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Abstract: MEMS switch is a movable device manufactured by means of semiconductor technology,
possessing many incomparable advantages such as a small volume, low power consumption,
high integration, etc. This paper reviews recent research of MEMS switches, pointing out the important
performance indexes and systematically summarizing the classification according to driving principles.
Then, a comparative study of current MEMS switches stressing their strengths and drawbacks
is presented, based on performance requirements such as driven voltage, power consumption,
and reliability. The efforts of teams to optimize MEMS switches are introduced and the applications
of switches with different driving principles are also briefly reviewed. Furthermore, the development
trend of MEMS switch and the research gaps are discussed. Finally, a summary and forecast about
MEMS switches is given with the aim of providing a reference for future research in this domain.
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1. Introduction

Switches are essentially used to control the on–off state of circuits and are required to react
quickly and accurately to signals. The MEMS switch device is a tiny movable element with
three-dimensional structure fabricated by semiconductor technology. MEMS switches offer much
lower power consumption, much better isolation, and lower insertion loss compared to conventional
field-effect transistors and p-i-n diode switches [1–3], and they possess advantages such as small
size and high integration. The rise of MEMS switches provides strong technical support for the
development of signal control systems. At present, the demand for MEMS switches mainly comes from
military security systems [4–7], the automobile industry [8,9], the wireless communication field [10–15],
medical apparatus and instruments [9,16], micro-optical electromechanical systems (MOEMS) [17–19]
and more. Over the last few decades, various types of MEMS switches have been developed. To be
familiar with the working mechanism and optimization direction of existing MEMS switches is of
great significance for the development of innovative MEMS switches. However, there is a lack of
a comprehensive classification of MEMS switches.

MEMS switches can be classified in a variety of ways [20], such as according to whether there
is an additional driving source, and the existing MEMS switches can be segmented into passive
MEMS switches and active MEMS switches. Passive MEMS switches exploit their own system to
induce changes and absorb energy for inertial actuation [21,22]. This driving principle has better
long-term storage performance and resistance to electromagnetic interference owing to no need for
extra energy [23]. Active drive refers to the use of external energy to drive movable electrodes to change
the on–off state of switches. The drive of MEMS switches involves magnetic energy, electrical energy,
photochemical energy and other energy fields, which are converted into mechanical energy to generate
displacement [24,25].
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MEMS switches can be roughly divided into silicon-based MEMS switches and non-silicon-based
MEMS switches according to the different processing materials. Silicon-based MEMS switches are
usually fabricated on SOI (silicon-on-insulator) wafers with the advantages of high shape precision
and a simple process [26,27]. However, if the structural layer material of the silicon-based switch is
used directly for contacts, the contact resistance will be too large compared with conductor materials,
resulting in an unobvious signal. To reduce the contact resistance, it is necessary to apply a layer of
low-resistivity metal on the contact surface of the electrodes [28]. In addition, silicon is not suitable
for high impact and high load applications either as a structure layer or as a substrate [29]. On the
other hand, non-silicon switches are mainly fabricated from LIGA (lithographie, galvanoformung and
abformung) or ultra-precision processing technology. For metal-based switches, multi-layer suspended
movable structures are usually fabricated from Ni via micro-electroplating [30–32]. In contrast to the
properties of silicon-based switches, metal structures provide excellent electrical conductivity, as well
as good mechanical properties and toughness. Although this switch solves the problem of high contact
resistance, the maturity of metal microstructures manufacturing is relatively low. During processing,
the structure is prong to deformation [33], leading to a low yield.

What is more, according to the contact modes, MEMS switches can be grouped into resistive
switches and capacitive switches, a classification quite common seen in RF (radio frequency) MEMS
applications. Capacitive switches are turned on or off through capacitance coupling [34], and these
types of switches are suitable for high-frequency (about 3 MHz to 30 MHz) applications [35,36]. On the
other hand, resistive switches are generally used in the lower frequency band (about 30 KHz to
300 KHz) of the radio frequency signal [37]. Low contact resistance, usually less than 1–2 ohms, is one
of the important performance requirements of MEMS switches [38].

Of course, MEMS switches can be divided into laterally actuated switches [13,39–42] and vertically
actuated switches [43–45] The displacement of vertically actuated switches is out-of-plane while that
of laterally actuated switches is in-plane.

This review aims to provide detailed insights into the structural design and performance
optimization of MEMS switches, based on the literature of the last 20 years. In the second part, the key
performance indexes of MEMES switches, especially the influencing factors of reliability, are pointed
out. The third part, as the main body of the paper, introduces in detail the different principles of
switches and the targeted performance optimization from the aspect of structure. Thereinto, bistable
mechanism is used in almost every actuation as an effective method to enhance the contact effect and
improve the switching speed. In the design of active switch, there is also the problem of how to realize
the insulation between drive signal and switch signal, which has been also mentioned in each section.
Each switch has its pros and cons, so designers have made specific improvements to the switches after
trade-offs or analyzing the application requirements. Furthermore, the general development trend of
MEMS switches is predicted. This review serves the purpose of providing researchers in this field with
a reference source.

2. Performance Indicators of MEMS Switches

In the development of MEMS switches, their performance is constantly optimized. The key
performance indicators of MEMS switches are driving voltage, switching time, power consumption,
reliability and so on. Among them, the reliability of MEMS switches is a factor that must be considered
in performance design. The neglect of reliability is a major obstacle to the ultimate commercialization
of switches. In order to improve the reliability of switches, possible failure modes of switches should
be analyzed first. Table 1 below is an analysis of common failure modes of MEMS switches.
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Table 1. Failure mode analysis of MEMS switches.

Failure Mode Failure Factors Improvement Methods

Creep Temperature, power, interior stress Creep resistant alloy;
improving heat dissipation;

Stiction Humidity, adhesion force, power
Reducing contact area;

choosing harder contact materials;
reducing the power

Dielectric charging Electric field intensity,
temperature, humidity

Lower actuation voltage;
signal isolation;

changing the dielectric

Fracture Repeated loading, shock
Reducing stress;

change the composition of alloys;
shock absorption

Wear Repeated contact Increasing the hardness of the contact
material

Layered Temperature change, residual
stress, microparticles

Improving temperature stability;
transition layer to increase adhesion

Failure of package Temperature change, impact Shock absorption;
heat dissipation

To analyze the failure of MEMS switches in detail, capacitive switches and resistive switches
should be considered separately. The main problem affecting the reliability of capacitive switches
is not the mechanical properties, but the charging issue. The rate of the C/V curve [46] and the
stretched exponential for charging [47] can be used to evaluate the failure time of capacitor switches.
Goldsmith [48] proposed an efficient accelerated life test method, where a continuous electrical signal
is applied to the switch and detects the modulation signal generated by the switch action. The reason
for this failure is assumed to be the continuous accumulation of electric charge in the dielectric layer,
which eventually leads to the driving voltage drift or latch-up effect. The optimization of capacitive
switches should solve the problem of charge accumulation [49]. On the one hand, it can be improved
by optimizing the dielectric material such as the dielectric layer material with high dielectric coefficient
and low trap density [48–52]. A dielectric-less switch has proved to be an effective method [53]. On the
other hand, the voltage can be optimized, such as using high voltage to drive the switch to close and
low voltage to maintain the closed state [54], or using bipolar control voltage [55].

The failure of the resistive switches is due to contact fatigue. Mechanical stress causes deformation
and wear of contact surfaces, while electrical stress mainly causes electromigration and melting of
contact surfaces. Their combined action eventually leads to increased contact resistance or adhesion.
Therefore, the choice of contact material is the key to the reliability of the switch, considering such
factors as hardness, resistivity, melting point and sensitivity to organic pollutants [56,57]. Soft metals,
such as gold, are suitable for reducing contact resistance, but their contact surfaces are prone to
microwelding. Ke et al. [58] coated Au contacts with Ru to investigate placing harder materials on
top of softer materials for a lifetime enhancement. Yang et al. [59] showed Au–Ni alloy contacts resist
material transfer better than Au–Au contacts. In exchange, alloying Au with other metals also results
in an increased resistivity. Yaglioglu et al. [60] examined the electrical contact properties of carbon
nanotube (CNT)-coated surfaces. The high Young’s modulus and potential for low resistance of CNTs
makes them suitable candidates for micro-switch contacts. Experiments have shown that adding
a small amount of Pd or Pt to the gold increases the lifetime of the device, but the contact resistance
increases only a small amount [38]. In order to prevent the degradation of switch contact, apart from
preventing the mechanical damage of the contact surface, it is necessary to improve the sealing of the
packaging to prevent organic or inorganic pollution [61].
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Both residual stress and temperature affect the switching capabilities of MEMS switches.
This means that changes in operating temperature or increases in residual stress may increase
the actuation voltage of MEMS switches. The actual driving voltage of the switch is often very different
from the design value. One of the reasons is the influence of residual stress. The residual stress in
the movable structure will accelerate the fatigue and reduce the durability of MEMS switches [62].
Residual stress formed during micro-machining is the main factor that affects the reliability of MEMS
switches [63,64]. Thermal residual stress is generated during the thermal loading-unload cycles during
the plasma etching stage. In surface micromachining process, multilayer metals are deposited on the
substrate. The difference between the thermal expansion coefficient of different material layers leads to
the formation of residual stress. It affects the flatness of the fabricated switch, thus affecting the static
and dynamic characteristics of the switch. For example, the compressive stress increases the pull-in
voltage and reduces the switching time [65]. Temperature is the most common failure acceleration
factor. The experimental results show that the change in temperature accelerates the failure modes,
such as charge capture, mechanical creep and contact degradation [66].

The key performance of the switch, such as driving voltage and switching time, is closely related
to the driving principles. Therefore, it is necessary to introduce the principles and optimization
performance structurally of each driving mode, respectively and in detail.

3. Classification of MEMS Switches Based on Driving Principles

According to the driving principles [67], MEMS mechanical switches can be roughly divided into
passive inertial switches, electrostatic switches, electro-thermal switches, electromagnetic switches,
piezoelectric switches and shape memory alloy switches [68], etc. Table 2 provides a summary of the
key performance comparison of several mainstream MEMS mechanical switches.

Table 2. Performance comparison of MEMS switches with different driven actuation.

Mechanism Inertial Electro-Static Electro-Magnetic Piezo-Electric Electro-Thermal

Size (µm) ~30002 1002
− 20002 20002

− 60002 2002
− 20002 3002

− 20002

Fabrication process Simple Simple Complex Complex Medium
Actuation voltage (V) / 20–200 <10 3–20 <15
Power consumption (mW) NZ 1 NZ 100–200 NZ 60–250
Switch speed (µs) 300–1000 <200 20–1000 10–300 300–10,000
The output force (µN) Uncertain 2 50–1000 50–200 50–800 500–4000
Durability >106 108

− 109 ~108 ~108 106

1 NZ: near zero; 2 Uncertain: related to structure and acceleration.

3.1. Passive Inertial Switches

MEMS inertial switches are special acceleration sensors used to detect the threshold
acceleration [69]. The microinertial switch based on MEMS technique is generally designed with a flat
plate structure, which is characterized by miniaturization, high reliability and a low cost.

Under the premise that the gas damping and structural damping cannot be ignored in the dynamic
response, the basic model of inertial switches can be simplified as a spring-mass -damping system,
as shown in Figure 1a. When the acceleration applied in the sensitive direction of the switch is at or
above the threshold level, the movable electrode moves along the sensitive direction until the relative
displacement reaches the distance d between the two electrodes, and the movable electrode contacts
with the fixed electrodes to turn the switch on.
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In this process, the equation of motion of the mass block can be described as:

m
..
x + c

.
x + kx = ma (1)

where m, c, and k are the weight of the proof mass, the damping coefficient and the elasticity coefficient
of the movable electrode, respectively. x is the relative displacement between the moving electrode
and the fixed electrode, and a represents the acceleration exerted by the outside world on the switch.
Inertial switches are discussed below from the aspects of acceleration threshold and contact effect.

Most inertial switches are passive devices, but sometimes switches are designed to be active in order
to regulate the threshold. Younis et al. [70] tested two commercial capacitive inertial switches fabricated
by Sentasa Technologies [71] (see Figure 1b). The test results showed that the acceleration threshold is
linear with the DC voltage for the tunable threshold-acceleration switch. Besides meeting the function
of tunable threshold, this kind of switches also have shortcomings: increased volume and power
consumption due to added power supply and vulnerability to external electromagnetic interference.
Therefore, the passive acceleration switch still plays an irreplaceable role in some applications.

For different application requirements, uniaxial switches [72–75], biaxial switches [76–78],
tri-axial switches [79,80] gradually appeared. In the development of MEMS switches, not only
the number of acceleration directions have been expanded, but also the axial sensitivity of the switch
has been improved [80]. For instance, Currano et al. [81] proposed a triaxial inertial switch based
on the symmetrical spiral springs, in which five switches are integrated. In 2014, Chen et al. [80,82]
designed and fabricated an all-metal triaxial inertia switch. A triaxial inertial switch can be used
instead of multiple uniaxial inertial switches to monitor acceleration in multiple directions and avoid
complex installations.

The inertial switch can be divided into high-g inertial switches and low-g inertial switches
according to the different load environment applied. On the one hand, the high-g inertial switches
generally refer to the inertial switches whose threshold acceleration range is from several hundred
g to tens of thousands g. The high-g inertial switches are mainly applied in the harsh environment
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of high load and high impact, such as in the military. A high-g switch also needs to have better
anti-jamming ability and impact resistance. Non-silicon surface machining technology is often adopted
in inertial switches. The structure materials and substrates with high strength are used to prevent
fracture failure and disengagement of bond wires. Xu et al. [83] developed a multi-directional MEMS
inertial switch with shock-resistance. It can resist ultra-high g acceleration (about 100,000 g) in the
reverse sensitive direction. The schematic diagram is shown in Figure 2. The design of the constraint
structures can prevent false trigger caused by the rebound of the proof mass. Moreover, the insulating
quartz substrate is beneficial to improve the impact resistance and thermal stability under ultra-high g
acceleration. The proposed MEMS switch is expected to be installed in devices in Internet of Things
systems (IoT) to monitor shock and vibration from the external environment. On the other, low-g
inertial switches, widely used in the aviation and automotive industries, have acceleration responses
ranging from several milli g to hundreds of g. Based on a feasibility study, Lior et al. [84] proposed
an idea of using a pair of bistable beams to suspend the proof mass and to sense the acceleration,
in which the switch can be closed under sub-g inertias. Nam Lee et al. [85] have developed an inertial
switch with a threshold acceleration of no more than 10 g, and it can withstand unexpected shocks of
up to 1000 g, making it suitable for harsh military environments.
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Figure 2. The tri-axial MEMS inertial switch with shock-resistibility (Xu 2016 [83]): (a) the working
principle; (b) the photo; (c) the schematic of the test circuit.

Rigid electrodes of MEMS switches have the problems of short contact time and signal bounce.
To improve contact stability, many methods have been proposed in terms of structure design and
materials selection. Huang et al. [6] proposed a time-delay MEMS switch for safety and arming system.
As shown in Figure 3, when the acceleration reaches or exceeds the predicted threshold, the working
fluid will flow toward the induction reservoir through the capillary valve. After the delay time,
the capacitance between electrodes changes and the switch is turned on. The measurements show that
the designed switch can realize a delay time of 4.1~10.9 s. Because of the wedge-shaped channel design,
it is difficult for the droplet to flow back from the induction reservoir, so the switch can output a stable
switch-on signal. This microfluidic switch has simple preparation technology and high reliability,
but the working temperature range of glycerol is narrow (−17.8–290 ◦C). Liu et al. [86], Yoo et al. [5],
Li et al. [7] also designed micro-fluid inertial switches based on the principle of inertial flow. They used
mercury or an ultra-low temperature conductive fluid as working fluids. Among them, mercury
has excellent electrical conductivity, but it is volatile and only suitable for low-g value environments.
Liquid metal switches greatly enhance the contact effect, but the choice of working fluids and how to
maintain their state stability are tricky issues.
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Figure 3. The schematic of a micro-drop inertial switch (Huang et al. 2013 [6]): (a) the overview;
(b) the packing.

In another way, during the contact process, the deformation of the flexible electrodes (i.e., the fixed
electrode or the movable electrode) can provide a buffer for the collision contact between the electrodes,
so as to prolong the contact time. Du [8] developed an inertial switch with a low stiffness-fixed
electrode for extending the contact duration in 2020 (see Figure 4). The fixed electrode was designed in
an arc to reduce its stiffness. The inertial switch was fabricated by UV-LIGA, in which the method
of width compensation was adopted to improve the fabrication accuracy. The result showed that
the contact time can reach 260 µs when the designed switch is triggered by 32 g. At the same time,
Xu et al. [87] proposed a vertically driven MEMS inertial switch with a flexible structure. The designed
switch can achieve 125 µs contact time at 288 g acceleration. By contrast experiment, the conclusion
has been proved that the extension of contact time can be achieved by reducing the stiffness of the
fixed electrode, especially its thickness.
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model; (b) the SEM image of the switches.

In addition to the method of utilizing flexible structure to extend the contact time as described
above, some literature mentioned carbon on nanotubes (CNTs) as electrode contact materials [9,88,89].
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CNTs are suitable for use as contact materials due to their excellent mechanical and electrical properties.
Lee et al. [9] have fabricated an inertial switch with CNTs-to-CNTs contact. When the moving electrode
collides with the fixed electrode, the elastic deformation of the CNTS greatly increases the contact
time. The results showed that under the same conditions, the contact time of the CNTs-based switch
was 114 µs, while that of the switch without CNTs was 7.5 µs. Its lifetime is tested to be longer than
57 thousand cycles. The electrothermal actuator and bistable mechanism are used to form the initial
gap between electrodes.

Further, there are also some methods taking advantage of the latching mechanism to maintain the
switch-on state. The common methods include the mechanical locking mechanism and the bistable
mechanism. Mechanical locking switches utilize a pair of mechanical locks to buckle electrodes
together [90,91]. The design of the mechanical locking switch requires consideration of an unlocking
mechanism to release the movable electrode, without which the switch will remain on after being
triggered. The design criteria of bistable bending beams can be found in [92,93]. Zhao et al. [94]
developed a bistable inertial switch based on the structure of an inclined buckling beam. Go et al. [95]
fabricated a bistable inertial switch using a SiO2/p+-Si bimorph with residual stress. Frangi et al. [96]
also developed a similar bistable structure. These switches require to be applied to the opposite force
to restore themselves to the original position. It is worth mentioning that apart from being widely
used in inertial switches, the latch mechanism is often used in a variety of other switches to reduce
power consumption and enhance switch closure, as described in the following sections.

3.2. Electrostatic Switches

The principle of electrostatic actuation widely used in MEMS is the utilization of electrostatic
attraction between charged objects to cause the deformation or displacement of objects.
Electrostatic switches have been widely studied, and long-term reliability is the main problem
that restricts their development. The experiments conducted by G Goldsmith [97] show that the
lifetime of the capacitive switch is exponentially related to actuation voltage. For every 5–7 V reduction
in the actuation voltage, the switch lifetime is extended by 10 years. Reducing actuation voltage not
only extends switch lifetime, but also facilitates its use in wireless devices [98].

The schematic of a generic switch with electrostatic actuation is shown in Figure 5a.
For electrostatically actuated switches, the Coulomb force is proportional to the applied voltage.
When the Coulomb force exceeds the elastic restoring force of the movable electrode, it suddenly
collapses onto the fixed electrode. This phenomenon is called pull-in instability [99] and the
corresponding potential difference, which is a critical value, is called the pull-in voltage. The thin
dielectric layer exists to form a coupling capacitor between the electrodes [100]. When the two come
into contact, the coupling capacitance becomes so large that the switch is turned off. In order to obtain
a large on/off capacitance ratio, the dielectric layer is usually made very thin (not exceeding 300 nm),
while capacitive switches typically require 30–80 V. At this high field intensity, charge trapping is prone
to occur, which causes the dielectric layer charging [101]. The accumulation of charging charges will
eventually prevent the plate from being pulled down or cause the plate to adhere to the dielectric layer,
resulting in switch failure. The reliability of the capacitive switch can be improved by optimizing
dielectric materials and decrease the driving voltage. Equation (2) gives a widely cited formula for
calculating the pull-in voltage of a vertically driven capacitor switch with a traditional rigid plate:

Vp =

√
8Kg03

27ε0A
(2)

where K is the spring constant of the moving structure in the desired direction of motion, g0 is the
initial gap between electrodes, ε0 is the dielectric constant, and A is the area applied to the movable
electrode. The equation intuitively shows the influence factors of actuation voltage. Reducing the
spring constant K has been shown to be the most effective way to reduce the voltage structurally and
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subsequently prolong the switching time [102]. Figure 5b is a RF MEMS capacitive switch fabricated
by J.Y.Park et al. [10]. Strontium titanate oxide (SrTiO3) with a high dielectric constant is used as the
dielectric layer. In order to reduce the actuation voltage, comparative experiments have been carried
out from the aspects of spring geometries, transmission line surface materials and initial gap height.
The experimental results showed that the switch with serpentine springs has the lowest actuation
voltage (i.e., 8 V) through reducing the spring constant without taking up too much space. This RF
switch can be widely used in wireless applications.
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It should be noted that unlike the rigid plates mentioned above, the research on elastic plates
has been on the rise in recent years. For instance, micro-curved plates can exhibit bistable behavior
under appropriate driving force [103]. Although it is difficult to fabricate curved bistable microplates
in the MEMS process, it is still a promising research direction. For instance, Asher et al. [104] presented
a self-molding forming technique for extruding non-planar thin-walled microstructures with a soft
foam stamp. The bistable microcap was fabricated and its bistability was verified for the first time.
A similar fabrication method can be found in [105]. Compared with the rigid flat plate, the bistable
curved plate used in the switch has the features of reducing power consumption, improving response
speed and increasing output displacement. The design method of bistable curved circular plates driven
by electrostatic force can be found in [106,107] to determine the initial geometric parameters.

The structure of a capacitance switch is simple, but the displacement range is limited by the
nonlinear behavior of electrostatic force. In order to extend the stable stroke of the electrostatic
drive (≥10 µm), the comb-like actuator is usually used. Electrostatic comb-driven switches are
laterally actuated [108] and their contact modes are generally designed to be resistive. In some case,
the output force is independent of displacement. Almeida et al. [39] fabricated a comb-like electrostatic
multi-contactor RF MEMS switch which can be simplified, as shown in Figure 6a. The switch consists of
a movable main beam, five movable fingers and six fixed fingers. When a DC voltage is applied to one
of the comb-drive actuators, the main beam is moved by electrostatic force, causing movable fingers to
come into contact with fixed fingers (see Figure 6b). Au was electroplated on the contact surface to
reduce the contact resistance. The overall size of the switch is 3 × 3 mm2 and the initial gap between
electrodes is 10 µm. However, the comb-like structure of the proposed device makes the actuation
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voltage increase up to 172–220 V, which not only limits its integration with the IC, but also easily leads
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The optimization of electrostatic MEMS switches is mainly achieved by reducing its actuation
voltage [110]. Current methods include shape optimization of comb fingers [111], reduction of the
driven gap [112] and reduction of the spring constant [102]. Park et al. [113] proposed a laterally
capacitive shunt MEMS switch fabricated on an SOI (silicon-on-insulator) wafer. One thousand comb
fingers were used with a gap of 2.1 µm. The air was used as both on and off state capacitive coupling
switches instead of dielectric material. The actuation voltage of this switch is 25 V. The second way is
the reduction of the spring constant. Kundu [12] reported an RF MEMS switch with low actuation
voltage. The actuation voltage was reduced from 20 V to 15 V by introducing the concept of a moving
bottom plate and analyzing the performance characteristics of such MEMS switches with two movable
plates. Chu [114] proposed a method to realize low voltage of electrostatic switches by utilizing the
buckling and bending effects caused by residual stress. The minimum voltage of this switch is 10.2 V.
Agrawal et al. [115] presented an electrostatically actuated switch with a hollow beam. By comparing
it to the switch with solid beam structure, it was found that the driving voltage of the hollow-beam
switch was reduced by four times and the chip area was not increased.

The bistable mechanism can be used to reduce the voltage and power consumption of electrostatic
switches. For a traditional electrostatic-driven bistable structure, the switching of two ground states
generally requires two driving electrodes to apply two opposite loads on the bistable structure [116–118],
thus increasing the chip area. Kwon et al. [119] proposed a spatula-shaped comb actuator to realize the
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bistable state of the bending beam. The direction of the electrostatic force can be changed by changing
the relative position of the movable comb and the fixed comb. This design only requires a single
driver electrode, but the overall size is not reduced. In recent years, it has been found that dynamic
snap-back can be used to release a latched beam with a single electrode [120], which can reduce the
chip area. The principle is to apply a gradually increasing voltage to the bistable beam until the voltage
is slightly higher than the pull-in voltage, then suddenly remove it. The beam will return from the
latched state to its original state. In addition to the lateral drive, Medina et al. [121] later applied this
concept to the out-of-plane actuation and presented a snap-through switch actuated by a bistable
bow-like beam. Its bistable structure helps to reduce power consumption. The use of the bow-beam
actuator reduces the voltage by 45% compared to the common snap-through switch. Furthermore, the
research of a capacitive cantilever beam switch driven by three steady-state electrostatic forces has
appeared recently [122]. Symmetry breaking should be paid attention to in the design of a bistable
structure [93,123,124]. When the ratio of arch height to arch thickness is greater than a certain value,
asymmetric transition will occur, which is a hindrance to the realization of latching.

For comb drive electrostatic switches, there is also a signal partition problem that must be paid
attention, namely drive signal and switch signal non-interference. Kang et al. [125] introduced a change
in the fabrication process of a comb-driven RF MEMS switch. For this device, a 2 µm thick layer of
tetraethyl orthosilicate is deposited and then patterned on the silicon structural layer. The signal pads
are then made and contactors coated by electroplating 3 µm Au. In this way, an isolation is formed
between the electrostatic drive signal and the on–off signal of the switch.

3.3. Electromagnetic Switch

The principle of the electromagnetic micro-switch is that the magnetic movable electrode attracted
by the electromagnetic coils moves to the substrate, and then the contacts are sucked together and
the controlled circuit is switched on [126]. The state conversion of the switch is achieved by entering
a bidirectional DC pulse current into the coils.

In 2007, Zhang [127] reported a high-speed bistable electromagnetic actuator for resistive RF
MEMS switches by UV-LIGA technology. A schematic drawing of the electromagnetic actuator is
shown in Figure 7. There are many details that can be enhanced in order to improve performance.
The application of a torsion beam can improve the restoring force and reliability of the cantilever beam.
Quartz glass was chosen as the substrate material here to reduce the substrate power loss. The cantilever
beam with a T-shaped cross-section was adopted for larger displacement and reduced mass of the
device. The multilevel Cu coils were designed in plane structures to adapt to the MEMS process.
Al3O2 was sputtered as the insulating layer. The permanent magnets made by precision-machining
technology are manually installed into the device. The test results showed that the switch speed is
20 µs at 50 mA pulse current. Under the action of the torsion beam and permanent magnet, a bistable
state can be easily realized, thus reducing power consumption. The overall size is 2 mm × 2 mm.
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Miao et al. [128] proposed an electromagnetic bistable switch by surface micromaching technology
on a glass substrate, as shown in Figure 8. In their ingenious design, the switch mainly consists of
a coil component and a spring supporting a permanent magnet. The switching of the two steady states
is realized by changing the direction of the pulse current in the coil. The top and bottom contactors are
made of electroplated Au. By adjusting the width and thickness of the cantilever beams, the spring
elasticity can be increased in a limited space, thus reducing the actuation voltage. Polyimide is used to
prepare insulating layers. At 5 V pulse voltage, the switch can achieve a response time of no more
than 5 ms and an output displacement of up to 380 µm. Unfortunately, this form of microassembly
increases the difficulty of operation, and the complex process of the electromagnetic MEMS switch
limits its mass production. The chip area of the switch is 6 mm × 6 mm.
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Al2O3 and polyimide are often used as insulators in electromagnetic MEMS switches. The structure
of microcoils has a direct influence on performance of the switch [89], for example, multi-layer coils and
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the addition of magnetic cores can significantly improve the driving force. A permanent magnet allows
the electrodes to remain in contact after the current is removed without additional power apply, through
which the switch can achieve a bistable state to reduce power consumption. The actuation voltage of
electromagnetic switches is as low as the requirement of the integrated circuit (<10 V), and the switch
has fast response speed (<5 ms). It can adapt to a bad environment [128], especially suitable for large
displacement (50–400 µm) [70]. The deficiencies of these switches are complex process (some require
microassembly) and need to occupy a large chip area (>2000 × 2000 µm2). Electromagnetic switches
have not advanced by leaps and bounds in the last decade. To greatly improve the applicability of
electromagnetic switches, future optimizations should still focus on reducing the power consumption,
reducing the size without reducing the electromagnetic force and improving the maturity of the
processing technology.

3.4. Piezoelectric Switch

As for piezoelectric switches, switching between on and off is achieved by the converse
piezoelectric effect of piezoelectric materials [129]. Piezoelectric strains can be either positive or
negative, therefore this kind of switch can be used actively to turn the switch off as well as on. Widely
used piezoelectric materials include aluminum nitride (AlN), lead zirconate titanate (PZT) and so on.

R. Mahameed et al. [11] firstly proposed a laminated double-beam RF MEMS switch based on
AlN (see Figure 9). Compared with PZT, the fabrication process of AlN is compatible with a CMOS
(complementary metal-oxide-semiconductor transistor). The dual-beam design is adopted to essentially
compensate for the residual stress in the deposited films, where the bottom layer of AlN is used for
driving. The switch can be used actively to turn the switch off as well as on by reversing the polarity of
driven voltage. The drive pads are utilized to drive both beams at the same time. In this way, the drive
voltage is reduced to no more than 20 V, the contact force doubled, and the switching time reduced
by half.
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Nakatani et al. [130] developed a compact resistive piezoelectric actuated switch, as shown in
Figure 10. The silicon beam of the switch was fabricated by opening a window on the device layer of
the SOI wafer and then etching the buried silicon dioxide layer with hydrofluoric acid. The PZT film
actuator and movable electrode were in turn prepared on the device layer. The ceramic cover plate
with a fixed electrode was finally bonded to the SOI wafer to form the initial gap and tightly package
the switch at the same time. In the initial state, the uniform 0.5 µm gap between the electrodes makes
the structure compact. The fabricated switch can produce a contact force of 1 mN at a driving voltage
of 20 V. In this way, the high restoring forces prevent adhesion, and this sealing solution prevents also



Micromachines 2020, 11, 694 14 of 31

the organic contamination of the contact surface. These design details help to make the service life of
the switch up to 1 billion.Micromachines 2020, 11, x  14 of 31 
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The well-known bistable mechanism is also used in piezoelectric actuation. Manuel Dorfmeister
et al. [131] proposed a piezoelectric actuator with a bistable membrane. An SOI wafer with a 2 µm
thick device layer was used as the substrate and the AlN layer was deposited as the piezoelectric
layer. Si3N4 was sandwiched between them as the insulating layer. When the internal stress exceeds
the critical value, the film will deflect and remain in its stable state. The film can be converted
between two ground states by applying impulse currents in reverse. The AlN bistable piezoelectric
film produced a displacement of 10 µm. The bistable membrane design is expected to be applied to
piezoelectric MEMS switches to reduce power consumption.

Piezoelectric drive has the advantages of fast response speed (<300 µs) [11] and stable output,
even for small displacements (0.5–2 µm). Piezoelectric actuation is the most suitable technique
for the biomedical devices of all actuation types [132]. PZT has a high value of the piezoelectric
coefficient d33 > 100 pC/N, while this of AIN is d33 = 5 pC/N, so PZT is most commonly used in the
research of piezoelectric switches. In order to reduce the power consumption of piezoelectric switches,
bistable mechanisms such as bistable curved microplates can be adopted [133]. The fabrication of
piezoelectric materials by the MEMS process is a concern.

3.5. Electrothermal Switch

The common thermal-actuated structures are the bimorph structure and bending beam structure
(including V-shaped and U-shaped beams). The principle of the bimorph actuator is similar to
that of piezoelectric actuators [134,135]. Electrothermal switches based on bending beam actuators,
especially V-shaped actuators, have been studied extensively.

Dellaert D et al. [40] proposed a compact thermal driven latched MEMS switch, as shown in
Figure 11. The main structure of the switch is composed of a linear actuator, a V-shaped actuator,
a pair of vertically placed contacts and two levers. The two actuators drive the contactors respectively,
and the contactors realize a bistable state by means of mechanical self-locking. The levers are used to
slightly amplify the displacement. The combination of the two actuators makes the switch produce
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a high execution force of 1.33 mN at a small displacement. The use of MetalMUMPs (metal multi-user
MEMS processes) technology allows the patterned Si3N4 layer to be suspended on the etched trench
and to support the 20-µm nickel structure layer. In addition to mechanical support, the silicon nitride
layer acts as an insulator to separate the drive current from the switch signal. Au is sputtering on the
sidewall of the contactors to lower the contact resistance, which is 0.6 Ω at 10 mA. The prominent
features of the switch are to save the chip area through reasonable placement and to reduce the contact
resistance through using a metal structure, sputtering Au on the sidewall of the contacts as well as
high contact force of 1.33 mN at the switch area of 2020 × 330 µm2.
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Bakrikassem, M. et al. [41,42] proposed an electrothermal mechanical latching switch. Its working
principle is shown in Figure 12a. The switch closure and latch are realized through the sequential
actions of two sets of electrothermal actuators. The switch is fabricated using the MetalMUMPS process,
as shown in Figure 12b. The polysilicon layer acts as a heating resistor. When a current is applied to
the polysilicon resistor through the DC pads, the heat generated is transferred to the V-shaped metal
actuator structure through the Si3N4 layer that wraps it. When the groove on the sliding tip moves to
the top of the fixed tips, the latch tip presses the sliding tip down by restoring force and latches the
position. The sliding tip acts as a bridge connecting the two fixed tips and closing the circuit. On the
one hand, Si3N4 protects polysilicon from corrosion by KOH solution used to etch the trench; on the
other hand, it separates the drive signal from the switch signal to avoid signal coupling (between the
locking tip and the actuator, and between the sliding end and the actuator). The reaction force on the
sliding tip produces vertical strain inside the locking tip, which affects the service life of the SisN4 layer
below the locking layer. The actuator is fabricated by 20 µm thick Ni connected with an Au-plated tip
to enhance the contact effect. The DC power consumption is 250 mW for a displacement of 32 µm in
14 ms.
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Zolfaghari P et al. [13] have studied a kind of electrothermally driven bistable RF MEMS switch
with low power consumption, as shown in Figure 13. The MetalMUMPs technology was also
adopted and the structure layer was made of Ni. The switch structure has a symmetrical distribution,
with U-shaped actuators linked with movable contacts on either hand and a V-shaped actuator with
a movable contactor on the top. The Si3N4 layer not only connects the contactors to the U-shaped
actuators or the V-shaped actuator, but also insulates the drive signal from the switch signal. U-shaped
actuators are used to pull apart the two lower contactors, and V-shaped actuators are used to push
the upper contactor forward. Pulse voltages are applied sequentially to the U-shaped and V-shaped
actuators, and the switch can be on or off. When the sidewall of the three wedge-shaped contacts fit
together, the mechanical forces they generate latch the position of the switch. Au film of 1–3 µm is
deposited on the surface of the contactors by electroplating to reduce contact resistance. The driving
voltages are no more than 1 V, and the contact resistance is 0.028 Ω.
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schematic view; (b) the close-up of the switching tip.

There are also some structural variants of actuators for electrothermal switches. For instance,
Kim et al. [136] proposed an actuator with stepped beams fabricated on an SOI wafer in 2013
(see Figure 14). When current is applied from the anchors of the beam array, the difference in section
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thickness of the beams causes a bending motion in the vertical direction. This actuator can be used for
vertically actuated switches.
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The thermal actuation overcomes the weakness of a great dependence on the gap compared
with electrostatic and electromagnetic actuation, and has large output displacement (laterally
actuated > 30 µm) [137] and output force (>500 µN) [138]. The main disadvantages of thermal
switches are slow response (a few thousand µs) and high power consumption (a few hundred mW).
A great deal of effort has been made to address the shortcomings of electrothermal switches. Similar to
switches with other driving principles, bistable systems are frequently used for their low power
consumption [13,40–42,139,140]. The response speed of MEMS switches can be improved by the
actuator optimization of geometry, material properties and driven voltage. Electrothermal switches
are basically resistive switches. Thus, low contact resistance is the key performance of this type of
switches. In the switch fabricated by MetalMUMPS process, 2–3 µm Au layers can be electroplated
by sputtering the seed layer first. Alternatively, in the case of SOI wafers, the non-perpendicularity
of sputtering can be used to sputter the Au directly on the contact surface of the structural layer.
Oh C [141] mentioned that: firstly, the sample is fixed and the contact surface on one side is sputtered
Au, and then the side wall of the other contact surface is coated by rotating the sample 180◦ along the
normal direction of the substrate. In this way, the metal layer sputtering of the two contact surfaces can
be better realized. Signal interference occurs if the drive signal and the switch signal are not isolated.
Generally, an electrical isolation layer is sandwiched between two layers of the driving structure and
contact. The electric isolation layer is usually the Si3N4 layer [40,41], or the SiO2 layer which is formed
by plasma-enhanced chemical vapor deposition (PECVD) [142] and then patterned.

3.6. Multiple-Actuation Switch

All of the above drive switches have their advantages and disadvantages. For example,
the electrostatic drive consumes extremely low power and has a simple fabrication process, but the
electrostatic actuation requires 20–100 V or even higher driving voltage, which is not conducive
to system integration and long-term reliability. Thermal actuation and electromagnetic actuation
can generate greater force and output displacement than electrostatic actuation, and the required
voltage generally does not exceed 10 V. However, continuous power supply results in large power
consumption. In this case, various improvements have been discussed, including reducing the
voltage of the electrostatic drive, increasing the switching speed and the displacement of the capacitor
switch by employing a bistable film, and reducing the power consumption of the electrothermal and
electromagnetic actuation by latching mechanisms. In addition to these, there are some efforts to
combine multiple drivers and leverage their strengths while avoiding their weaknesses.

Cho [143] reported a MEMS switch that combines electrostatic and electromagnetic actuations,
which means using electromagnetic force for switching and electrostatic force for state retention.
Driven by the electromagnetic force, the displacement is linearly related to the applied current.
The initial gap of the two contacts is 10 µm, the driving voltage is 2 V and the holding voltage is 3.7 V.
The transient response indicates that the switching time from off to on is less than 110 µs, while the
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switching time from on to off is about less than 380 µs. The power consumption is only 40.3 µJ.
Chae et al. [144] proposed an RF MEMS switch that takes advantages of electrostatic and electrothermal
drives. The driving voltage is 0.3 V and the holding voltage is 15.4 V. The switching time from off

state to on state is 47 µs, while the switching time from on to off is 4.5 µs. The power consumption is
3.24 µJ. Similar work can be found in [144–148]. The actuation voltage and power consumption of
these multi-drive switches are both decreased. The downside, of course, is the increased chip area
and complexity.

3.7. MOEMS Optical Switch

The MOEMS optical switch is not a kind of conventional MEMS mechanical switch, so this
review only mentions it in passing. It is actually a technology of optical path switching employing
MEMS components such as movable micromirrors and movable resonators [149,150]. Typical MOEMS
optical switches consist of input/output optical fibers, movable micromirrors and actuators. By apply
the appropriate driving voltage, the micromirror array can move along a straight line or twist at
an angle so as to realize on and off of the optical path. The driving principle of MOEMS optical
switches can be electrostatic, electro-thermal or other actuations as mentioned above. For instance,
Sun et al. [151] proposed a 2 × 2 electrostatic-driven optical switch with a torsion beam. The upper
and lower electrodes form a flat capacitive structure with an electrical isolation layer between the two
and a micromirror on the upper electrode. When no voltage is applied, light beams are reflected by
the micromirror. When the driving voltage is applied, the upper plate bends, thus changing light
beams from a reflected state to a transmitted state. The optical switch is processed by MEMS switch
technology, which has the advantages of miniaturization, mass quantization and compatibility with
large-scale integrated circuits. It plays an important role in optical fiber communication.

4. The Development Trend of MEMS Switches

For a more intuitive view of the development direction of MEMS switches over the past 20 years,
the switches and their characteristics in some representative articles are listed in the following Table 3
in chronological order.
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Table 3. Trait comparison of MEMS switches in different periods.

Authors
[Ref] (year)

Driving
Principle

Contact
Form

Processing
Technology

Stroke
(µm)

Contact Force
(µN)/Acceleration

Contact
Resistance

(Ω)

Size
(µm2)

Driving
Voltage

(V)

Power
Consumption

(µJ/mW)

Switching Time
(OFF–ON)

(µs)

Reliability
(Cycles) Application

Park, J. [10]
(2001) Electrostatic Capacitive Metal surface

micro-machining _ / / >400 × 400 8 0 / / RF MEMS

Robert, P.
[147] (2003)

Thermal +
electrostatic Contact _ _ _ _ 400 × 50 10 8 200 >109 RF MEMS

Wang, Y.
[152] 2004 Electrothermal Contact Silicon

surface-micromachining _ 725.7 _ 300 × 100 3 60–100 300 106 Microrelay

Almeida, L.
[39] (2007) Electrostatic Contact Metal-MUMPs 10 _ 0.95–1.9 3000 × 3000 172–220 _ _ 8× 105 RF MEMS

Zhang, Y.H.
[127] (2007) Electromagnetic Contact Non-silicon surface

micro-machining 17 _ _ 2000 × 2200 _ 20 _ _

Mahameed
[11] (2008) Piezoelectric Contact Non-silicon surface

micro-machining _ 0–32 5.4 200 × 200 5–20 _ 1–2 _ RF MEMS

Park, J.
[129] 2009 Electrostatic Non-contact SOI bulk

micromachining _ 25 _ 4000 × 5000 25.00 _ 300 109 RF MEMS

Patel, C.D.
[153] (2010) Electrostatic Contact

(Au-Ru)
Silicon

surface-micromachining 0.85 800–1800 1.5 155 × 130 75–90 _ 6 _ RF MEMS

Cho [143]
(2010)

Electromagnetic
+ electrostatic Contact Non-silicon surface

micro-machining _ 46.2 0.42 400 × 250 <4.3 15.4 µJ 447 1.66×108 RF MEMS

Miao [128]
(2011) Electromagnetic Contact Non-silicon surface

micro-machining 380 _ _ 6000 × 6000 5 25 mJ 4960 _ Communication
facilities

Patel, C.D.
[154] (2012) Electrostatic Contact All-metal surface

micromachining 0.55 1200–1500 1–2 250 × 250 100 _ 5.5 >108 RF MEMS

Lee [9] 2012 Inertial Contact SOI bulk
micromachining 16 33 g ~185 _ / _ _ >5.7 ×105

Commercial
applications e.g.,

geriatric health care
system

Song [155]
(2012) Electrostatic Contact Silicon

surface-micromachining 12.5 _ 0.005 _ 40 _ 230 4.9 ×105 Power-switching
application

Czaplewski
[156] (2012) Electrostatic Contact Non-silicon surface

micro-machining _ 3.5 140 × 150 80 _ _ 108 _

Huang [6]
(2013) Inertial Capacitive Silicon bulk

micromachining _ 44–263 g / _ / _ _ _ Safety and arming
system

Czaplewski
[157] 2013 Electrostatic Contact

(RuO2–Au)
Non-silicon surface

micro-machining 3 35 <4 228 × 85 120 _ _ 109 RF MEMS

Zhanwen, X.
[4] (2014) Inertial Contact Non-silicon surface

micro-machining 8–40 350 g–500 g _ 2800 × 2800 / _ _ _
Military weapons

and industrial
applications
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Table 3. Cont.

Authors
[Ref] (year)

Driving
Principle

Contact
Form

Processing
Technology

Stroke
(µm)

Contact Force
(µN)/Acceleration

Contact
Resistance

(Ω)

Size
(µm2)

Driving
Voltage

(V)

Power
Consumption

(µJ/mW)

Switching Time
(OFF–ON)

(µs)

Reliability
(Cycles) Application

Gerson, Y.
[74] (2014) Inertial Contact Silicon bulk

micromachining ~300 g 1.7–2.6 2600 × 2600 / _ <120 _ -

Nakatani, T.
[130] (2014) Piezoelectric Contact SOI bulk

micromachining 0.5 1000 1600 × 1100 20 _ _ 108 -

Xu, Y. [15]
(2015) Electrostatic Capacitive Silicon

surface-micromachining 1 / / 320 × 120 14 _ _ _
Frequency

reconfigurable
antenna application

BakriKassem,
M. [42]
(2015)

Electrothermal Contact Metal-MUMPs 32 3200 2.4 2000 × 1100 12 250 mW 14,000 _ Latching RF MEMS

Pirmoradi,
E. [140]
(2015)

Electrothermal Contact Silicon
surface-micromachining >5 _ _ _ 6 98.78 mW 700 _

RF tuning and
switching

applications

Zhou [158]
(2015) Inertial Contact Metal surface

micro-machining 110 _ _ _ _ _ _ _ _

Zhang, Q.
[75] 2016 Inertial Contact Non-silicon surface

micro-machining 20 150–350 g 2.35 _ / _ 300–600 _ Remote detection
of vibration shock

Angira, M.
[159] (2016) Electrostatic Capacitive Silicon

surface-micromachining 2 / / 310 × 90 6 _ _ _ RF MEMS

Lee, Y. [90]
(2016) Inertial Contact Silicon

surface-micromachining 9 43.7 g / 1800 × 3200 / _ _ _

Airbags,
parachutes,

military devices,
etc.

Khadeijeh K
[109] (2016) Electrostatic Contact Silicon

surface-micromachining 0.8 20,000 0.0018 120 × 60 6.27 _ _ _ RF MEMS

Dellaert, D.
[139] (2016) Electrothermal Contact Metal-MUMPs 41–71 _ _ 2000 × 2000 20–24 _ _ _ Automated

distribution frame

Xu [83]
(2017) Inertial Contact Non-silicon surface

micro-machining _ >10,000 g 9.09 _ / _ <1000 _
Shock vibration

monitoring sensor
for IoT

Tomoaki
Kageyama
[27] (2017)

Electrostatic Contact
(Au-Au/CNTs)

Silicon
surface-micromachining _ _ _ _ 90 _ _ 9100 RF MEMS

Joshitha, C.
[28] (2017) Electrothermal Contact SOI bulk

micromachining 20.7 157 _ 200 × 200 14 _ _ _ _

Kashani
Ilkhechi, A.
[37] (2017)

Electrostatic Contact Metal-MUMPs 3.7 107 _ _ 50 _ 79 _ Antenna switch
applications
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Table 3. Cont.

Authors
[Ref] (year)

Driving
Principle

Contact
Form

Processing
Technology

Stroke
(µm)

Contact Force
(µN)/Acceleration

Contact
Resistance

(Ω)

Size
(µm2)

Driving
Voltage

(V)

Power
Consumption

(µJ/mW)

Switching Time
(OFF–ON)

(µs)

Reliability
(Cycles) Application

Liu [160]
(2017) Electrostatic Contact Silicon

surface-micromachining _ / 5 400 × 300 _ 30.4 108 RF MEMS

Lee, H.N.
[85] (2017) Inertial Contact Non-silicon surface

micro-machining 6.21 10 g _ _ _ _ _ _ Military
applications

Zolfaghari
[13] (2018) Electrothermal Contact Metal-MUMPs 12–32 950 0.028 _ 0.5–0.9 0.56mW 500 _ RF MEMS

Du [22]
(2018) Inertial Contact Non-silicon surface

micro-machining >38 40 g _ 3870 × 3870 _ _ _ _ Automotive
airbags

Pustan, M.
[45] (2018) Electrothermal Contact Silicon

surface-micromachining 0.6 _ _ 1200 × 1000 _ _ 490 _ _

Shekhar, S.
[161] (2018) Electrostatic Capacitive Non-silicon surface

micro-machining _ / / _ 4.8 <1 mW 33 107 5G applications

Xi [21]
(2019) Inertial Contact Non-silicon surface

micro-machining _ 400 g–700 g _ _ / _ _ _ Direction detection

Desireh [32]
(2019) Electrothermal Contact Metal-MUMPs 2.6 _ _ _ 11 _ _ _ Power Limiter

Applications

Ansari [36]
(2019) Electrostatic Capacitive Silicon

surface-micromachining / / / _ 2.4 _ ~10 _ Communication
facilities

Du [8]
(2020) Inertial Contact Metal surface

micro-machining 50 26 g _ 3850 × 3850 / _ <2240 _ Airbag restraint
system

Chea [144]
(2020)

Electrothermal
+ electrostatic Contact Silicon

surface-micromachining 4.7 _ 1 300 × 160 15.4 3.24 µJ 47 2.1×107 RF MEMS

Krakover, N.
[162] (2020) Inertial Contact SOI bulk

micromachining _ 1000 g 1020 _ / _ 300 _ _

H Li [163]
(2020) Electrostatic Contact Silicon bulk

micromachining 0.7 _ 0.4 1000 × 330 7.5 0 75 5 × 106 MEMS relay

A S Bale
[164] (2020) Electrostatic Capacitive _ 2.5 / / _ 5 _ 35 _ RF MEMS
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As can be seen from Table 3, passive inertia switches remain a research hotspot benefiting from
their particular application market. As for active switches, electrostatic and electrothermal switches
have developed more rapidly in recent years. In the choice of contact mode, the resistive switch is
the mainstream relative to the capacitive switch. For resistive switches, Au-Au contact is mainly
selected from the point of view of reducing contact resistance. Further from the point of view of
reliability, there are but few switches using other contact materials. The performance optimization of
various switches mainly focuses on the following aspects: (1) Reduced power consumption. Of all,
electromagnetic and electrothermal actuation require relatively high power consumption. At present,
the main method to reduce power consumption is to use a bistable mechanism due to their ultra-low
power consumption, as both ground states remain stable without any energy supply [13,93,95,122].
(2) Enhanced contact performance. For resistive switches, switches need to have good contact effect to
accurately identify switch signals. The extension of contact duration can be achieved by decreasing
the stiffness of electrodes; utilizing latching mechanisms including mechanical self-locking, a bistable
mechanism and a wedge-shaped channel, etc. [4–8,74,77,80]. The contact resistance can be reduced
by using the contact materials with low resistivity [13,57] and increasing the contact force [80,165].
(3) Process technology. The current fabrication technologies of MEMS switches are mainly divided into
SOI bulk micromachining and metal surface micromachining. The excellent mechanical and electrical
properties of metals facilitate the transfer of switch signals, which leads to the wider application of
MetalMUMPs technology in the fabrication of MEMS switches [8]. However, silicon-based MEMS
switches are also being studied persistently due to their unsurmountable merits, that is, high shape
precision and simple and mature processes, which are more suitable for mass production. (4) Impact
resistance. This specification, especially for inertial switches, can be met by optimizing the structure
and substrate materials [59]. (5) Miniaturization. One of the reasons passive switches stay hot is their
smaller size when compared to active inertial switches. The thermal actuator can achieve a large
displacement output, but its slender shape takes up a large chip area. Therefore, novel designs tend
to be developed to make the structure more compact [80]. (6) Improved durability. The long-term
lifetime of MEMS switches has been improved in many ways, such as by adopting dielectric-free
switches to avoid dielectric charging, choosing gold alloys or contact materials combining gold with
other materials to reduce contact degradation, enhancement of heat dissipation of devices, reducing
residual stress in structural design and process technology, and strengthening seals to prevent moisture
and pollution.

Through the above analysis, it can be found that MEMS switches are distinguished by
miniaturization, low power consumption and intelligence, but there are still some problems that
need to be urgently solved. Typical problems include: (1) Complex processing technology. There are
manifold MEMS processing steps, and some still need to be manually completed, where subjective error
is big and quality consistency is difficult to guarantee. (2) Lower reliability [166]. Reliability is a key
performance in switch alignment applications. Due to the repeated use of switches and environmental
factors, MEMS switches are prone to failure. Although MEMS switches are increasingly needed in civil
and military applications, their reliability is often neglected in design. To date, the related failure modes
and mechanisms have not been fully explored. In addition, there is also a lack of unified standards to
check the reliability of switches, such as lifetime, mechanical properties and so on. (3) High packaging
cost. The packing of the switch has always been a conundrum [167,168]. The packaging cost of switches
is often much higher than the manufacturing cost, which restricts their mass quantification.

5. Summary and Outlook

Over the past decades, various MEMS switches have been designed and fabricated. In this
paper, the structural characteristics, relative strengths and weaknesses of switches based on different
actuation principles are reviewed. We have also discussed the efforts of various groups to improve
the performance of MEMS switches using different techniques. Inertial switches have a significant
number of application requirements, and their future development is mainly in the direction of
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multi-axis sensitivity, high reliability, high impact and load resistance. In terms of active switches,
electrostatic and electrothermal switches are more widely used at present on account of their excellent
performance. For better use, the optimization of these two type of switches will remain an interesting
topic. Furthermore, with the discovery of new materials and the maturity of technology, it is
believed that piezoelectric switches will win a place in the field of MEMS switches. Each switch
has its advantages and disadvantages, so the choice of driving principle and structure of the switch
should be combined with its application requirements. As researchers gradually shift their attention
concerned with performance optimization to the improvement of reliability, MEMS switches will gain
significant development.
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