionally
bring the benefit of the shape information. With tunable parameters (usually called scale, varying
with the segmentation algorithms) determining the granularities of the segments [14,67–71]. Although
choosing the optimal scale for pixels aggregation still remains a challenging problem [72–74], OBIA has
achieved a great success in dealing with high resolution (HR, 2–30 m GSD) and Very High Resolution
(VHR, 0.3–2 m GSD) imageries for filtering out the trivial and noisy information which can jeopardize
the interpretation results and model the human’s hierarchical visual cognitions process facilitating
high-level reasoning [75]. By aggregating appearance coherent and spatial connected pixels, an image
object (patch) can provide much more robust features than the original ones [67].

In HR and VHR image processing, texture features have been widely used to improve LULC
classification accuracy [76,77], such as grey-level concurrent matrixes (GLCMs) [78] and local binary
patterns (LBPs) [79–81]. Most of the existing texture descriptors used for VHR imagery could be directly
applied to UHR images [82,83]. The geometric information from data such as digital elevation models



Remote Sens. 2019, 11, 1443 9 of 22

(DEMs) from multi-view/stereo-view images [84,85], LiDAR data [86,87], or vector data [88] has also
been proven to be of great value for land-cover classification and object recognition [89]. Guo et al. [90]
revealed in their classification experiments that the relative height plays a significant role in classification
accuracy and the best set of features should be a combination of both geometric and spectral information.
Nowadays, getting a DSM out of UAV photogrammetry data can be as easy as a simple button click
with a capable software [91,92], and this is achieved through advanced photogrammetry, structure
from motion [93], and highly efficient stereo-matching algorithm. In addition, pixel-wise co-registered
DSMs and orthophotos provide another dimensional information and are proven to be particularly
effective in boosting the land-cover classification accuracy [94]. The best overall accuracy improvement
reported may reach up to 30% [95]. Given that DSMs are raster representations, many existing feature
extraction algorithms can be directly applied to extract useful information. Often, such extracted
features come with geometric interpretation; for example, the morphological top-hat operators [7]
extracting closed blobs [96] can be seen as an effective way to represent off-terrain objects such as
buildings, trees, and cars. Such information can largely solve the spectral ambiguities.

As the resolution of the UAV-based RS data has increased to an unprecedented level, an OBIA
often shows difficulties in getting the appropriate segmentation due to the fact that the scale differences
among different/same objects are significant and simple shape or texture features are no longer
sufficiently powerful to distinguish them. A strategy to handle such UHR data is to adopt multi-scale
approaches, either on the feature level [95] or the image level [97]. The feature-level approaches
often take the feature profiles extracted with different scale parameters and a classifier takes such
profiles for classification [95]. The image-level approaches build a pyramid of images and then
progressively classify images through the pyramid; the very prominent deep convolutional neural
networks implicitly use similar concepts by spatially correlating pixels through multi-resolution feature
maps. Another branch of the idea that might aim to close such gaps is to use a hierarchical way for
segmenting the images prior to classification. A representative example is to use superpixels [98] to
firstly over-segment the image into small-granular segments and strategically merge them through
spectrum and/or texture analysis [99].

As the scene contents get complex, simple classifiers, such as a single-pass support vector
machine (SVM) [100], random forest [101], or maximum likelihood [102] classifiers, may not
be sufficient. More advanced classifiers, including an ensemble of simpler classifiers [103,104]
or deep learning-based methods [105,106], still present a huge potential to be explored for this
ultra-high-resolution, multi-modal data (height, thermal, and hyperspectral information). The fully
convolutional network (FCN) is inherently applicable to pixel-wise remotely sensed image classification.
However, the down-sampling layers tend to produce round corners and smoothed edges while
increasing the receptive fields to integrate contextual information. By taking into account the features
from multiple layers, methods such as U-Net [107] can achieve good localization and utilize contextual
information at the same time. Adopting architectures with dilated convolutions can increase the field
of view without the need of down-sampling [108]. The spatial information loss during the convolution
process is another reason for the lack of details in labeled imageries. Bergado et al. introduced skip
connections into their FuseNet and achieved increased accuracy by recovering high spatial details [105].
Liu et al. progressively refined fine-structured objects using low-level features maps learned by shallow
layers [109]. Using post-classification spatial regulation is another way to achieve higher classification
accuracy: Mboga et al. refined an FCN-classified map by majority voting in geographic image
objects [106] and Marmanis et al. proposed an ensemble of semantic segmentation with semantically
informed edges detected by a modified holistically nested edge detection (HED) [110]. Another new
worth-noting architecture is Pyramid Scene Parsing Network (PsPNet): based on residual networks, it
takes local and global contextual information to perform a more reliable prediction of pixel’s label [111].
For multi-modal data integration, deep convolution neural networks also show their capacity in both
feature level fusion [112] and decision level fusion [113] for increased classification accuracy.
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In addition, transfer learning techniques [114] are becoming more needed as the traditional
sample-per-dataset learning in large-format satellite images are no longer suitable for local scale,
as datasets might be diverse and small in terms of geographical regions [115]. Penatti et al. have
shown experimentally that deep features obtained by training on everyday objects can be used for
the classification of aerial images [116]. Minimizing domain shift in the pixel space also presents as a
promising way to deal with the varying imaging conditions of UAVs-based RS [117].

3.2. Change Detection

Change detection, as a very important topical application in RS, may see many opportunities
and unexplored applications looking at much finer spatial scales, such as the detection of illegal
waste dumping, street facility misplacement, and crowd anomaly detection [118–123]. The obvious
advantages of having higher spatial resolution and availability of geometric information (i.e., DSM) are
the ability to detect changes of objects in a finer scale with higher accuracy. Its flexibility of mounting
different sensors as well as the minimal ready-to-fly logistics can facilitate a much higher temporal
data acquisition, such as daily, hourly, even real-time monitoring using video streams [124] as well as
the higher accessibility to non-convention photos such as multispectral and hyperspectral data for
civilian use.

Temporal data registration is probably one of the biggest issues for close-range UAV images due
to the relatively large perspective effects, while this seeming disadvantage is readily solvable to a large
extent as long as the images are taken in a photogrammetric fashion, and thereby DSMs and orthophotos
generations are seamless. Ground control points (GCPs) or general bundle adjustment techniques [125]
(incorporating known exterior parameters from different temporal data into bundle adjustment to set
datum, or from a high-accuracy real-time kinematic (RTK) system with known uncertainty) can be
used to address the registration issue and yield sub-pixel-aligned temporal orthophotos and DSMs for
change detection.

The DSMs play a more important role in determining the changes than the orthophotos as the
illumination changes are expected to be rather significant due to the more complex scene contents.
Similar to the general land-cover classification problem, the UHR data bring up more unwanted
changes that are usually ignorable in typical aerial and satellite RS data, such as standing pedestrians
and cars. Given that the interests in change detection are the temporally changed objects, the resolution
crisis is minor as compared to land-cover classification problems. However, if semantic meanings of
the changed objects are needed, the classification still needs to be performed either on the difference
maps or independently on each temporal dataset [126]. From a data point of view, the most applicable
scenario would be the 3D change detection. As per introduced in the review paper [127], the 3D
change detection in general consists of three processing steps: (1) data selection/acquisition; (2) data
co-registration; and (3) change analysis. Items (1) and (2) are addressable for UAV data and item (3) for
UAVs is primarily for geometric or image-aided geometric analysis, where object-based methods are
needed to analyze changes when dealing with “salt-and-pepper” noises [128–131].

The enabling applications for change detection using UAV data are with the obvious advantages of
spatial-temporal resolution and cloudlessness as compared to the satellite RS images, while presenting
as well the limitation for mapping a large region. When in applications the spectral information of the
UAV dataset is needed for analyzing the changes, it should be noted that there might exist a much
higher spectral in-class variance, due to either the complexity of the scenes and the diverse imaging
conditions like illumination and shadows (different times of a day). Therefore, it is still with a certain
constraint that the acquired images are better under similar external conditions.

Most of the methods developed so far are not particularly for UAV datasets, but in general the
object-based change detection methods [53] can be strategically applied by carefully dealing with the
DSMs uncertainty and image spectrum heterogeneities. To perform the change detection using UAV
data, typically the changes should be analyzed through certain units using segmentation techniques.
With well-overlaid multi-temporal images, criteria in determining changes through layer arithmetic,
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post-classification, direction classification, or change vector analysis (CVA) are found in Reference [132].
More detailed reviews in change detection techniques can be found in References [127,133].

4. UAVs Remote Sensing Applications

The European Commission listed a set of civil and commercial applications of UAVs and
categorized them as (a) Government (civil security, border security, and coastguard); (b) Fire
Fighting (forest fire spotting and coordination, major incident response co-ordination, and emergency
rescue); (c) Energy Sector (oil and gas industry distribution infrastructure, electricity grids,
and distribution networks); (d) Agriculture Forestry and Fisheries (environmental monitoring, crop
dusting, and optimizing use of resources); (e) Earth Observation and RS (climate monitoring, aerial
photography, mapping and surveying, seismic events, major incident, and pollution monitoring);
(f) Communications and Broadcasting (Very High Altitude, Long-Endurance (VHALE) platforms
as proxy satellites, Medium-Altitude Long-Endurance (MALE) UAVs for communication coverage,
and camera platforms) [134]. In this section, to show a comprehensive utilization of the “new” aspects
of UAV-based RS, we give examples of UAV-based RS applications under the following umbrellas:
(1) precision agriculture and vegetation (part of “d”); (2) urban environment and management (part
of “e”); (3) disaster, hazard, and rescue (part of “a”). Selected applications of these categories can be
found in Table 3.

Table 3. An Overview of the selected UAVs remote sensing applications.

Selected Applications Highlights

Precision agriculture and
vegetation

Soil property estimation [135];
crop/vegetation management [136,137];

forest structure assessment [138].

• Easily operated platforms;
• High-spatiotemporal-resolution sensor data;
• Less impact of atmospheric factors;
• Feasible access to high-resolution 3D structure

of vegetations.

Urban environment and
management

Traffic control [139]; urban infrastructure
management [140]; building observation
[141]; urban environment mapping [142].

• Real-time monitoring of high dynamic objects;
• High visibility;
• Higher redundancy & reliability;
• Easily acquired 3D models of urban objects.

Disaster hazard and rescue

Post-disaster assessment [143,144];
emergency responses [145]; fire

surveillance [146]; landslide dynamic
monitoring [147,148]; coastal vulnerability

assessment [149,150]

• Safer and lower-cost than in situ measurements;
• Quick response;
• Integrated sensor data bring more effective

interpretation.

4.1. Precision Agriculture and Vegetation

Precision agriculture requires mapping the spatial variability of as many variables as can be
measured (e.g., crop yields, terrain features/topography, organic matter contents, and moisture levels) as
the input of decision support system for farm management [135,151]. For this reason, RS techniques are
widely used in agriculture and agronomy [152]. Due to the fact that the variables affecting productivity
are highly variable in space and time, recent papers show a trend of adopting UAVs by researchers
and farmers to monitor their fields because of their high operability, which gives an unprecedented
perspective of ultra-high spatial and temporal resolution and free of cloud occlusion as well. Moreover,
given its economic efficiency with flight, time-series animation which reveals the change of the crop
can be easily obtained with a minimum interval of several hours [136]. Opportunities are also found in
new vegetation analysis applications at finer scales such as mapping, detection, and change monitoring
on a tree level.

Generating crop or vegetation maps with high accuracy is critical to many tasks such as biomass
estimation, yield prediction, and crop infestation monitoring. To inspect the crop status, Sugiura et al.
developed a system mounting an imaging sensor on an unmanned helicopter for precisely mapping the
crop information with spatial resolutions of 1.8 cm and 4.1 cm, taken from altitudes of 30 m and 70 m
respectively. Image orientation distortions caused by a variation of the helicopter posture is removed
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under the assistance of a real-time kinematic global positioning system (RTK-GPS) and an inertial
sensor (INS), which helps gain a reduced spatial error of 38 cm [137]. A successful vegetation analysis
application of classification in the riparian field indicating standing dead wood and canopy mortality
was reported by Dunford et al. using object-oriented approaches at 6.8–21.8 cm GSD; this work also
showed that major constraints of vegetation mapping with UAVs come from the variations in spatial
resolution and radiometry [153].

A number of RS vegetation indices (VIs) were developed in the past for retrieving biophysical status
(e.g., water content, pigments, sugar and carbohydrate contents, protein content, and abiotic/biotic
stress levels) of crops or trees. Among them, the most popular ones are NDVI, Atmospherically
Resistant Vegetation Index (ARVI), Optimized Soil-Adjusted Vegetation Index (OSAVI), Soil Brightness
Index (SBI), Green Vegetation Index (GVI), and Yellow Vegetation Index (YVI). A great number of
researches have revealed the correlation between NDVI and Leaf Area Index (LAI) with different
imaging conditions, sites and seasons, etc. [154–157]. Most of these indices are based on the mixture of
visible bands and the near-infrared (NIR) band, except for rare cases in which only visible spectrums
are considered [22,158]. Due to the minimal impact of atmospheric factors during the data acquisition,
a number of VIs considering atmospheric effects are not necessary for UAVs. Although light-weight
high-definition cameras containing the NIR band are available, most of the off-the-shelf UAVs still
mount only cameras working on visible bands for the derived indices [159].

The feasibility of acquiring high-resolution 3D structure of crops and trees with LiDAR or optical
cameras on UAVs has been investigated in recent years. For instance, Wallace et al. investigated the
potentials of UAV to measure the structural properties of forests by comparing two different methods
(airborne laser scanning (ALS) and structure from motion (SFM)) to obtain absolute terrain height
and the canopy information. The results indicate that both techniques are suitable for relatively low
canopy, while ALS performs better than SFM/photogrammetry in capturing denser canopy covers [138].
3D information is useful in monitoring crops or trees because they demonstrate a temporal 3D structural
variance accompanying growth, and the UHR data and capability of flexible revisiting of UAV allow for
precisely recording the temporal changes in a short-time interval. For example, Bendig et al. produced
multi-temporal crop surface models during its growing season, and then the derivate height difference
was used to indicate the growth of cultivars [160]. Dong et al. proposed a 4D (4 dimensional) crop
monitoring technique based on spatio-temporal reconstruction by adopting a robust data association
algorithm which introduces single-row reconstruction results as a starting point for data association
across rows and times [161].

4.2. Urban Environment and Management

It has been reported that the urban population will take 66 percent of the total population on
the planet by 2050 [162]. Observed at fine scales, the urban environment is highly dynamic due to
the human activities, which produces the desire for various challenging UAVs urban applications
including real-time traffic control [139], management of urban infrastructures [140], and building
observation [141]. For example, the status of paved roads like depression and crack is critical to driving
safety and fuel consumption, which requires frequent inspections at high spatial resolution since the
defects’ sizes are usually as small as dozens of centimeters. However, a traditional in situ check or the
use of terrestrial vehicles for detecting the damage of roads may incur high cost, or even enduring
safety risks. In this regard, UAV-based RS might be a good substitute for this issue due to the high
flexibility and availability of geometric and spectral data at UHR.

Branco and Segantine proposed a methodology to automatically capture asphalt road pavement
conditions with UAVs imageries at a spatial resolution of 4 cm, where radiometric preprocessing
followed by machine learning algorithms is adopted to detect defects [163], and in such an application,
the 3D structure itself can be particularly useful in determining the geometric distortions of the
road [164]. Similar practices were performed by Phung et al. [165] to detect cracks of buildings. In their
work, to ensure the information on the building was fully captured, they first created a coarse model
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for flight path planning, and then a simple threshold-based method was used to identify potential
cracks with their positions.

A natural advantage of UAV in use for dynamic scene analysis is its high spatial-temporal
resolution, and thus the enabled applications can be readily extended to smaller objects with high levels
of details. Efforts in such dynamic scene analysis include accurate mapping urban vegetation and
impervious surfaces using combined high-resolution DSMs and orthophotos [78,142], with improved
land-cover classification [7]. The possibility of acquiring data in a much higher frequency leads to work
focusing on small objects with faster dynamics; for example, Qin [62] detected the geometric changes of
buildings and small public facilities, as well as significant changes of tree canopies in urban scenarios
using UAVs imageries. Although these existing works primarily use normal RGB cameras, we expect
work using multispectral or hyperspectral cameras as a means of assessing temporal dynamics, such as
monitoring of crop diseases and urban heat islands, is becoming more viable [37,166–168].

4.3. Disaster, Hazard, and Rescue

RS is seen as an important tool for risk assessment and rescue operations [169,170]. Low-cost UAVs
are now indispensable for onsite rapid data collection in aid of disaster management [143,145,171],
such as mapping, monitoring, and autonomous deployment of flying robots [146].

An often-reported use-case scenario in UAV-based disaster management is a post-seismic building
damage assessment, where with the capability of UAV in acquiring site data processed as information
such as the area, amount, rate, and type of the damage, the rescue teams will be better informed of
safe paths and potential corruptions due to secondary shocks. 3D building models of the sites can be
reconstructed through either UAV-based mapping or LiDAR point clouds [144,172], which can be used
by experts to identify total collapses, partial collapses, and high-risk structures. Such identifications
can be further automated through unsupervised classification or 3D change detection techniques
(when before and after images are available) [173]. The high accuracy nature of the UAV-derived
topographic data (DSM) can be now readily used at a significantly lower cost in disaster monitoring
and analysis. Examples include its use in landslide dynamic monitoring [147,148] and change detection
on coastal facilities in aid of vulnerability assessment due to nature disasters such as tornados [149,150].
The DSM or DEM acquired using UAV platforms can reach up to centimeter levels and can be well
geo-referenced or co-registered. A good advantage of using these high-resolution high-accuracy data
is that the displacement can be performed in simultaneously in horizontal and vertical directions,
as compared to image-based (in horizontal direction) [174] and Interferometry Synthetic Aperture
Radar (InSAR)-based displacement analysis (in a vertical direction) [175].

5. Conclusions and Future Trends

In this work, we provided an overview of the UAVs RS data processing and their specific
applications. The “new” aspects brought by UAV-based RS lie in their: (1) UHR; (2) high availability
of geometric data (i.e., DSM); and (3) flexibility in multi-sensor integration. We have presented
how these new aspects should be taken into consideration when processing UAV-based RS on two
typical RS applications: land-cover classification and change detection. Novel and a diverse set of
specific applications associated with UAV sensor data were introduced. When it comes to processing
UAV-based images, there in general exist high in-class appearance variances and uncertainties of the
DSM information. More advanced data-processing methods include hierarchical image segmentation
and deep learning-based classification. In addition, as the UAV data tends to characterize local-scale
scenarios that may dramatically vary, available training data to fuel successful machine learning
applications can be a challenge, and thus the transfer learning techniques being able to utilize
information from labeled datasets can be critical.

The characteristics of UAV with low flying altitude, low cost and high flexibility provide
new opportunities to RS applications in various areas with high-spatial-resolution, high-frequency,
and multi-source data. To take full advantage of these characteristics of UAVs data, new methods have



Remote Sens. 2019, 11, 1443 14 of 22

been proposed in past few years, where techniques using geometric structures of scenes in the form of
3D information may serve as a starting point in UAVs imageries processing, as such 3D data in most of
the time are naturally available. In addition, a review of a few and non-inclusive relevant applications
on precision agriculture and vegetation, urban environment and management, and disaster, hazard,
and rescue as the new and developing areas of applications that can greatly benefit from improved
UAV-based data processing techniques were provided. As the users have higher flexibilities to
design and practice with different flying parameters, platforms, and resolutions, benchmarking the
achievable geometric and classification may require standardized datasets. In addition, given the
low flying altitude and nature of UHR applications (high level of detail desired), the acquired data
likely introduces more information on the facades of objects, and thus accuracy assessments in a true
3D/volumetric scenario might be considered as more appropriate.

Despite the fact that UAVs platforms and onboard sensors are easily accessible and have been
widely and successfully used in various areas, more work on its data processing is still much in
need, such as multi-modal data analysis (combined geometric and textures) and object tracking in
clutters, as with the available UAV data we are moving our observations from the static object level
to dynamic object level (e.g., cars and individual pedestrians), where traditional techniques need to
be upgraded to more advanced methods such as deep convolutional or graphic neural networks to
deal with multi-modality data for accurate object interpretation. On the other hand, performing an
RS analysis using UAV consists of joint efforts in both data acquisition and processing, while work
analyzing the uncertainties associated with this two-step processes as well as work standardizing
achievable interpretation results (classification and change detection) in a controlled way is still missing,
which may greatly inform researchers in the community when adopting UAV-based RS methods for
relevant applications.
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