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Abstract: By means of joint sparse representation (JSR) and kernel representation, kernel joint sparse
representation (KJSR) models can effectively model the intrinsic nonlinear relations of hyperspectral
data and better exploit spatial neighborhood structure to improve the classification performance of
hyperspectral images. However, due to the presence of noisy or inhomogeneous pixels around the
central testing pixel in the spatial domain, the performance of KJSR is greatly affected. Motivated
by the idea of self-paced learning (SPL), this paper proposes a self-paced KJSR (SPKJSR) model
to adaptively learn weights and sparse coefficient vectors for different neighboring pixels in the
kernel-based feature space. SPL strateges can learn a weight to indicate the difficulty of feature
pixels within a spatial neighborhood. By assigning small weights for unimportant or complex pixels,
the negative effect of inhomogeneous or noisy neighboring pixels can be suppressed. Hence, SPKJSR
is usually much more robust. Experimental results on Indian Pines and Salinas hyperspectral data
sets demonstrate that SPKJSR is much more effective than traditional JSR and KJSR models.

Keywords: hyperspectral image classification; self-paced learning; kernel; joint sparse representation

1. Introduction

Hyperspectral sensors simultaneously acquire digital images in many narrow and contiguous
spectral bands across a wide range of the spectrum. The resulting hyperspectral data contains both
detailed spectral characteristics and rich spatial structure information from a scene. Exploiting the rich
spectral and spatial information, hyperspectral remote sensing has been successfully applied in many
fields [1–3], such as agriculture, the environment, the military, etc. In most of these applications, pixels
in a scene need to be classified [2,4,5]. The commonly used classifiers include spectral-based classifiers
such as nearest neighbor (NN) and support vector machine (SVM), and spatial–spectral classifiers
such as mathematical morphological (MM) and Markov random field (MRF) methods [2]. Compared
with the spectral-based classifiers that only use spectral information, spatial–spectral classifiers use
both the spectral and spatial information of a hyperspectral image (HSI) and can produce much better
classification results [5–8]. Now, spatial–spectral classifiers have become the research focus [2,5].

Under the definition of spatial dependency systems [5], spatial–spectral classification methods can
be approximately divided into three categories [5]: preprocessing-based classification, postprocessing-
based classification, and integrated classification. In the preprocessing-based methods, spatial features
are first extracted from the HSI and then used for the classification. In postprocessing-based methods,
a pixel-wise classification is first conducted, and then spatial information is used to refine the previous
pixel-wise classification results. The integrated methods simultaneously use the spectral and spatial
information to generate an integrated classifier. In this paper, we focus on the integrated methods.
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The joint sparse representation (JSR)-based classification method is a typical integrated
spatial–spectral classifier [9–18]. JSR pursues a joint representation of spatial neighboring pixels in a linear
and sparse representation framework. If neighboring pixels are similar, making a joint representation
of each neighboring pixel can improve the reliability of sparse support estimation [17,19]. The success
of the JSR model mainly lies in the follows two factors: (1) joint representation: the neighborhood
pixel set is consistent, that is, pixels in a spatial neighborhood are highly similar or belong to the same
class; (2) linear representation: the linear representation framework in the JSR model is coincident
with the hyperspectral data characteristics. However, in practice, spatial neighborhood is likely to
have inhomogeneous pixels [15], such as background, noise, and pixels from other classes, which
dramatically affects the joint representation. In addition, hyperspectral data usually exhibits nonlinear
characteristics [20–23], so the linear representation framework may also be unreasonable.

To alleviate the effect of noisy or inhomogeneous neighboring pixels, an intuitive and natural idea
is to introduce a weight vector to discriminate neighboring pixels. The weight can be predefined as
a non-local weight [10] or dynamically updated in a nearest regularized JSR (NRJSR) model [11].
Rather than weighting neighboring pixels, another method is to construct an adaptive spatial
neighborhood system such that inhomogeneous neighboring pixels are precluded. The adaptive
neighborhood can be constructed based on traditional image segmentation techniques [12],
the superpixel segmentation method [13], and the shape-adaptive region extraction method [14].
Both the weighting method and adaptive neighborhood method improve the consistency of
neighborhood pixel sets such that the joint representation framework is effective in most cases.
However, all these methods are linear methods and show performance deficiency when data are
not linearly separable.

Hyperspectral data are considered inherently nonlinear [23]. The nonlinearity is attributed to
multiple scattering between solar radiation and targets, the variations in sun–canopy–sensor geometry,
the presence of nonlinear attenuating medium (water), the heterogeneity of pixel composition, etc. [23].
To cope with the nonlinear problem, kernel-based JSR (KJSR) methods are proposed [19,24–26].
KJSR mainly includes two steps: projecting the original data into high-dimensional feature space
using a nonlinear map and then performing JSR in the feature space. Because the data in the feature
space are linear separable, the JSR model can be directly applied. In practice, it only needs to compute
a kernel function between samples. Most works on the KJSR method are concentrated on the design of
kernel function. The kernel functions include Gaussian kernel [24], spatial–spectral derivative-aided
kernel [25], and multi-feature composite kernel [26]. Compared with the original JSR, the use of
kernel methods yields a significant performance improvement [24]. However, these kernel-based JSR
methods assume that neighboring pixels have equal importance and do not considered the differences
of neighboring pixels in the feature space. This is obviously unreasonable when pixels in the spatial
neighborhood are inhomogeneous.

To simultaneously improve the joint representation and linear representation abilities of the JSR
model, we adopt a self-paced learning (SPL) strategy [27–29] to select feature-neighboring pixels and
propose a self-paced KJSR (SPKJSR) model. In detail, a self-paced regularization term is incorporated
into the KJSR model, and the resulting regularized KJSR model can simultaneously learn the weights
and sparse coefficient vectors for different feature-neighboring pixels. The optimized weight vector
indicates the importance of neighboring pixels. The inhomogeneous or noisy pixels are automatically
assigned small weights and hence their negative effects are eliminated.

The rest of this paper is organized as follows. Section 2 introduces JSR and KJSR and then describes
our proposed method. Section 3 provides the experimental results. Section 4 gives a discussion. Finally,
Section 5 draws a conclusion.
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2. Self-Paced Kernel Joint Sparse Representation

2.1. Self-Paced Learning (SPL)

Given a training set {xi, yi}N
i=1, the goal of a learning algorithm is to learn a function f (·, θ)

(or simply parameter θ) by solving the following minimization problem:

min
θ

E(θ) =
N

∑
i=1

L
(
yi, f (xi, θ)

)
, (1)

where yi is the true value, f (xi, θ) is the estimated value, and L is a loss function.
In model (1), all training samples are used to learn the parameter θ without considering the

differences between training samples. When there exist noisy training samples or outliers, the learned
function f or model parameter θ will be inaccurate.

Rather than using all training samples for learning, curriculum learning (CL) or self-paced
learning (SPL) adopts a gradual learning strategy to select samples from easy to complex to use in
training [17,27–31]. Both CL and SPL share a similar conceptual learning paradigm but differ in the
derivation of the curriculum. A curriculum determines a sequence of training samples ranked in
ascending order of learning difficulty. In CL, the curriculum is predefined by some prior knowledge
and thus is problem-specific and lacks generalizations. To alleviate this problem, the self-paced
learning (SPL) method incorporates curriculum updating in the process of model optimization [28].
SPL jointly optimizes the learning objective and the curriculum such that the learned model and
curriculum are consistent.

For model (1), SPL simultaneously optimizes the model parameter θ and the weight vector
ω = [ω1, . . . , ωN ]

T by employing a self-paced regularizer:

min
θ,ω

E(θ, ω) =

{ N

∑
i=1

ωiL
(
yi, f (xi, θ)

)
+ h(λ, ωi)

}
, (2)

where ωi is a weight that indicates the difficulty of sample xi, and h(λ, ω) is a self-paced function. λ is
a “model age” parameter that decides the size of the model. The parameters θ and ω in the model (2)
can be solved by an alternating optimization strategy [28].

2.2. Joint Sparse Representation (JSR)

Given a set of N training samples x1, x2, . . . , xN with xi ∈ RB, we can construct a training
dictionary as X = [x1, x2, . . . , xN ] ∈ RB×N . For a testing pixel z, we can extract its neighboring pixels
in a w× w spatial window centered at z and denote them as Z = [z1, z2, . . . , zT ] ∈ RB×T (z1 = z),
where T is the number of pixels in the neighborhood.

In the framework of sparse representation [32], each neighboring pixel zk can be represented by
the training dictionary X with a sparsity coefficient vector αk. Because neighboring pixels in a small
spatial window are highly similar, they have similar representations under the training dictionary.
By further assuming that the positions of nonzero elements in the sparsity coefficient vectors are the
same and combining the representation of neighboring pixels, the following JSR model is generated [9]:

Z = [z1, z2, . . . , zT ] = [Xα1, Xα2, . . . , XαT ] = XS, (3)

where S = [α1, α2, . . . , αT ] ∈ RN×T is a matrix with only K nonzero rows. The sketches of sparse
representation and joint sparse representation are shown in Figure 1.
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Figure 1. Sketches of sparse representation and joint sparse representation. (a) Sparse Representation;
(b) Joint Sparse Representation.

The optimization problem for solving the matrix S in (3) is:

Ŝ = arg min
S
‖Z− XS‖2

F subject to ‖S‖row,0 ≤ K, (4)

where ‖ · ‖F denotes the Frobenius norm, ‖S‖row,0 denotes the number of nonzero rows of S, and K
is an upper bound of the sparsity level. The solution of (4) can be obtained by the simultaneous
orthogonal matching pursuit (SOMP) algorithm [9,33].

Once the row-sparse matrix Ŝ is obtained, the testing pixel z is classified in the class with the
minimal reconstruction residual:

Class(z) = arg min
c=1,...,C

rc(Z), (5)

where the c-th residual rc(Z) = ‖Z−X:,Ωc ŜΩc ,:‖2
F, and Ωc ∈ {1, 2, . . . , N} is the index set corresponding

to the c-th class.

2.3. Kernel Joint Sparse Representation (KJSR)

In order to exploit the intrinsic nonlinear properties of the hyperspectral imagery, pixels in the
original space are projected to a high-dimensional feature space by a nonlinear map, and a kernel-based
JSR (KJSR) model is obtained by performing the JSR on the feature space [24].

Denote φ as a nonlinear map, the KJSR model assumes that the mapped neighboring pixels in the
feature space (i.e., φ(z1), φ(z2), . . . , φ(zT)) are also similar and hence have a similar sparsity pattern.
The KJSR model is represented as

Zφ = [φ(z1), φ(z2), . . . , φ(zT)] = [Xφα1, Xφα2, . . . , XφαT ] = XφS, (6)

where Xφ = [φ(x1), φ(x2), . . . , φ(xN)] ∈ RD×N and D is the dimensionality of the feature space.
The optimization problem for solving the row-sparse matrix S is

Ŝ = arg min
S
‖Zφ − XφS‖2

F, subject to ‖S‖row,0 ≤ K, (7)

which can be solved by the kernel SOMP (KSOMP) algorithm [24], as shown in Algorithm 1.
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Algorithm 1 KSOMP

Input: Training dictionary X = [x1, x2, . . . , xN ], neighborhood pixel matrix Z = [z1, z2, . . . , zT ],
sparsity level K, kernel function κ, regularization parameter γ.

Compute KX = κ(X, X) and KX,Z = κ(X, Z).

Set index set Λ0 = arg max
i=1,...,N

‖(KX,Z)i, :‖2, and let k = 1.

Run the following steps until convergence:

1 Compute the correlation coefficient matrix:

C = KX,Z − (KX):, Λk−1

(
(KX)Λk−1, Λk−1 + γI

)−1
(KX,Z)Λk−1, : .

2 Identify the optimal atom, and find the corresponding index:

λk = arg max
i=1,...,N

‖Ci, :‖2 .

3 Enlarge the index set: Λk = Λk−1 ∪ λk .
4 Update the iteration number: k = k + 1, and go to Step 1.

Output: index set Λ = Λk−1 and coefficient matrix Ŝ =
(
(KX)Λ, Λ + γI

)−1
(KX,Z)Λ, : .

2.4. Self-Paced Kernel Joint Sparse Representation (SPKJSR)

In the KJSR model, it is assumed that transformed neighboring pixels φ(z1), φ(z2), . . . , φ(zT) have
equal importance in the sparse representation. However, this assumption is usually unreasonable
because there exist differences between original spatial neighboring pixels and the nonlinear map φ

that may further enlarge the differences. The spatial inconsistency mainly appears in the following
two aspects: (1) When a target pixel is around the boundary of an object, its spatial neighborhood
usually contains inhomogeneous pixels, such as background pixels or pixels from different classes;
(2) when a target pixel lies in the center of a large homogeneous region, all neighboring pixels are from
the same class. This notwithstanding, the spatial distances between neighboring pixels and the center
target pixel are different. Neighboring pixels that are far away from the center pixel usually provide
limited contributions to the classification of the central target pixel, especially when the neighborhood
window is large.

When there exists a spatial inconsistency between neighboring pixels, the feature representations
of neighboring pixels in the kernel space are also dissimilar. Considering the distinctiveness of feature
neighboring pixels, we employ a self-paced learning strategy to select important feature neighboring
pixels and propose a self-paced KJSR (SPKJSR) model for the classification of HSIs.

For convenience, we first transfer the matrix-norm-based objective function in the model (7) to
a vector-norm-based one as follows:

L(S) = ‖Zφ − XφS‖2
F =

T

∑
t=1

∥∥φ(zt)− Xφαt
∥∥2

2. (8)

Based on the self-paced learning strategy, the SPKJSR model simultaneously optimizes a weight
vector and sparse coefficient matrix for feature neighboring pixels:

{Ŝ, ω̂} = arg min
S,ω

{ T

∑
t=1

ωt
∥∥φ(zt)− Xφαt

∥∥2
2 + h(λ, ωt)

}
,

s.t. ‖S‖row,0 ≤ K, (9)
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where ω = [ω1, ω2, . . . , ωT ]
T is a weight vector of feature neighboring pixels and h(λ, ω) is the

self-paced function. Here, the self-paced learning strategy is used to select important feature
neighboring pixels for joint sparse representation.

The optimization problem (9) can be solved by an alternative optimization strategy. With a fixed
ω, (9) can be represented as:

Ŝ = arg min
S

{
T

∑
t=1

ωt
∥∥φ(zt)− Xφαt

∥∥2
2 =

∥∥∥(Zφ − XφS)W1/2
∥∥∥2

F

}
s.t. ‖S‖row,0 ≤ K, (10)

where W = diag
{

ω1, . . . , ωT
}

is the diagonal weight matrix.
Because ωi ≥ 0, ‖SW1/2‖row,0 ≤ ‖S‖row,0 ≤ K. Denote S̃ = SW1/2 and Z̃φ = ZφW1/2.

Then model (10) is changed to

Ŝ = arg min
S

∥∥∥Z̃φ − XφS̃
∥∥∥2

F

s.t. ‖S̃‖row,0 ≤ K. (11)

As the feature map φ is unknown, we cannot compute ZφW1/2 directly. Fortunately, in the
KSOMP algorithm, we only need to compute the correlation matrix between Z̃φ and Xφ as

K̃X,Z = 〈Z̃φ, Xφ〉 = 〈ZφW1/2, Xφ〉 = 〈Zφ, Xφ〉W1/2 = κ(X, Z)W1/2 = KX,ZW1/2. (12)

By employing the KSOMP Algorithm 1, we can obtain the sparsity coefficient matrix:

Ŝ = [α̂1, α̂2, . . . , α̂T ] (13)

and further compute the approximation error of each neighboring pixel:

`t =
∥∥φ(zt)

√
ωt − Xφα̂t

∥∥2
2 = ωtκ(zt, zt)− 2

√
ωtα̂

T
t κX,zt + α̂T

t KXα̂t. (14)

Based on the approximation errors, we can describe the complexity of each feature neighboring
pixel φ(zt) and determine the corresponding weight value based on self-paced learning as follows:

ω̂t = arg min
0≤ωt≤1

ωt`t + h(λ, ωt). (15)

To solve the weight ωt in (15), a self-paced function h needs to be defined. The self-paced function
can be binary, linear, logarithmic, or a mixture function [28]. Here, we take the mixture function as
an example to show how to solve the weight. The mixture function is defined as

h(λ1, λ2, ωt) = −ζ log
(
ωt +

ζ

λ1

)
, ζ =

λ1λ2

λ1 − λ2
, 0 < λ2 < λ1. (16)

Substituting (16) into (15) obtains

ω̂t = arg min
0≤ωt≤1

ωt`t − ζ log
(
ωt +

ζ

λ1

)
. (17)
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Taking the derivative with respect to ωt, we obtain the mixture weight:

ωt =


1, `t ≤ λ2;
0, `t ≥ λ1;
ζ(λ1 − `t)/(λ1`t), λ2 < `t < λ1.

(18)

Based on the weight in (18), the pixels are divided into three classes: (1) “easy” pixels with small
loss (`t ≤ λ2) corresponding to weight 1; (2) “complex” pixels with large loss (`t ≥ λ1) corresponding
to weight 0; and (3) “moderate” pixels whose loss is between λ2 and λ1. It is clear that the “complex”
pixels are excluded from the JSR model. When λ1 is small, only very limited “easy” pixels are used.
With an increase in λ1, more neighboring pixels are regarded as “moderate” pixels and hence used for
the model.

From (18), we can see that the parameters λ1 and λ2 are related to the losses of neighboring pixels.
As the amplitude of losses is different in each iteration, the setting of these parameters is difficult.
Considering that λ1 and λ2 control the size of the active feature neighboring pixel set, we can set
these two parameters by setting the number of feature neighboring pixels in each iteration of the
self-paced learning process. For a square neighborhood with T pixels, we first define a pixel number
sequence {T1, T2, . . . , Tmax}, where Ti denotes the number of feature neighboring pixels selected in
the i-th iteration [17], and Tmax = T. In the i-th iteration, the loss vector of neighboring pixels `(i)

is sorted in an ascending order, which results in a sorted loss `
(i)
a . Then we set the parameters as

follows: λ
(i)
1 = `

(i)
a (Ti) with Ti = b(k1 + (i− 1)δ)Tc, and λ

(i)
2 = `

(i)
a (T̃i) with T̃i = b(k2 + (i− 1)δ)Tc.

Now, the parameters λ1 and λ2 are determined by the fixed initialization parameters k1, k2 and step
size δ. In the experiment, k1, k2 and δ are set as k1 = 0.5, k2 = 0.2 and δ = 0.05.

By alternatively updating the coefficient matrix Ŝ and weight vector ω̂ according to (13) and (15)
or (18), the objective function in (11) will decrease, and finally the the algorithm will converge.

When the coefficient matrix Ŝ and weight vector ω̂ are obtained, the reconstruction residual for
each class can be computed:

rc(z) =
∥∥ZφŴ1/2 − (Xφ):,Ωc ŜΩc ,:

∥∥2
F

=
T

∑
t=1

∥∥φ(zt)ω̂
1/2
t − (Xφ):,Ωc ŜΩc ,t

∥∥2
F

=
T

∑
t=1

(
κ(zt, zt)ω̂t − 2ω̂1/2

t ŜT
Ωc ,t(KX,Z)Ωc ,t + ŜT

Ωc ,t(KX)Ωc ,Ωc ŜΩc ,t

)
. (19)

Finally, the testing pixel z is assigned to the class with the minimal reconstruction residual.
Algorithm 2 shows the implementation process of SPKJSR.
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Algorithm 2 SPKJSR

Input: Training dictionary X = [x1, x2, . . . , xN ], neighborhood pixel matrix Z = [z1, z2, . . . , zT ],
sparsity level K, kernel function κ, the initial parameters k1, k2, and step δ.

Compute KX = κ(X, X) and KX,Z = κ(X, Z).
Initialization: W(0) = I, and let k = 1.
1 Solve the coefficient matrix Ŝ and weight Ŵ by running the following steps until convergence:

1.1 Solve the sparsity coefficient matrix S(k) = [α
(k)
1 , . . . , α

(k)
T ] by the KSOMP algorithm:

S(k) = arg min
S

∥∥∥Zφ(W(k−1))1/2 − XφS
∥∥∥2

F
, s.t. ‖S‖row,0 ≤ K.

1.2 Compute the error of each neighboring pixel:

`
(k)
t =

∥∥∥φ(zt)(ω
(k−1)
t )1/2 − Xφα

(k)
t

∥∥∥
2

= ω
(k−1)
t κ(zt, zt)− 2(ω(k−1)

t )1/2(α
(k)
t )TκX,zt + (α

(k)
t )TKXα

(k)
t .

1.3 Compute the sorted loss vector `(k)a , and update the model age:

λ
(k)
1 = `

(k)
a

(
b(k1 + (k− 1)δ)Tc

)
, λ

(k)
2 = `

(k)
a

(
b(k2 + (k− 1)δ)Tc

)
.

1.4 Estimate the self-paced weight:

ω
(k)
t = arg min

0≤ωt≤1
ωt`

(k)
t + h(λ(k)

1 , λ
(k)
2 , ωt).

1.5 Update the weight matrix: W(k) = diag
{

ω
(k)
1 , . . . , ω

(k)
T
}

.
1.6 Update the number of iterations: k = k + 1, and go to Step 1.1.

2 Compute the reconstruct error of each class:

rc(z) =
∥∥ZφŴ1/2 − (Xφ):,Ωc ŜΩc ,:

∥∥2
F .

3 Classify the testing pixel z:

Class(z) = arg min
c=1,...,C

rc(z) .

3. Experiments Results

3.1. Data Sets

To evaluate the performance of the proposed method for HSI classification, we use the following
two benchmark hyperspectral data sets (available online: http://www.ehu.eus/ccwintco/index.php/
Hyperspectral_Remote_Sensing_Scenes):

(1) Indian Pines: This image scene has a size of 145 × 145 pixels and 220 spectral bands,
where 200 spectral bands are used in the experiments by removing 20 noisy bands from the original data.
The image has 16 different ground-truth classes. The false color composite image and ground-truth
map are shown in Figure 2.

http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
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(2) Salinas: This image scene has a size of 512× 217 pixels and 204 spectral bands. The data
contains 16 ground-truth classes and a total of 54,129 labeled samples. The false color composite image
and ground-truth map are shown in Figure 3.

(a) (b)

Figure 2. Indian Pines data set. (a) RGB composite image; (b) ground-truth map.

(a) (b)

Figure 3. Salinas data set. (a) RGB composite image; (b) ground-truth map.

In real applications, the number of labeled samples is usually very limited, which makes HSI
classification a challenging problem. To show the performance of our proposed method in the case of
small sample sizes, we randomly choose 1% of samples from each class to form the training set, and all
remaining samples consist of the testing set. The selected training and testing samples for these two
data sets are shown in Tables 1 and 2, respectively.
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Table 1. The number of training and testing samples for each class in the Indian Pines data set (only 1%
of labeled samples per class for training, with a total of 115 training samples and 10,251 testing samples).

No Class #Train #Test No Class #Train #Test

1 Alfalfa 3 51 9 Oats 3 17
2 Corn-notill 14 1420 10 Soybean-notill 10 958
3 Corn-mintill 8 826 11 Soybean-mintill 25 2443
4 Corn 3 231 12 Soybean-clean 6 608
5 Grass-pasture 5 492 13 Wheat 3 209
6 Grass-trees 7 740 14 Woods 13 1281
7 Grass-pasture-mowed 3 23 15 Buildings-Grass-Trees-Drives 4 376
8 Hay-windrowed 5 484 16 Stone-Steel-Towers 3 92

Table 2. The number of training and testing samples for each class in the Salinas data set (only 1% of
labeled samples per class for training, with a total of 543 training samples and 53,586 testing samples).

No Class #Train #Test No Class #Train #Test

1 Weeds1 20 1989 9 Soil 62 6141
2 Weeds2 37 3689 10 Corn 33 3245
3 Fallow 20 1956 11 Lettuce 4wk 11 1057
4 Fallow plow 14 1380 12 Lettuce 5wk 19 1908
5 Fallow smooth 27 2651 13 Lettuce 6wk 9 907
6 Stubble 40 3919 14 Lettuce 7wk 11 1059
7 Celery 36 3543 15 Vineyard untrained 73 7195
8 Grapes untrained 113 11158 16 Vineyard trellis 18 1789

3.2. Model Setting

We compare the proposed method with seven related classification methods: (1) support vector
machine (SVM); (2) SVM with a spatial–spectral composite kernel (SVMCK) [6]; (3) `1-norm-based
sparse representation classification (SRC) [32]; (4) `0-norm-based orthogonal matching pursuit for
sparse representation classification (OMP) [9]; (5) JSR [9]; (6) non-local weighted JSR (WJSR) [10];
and (7) KJSR [24]. Among these methods, SVM is a spectral classifier and SVMCK is the corresponding
spatial–spectral classifier. SRC and OMP are sparse-based spectral classifiers, and JSR, WJSR, KJSR,
and SPKJSR are corresponding spatial–spectral classifiers. The experiments are carried out using
MATLAB R2017a and run on a computer with a 3.50 GHz Intel(R) Xeon(R) E5-1620 CPU, 32GB RAM,
and a Windows 7 operating system.

In the experiments, the class-specific accuracy (CA), overall accuracy (OA), average accuracy
(AA), and kappa coefficient (κ) on the testing set are recorded to assess the performance of different
classification methods. The CA is the ratio of correctly classified pixels to the total number of pixels
for each individual class. The OA is the ratio of correctly classified pixels to the total number of
pixels. The AA is the mean of the CAs. The kappa coefficient quantifies the agreement of classification.
A statistical McNemar’s test is used to evaluate the statistical significance of differences between the
overall accuracy of different algorithms [3,15,34,35]. The Z value of McNemar’s test is defined as:

Z =
f12 − f21√

f12 + f21
,

where f12 indicates the number of testing samples classified incorrectly by classifier 1 and correctly by
classifier 2, and f21 has a dual meaning. Accepting the common 5% level of significance, the difference
in accuracy between classifiers 1 and 2 is said to be statistically significant if |Z| > 1.96. Here, we set
the proposed SPLKJSR algorithm as classifier 1 and the comparison algorithm as classifier 2.
Thus, Z < −1.96 indicates that SPLKJSR is statistically more accurate than the comparison algorithm.
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For SVM, the Gaussian radial basis function kernel is used, and the related parameters are set
as C = 10000 and σ = 0.5. For SVMCK, a weighted summation spatial–spectral kernel is used [6].
The parameters for SVMCK are a penalty parameter C, the width of spectral kernel σw, the width of
spatial kernel σs, the combination coefficient µ, and the neighborhood size T. These parameters are
empirically set as C = 10000, σw = 2, σs = 0.25, µ = 0.8, and T = 81. As recommended in [9,10],
the number of neighboring pixels and the sparsity level for JSR and WJSR on the Indian Pines data set
are set as T = 81 and K = 30. In [24], the number of neighboring pixels for KJSR is also set as T = 81,
and the sparsity level K ≥ 30 corresponds to similar results. For a fair comparison, we set the number
of neighboring pixels and the sparsity level as T = 81 and K = 30 in the Indian Pines data set for four
JSR-based methods (i.e., JSR, WJSR, KJSR, and SPKJSR). Considering that the Salinas image consists of
large homogeneous regions, a large spatial window of size 9× 9 (T = 81) is used, and the sparsity
level is also set as K = 30 [15,17].

3.3. Classification Results

In the experiment, we randomly choose the training samples and testing samples five times and
record the mean accuracies and standard derivations over the five runs for different algorithms.
The classification results for the Indian Pines and Salinas data sets are shown in Tables 3 and 4,
respectively. From the classification results, we can see that

(1) The proposed SPKJSR provides the best classification results for both data sets. Compared
with the original KJSR, SPKJSR improves the OA and κ coefficient by about 4% in Indian Pines, and by
about 2% in Salinas. This demonstrates that the self-paced learning strategy can eliminate the negative
effect of inhomogeneous pixels and select effective feature neighboring pixels for the joint sparse
representation, which helps to improve the classification performance. Moreover, the improvement in
performance when using the proposed model over the rest of the methods is statistically significant
because the Z values for McNemar’s test in Table 5 are much smaller than −1.96.

(2) Compared with JSR, KJSR improves the OA by 9% and 6% in the Indian Pines and Salinas
data sets, respectively. It demonstrates that there exists nonlinear relations between samples in these
two hyperspectral data sets, and the nonlinear kernel can effectively describe the intrinsic nonlinear
structure relations.

(3) For the CA, SPKJSR obtains the best results for most of the classes. In particular, SPKJSR shows
good performance for the classes with large numbers of samples, such as Classes 2, 10, 11, and 12 of
Indian Pines, and Classes 8, 9, 10, and 15 of Salinas. In addition, our SPKJSR also provides satisfactory
performance for the classes with very limited samples, such as Classes 4, 7, 9, 10, and 15 of Indian
Pines. In contrast, traditional sparse-based methods almost fail for these classes due to the lack of
dictionary atoms. In the JSR model, the training dictionary and neighborhood pixel matrix are two key
factors. From the mechanism of sparse representation, when a class has a large number of samples,
the number of dictionary atoms corresponding to this class is also large, so the representation ability
and classification performance on large classes are usually better. Our proposed SPKJSR employs
a self-paced learning strategy to adaptively select important pixels and discard inhomogeneous pixels,
which refines the structure of the neighborhood feature pixel matrix and improves the reliability of
joint representation.

Figures 4 and 5 show the classification maps obtained by different algorithms. The spectral-based
methods (i.e., SVM, SRC, and OMP) generate very bad results with too much “salt & pepper” noise
because they only use the spectral information without using spatial neighborhood information.
Spatial–spectral-based methods greatly improve the classification performance. Compared with
KJSR, our SPKJSR shows relatively better results. In particular, with the Salinas data set, traditional
sparse-based methods, such as SRC, OMP, JSR, and WJSR, almost wrongly classify Class No. 15
“Vineyard untrained” as Class No. 8 “Grape untrained”. These two classes are spatially adjacent,
so their spectral characteristics are very similar. It is very difficult to classify these spectrally similar
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classes. This notwithstanding, our SPKJSR can still discriminate the subtle differences between these
two classes and provides desirable results.

Table 3. Overall, average, and individual class accuracies and κ statistics in the form of mean ± standard
deviation for the Indian Pines data set. The best results are highlighted in bold typeface.

Class SVM SVMCK SRC OMP JSR WJSR KJSR SPKJSR

1 66.01 ± 5.99 66.01 ± 17.7 66.01 ± 8.16 58.82 ± 5.19 79.08 ± 5.99 77.12 ± 22.0 88.89 ± 4.93 96.73 ± 4.08
2 59.27 ± 1.89 79.13 ± 9.15 52.37 ± 5.55 44.51 ± 7.65 55.73 ± 2.11 58.10 ± 6.09 74.79 ± 6.20 79.53 ± 5.03
3 47.94 ± 2.00 69.49 ± 9.28 48.38 ± 7.04 35.27 ± 1.46 41.49 ± 20.3 41.81 ± 18.0 63.64 ± 8.78 67.96 ± 8.35
4 46.32 ± 6.80 57.72 ± 26.4 50.07 ± 3.28 33.77 ± 6.75 36.22 ± 1.64 34.34 ± 3.19 73.30 ± 11.2 83.41 ± 6.30
5 82.45 ± 6.67 62.60 ± 10.0 65.51 ± 10.4 73.37 ± 7.22 73.10 ± 7.07 75.34 ± 8.98 79.06 ± 7.27 79.05 ± 5.38
6 89.50 ± 4.17 89.10 ± 5.66 93.02 ± 3.69 89.05 ± 5.63 98.11 ± 0.95 98.65 ± 0.62 98.38 ± 0.62 90.50 ± 4.03
7 95.65 ± 4.35 92.75 ± 6.64 85.51 ± 5.02 85.51 ± 2.51 71.01 ± 13.3 88.41 ± 10.0 91.30 ± 11.5 100.0 ± 0
8 89.26 ± 3.96 83.47 ± 12.0 94.15 ± 1.47 92.29 ± 2.07 97.86 ± 1.14 99.66 ± 0.12 99.93 ± 0.12 99.93 ± 0.12
9 98.04 ± 3.40 96.08 ± 3.40 96.08 ± 6.79 74.51 ± 18.9 45.10 ± 8.98 74.51 ± 23.8 72.55 ± 3.40 94.12 ± 5.88
10 50.45 ± 21.0 65.27 ± 11.6 54.07 ± 10.9 47.88 ± 10.5 31.94 ± 5.53 31.91 ± 3.55 75.16 ± 12.3 79.71 ± 12.7
11 67.18 ± 8.04 73.77 ± 2.71 71.73 ± 4.37 62.44 ± 6.98 80.91 ± 3.73 83.63 ± 3.33 86.64 ± 4.75 89.78 ± 2.72
12 35.85 ± 4.94 59.37 ± 14.1 45.34 ± 14.3 38.32 ± 6.77 56.36 ± 15.5 57.84 ± 14.0 51.10 ± 16.7 61.51 ± 9.14
13 96.97 ± 1.93 81.50 ± 18.0 99.20 ± 0.28 96.81 ± 2.64 98.40 ± 1.38 99.52 ± 0.83 99.84 ± 0.28 92.18 ± 3.44
14 86.78 ± 4.11 92.53 ± 4.69 94.87 ± 1.65 89.69 ± 2.38 98.83 ± 0.79 99.53 ± 0.47 99.79 ± 0.16 99.32 ± 1.03
15 23.14 ± 8.98 45.92 ± 10.8 13.83 ± 4.18 16.58 ± 4.85 44.50 ± 16.6 39.36 ± 20.1 16.49 ± 15.1 49.56 ± 5.49
16 89.13 ± 4.74 100.0 ± 0 88.77 ± 5.99 88.04 ± 6.05 96.01 ± 1.26 98.91 ± 1.09 86.59 ± 3.32 81.16 ± 7.63

OA 65.78 ± 1.56 74.94 ± 3.55 67.28 ± 1.35 60.89 ± 1.47 70.18 ± 0.24 71.48 ± 0.64 80.11 ± 1.86 83.61 ± 1.48

AA 70.25 ± 24.0 75.92 ± 15.8 69.93 ± 24.6 64.18 ± 25.5 69.04 ± 24.7 72.41 ± 25.2 78.59 ± 21.7 84.03 ± 14.5

κ 61.02 ± 1.90 71.49 ± 4.05 62.65 ± 1.82 55.44 ± 1.83 65.60 ± 0.37 66.98 ± 0.86 77.13 ± 2.32 81.19 ± 1.87

Table 4. Overall, average, and individual class accuracies and κ statistics in the form of mean ±
standard deviation for the Salinas data set. The best results are highlighted in bold typeface.

Class SVM SVMCK SRC OMP JSR WJSR KJSR SPKJSR

1 99.06 ± 0.45 96.61 ± 5.82 99.41 ± 0.48 99.14 ± 0.30 100.0 ± 0 100.0 ± 0 100.0 ± 0 100.0 ± 0
2 98.48 ± 0.33 99.86 ± 0.18 98.74 ± 0.76 98.24 ± 1.62 99.96 ± 0.04 99.95 ± 0.05 100.0 ± 0 100.0 ± 0
3 94.24 ± 4.49 98.91 ± 1.58 93.39 ± 1.39 88.05 ± 3.04 92.09 ± 3.16 92.04 ± 2.98 99.97 ± 0.06 100.0 ± 0
4 98.21 ± 1.22 94.86 ± 1.62 98.86 ± 0.55 94.23 ± 4.47 96.45 ± 3.01 96.47 ± 3.10 99.08 ± 1.41 96.52 ± 2.02
5 97.14 ± 1.36 97.51 ± 1.60 98.16 ± 0.83 91.56 ± 0.58 88.32 ± 2.12 93.19 ± 2.67 99.71 ± 0.30 99.56 ± 0.08
6 99.56 ± 0.21 98.94 ± 1.72 99.72 ± 0.17 99.82 ± 0.03 99.95 ± 0.07 99.96 ± 0.01 100.0 ± 0 99.91 ± 0.05
7 99.27 ± 0.10 99.08 ± 0.47 99.28 ± 0.20 99.63 ± 0.12 99.89 ± 0.15 99.91 ± 0.03 100.0 ± 0 100.0 ± 0
8 86.28 ± 4.77 93.07 ± 0.72 85.07 ± 1.44 78.08 ± 1.44 94.54 ± 0.65 94.89 ± 0.82 96.97 ± 1.54 97.66 ± 0.84
9 97.81 ± 0.99 97.33 ± 2.67 98.01 ± 0.36 97.65 ± 0.67 99.31 ± 0.63 99.26 ± 0.68 100.0 ± 0 100.0 ± 0
10 87.98 ± 8.27 93.71 ± 1.63 90.92 ± 2.82 88.02 ± 0.96 93.97 ± 1.32 94.96 ± 1.98 96.48 ± 1.80 97.41 ± 1.74
11 92.21 ± 4.90 88.46 ± 9.11 93.38 ± 4.99 92.75 ± 4.98 94.04 ± 3.45 95.05 ± 2.79 99.27 ± 0.55 99.84 ± 0.05
12 99.86 ± 0.24 99.86 ± 0.20 99.95 ± 0 86.48 ± 4.06 84.26 ± 10.7 85.17 ± 10.8 100.0 ± 0 99.84 ± 0.10
13 97.43 ± 0.23 98.53 ± 1.40 97.57 ± 0.22 89.12 ± 2.61 78.61 ± 3.06 88.31 ± 3.25 98.97 ± 0.50 99.34 ± 0.22
14 92.63 ± 1.18 96.51 ± 0.96 92.79 ± 1.13 90.97 ± 0.85 95.62 ± 1.56 94.65 ± 0.73 99.40 ± 0.38 98.62 ± 1.66
15 62.53 ± 4.31 76.72 ± 3.94 54.91 ± 2.18 44.80 ± 2.88 40.95 ± 13.2 40.81 ± 13.1 70.28 ± 3.08 83.00 ± 1.70
16 97.82 ± 1.12 97.59 ± 2.17 98.56 ± 0.43 97.06 ± 1.80 99.29 ± 0.34 99.39 ± 0.51 98.58 ± 0.80 99.03 ± 0.76

OA 90.09 ± 1.08 93.77 ± 0.40 89.16 ± 0.33 84.75 ± 0.52 88.37 ± 2.05 88.92 ± 1.99 95.03 ± 0.28 96.88 ± 0.26

AA 93.78 ± 9.30 95.47 ± 5.83 93.67 ± 11.1 89.73 ± 13.4 91.08 ± 14.7 92.12 ± 14.4 97.42 ± 7.32 98.17 ± 4.18

κ 88.95 ± 1.21 93.05 ± 0.45 87.90 ± 0.38 82.98 ± 0.59 86.97 ± 2.32 87.58 ± 2.24 94.46 ± 0.31 96.52 ± 0.29

Table 5. Z values of McNemar’s test between the proposed SPKJSR and other methods.

SVM SVMCK SRC OMP JSR WJSR KJSR

Indian Pines −33.18 −15.56 −32.69 −40.33 −23.60 −21.59 −11.04
Salinas −54.52 −27.20 −57.54 −76.39 −68.47 −65.61 −25.53
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(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 4. Indian Pines: (a) Ground-truth map; classification maps obtained by (b) SVM (65.78%),
(c) SVMCK (74.94%); (d) SRC (67.28%); (e) OMP (60.89%); (f) JSR (70.18%); (g) WJSR (71.48%); (h) KJSR
(80.11%); and (i) SPKJSR (83.61%).

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 5. Salinas: (a) Ground-truth map; classification maps obtained by (b) SVM (90.09%); (c) SVMCK
(93.77%); (d) SRC (89.16%); (e) OMP (84.75%); (f) JSR (88.37%); (g) WJSR (88.92%); (h) KJSR (95.03%);
and (i) SPKJSR (96.88%).
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The computational times for different methods when reaching their optimal classification
performances are reported in Table 6. Because sparse models need to make predictions for each
test sample separately, they are usually more time-consuming. As an iterative algorithm, the proposed
SPKJSR is relatively slower than JSR and KJSR.

Table 6. The running time of different methods.

SVM SVMCK SRC OMP JSR WJSR KJSR SPKJSR

Indian Pines 0.3 2.2 21 20 152 169 75 243
Salinas 1.9 17 198 133 1380 1599 998 3061

In the previous experiments, we have evaluated the effectiveness of our proposed SPKJSR in
the case of small sample sizes (i.e., 1% of samples per class for training). Here, we further show the
results for a large number of training samples and analyze the effect of the number of training samples.
For this purpose, we draw 1%, 2%, 3%, 4%, and 5% of labeled samples from each class to form the
training set and then evaluate the performance of different algorithms on the corresponding testing set.
Figures 6 and 7 show the OA of different methods versus the ratio of training samples per class for the
Indian Pines and Salinas data sets, respectively. It can clearly be seen that SPKJSR provides consistently
better results than the other algorithms with different numbers of training samples. Compared with the
original linear JSR method, kernel-based KJSR and SPKJSR show a great performance improvement,
which demonstrates the effectiveness of the kernel method for describing the intrinsic nonlinear
relations of hyperspectral data.

As shown in Algorithm 2, SPKJSR employs an alternative iterative strategy to update the sparsity
coefficient matrix and weight matrix, so it is an iterative algorithm. Now, we investigate the effect of
the number of iterations. Figures 8 and 9 show the classification OA versus the number of iterations
on the Indian Pines and Salinas data sets, respectively. It can be seen that the proposed algorithm
achieves relatively better performance after 3 iterations.
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Figure 6. OA versus the number of training samples on Indian Pines.
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4. Discussions

From the previous results in Tables 3 and 4, we can see that KJSR dramatically improves the
original JSR. This demonstrates that kernel representation is effective for modeling the nonlinear
relation between hyperspectral pixels [24]. In addition, the improvement of WJSR over JSR
demonstrates that pixels in a spatial neighborhood have differences, and the weighted strategy can
alleviate the negative effect of noisy or inhomogeneous pixels in the neighborhood [10]. Due to the
presence of noisy neighboring pixels, directly performing kernel representation on these noisy pixels
may not be robust. Our proposed SPKJSR model provides a robust kernel representation to improve
the robustness of the joint representation of neighboring pixels in the feature space.

Although many existing JSR methods have tried to eliminate noisy or inhomogeneous pixels in
the spatial neighborhood in a preprocessing step by means of image segmentation techniques [12–14],
they usually suffer from an inaccurate identification of inhomogeneous neighboring pixels. The identification
of pixels is based on spectral similarity, which is usually inaccurate due to the spectral variation of spatially
adjacent pixels. Rather than deleting inhomogeneous pixels in advance, defining a robust metric has
proven to be effective for suppressing the effect of inhomogeneous pixels on the JSR model [15,17,18].
Some robust metrics, such as correntropy-based metrics [15] and maximum likelihood estimation-based
metrics [18,36], are used. This notwithstanding, in the feature space, there is a lack of robust metrics on
kernel representation for the KJSR model. To the best of our knowledge, this paper is the first to provide
a robust kernel representation for the KJSR model.

5. Conclusions

We have proposed a self-paced kernel joint sparse representation (SPKJSR) model for
hyperspectral image classification. The proposed SPKJSR mainly improves the feature neighboring
pixel representation in the traditional kernel joint sparse representation (KJSR) model. By introducing
a self-paced learning strategy, the proposed SPKJSR simultaneously optimizes the sparsity
coefficient matrix and weight matrix for feature neighboring pixels in a regularized KJSR
framework. The optimized weight can indicate the difficulty of neighboring pixels. The inhomogeneous
or noisy neighboring pixels are assigned a small weight or 0 weight and hence produce very limited
effects on the joint sparse representation. Thus, SPKJSR is much more robust and accurate than the
traditional kernel joint sparse representation method. To validate the effectiveness of the proposed
method, we have performed experiments on two benchmark hyperspectral data sets: Indian Pines
and Salinas. Experimental results have shown that the proposed SPKJSR provides consistently better
results than other existing joint sparse representation methods. In particular, when only 1% of samples
per class are use for training, SPKJSR improves the overall accuracy of KJSR by about 3.5% on the
Indian Pines data set and 1.8% on the Salinas data set. In the future, we will consider using different
kinds of kernels for the KJSR model, such as spatial–spectral-based kernels and Log-Euclidean kernels.
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Abbreviations

The following abbreviations are used in this manuscript:

HSI Hyperspectral image
JSR Joint sparse representation
KJSR Kernel joint sparse representation
SPL Self-paced learning
SPKJSR Self-paced kernel joint sparse representation
SOMP Simultaneous orthogonal matching pursuit
KSOMP Kernel simultaneous orthogonal matching pursuit
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