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Abstract: Entry temperature estimation is a major concern for finishing mill set-up in hot strip mills.
Variations in the incoming bar conditions, frequent product changes and measurement uncertainties
may cause erroneous estimation, and hence, an incorrect mill set-up causing a faulty bar head-end.
In earlier works, several varieties of neuro-fuzzy systems have been tested due to their adaptation
capabilities. In order to test the combination of the simplicity offered by Takagi–Sugeno–Kang
systems (also known as Sugeno systems) and the modeling power of type-2 fuzzy, in this work,
hybrid-learning type-2 Sugeno fuzzy systems are evaluated and compared with the results presented
earlier. Systems with both empirically and fuzzy c-means-generated rules as well as purely fuzzy
systems and grey-box models are tested. Experimental data were collected from a real-life mill;
datasets for rule-generation, training, and validation were randomly drawn. Two of the grey-box
models presented here reach 100% of bars with 20 ◦C or less prediction error, while two of the purely
fuzzy systems improved performance with respect to purely fuzzy systems presented elsewhere,
however it was only a slight improvement.

Keywords: type-2 fuzzy; hot-rolling; temperature estimation; Takagi–Sugeno–Kang

1. Introduction

The finishing mill set-up is a crucial issue in hot-rolling as it has to be properly calculated for
the bar front section to meet requirements. Some rolling variables, including temperature, at the bar
head-end have to be estimated for set-up calculations. Estimation has to be performed online, and
quickly, such that the bar maintain as much heat as possible [1,2]. Thus, temperature estimation at the
bar head-end is an important concern in hot-rolling.

This work is particularly concerned with the bar-head end temperature estimation at the scale
breaker entry, as shown in Figure 1. Physical modeling commonly performs the scale breaker entry
temperature estimation in most hot-rolling lines worldwide. Such physical models are based on
temperature measurements at the roughing mill exit and the bar traveling time from the roughing
mill exit to the scale breaker entry. The modeling is based on the roughing mill exit temperature
measurements, since at this point the measurements are cleaner than those at any other subsequent
point in the process. In addition, it is not affected by recalescence [3]. The estimation is carried out in
cascade according to the different thermal phenomena involved, as shown in Figure 1. Information on
how the parameters are taken into account is presented elsewhere [4,5].
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literature. They are also developed and tested for both purely fuzzy systems and GB models, with 9 and 
25 rules. The benchmark for this work is the physical model, due to the fact that works on bar head-end 
scale breaker entry temperature estimation, for finishing mill set-up purposes, based on techniques 
other than those revised and studied in this work, have not been found in the literature to date. Hence, 
the performance of the systems presented here is compared with that of the model + PI. The systems 
were designed using MATLAB® (R2019b, The MathWorks Inc., Natick, MA, United States) and tested 
with data collected from a real hot strip mill. Experimental results show the benefits of applying type-2 
Sugeno fuzzy systems and GB models for temperature estimation in a hot strip mill. A list of symbols 
and acronyms used in this work is given in Table 1. 

Table 1. List of symbols and acronyms. 

Symbol or 
Acronym 

Meaning 

Model + PI Physical model with proportional-plus-integral compensation 
GB Grey box 

FCM Fuzzy C-means 
ANFIS Adaptive neuro-fuzzy inference system 

HL Hybrid learning 
MAE Mean absolute error 
RMSE Root mean squared error 

%Bars ± 20 °C Percentage of bars with a prediction error within ±20 °C 
FOU Footprint of uncertainty 

x1 Entry 1 to fuzzy systems, measured temperature at roughing mill exit 

x2 
Entry 2 to fuzzy systems, measured traveling time from roughing mill exit to scale 

breaker entry 
o Output of a conceptually defined fuzzy system 

w, wu, wl Firing strength, u and l denote upper and lower in type-2 fuzzy, respectively  
y Estimation of purely fuzzy systems and GB models prediction 
z Model + PI estimation error 

For the sake of briefness, the methodology fundamentals are briefly presented in this paper; the 
reader is referred to [20,21] for FCM fundamentals; fuzzy logic and ANFIS theory can be found in [21]; 
in [19], a summary of the fundamental principles of type-2 fuzzy logic is presented, while for a deeper 
insight the reader is referred to [22]. 

 
Figure 1. Hot-rolling mill production line with the temperature prediction block diagram. Figure 1. Hot-rolling mill production line with the temperature prediction block diagram.

An additive proportional-plus-integral term is often used to compensate the temperature modeling
error [6]. The estimation system using the proportional-plus-integral compensation will be referred to as
“model + PI” in the rest of this work. In spite of the proportional-plus-integral compensation function,
the estimation is greatly affected by process variations, measurement uncertainties, and product
changes, i.e., large estimation errors are produced, subsequently resulting in an incorrect mill set-up
and a faulty bar head-end [7].

In general, rolling variable estimation is important for control purposes, and hence, for quality
fulfilment. Temperature estimation along the strip using physical modelling at different stages of
the rolling line have been reported in the literature. A mean error of 0.8◦ in finishing temperature
estimation and 3.9% of coils with an absolute mean error greater than 10◦ is reported in [8]. Results
of 83% of bars with an error lesser than 3◦ in finishing temperature prediction are presented in [9].
A physical model was implemented on a digital system reporting an error of 15◦ in the finishing
temperature estimation [10].

Computational intelligent techniques, such as artificial neural networks, fuzzy logic,
and computational intelligence-based grey-box models (GB); have been widely used in industry
due to their capabilities of adaptation [6,11] and human knowledge incorporation [12,13]. A number of
applications of computation intelligent techniques on estimation and control, along with GB models, in
a wide range of industrial areas such as food processing, iron and steelmaking, chemical, biochemical,
pharmaceutical, power plants, oil and gas processing, water treatment, industrial robots, heat treatment,
etc., have been recently reported in the literature [14,15].

Due to its importance, research on rolling variables estimation using computational intelligence
has also been performed in order to reduce estimation error. Roll thermal expansion prediction in
hot-rolling using neural networks has been reported in [16]. In [17], results of a research work to
evaluate prediction of bending force by neural networks adapted by a genetic algorithm are reported.
The water-cooling heat transfer coefficient is estimated by a Takagi–Sugeno–Kang fuzzy system (also
known as a Sugeno system) within a closed-loop control scheme coiling temperature [18].

Fuzzy logic and artificial neural networks have also been tested to overcome the aforementioned
temperature estimation problems at the scale breaker entry. One parallel and two series connection
structures of neural GB models have been developed and tested [11]. Several factors, which were
believed to influence the process, but were not included in the physical model, were also tested,
and they were shown to improve prediction for both neural networks and neural-based GBs [6].
Experimental results on adaptive neuro-fuzzy inference systems (ANFISs) and ANFIS-based GB
models are presented in the work of Barrios et al. [11]. Type-1 and type-2 Mamdani fuzzy inference
systems with hybrid-leaning (HL) adaptation, both, as purely fuzzy and within GB schemes, were also
tested for scale breaker entry temperature prediction [11,19]. Fuzzy c-means (FCM)-generated
rule-based ANFISs and ANFIS-based GB models were tested and evaluated in [20].

As can be seen from the brief literature review above, computational intelligence techniques
have been used to predict the scale breaker entry temperature because of their powerful modeling
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capabilities, particularly type-2 fuzzy systems [19]. On the other hand, the Sugeno fuzzy system and
its type-1 adaptive version, the so-called ANFIS, have been proven to be successful in a number of
applications, despite being simpler than Mamdani fuzzy systems. In this work, HL type-2 Sugeno
fuzzy systems, both with empirical and FCM rule generation, are developed and evaluated for scale
breaker entry temperature prediction to take advantage of the merits of both techniques combined.
Due to the importance of scale breaker entry temperature for the finishing mill set-up, and hence,
for bar head-end to meet requirements, the main purpose of this work is to explore the benefits of
these two methods combined on scale breaker temperature estimation, given the simplicity of Sugeno
systems in relation to Mamdani and the powerfulness of type-2 fuzzy. Both purely fuzzy systems and
GB models with 9 and 25 rules are tested. To allow a complete comparison, a HL type-1 Mamdani with
FCM-generated rules is also developed here, since reports of the application of such systems have not
been found in the literature. They are also developed and tested for both purely fuzzy systems and GB
models, with 9 and 25 rules. The benchmark for this work is the physical model, due to the fact that
works on bar head-end scale breaker entry temperature estimation, for finishing mill set-up purposes,
based on techniques other than those revised and studied in this work, have not been found in the
literature to date. Hence, the performance of the systems presented here is compared with that of the
model + PI. The systems were designed using MATLAB® (R2019b, The MathWorks Inc., Natick, MA,
USA) and tested with data collected from a real hot strip mill. Experimental results show the benefits
of applying type-2 Sugeno fuzzy systems and GB models for temperature estimation in a hot strip mill.
A list of symbols and acronyms used in this work is given in Table 1.

Table 1. List of symbols and acronyms.

Symbol or Acronym Meaning

Model + PI Physical model with proportional-plus-integral compensation
GB Grey box

FCM Fuzzy C-means
ANFIS Adaptive neuro-fuzzy inference system

HL Hybrid learning
MAE Mean absolute error
RMSE Root mean squared error

%Bars ± 20 ◦C Percentage of bars with a prediction error within ±20 ◦C
FOU Footprint of uncertainty

x1 Entry 1 to fuzzy systems, measured temperature at roughing mill exit

x2
Entry 2 to fuzzy systems, measured traveling time from roughing mill exit

to scale breaker entry
o Output of a conceptually defined fuzzy system

w, wu, wl Firing strength, u and l denote upper and lower in type-2 fuzzy, respectively
y Estimation of purely fuzzy systems and GB models prediction
z Model + PI estimation error

For the sake of briefness, the methodology fundamentals are briefly presented in this paper; the
reader is referred to [20,21] for FCM fundamentals; fuzzy logic and ANFIS theory can be found in [21];
in [19], a summary of the fundamental principles of type-2 fuzzy logic is presented, while for a deeper
insight the reader is referred to [22].

2. Materials and Methods

2.1. Hot-Rolling Mill

A hot strip mill transforms steel slabs or ingots forms obtained by continuous or traditional
casting into a coiled strip. Typical dimensions of the slabs are 10 m long, 1 m wide and 0.2 m thick.
A typical hot-rolling line consists of the following stages: furnaces, one or two roughing mills (in the
present case there are two roughing mills), a finishing mill, cooling banks and down coilers. Figure 1
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shows the hot-rolling line where the present work was undertaken. This hot strip mill is working
with a walking beam. A final strip coil of a hot strip mill must attain required thickness, width and
mechanical properties [1].

The slabs, originally at ambient temperature, are reheated to around 1300 ◦C. When a slab reaches
the appropriate temperature, it leaves the furnace. The target temperature, and therefore the residence
time of every individual slab in the furnace depends on steel grade, slab dimensions and the final
product. This is also true for the rolling pace, but it is also determined by every particular mill capability.

After leaving the furnace, the slab is transported for roughing, in this case, by two reversible
roughing mills, as shown in Figure 1. Here, the initial thickness reduction takes place usually by 5 or
7 passes. Thickness reduction in the roughing mill is typically from 200 mm to 25.4 mm. The roughing
mill output is called a transfer bar, and is typically 90 m in length. The next stage is the finishing mill,
which often consists of 6 or 7 stands. In this particular mill there are 6 stands. Once in the finishing mill,
the bar is called a strip. At the finishing mill exit, the strip has to fulfil final thickness and width and
finishing temperature specifications; the latter is required to achieve the desired mechanical properties.
When the strip leaves the finishing mill, it is taken to the cooling banks where the strip has to be
cooled down from the finishing temperature to a specific coiling temperature, which is also required
for mechanical properties.

An oxide film called the primary oxide is formed over the slab surface during the reheating process
in the furnace, and the rolling process when exposed to the environment is called the secondary oxide.
The oxide film has to be removed to allow proper rolling. The descaler devices (Figure 1, labelled with
the letter D) are equipped with high-pressure water jets in order to remove the oxide layer from the
slab surface.

The most critical process in a hot strip mill is the finishing mill. It involves a great number of
variables due to the interaction between stands, and it requires a higher level of automation [1,2].
Every stand has to accurately achieve a particular proportion of thickness reduction (draft). The finishing
mill also has to fulfil the finishing temperature within a certain tolerance band. In order to obtain a
more stable rolling process, a specific strip tension between the slabs is needed. This is supplied by
devices called loopers. Tension also contributes to thickness reduction. Therefore, thickness, finishing
temperature and tension, among other variables, should be controlled when the strip is being rolled
within the finishing mill. However, the controllers’ set points are not straight forwardly obtained
since the incoming bar conditions, such as temperature and resistance, may vary from bar to bar.
The specifications of the final product, which for the finishing mill are final thickness and width and
finishing temperature, may also change. Therefore, the set points for controllers have to be calculated
and must be sent before the incoming bar enters the finishing mill, which is crucial in order for the
front section of the coil to meet the specifications.

2.2. Methogology Fundamentals

2.2.1. Fuzzy Logic

Fuzzy logic is essentially a multiestimated logic that is an extension of classical logic. The latter
uses only the terms “true” and “false” and assigns deterministic values to its variable. This logic
satisfactorily models a great part of the “natural” reasoning. Although human reasoning uses
“true” or “false” values, they are not necessarily “so deterministic”. Fuzzy logic intends to produce
exact results from vague information, which are particularly useful in electronic or computational
applications. The “fuzzy” adjective refers to the nondeterministic values that, in general, have an
uncertain connotation.

The two kinds of fuzzy systems more commonly used are Mamdani and Sugeno. In both cases a
set of rules of the form “IF-THEN” are used to model the problem. A fuzzy rule has the following form:

Mamdani: if x1i is A1i and x2i is A2i then oi is Aoi
Sugeno: if x1i is A1i and x2i is A2i then oi = f (x1k, x2k)
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where x1 and x2 are input variables; o is the output variable; Aji is the fuzzy set for input j, and Aoi is
the output fuzzy set defined within the operating ranges of x1, x2 and o respectively; f (x1, x2) is a linear
function; and i is rule number. A fuzzy set is commonly described by a triangular, trapezoidal or a
Gaussian function, which is a called membership function since it gives the degree of membership of a
particular entry dataset to a given fuzzy set.

A rule expresses the relation between the input fuzzy sets A1i and A2i and the output fuzzy set
Aoi, whose typical function would be µA1i∧A2i→Aoi, where the operator ∧ denotes the AND operation,
which in fuzzy set operations, denotes an intersection implemented as a minimum operation. This
operation is called the t-norm. Anther commonly used function is µA1i∨A2i→Aoi, where the operator ∨
denotes the OR operation, which in fuzzy sets operations, represents a union operation implemented
as a maximum operation. This operator is called the t-conorm. These operations represent—and are
known as—logical implications. The input part of the rule is called the antecedent and the output part,
preceded by the preposition “then”, is known as the consequent. Figure 2a show a logical implication
mechanism using the t-norm operation, which in this work, is used for the antecedent.
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Figure 2. Type-1 fuzzy inference mechanism: (a) antecedent logical implication and (b) aggregated
consequent set for two-rule evaluation.

In a Mamdani type fuzzy systems, the consequent is a fuzzy statement (see rules above); therefore,
the output from each rule is a fuzzy set produced from the projection of the firing strength (w) over
the output fuzzy set. Since the t-conorm is assumed in Figure 2b for the consequent operation,
an aggregated fuzzy set is produced from a logical operation between each rule output for a given
input dataset. Nonetheless, in engineering, a single value is needed, therefore a defuzzification step is
carried out. There are commonly four methods for defuzzification: centroid of area, bisector of area,
mean of maximum, and smallest of maximum. In this work the centroid of area is used, and it is
given by

od f =

∫
µAo(o)odo∫
µAo(o)do

(1)

where µAo(o) is the aggregated output fuzzy set and odf is the defuzzified output.
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The consequent in a Sugeno type fuzzy system is a deterministic function (see rules above);
therefore, in this work, the zero order Sugeno system is used with the output given by

oi =

∑
i wipi∑

i wi
(2)

where pi is a constant.
The type-2 fuzzy membership functions are as above for type-1 fuzzy (although with uncertain

means) for both antecedents (x1 and x2) and consequents (o). In this work, it is assumed that the
interval type-2 membership function case holds [19,22].

Then, the type-2 membership function with uncertain means for each antecedent is expressed as

µi(gl) = exp

−1
2

 gl −mAi
i

σi

 (3)

where min∈[mi1, mi2] is the uncertain mean; n = 1, 2 is the lower and upper bounds of the uncertain mean;
l = 1, 2 is the input number; and σi is the standard deviation. The uncertain mean forms the so-called
footprint of uncertainty (FOU) which is depicted in Figure 3a in a type-2 fuzzy logical implication.
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The type-2 fuzzy consequent logical implication is shown in Figure 3b, as well as an aggregated
fuzzy set using upper and lower firing strengths. The defuzzification process is considerably more
cumbersome using the iterative algorithm given in [19,22].
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2.2.2. Fuzzy C-Means

K-means clustering (also called C-means clustering) is a data-grouping algorithm which partitions
input–output data pairs into groups of clusters according to some similar characteristics, usually given
as an objective function which has to be minimised. Such clustering algorithms are commonly used
to determine the initial set of rules of a fuzzy system. A collection of n vectors xj, j = 1, 2, 3, . . . n,
is partitioned into c groups ci, i = 1, 2, 3, c; c cluster centres are then determined by minimizing the
following cost function:

J =
c∑

i=1

Ji =
c∑

i=1

 ∑
k,xk∈Ci

‖xk − ci‖
2

 (4)

where Ji =
∑

k,xk∈Ci

‖xk − ci‖
2 is the cost function for group i and ci is the centre of group i. In general,

any similarity function may be used for Ji, however, the Euclidean distance is the most commonly
used. In K-means clustering, a particular data vector (xk) only belongs to the group with to the closest
centre ci.

A membership matrix U is formed as follows:

ui j =

{
1 i f ‖x j − ci‖

2 < ‖x j − ck‖
2, f or all k , i

0 otherwise
(5)

In order to improve this algorithm, fuzzy C-means clustering (FCM) was proposed. The main
difference is that in fuzzy C-means, xk may belong to more than one group according to a degree of
membership. The total degree of membership for a particular data vector (xk) should equal unity.

2.3. Experimental Data

Since the bar arrival time is unknown, prediction is updated every 5 s, which subsequently
produces an inherent prediction error. Moreover, as mentioned, the scale breaker entry temperature
measurement is not as reliable as that at the roughing mill exit. Therefore, the so-called reprediction is
performed after the arrival time is collected and the scale breaker entry temperature measurement has
been validated. The model + PI compensation is performed based on the repredicted temperature, as
shown in the estimation flow-chart in Barrios et al. [6]. Data of 42,000 consecutive bars were collected
from a real hot strip mill, and the date collected, among others, were the roughing mill exit time,
the roughing mill exit measured temperature, the scale-breaker bar arrival time, the scale breaker
entry temperature, and the model + PI repredicted temperature. Data of 37,000 bars out of the 42,000
originally collected were kept after inconsistencies were removed. Three different sets were randomly
drawn, the first one, consisting of 10,000 data vectors, was used to generate the rule-bases of the FCM
algorithm, while the other two sets of 3700 data vectors each were used for training and validation of the
fuzzy systems. The ranges of x1, x2 and y are 1072–1192 ◦C, 16.5–20.5 s, and 1045–1125 ◦C respectively.

2.4. Fuzzy Systems for Scale Breaker Entry Temperature Estimation

The inputs to the physical model to estimate the scale breaker entry temperature (y) are the surface
temperature measured at the roughing mill exit (x1) and the bar travelling time from the roughing
mill exit to the scale breaker entry (x2). These are the inputs to the purely fuzzy systems and GB
models developed here to estimate the scale breaker entry temperature, as shown in the shaded block
in Figure 1. In practice, the travelling time is estimated, and it is recursively updated while waiting
for bar arrival. Nevertheless, as mentioned, the measured travelling time after bar arrival is used to
compensate the model estimation for the next bar; therefore; in this work, the measured travelling time
is used.
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2.5. Type-2 Sugeno Fuzzy Systems and GB Models for Scale Breaker Entry Temperature Modeling

As mentioned, the systems are tested as purely fuzzy systems or within GB models for 9 or 25 rules;
Gaussian functions are used as membership functions as in previous works. The performance of the
type-2 Sugeno purely fuzzy and GB models is evaluated and compared with the systems developed
in the earlier work and those not found in the abovementioned literature. In this way, a complete
study of neuro-fuzzy systems applied to scale breaker entry temperature prediction in an hot strip mill
is presented.

In this work, parallel GB models are used. These are compound structures combining two or
more models of different nature. One of those systems is a fuzzy system, and the other one is the
model + PI. The fuzzy system output is an additive term. The merits and justification of using GB
models can be found in [11]. The fuzzy systems within the GB structures (as shown in Figure 4) are
also designed using the methodology for the fuzzy systems, with either 9 or 25 rules as described in
earlier works; however, the output data vector is given by the model + PI estimation error (instead of
y), i.e., the fuzzy system will predict the model + PI error, such that it may compensate for it. The fuzzy
system in Figure 4 has the same inputs, x1 and x2, while the output is the fuzzy system prediction of
the model + PI estimation error (z). Note that the output of the GB model is still called y, while in
Figure 4, the model + PI estimation is called T̂m. The range of z is −75–25 ◦C [19].
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In the following section, the type-2 Sugeno with FCM rule generation designed is described (for
type-1 and type-2 Mamdani, see [11,19,20]). The fuzzy systems developed here have rules in the form
of those given in Section 2.2.1, where x1k, x2k and ok are the measured temperature at the roughing mill
exit; the measured bar travelling time; and the fuzzy prediction output, either, temperature at scale
breaker entry (y) or the model + PI prediction error (z); for the kth data pair, respectively.

The FCM method is a clustering algorithm, which partitions the input/output data into groups,
supplying the group centroid (ci) and standard deviation (σi). As mentioned, the fuzzy sets (Aji and
Aoi) are described by Gaussian membership functions distributed according to ci calculated by the FCM
algorithm, which determines the Gaussian membership function mean values (ui). σi determines the
standard deviation of the ith membership function and i denotes the cluster number corresponding to
cluster-i and rule number. The fuzzy rules relate the corresponding input/output clusters; thus, instead
of having rules for all membership function combinations of fuzzy sets as done with the empirical
rule basis [11,19], there is only one rule per cluster. To establish the type-2 membership functions, a
noisy mean is assumed, bounded by upper and lower limits denoted here as ui

l and ui
u respectively,

assuming constant σi.
The FCM algorithm was run for 100 epochs using the 10,000 data vector set randomly drawn

from the data collected as described above. Once the data clusters were generated, the fuzzy systems
were designed and trained using the randomly drawn training data during the 12-epoch period.
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After training, the system performance is evaluated with the validation dataset. This procedure is
iterative, that is, it varies the number of epochs until satisfactory results are obtained.

3. Results

The FCM algorithm was run to group the data and the noisy mean was applied on the mean values
obtained to generate the type-2 fuzzy sets. Figures 5 and 6 show the type-2 membership functions for
the 9-rule purely fuzzy systems and GB models respectively, and the outcome of the FCM algorithm
for both can be found in [20].Metals 2020, 10, x FOR PEER REVIEW 10 of 19 
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Note that for the Sugeno fuzzy system, there are not output membership functions. The ones
shown correspond to Mamdani type-2 fuzzy system with FCM rule generation. In the type-2 Sugeno
fuzzy system, the output level vi is calculated as follows:

vi =
m∑

j=1

pi
jx

i
j (6)
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where vi is the output level for the ith rule, xj is the actual measurement of jth input, m is the number of
inputs (2) and pi

j is a consequent parameter, which in this case, is the mean value of the membership
function from the Mamdani fuzzy system corresponding to yi or zi. In type-2 Sugeno, the aggregated
set is a function of vi and the lower and upper values of the firing strength (wl and wu). An aggregated
set for a particular estimation is shown in Figure 7. The type reduction method to obtain the output (y or
z) is the same as the type-2 Mamdani fuzzy system and it can be found in the reference provided above.
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Five performance indices were used to evaluate the system performance. These performance
indices were applied over the estimation error with the validation set as in the previous works and
described above. The estimation error is defined as

e = Te − Tm (7)

where Te is the temperature estimated by the particular system to be evaluated and Tm is the measured
temperature at the scale breaker entry area. The performance indices are: (1) mean error; (2) standard
deviation; (3) mean absolute error (MAE); (4) root mean square error (RMSE); and (5) percentage of
bars of the validation dataset with an estimation error within ±20 ◦C, abbreviated as ‘%Bars ± 20 ◦C’.
In practice, there are no standard specification limits for the entry temperature estimation error in the
finishing mill; however, such a performance index would be a very illustrative indicator for evaluation
purposes [6,8,18,19]; ±20 ◦C was found to be a suitable tolerance, details are given in [6].

When evaluating the systems, a mean error closer to zero is pursued, while for the standard
deviation, MAE and RMSE, low values should be expected. A large ‘%Bars ± 20 ◦C’ is desirable.

Table 2 shows only the ‘%Bars ± 20 ◦C’ performance index of the different varieties of fuzzy
systems tested so far, since it allows a more straight-forward comparison. The purely fuzzy systems
and GB models developed in this work are highlighted with shaded boxes. Bold characters indicate
the best purely fuzzy system and the best GB model in terms of ‘%Bars ± 20 ◦C’. Note that Sugeno
type-1 fuzzy systems with HL are the so-called ANFIS. Here they are denoted as HL Sugeno type-1
fuzzy in order to identify them among the variety of fuzzy systems presented.

Table 2. ‘%Bars ± 20 ◦C’ of the fuzzy systems tested.

System Rules Untrained FCM HL HL/FCM GB GB/FCM GB/HL GB/HL/FCM

Type-1 Sugeno 9 77.65 77.94 79.32 78.45 55.55 95.95 99.66 98.98
Type-1 Mamdani 9 77.41 76.48 77.32 77.43 56.56 88.55 100 99.07

Type-1 Sugeno 25 68.03 73.91 78.40 78.05 80.80 86.86 95.62 100
Type-1 Mamdani 25 68.21 71.75 78.78 79.32 80.80 75.08 99.32 98.10

Type-2 Sugeno 9 76.67 78.11 79.78 78.29 53.87 95.62 95.95 100
Type-2 Mamdani 9 77.32 76.10 78.43 78.54 49.32 87.67 99.51 99.40

Type-2 Sugeno 25 68.35 78.11 80.11 79.08 80.81 91.24 97.04 100
Type-2 Mamdani 25 75.89 74.59 79.27 79.02 73.70 89.27 99.35 97.02
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In order to allow for a more detailed comparison, Table 3 shows the performance indices of the
top four GBs, with 100% of ‘%Bars ± 20 ◦C’, ranked by mean error.

Table 3. Performance indices of the GB models with 100% of ‘%Bars ± 20 ◦C’ ranked by mean error.

Ranking Variety No. of Rules Standard Deviation Mean Error MAE RMSE %Bars ± 20 ◦C

1 HL type-1 Mamdani 9 5.35 −0.17 4.16 5.35 100
2 HL/FCM type-2 Sugeno 25 6.57 0.78 5.25 6.61 100
3 HL/FCM type-2 Sugeno 9 5.78 3.39 4.72 6.7 100
4 HL/FCM type-1 Sugeno 25 4.45 5.42 5.63 7.02 100
5 Model + PI n/a 17.35 −6.14 14.44 18.40 73.97

In the same way, Table 4 shows the performance indices of the top four purely fuzzy systems.

Table 4. Performance indices of the top four purely fuzzy systems ranked by ‘%Bars ± 20 ◦C’.

Ranking Variety No. of Rules Standard Deviation Mean Error MAE RMSE %Bars ± 20 ◦C

1 HL type-2 Sugeno 25 15.49 −0.54 12.61 15.5 80.11
2 HL type-2 Sugeno 9 15.57 −0.55 12.66 15.58 79.78

3 HL/FCM type-1
Mamdani 25 15.65 −2.3 12.75 15.82 79.32

4 HL type-1 Sugeno 9 15.57 −3.34 12.76 15.93 79.32

Scatter plots show predictions against measurements; hence, the ideal prediction would be a
unitary ramp. In this way, the prediction dispersion of a particular system is readily appreciated,
allowing a visual comparison between deferent systems. Scatter plots of the temperature predictions
for the two Sugeno type-2 fuzzy GB models in Table 3, namely, the 25-rule HL/FCM Sugeno type-2 GB
model and the 9-rule HL/FCM type-2 Sugeno GB model, are shown in Figures 8 and 9, respectively.
The ideal prediction line is the one plotted in white color.
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Figure 9. Scatter diagram of the 9-rule HL/FCM type-2 Sugeno GB model predicted scale breaker
entry temperature.

Similarly, scatter plots of the two Sugeno type-2 purely fuzzy systems in Table 4, namely, the 25
rule HL type-2 Sugeno purely fuzzy system and the 9-rule HL type-2 Sugeno purely fuzzy system, are
shown in Figures 10 and 11, respectively. As in Figures 8 and 9, the ideal prediction line is the one
plotted in white color.
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4. Discussion

As can be seen in Table 2, GB models have a considerably better performance than purely fuzzy
systems, as would be expected, since the GBs imply a more complex modeling, demanding more
computing resources. As found in earlier works, GBs have a tendency to overpredict, as shown in the
mean error in Table 3, but this was not true for the 9-rule HL type-1 GB Mamdani [20]. GBs compensate
for the model + PI estimation error, which tends to underpredict (Table 3); hence, the GBs seem
to overcompensate.

Table 3 shows the performance indices of the top four GBs, with 100% of ‘%Bars ± 20 ◦C’, ranked
by mean error. It also shows the model + PI performance indices for reference. As can be seen, their
standard deviations are similar, and as a result, they have similar dispersion. The same can be said for
MAE and RMSE. On the other hand, MAE and RMSE also show similar values, meaning that there are
not relatively large errors.

Table 4 shows the performance indices of the top four purely fuzzy systems. Purely fuzzy systems
have much smaller mean values than GBs (Table 3); however, their standard deviations, and hence
their dispersion, are higher than those of GB models—about three time as high. MAE shows that there
are larger magnitude errors than in the case of GBs, but since RMSE is not much greater than MAE,
there are not particularly large errors either.

As can be seen in Table 2, the best two purely fuzzy systems are the Sugeno type-2 fuzzy systems
for the data tested here. Although there is not a particular improvement when applying type-2 fuzzy
systems when compared to type-1 fuzzy systems in general, the type-2 Sugeno system with 25 rules is
the only purely fuzzy system with a performance above 80% in terms of ‘%Bars ± 20 ◦C’. However,
there is a tendency for type-2 fuzzy systems to make the application of a combination of HL and FCM
for GBs more favorable—particularly for the Sugeno system. In the other varieties of GBs, HL alone
brought larger benefits in five out of eight GBs when compared with HL/FCM.

HL, FCM and HL/FCM improve performance in general. GB models alone, without HL and/or
FCM, only bring benefits with respect to purely fuzzy systems when applying 25 rules, suggesting
that 9 rules are insufficient to estimate the model + PI prediction error behavior. FCM alone brings
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improvements in purely fuzzy systems (except in three cases) but as mentioned, HL alone is generally
superior to FCM.

Systems without training exhibit larger difference between MAE and RMSE (not shown here),
indicating some relatively large errors. As can be seen from Tables 2 and 3, the model + PI outperforms
some of the fuzzy-based systems with no HL nor FCM in terms of ‘%Bars ± 20 ◦C’, in fact, the systems
with the worst performance are 9-rule GB models with no HL nor FCM, reinforcing the abovementioned
suggestion that the model + PI prediction error is not easily modelled by a small empirical rule-base.

Scatter plots of the temperature predictions for the two type-2 fuzzy GB models in Table 3,
the 25-rule HL/FCM Sugeno type-2 GB model and the 9-rule HL/FCM type-2 Sugeno GB model, are
shown in Figures 8 and 9, respectively; while the top two purely fuzzy systems of Table 4, the 25
rule HL type-2 Sugeno purely fuzzy system and the 9-rule HL type-2 Sugeno purely fuzzy system,
are shown in Figures 10 and 11, respectively. The results presented in Tables 2–4 can be graphically
appreciated in these figures. Figures 8 and 9 show that predictions of the GB models tend to be above
the trend line, showing an overprediction tendency as concluded above. On the other hand, comparing
both figures, it can also be noticed that the 25-rule HL/FCM Sugeno type-2 GB model is more disperse
than the 9-rule HL/FCM type-2 Sugeno GB model, although the former is closer to the trend line.
As can be seen in Figures 10 and 11, predictions of the purely fuzzy systems are poor and they show a
peculiar behavior of laying all predictions below a straight line just under 1100 ◦C. A similar behavior
can be found in [6] for an artificial neural network-based GB model, although that work was performed
with data collected under different temperature conditions; clearly, predictions have to be improved.
It is also evident from Figures 8–11 that the GB model predictions are closer to the trend line and less
disperse than those of the purely fuzzy systems. Scatter diagrams of the model + PI can be found
in [19], and it can be seen that its predictions are more disperse than those of the fuzzy systems shown
in Figures 8–11.

As mentioned, two out of the four GB model with 100% of ‘%Bars ± 20 ◦C’ and the top two
purely fuzzy systems are HL type-2 Sugeno systems, however the benefits brought to the purely fuzzy
systems are marginal with respect to type-1 Mamdani. The ultimate goal is to implement the kind of
systems presented here in the real world, and thus, this work may be useful as a guideline if this were
to be the case. In order to make a choice, due to the similar performances shown here, evaluation of
the algorithms’ efficiency in terms of computing time should be performed before the actual real hot
strip mill implementation. It would depend on the computing platform used, as well as the particular
algorithm implementation.

Grey-box models have considerably better performance than purely fuzzy systems, however, a
physical model is not always available; therefore, further studies to improve purely fuzzy system
estimations should be pursued in future, particularly estimations of those showing the best performance
in this work, as shown in Table 4.

5. Conclusions

In this work, HL type-2 Sugeno fuzzy systems, with rule base generated empirically and by a
fuzzy c-means algorithm, have been tested for temperature estimation in hot-rolling. The performance
of these systems has been evaluated and compared with that of several varieties of fuzzy systems
presented in previous works. In general, 64 systems were considered here with the following varieties:
type-1 or type-2 fuzzy, 9 or 25 rules, purely fuzzy or grey-box models, with or without hybrid learning,
with or without FCM rule generation, and combinations of hybrid-learning and FCM. The systems that
exhibited the best performance, that is, 100% in terms of ‘%Bars ± 20 ◦C’, were four grey-box models,
two of them being type-2 Sugeno fuzzy systems. One of these grey-box models used hybrid-learning
and the other three used the combination of fuzzy c-means and hybrid-learning. Although purely
fuzzy systems have better mean prediction error, the rest of their performance indices are poorer than
those of the grey boxes. Hence, the systems with better performance are the more complex ones,
combining all the modeling tools tested here, i.e., GB, HL, and FCM. From these results, it is evident
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that a complex design modeling yields better results, as expected. Although, this is at the expense of
computing resources. On the other hand, the top two purely fuzzy systems are also type-2 Sugeno
fuzzy. It is important to undertake further studies to improve purely fuzzy system estimation, since a
physical model is not always available.
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