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Abstract: With the increase in the popularity of cloud computing and big data applications, the
amount of sensitive data transmitted through optical networks has increased dramatically. Further-
more, optical transmission systems face various security risks at the physical level. We propose a
novel key distribution scheme based on signal-to-noise ratio (SNR) measurements to extract the
fingerprint of the fiber channel and improve the physical level of security. The SNR varies with time
because the fiber channel is affected by many physical characteristics, such as dispersion, polarization,
scattering, and amplifier noise. The extracted SNR of the optical fiber channel can be used as the
basis of key generation. Alice and Bob can obtain channel characteristics by measuring the SNR
of the optical fiber channel and generate the consistent key by quantization coding. The security
and consistency of the key are guaranteed by the randomness and reciprocity of the channel. The
simulation results show that the key generation rate (KGR) can reach 25 kbps, the key consistency
rate (KCR) can reach 98% after key post-processing, and the error probability of Eve’s key is ~50%. In
the proposed scheme, the equipment used is simple and compatible with existing optic fiber links.

Keywords: key distribution; signal-to-noise ratio; reciprocity; key consistency rate

1. Introduction

With the sharp increase in the speed and distance of optical communications, optical
networks have become more accessible; accordingly, more threats and higher risks may
be posed. A reliable key distribution system is required to solve this problem and ensure
communication security. Traditional public key-based key distribution security primarily
depends on the complexity of an algorithm, such as the RSA algorithm [1,2]. However,
traditional cryptography is susceptible to the rapid progress of hardware and algorithms.
The robustness of these algorithms faces severe challenges with the development of com-
puter systems, especially quantum computers [3,4]. Quantum key distribution (QKD) is
theoretically considered as the only solution to guarantee absolute security at the physical
level [5–8]. However, QKD requires highly sensitive optical detection equipment instead
of optical amplifiers. Therefore, it is still challenging to realize QKD at longer distances
and higher key rates.

A promising and cost-effective approach is to take advantage of the unpredictable and
random characteristics of the transmission channel to convert the random characteristics of
the environment into a secure key. In this approach, the key is only highly correlated to the
legitimate users (Alice and Bob), but not to the signal being eavesdropped on by Eve. This
idea has already been put into practice in wireless and fiber-optic communications systems.
In a wireless communication system, for key generation, the random fading effects of
the wireless channel are utilized [9,10], such as received signal strength, channel impulse
response, and frequency phase in key distribution schemes [11,12].
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Unlike wireless communication, the optic fiber links have stronger resistance to
environmental disturbance. The proposed method achieves the implementation of a
classical physical layer secure key distribution (SKGD) with unique fiber characteristics,
which extracts the key from the fiber channel characteristics. For the key distribution
scheme based on chaotic synchronization, the security has been improved [13,14], but it
is incompatible with the existing optic fiber link configuration, and the key distribution
distance is short. The SKGD scheme based on the unique characteristics of the physical layer
has the advantages of high security, low cost, and a simple structure. The polarization mode
dispersion (PMD) depends on the birefringence distribution in instantaneous space [15–18]
and fluctuates randomly in the link, providing a random source for key generation. Eve
close to the legitimate party can easily cause information disclosure because the PMD
can only produce a favorable effect when the distance is long enough. Based on the key
distribution scheme of the optical fiber interferometer [19,20], the interferometer is exposed
to the public and vulnerable to active intrusion attacks. As a result, other solutions that can
guarantee high security and easy implementation have not been fully explored.

Recently, researchers have proposed a key generation scheme based on the bit error
rate (BER) measurement of physical channel characteristics [21,22]. The scheme takes
advantage of the physical channel’s randomness to ensure the security of the key and
does not change the structure of the existing optic fiber link. However, this scheme
requires a high BER in order for the normal transmission to be affected. We propose a key
distribution measurement scheme based on the SNR characteristics of the physical layer of
the optical fiber channel without affecting the normal transmission. The combination of
key distribution and encryption transmission is realized by simulation. The final KGR can
reach 25 kbps, and the KCR can reach 98%. Fingerprint SNR is used as the random source
of key extraction in the system, and the uniqueness of the fiber channel ensures the high
security of the generated key.

2. Key Generation Scheme for Optical Fiber Communication
2.1. Channel Model

As shown in Figure 1, the signal sent by the legitimate client Alice is An, while the
legitimate receiver Bob receives the signal sequence Bn. The eavesdropping signal obtained
by Eve is En. The legitimate receiver obtains the SNR by comparing the signal from the
receiver with that from the transmitter. According to information theory, the mutual
information between Eve and Alice as Equation (1) should be as small as possible for
reliable transmission. Eve cannot correctly obtain Alice’s key information, indicating that
the key of communication negotiation is secure when I(An; En)→ 0 .

I(An; En) = H(An)− H(An|En) (1)

The keys generated by Alice, Bob, and Eve are KA = fA(An), KB = fA(Bn), and
KE = fE(En), respectively, to achieve the security of the physical layer. Assuming that the
coefficient of key consistency ε is large enough for n to satisfy the following relation, the
system is secure [9,23].

P(KA = KB) ≥ ε (2)

I(KA; En) ≤ 1− ε (3)

In the best case, the key consistency rate approached in Equation (2) indicates that
the completion of the key generated by Alice and Bob is consistent. Equation (3) indicates
that Eve receives the information irrespective of the key generated by the legitimate. The
maximum security key capacity is shown in Equation (4). The key capacity is CAB when
the communication between legitimate parties is normal, and the generated key capacity
is CAE when Eve eavesdrops. The maximum value CK is obtained by subtracting CAE
from CAB.

CK = [CAB − CAE] = max[I(An; Bn)− I(An; En)] (4)
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CK = [CAB − CAE] = [
1
2

log(1 +
p

σ2
1
)− 1

2
log(1 +

p
σ2

1 + σ2
2
)] (5)

The security capacity CK > 0 under the Gaussian Tap channel is shown in Equation (5),
where p is the power of the signal, and σi(i = 1, 2) are, respectively, the noise variance of
Bob and Eve stealing channels in the normal transmission main channel.
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Figure 1. Key generation model diagram.

2.2. Channel Model

Figure 2 shows the proposed key generation scheme based on the SNR measurement
in the optical fiber loop. Due to the changes in temperature, external stress, and physical
parameters, the measured SNR fluctuates randomly. Specific physical layer channel features
are extracted as follows: Alice and Bob simultaneously measure the SNR parameter changes
in the fiber loop. Data from Alice and Bob are transmitted in the fiber loop link through
time-division multiplexing. Alice and Bob occupy different time slots, i.e., even and odd
symmetric time slots, respectively. First, Alice generates random data and random ground
state CA through a PRNG. Afterwards, the DSP module of the transmitter generates the
signal DAB from the signal DA and the ground state CA. The signal DAB reaches the Bob
terminal after transmission in the optical fiber. Bob’s DSP module processes the received
signal with a random ground state CB to generate the data DAB. After the data DAB signal
is transmitted in the optical fiber, the signal NAB with channel noise reaches Alice. The
receiver’s DSP module generates data DABA based on the received signal DAB and random
ground state CA. The SNR performance of the fiber loop can be obtained by comparing the
data DA with DABA. Similarly, Bob can measure the fiber loop simultaneously to acquire
the SNR change rate of the fiber loop backlink.
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The KCR is the consistency rate of the key generated by Alice and Bob, and the par-
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Figure 2. Schematic diagram of key generation principle at the physical layer. PRNG: pseudo-random number generator.
DSP: digital signal processing.
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2.3. Key Evaluation Index

In this paper, the SNR as the channel physical layer feature is introduced to evaluate
the system performance. The calculation of the SNR is shown as follows: The bit resolution
of signal quantization is N, the quantization noise variance is σ2

e , and the signal’s power is
σ2

s . The expression of SNR is shown in Equation (6) [24].

SNR = 10 log10
σ2

s
σ2

e
= 6.02N + 10.79 + 10 log10 σ2

s (dB) (6)

KEY =

{
0 i f SNR < ave(SNR) ∗ (1− αq)
1 i f SNR > ave(SNR) ∗ (1 + αq)

(7)

Alice and Bob obtain the SNR through the loopback measurement and then quantize
it to generate the key. As presented in Equation (7), ave is the average value of the SNR,
and αq is the quantization coefficient.

KGR is the number of keys generated in a period divided by the test time. The details
are shown in Equation (8).

KGR =
R
`N

(1− αq)(1− ξ) (8)

R is the signal transmission rate of 10 Gb/s, and `N is the segment length of the
received signal. Moreover, αq denotes the outliers during quantization corresponding
to the number of key bits generated after each symbol is quantized as 0.3, and ξ is the
discarding rate of privacy amplification (i.e., bit rate discarded in privacy amplification).

KCR = 1−

`N
∑
j
|KAlice(j)− KBob(j)|

`N
(9)

The KCR is the consistency rate of the key generated by Alice and Bob, and the
partition length of the key is `N , as shown in Equation (9).

KER =

`N
∑
j
|KAlice(j)− KEve(j)|

`N
(10)

The key error rate (KER) is the error rate of the key generated by Alice and Eve, as
shown in Equation (10).

2.4. Key Generation Process

The key quantization optimization process is shown in Figure 3. Alice and Bob extract
channel characteristics of the SNR, quantify and code to generate the key, and generate the
key with excellent consistency and security after post-processing. The specific steps are
as follows:

Step 1: Bob calculates the channel’s SNR through loopback measurements;
Step 2: The characteristic information SNR is quantized to generate a consistency key

by encoding. The specific steps are shown in Equation (2);
Step 3: The key’s consistency is judged, and the consistency factor is set as ε = 0.95.

If KCR > ε, it will proceed to the next step; otherwise, the quantization factor αq will be
updated and it will go back to the beginning;

Step 4: After the key is post-processed, Bob transmits the quantization coefficient αq
and consistency factor ε to Alice through the public channel;

Step 5: To increase the security of the generated key, data with length 0 or length 1 are
discarded, and the key sequence KB with good randomness and consistency is obtained;

Step 6: Bob shares the optimized parameters αq and ε with Alice, and Alice generates
the key sequence KA in the same way.



Photonics 2021, 8, 208 5 of 10

Photonics 2021, 8, x FOR PEER REVIEW 5 of 10 
 

 

The key error rate (KER) is the error rate of the key generated by Alice and Eve, as 
shown in Equation (10). 

2.4. Key Generation Process 
The key quantization optimization process is shown in Figure 3. Alice and Bob ex-

tract channel characteristics of the SNR, quantify and code to generate the key, and gen-
erate the key with excellent consistency and security after post-processing. The specific 
steps are as follows: 

Step 1: Bob calculates the channel’s SNR through loopback measurements; 
Step 2: The characteristic information SNR is quantized to generate a consistency key 

by encoding. The specific steps are shown in Equation (2); 
Step 3: The key’s consistency is judged, and the consistency factor is set as =0.95ε

. If KCR ε> , it will proceed to the next step; otherwise, the quantization factor qα  will 

be updated and it will go back to the beginning; 

Step 4: After the key is post-processed, Bob transmits the quantization coefficient qα  

and consistency factor ε to Alice through the public channel; 
Step 5: To increase the security of the generated key, data with length 0 or length 1 

are discarded, and the key sequence KB with good randomness and consistency is ob-
tained; 

Step 6: Bob shares the optimized parameters qα  and ε with Alice, and Alice gener-

ates the key sequence KA in the same way. 

 
Figure 3. Optimized key generation factors ε and αq. 

3. Key Distribution Simulation Platform Setup 
As shown in Figure 4, the data transmission rate of the scheme is 10 Gbps, the optic 

fiber link is 200 km, the laser transmitting power is 1 mW, and the wavelength is 1550 nm. 
The sending process of the scheme is as follows: Firstly, Alice obtains the orthogonal fre-
quency division multiplexing signal encrypted by quantum noise stream through DSP 
processing. Next, the signal is converted from digital to analogue through the arbitrary 

Measured SNR

Quantization

Key Generation 

KCR>ε Update αq
No

Yes

Security 
Enhancement

Output

Bob
Send Data

Alice
Public channel

ε , αq
Public channel Key Post 

Processing

Figure 3. Optimized key generation factors ε and αq.

3. Key Distribution Simulation Platform Setup

As shown in Figure 4, the data transmission rate of the scheme is 10 Gbps, the optic
fiber link is 200 km, the laser transmitting power is 1 mW, and the wavelength is 1550 nm.
The sending process of the scheme is as follows: Firstly, Alice obtains the orthogonal
frequency division multiplexing signal encrypted by quantum noise stream through DSP
processing. Next, the signal is converted from digital to analogue through the arbitrary
waveform generator (AWG), and the electrical signal is modulated onto an optical carrier
using an I/Q modulator. The signal amplified by erbium-doped fiber amplifier (EDFA)
enters the optic fiber link to Bob’s terminal. It is demodulated by the coherent receiver and
sampled by a 20 GSa/s oscilloscope (OSC). Bob converts the signal to analogue through
AWG and then modulates it to the optical carrier using the I/Q modulator. After passing
through the amplifier and optic fiber link, Alice’s coherent receiver carries out coherent
demodulation on the signal. The demodulated data are sent to an OSC for sampling
(sampling rate = 20 GSa/s). Finally, Alice performs DSP processing on the sampled signal.
There are simulation-specific parameters, as listed in Table 1.
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Table 1. Simulation parameter list.

Equipment Parameter Configuration

AWG Transmitting Rate: 10 Gb/s
Light source Wavelength: 1550 nm

EDFA Launch Power: 1 mW
Ultra-low loss fiber Power: 12 dBm

OSC 200 km, 0.2 dBm/km

4. Analysis of Simulation Results
4.1. Random Analysis

The National Institute of Standards and Technology (NIST) random test results of
key sequences are illustrated in Figure 5a to evaluate the randomness of key bits. We
randomly selected a set of keys from the key sequence as the key test sequence, and
10 NIST sub-tests [25]. The return threshold of all 10 of the NIST sub-tests is above 0.99,
which indicates that the key sequence has true randomness. In addition, for some tests that
return multiple thresholds, we only give the minimum value. Figure 5b describes the 0/1
ratio performance of Alice and Bob’s key bits as a function of the SNR sampling interval.
Alice quantifies the key to receive the 0, 1 key. The noise sources, such as laser, optical
amplifier, and physical fiber parameters, determine the randomness of the fiber channel.
Consequently, the probability of keys 0 and 1 fluctuates around 0.5, further verifying the
key’s randomness.
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4.2. Consistency Analysis

Key consistency comes from precise channel reciprocity, so Alice and Bob share a
highly related key source. According to the physical characteristics of the reciprocity of the
channel, a consensus key is generated. The reciprocity of the channel mainly improves the
consistency of the key. The metric characteristic of the channel generated by the key is the
SNR. As shown in Figure 6a, the KGR of the system first increases and then decreases. With
the increase in the SNR sampling interval, the calculation of BER requires more data bits,
leading to the decrease in the KGR. When the sampling time is 2 µs, the maximum KGR
is 25 kbps. The amount of data obtained at each sampling point is relatively insignificant
when the sampling interval is very small, leading to a relatively severe miscalculation
of SNR. Therefore, the SNR values calculated by Alice and Bob are inconsistent, which
affects the KGR. When the sampling interval is large, the SNR value calculated within the
same amount of time is relatively small, leading to a relatively low KGR rate. Therefore,
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it is necessary to set a reasonable sampling interval to obtain a relatively high KGR. It is
obvious that faster fluctuation of channels corresponds to a smaller sampling interval, thus
extracting more channel feature and generating more secret keys.
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Figure 6. (a) KGR change curve and (b) key extraction quantization curve.

In Figure 6b, red represents the sampling value measured by Alice, and green charac-
terizes the sampling value measured by Bob. It is evident that the change curves of Alice
and Bob almost coincide, and the curve consistency is significant since they simultaneously
measure the same fiber. As a result, we quantize the sample value to one and zero when it
is greater and less than the mean, respectively. In addition, if the sample value is near the
mean, we discard the data.

Furthermore, the KGR changes when varying the transmission power, sampling
interval, and system’s laser power. The signal transmission rate is altered to extract more
channel features, and the KGR increases when the transmission rate is relatively low.
However, the KGR does not increase and tends to be stable when the transmission rate
increases to a certain extent. The sampling interval is varied to find the maximum KGR
from different sampling intervals. At this time, the change in the KGR should be non-linear
to determine the suitable KGR.

As shown in Figure 7, the relationship between the length of the selected data and the
consistency is direct. The smaller the data block length is, the worse the key consistency
is. By quantifying the SNR, the consistency of the initial keys obtained by Alice and Bob
is as above. The SNR interval gradually increases with key consistency, and the obtained
key consistency rate reaches 98% when the SNR interval is greater than 1.4 µs. As the SNR
measurement interval increases, the error curve is smoother, and the fluctuation reduces,
so the key consistency quantized by Alice and Bob is enhanced. The extracted keys can be
subjected to off-line DSP to eliminate the influence of the inconsistency between the two
key sequences of Alice and Bob.

More extensive data are needed to calculate the SNR required to increase the KCR
at both ends, because the longer the data, the more stable the SNR and the higher the
KCR. If the selected data are too long, the KGR for generating the key decreases, in that
the calculated SNR drops for extensive data. Therefore, a reasonable SNR measurement
interval should be selected to strike a balance between the KCR and the KGR.
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Figure 7. Influence of SNR measurement interval on Alice–Bob consistency.

4.3. Security Analysis

As shown in Figure 8a, the measured SNR value for Alice and Bob is approximately
10, while Eve’s SNR is around −30. Alice and Bob loop back the measurement, and they
know the initial key to decrypt the signal. Eve can only intercept information from the
optical fiber without the initial key, so the SNR is low.
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As shown in Figure 8b, Eve quantifies the key for SNR and Alice, then she obtains the
key for comparison. The error rate of receiving the key is about 50%, so Eve cannot obtain
the correct key. Moreover, the correlation coefficient between Alice and Eve is cc = 0.02,
indicating that the key generated by the system has superior security. Alice and Eve’s
SNR is not the same, since Eve measures the SNR through different equipment and lines
from Alice and Bob. The SNR is a variable that can be used to negotiate keys to ensure the
generated keys are unique.

5. Conclusions

In this paper, a key generation scheme based on the SNR characteristic of the optical
fiber channel’s physical layer is proposed. In the scheme, the rate of SNR change is
obtained using loopback measurements, and the changed SNR is compared with the
threshold system to judge whether the system is attacked and the legitimate equipment
can be correctly authenticated. If Eve launches an active attack on the system, it impacts
the security and reliability of the generated key. Therefore, we can use physical layer
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authentication for intrusion detection. The simulation results show that the KGR can reach
25 kbps, and the KCR can reach 98%. The correlation coefficient of BER measurement
samples of Alice and Eve is relatively low. The correlation coefficient cc = 0.02 and the
KER of Eve is only 50%, indicating that this system has high security. Due to the physical
characteristics of using the SNR as a key distribution scheme, normal communication
requirements can be guaranteed to set the SNR values. The scheme can be used together
with other security methods in the higher network layer, to enhance communication
security and withstand active intrusion attacks. It has excellent application value and is
suitable for popularization.
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