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Abstract: This paper presents an optimized algorithm for event-triggered control (ETC) of networked
control systems (NCS). Initially, the traditional backstepping controller is designed for a generalized
nonlinear plant in strict-feedback form that is subsequently extended to the ETC. In the NCS, the
controller and the plant communicate with each other using a communication network. In order
to minimize the bandwidth required, the number of samples to be sent over the communication
channel should be reduced. This can be achieved using the non-uniform sampling of data. However,
the implementation of non-uniform sampling without a proper event triggering rule might lead the
closed-loop system towards instability. Therefore, an optimized event triggering algorithm has been
designed such that the system states are always forced to remain in stable trajectory. Additionally, the
effect of ETC on the stability of backstepping control has been analyzed using the Lyapunov stability
theory. Two case studies on an inverted pendulum system and single-link robot system have been
carried out to demonstrate the effectiveness of the proposed ETC in terms of system states, control
effort and inter-event execution time.

Keywords: backstepping control; event-triggered control; Lyapunov stability theorem; networked
control system; nonlinear system

1. Introduction

In recent years, event-triggered control (ETC) has become a prominent topic of research
due to the benefits offered by it as compared to the networked control system (NCS). The
analog-to-digital (A/D) and digital-to-analog (D/A) conversion of the plant data is essential
in the NCS to make the plant and controller signals compatible with the communication
channel. This further needs the sampling and hold circuit for the plant data. Periodic
sampling utilizes a fixed bandwidth on the communication channel and was preferred
in the past for implementing the NCS. This, however, increases the cost of the system. In
several control applications (e.g., chemical processes which take a longer time to settle), it
is not needed to send the output data of the plant to the controller at fixed time intervals.
The time interval between the samples can be varied (also called the aperiodic sampling of
data) depending on the specific system events. Whenever the quantization error reaches
beyond an acceptable limit, an event is triggered to sample the output data. Thereafter, a
new control command is computed and the plant control input is updated. This control
command is kept on hold until a new event is triggered and this process repeats. In this
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manner, the number of samples can be reduced significantly without disturbing the desired
plant performance.

1.1. Literature Review

A plethora of research works have been published on this topic. Some of the original
ETC studies were focused on the PID controller, which due to its basic configuration is still
one of the commonly used controllers in industrial applications. In [1], a simple event-based
PID control scheme was proposed, where the aim was to control the level of the upper or
lower tank with the pump signal as the control signal. Another event-based PID controller
was proposed in [2], where the objective was to control the angular velocity of a DC-motor.
However, the emphasis has moved in the past 10 years toward ETC for optimized, adaptive
and nonlinear controllers. That is because of the nonlinear nature of the control schemes.
The nonlinear system has to be linearized to construct the linear controllers, which may
lead to optimum performance. In [3], a critic neural network (NN) was used to approximate
the cost and an actor neural network was used to approximate the optimal event-triggered
controller. The controller stability was ensured by Lyapunov stability analysis. Again in [4],
an approximation-based event-triggered control of multi-input multi-output uncertain
nonlinear continuous-time systems was presented that included weight update law for
aperiodic tuning of the NN weights at triggered instants to reduce the computation. In [5],
the effects of bounded disturbances on the integral-based event-triggered control systems
with observer-based output feedbacks were studied. In [6], a robust adaptive fuzzy control
for a class of uncertain nonlinear systems via an event-triggered control strategy to reduce
communication burden had been proposed, and results were demonstrated on a robot
manipulator. In [7], the event-triggered function under the conditions of limited network
bandwidth resources and the incomplete observability of the state of the system was
considered. Then, denial-of-service (DoS) attacks that occur on the network transmission
channel were applied using observer-based event-triggered control.

It is well known that the ETC can provide efficient utilization of resources by de-
creasing the sample size, which in turn reduces the overall bandwidth requirement of
the communication channel. However, the ETC technique may lead the system towards
instability if it is not driven by a suitable event triggering algorithm. Many triggering
algorithms for the ETC scheme have been proposed in recent times, with impractical
applications in wireless networks [8], robotics [9] and power systems [10].

A detailed review of these earlier techniques in the area of ETC has been published
in [11], whereas a detailed review of several control techniques developed till recently
could be found in [12]. Recently, ETC schemes that use a sliding mode controller (SMC)
have been proposed for linear and nonlinear systems. In [13], a robust stabilization
of a linear time-invariant system using an SMC with the self-triggering strategy was
proposed. The self-triggering technique does not require additional dedicated hardware
for continuous state measurement to determine the next possible triggering instant. In [14],
robust stabilization for a class of nonlinear systems subject to external disturbances using
an ETC-based SMC was proposed. Similarly, in [15], a global event-triggering realization
of an SMC was proposed for linear systems under the effect of uncertainties. While the
ETC–SMC scheme reduces the control updates considerably, the SMC itself is plagued
by chattering.

The ETC schemes other than SMC have also been demonstrated in many
studies [16–22]. In [16], it was explained how self-triggering rules could be deduced
from the developed event-triggered strategies. The stabilization of nonlinear systems using
event-triggered output feedback controllers was presented by [17], which guarantees an
asymptotic stability property and enforces a minimum amount of time between two consec-
utive transmission instants. In [18], an event-driven tracking control algorithm for a marine
vessel, based on the backstepping method, was proposed. In [19], adaptive event-triggered
control of nonlinear continuous time systems in the strict feedback form is presented. An
adaptive model and an associated event-triggered controller were designed by using the
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backstepping method. The backstepping method proposed by [18] was limited to marine
vessels only, whereas [19] focused upon a neural network-based adaptive event-triggered
backstepping controller scheme. In [20], both the parameter estimator and the controller
were aperiodically updated only at the event-sampled instants, and an adaptive event
sampling condition was designed to determine the event sampling instants. The system
in [20] was not considered in a very generalized form of nonlinear system in strict-feedback
form. An event-triggered nonlinear control based on the backstepping controller of an
oscillating water column ocean wave energy plant was proposed by [21,22]. The second
order nonlinear plant dynamics were considered in [21], whereas several wave energy
plants were considered in [22] for forming an array of ocean energy plants, which also
included an NCS.

In recent years, there has been a main focus on nonlinear systems while designing
ETC [23–32]. In [23], a user-adjustable event-triggered mechanism based on the sampled
state vectors and backstepping techniques for a nonlinear system was developed to deter-
mine the sampling state instants using the negative definite property of the derivatives of
Lyapunov functions. In [24], event-triggered adaptive control for a class of nonlinear sys-
tems in Brunovsky form was considered. In [25], the considered nonlinear system contained
not only unknown system parameters, but the nonlinear functions with no requirement to
be globally Lipschitz. It was claimed to be in contrast to most of the existing results in the
area. In [26], time-varying external disturbances were considered apart from the conditions
given in [25], and the ETC was designed which can dynamically compensate for both errors
caused by disturbances and the sampled-data implementation of the controller. In [27],
the feedback linearization approach was applied to design the ETC for a nonlinear system,
whereas [28] considered both the disturbances and transmission delays while designing
the ETC scheme. In [29], an ETC scheme with nonlinear model predictive control was
designed for an unmanned aerial vehicle. In [30], a self-learning robust ETC scheme was
proposed for nonlinear interconnected systems subject to uncertainty. A fuzzy logic-based
ETC–SMC was designed for a nonlinear system in [31]. In [32], a fractional order system
was controlled using a fractional order controller where the controller interacted using a
communication network. The above-mentioned studies have maintained the closed-loop
stability of the systems but not considered the optimized event triggering parameters.
The non-optimized event triggering parameters affect the closed-loop performance of the
system significantly. Additionally, some classes of nonlinear systems have been considered
in the studies discussed above. Most of the systems considered have restricted the system
order. Hence, an optimized event-triggered control for a generalized nonlinear system is to
be designed to accommodate different practical nonlinear systems. It is also to be noted
that the backstepping controller is free from the chattering problem which predominantly
exists in the SMC [20–22].

1.2. Main Contributions

Based on the literature review, this paper contributes two novel concepts to the NCS:
(i) the design of an ETC scheme for an NCS wherein the NCS consists of a nth order
nonlinear plant (or generalized nonlinear system) in strict-feedback form, a backstepping
controller, and a communication channel; and (ii) the selection of the optimum value of
event triggering parameter α to attain the best possible outcome of ETC as compared to
the conventional approach. Firstly, a backstepping controller has been designed using the
conventional approach and then it has been extended to ETC. The closed-loop asymptotic
stability of the system is ensured while deriving the triggering rule for the backstepping
controller. Next, the particle swarm optimization (PSO) technique [33] has been applied to
obtain the optimum value of event triggering parameter α. In this regard, a fitness function
consisting of error in system states and the number of triggering pulses are defined, wherein
α has been chosen as an unknown parameter.

Two case studies on the inverted pendulum system [34] and a single-link robot sys-
tem [20] are considered for demonstration purposes. Simulations are performed in MAT-
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LAB software for these two nonlinear systems in strict-feedback form. Additionally, the
analysis of a control system with different values and optimum values of event triggering
parameter α is presented to show the effectiveness of the proposed ETC scheme.

The remaining sections are arranged in the following order: Section 2 gives an
overview of the ETC scheme for the NCS and defines the control problem. In Section 3,
the ETC using a backstepping controller has been developed. Section 4 discusses the
simulation results, followed by the conclusion in Section 5.

2. Description of ETC for NCS and Control Problem Statement

The block diagram of an NCS with a backstepping controller, nth order nonlinear
plant, communication network, and event triggering section is shown in Figure 1. The
output of the plant first passes through a triggering section where non-uniform sampling
is performed. Next, it is sent to the backstepping controller using the communication
channel and a control command is computed. The control command then passes through
the communication channel. It is further processed using zero-order-hold (ZOH) and given
to the plant. It is obvious that there will be a quantization error in system states due to the
sampling and hold of plant output data. This quantization error is taken as the criterion for
event triggering, which then governs the sample and hold switch function.
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Consider a generalized nth order nonlinear system in strict-feedback form as:

.
xi = fi(x1, x2, . . . , xi) + gi(x1, x2, . . . , xi)·xi+1.
xn = fn(x1, x2, . . . , xn) + gn(x1, x2, . . . , xn)·u

}
(1)

where n ≥ 2, xi corresponds to system states and i = 1, 2, . . . , n − 1; u is the con-
trol input to the plant. The fi(x1, x2, . . . , xi), fn(x1, x2, . . . , xn) and gi(x1, x2, . . . , xi), . . . ,
gn(x1, x2, . . . , xn) are the nonlinear functions dependent upon the system states. The con-
trol input u(t) is represented by u in the continuous time domain, but with ETC where
sample and hold interface is involved, u is represented as uk, where k represents the kth
triggering instant for k = 1, 2, 3, . . . , ∞.

For simplicity of representation, the system in Equation (1) can be written as:

.
xi = fi + gi·xi+1.
xn = fn + gn·u

}
(2)

where gi 6= 0; for i = 1, 2, . . . , n. Here, it is also assumed that the time derivatives of fi and
gi do exist for all time, t. The system states in the vector form are defined as:

X = [x1 x2 . . . xn] (3)
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3. Design of Backstepping Controller and ETC Scheme
3.1. Backstepping Controller Design

Initially, we derive a backstepping control law using the conventional approach and
then a triggering rule for implementing ETC is designed. In the backstepping controller, a
step by step design method is followed. The error components for system states can be
defined as:

x̃i = xid − xi
x̃n+1 = x(n+1)d − u

}
for i = 1, 2, . . . , n (4)

where x1d is the reference trajectory for system state x1 and x2d, x3d, . . . , x(n − 1)d, xnd are
the virtual control inputs for corresponding system states, and:

u = x(n+1)d − x̃n+1 (5)

Here, we define the error variable x̃n+1 additionally to maintain the uniformity of all
the error variables of system states. This can also be called the virtual control input for
actual control input u, as given in Equation (5).

The first order derivative of ith error variable x̃i is given by:

.
x̃i =

.
xid −

.
xi =

.
xid − fi − gi·xi+1 (6)

Now, we add and subtract the gi.x(i+1)d term into Equation (7) as:

.
x̃i =

.
xid − fi − gi·xi+1 + gi·x(i+1)d − gi·x(i+1)d
=

.
xid − fi + gi·x̃i+1 − gi·x(i+1)d

}
(7)

Define the ith virtual control law x(i+1)d,

x(i+1)d = g−1
i
[ .
xid − fi + ki·x̃i

]
(8)

Such that, .
x̃i = −ki·x̃i + gi·x̃i+1 (9)

where ki > 0 for i = 1, 2, . . . , n.
Next, define the control law as:

u = g−1
n
[ .
xnd − fn + kn·x̃n

]
+ (φn)

−1
{
∑n−1

i=1 φi

}
+ ηφn (10)

where η is a positive constant and η > 0. Additionally, φi = gi·x̃i·x̃i+1 and φn = gn·x̃n.
After substituting the x(n+1)d and u in Equation (5), the error variable x̃n+1 can be

written as:
x̃n+1 = −(φn)

−1
{
∑n−1

i=1 φi

}
− ηφn (11)

Theorem 1. Consider a nonlinear system in strict-feedback form (Equation (2)) and the error
dynamics (Equation (9)). Then, the virtual control law (Equation (8)) and backstepping control
law (Equation (10)) ensure that all the equilibrium points, x̃i for i = 1, 2, . . . , n, are globally
asymptotically stable. Therefore, the closed-loop system states, xi, are bounded.

Proof. In order to prove the global asymptotic stability of a nonlinear system in strict-
feedback form (Equation (2)) and the error dynamics (Equation (9)), we define a positive
definite function V(t) as a Lyapunov function candidate as follows:

V(t) =
1
2 ∑n

i=1 x̃2
i (12)
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As per Lyapunov stability theory, if the V(t) is a positive definite function and its first
order derivative

.
V(t) is a negative definite, then x̃i will be of converging nature and will

be globally asymptotically stable. The Lyapunov function candidate in Equation (13) will
then become a Lyapunov function. Hereafter, in the next few steps, it will be proved that
.

V(t) is negative definite function.
The first order time derivative of Equation (12) is given as:

.
V(t) = ∑n

i=1 x̃i·
.
x̃i (13)

Substituting Equation (9) into Equation (13) as:

.
V(t) = −∑n

i=1 ki·x̃2
i + ∑n

i=1 gi·x̃i·x̃i+1 (14)

⇒
.

V(t) =
.

V1(t) +
.

V2(t) (15)

Here, we choose, .
V1(t) = −∑n

i=1 ki·x̃2
i for ki > 0 (16)

And .
V2(t) = ∑n

i=1 gi·x̃i·x̃i+1 (17)

⇒
.

V2(t) = ∑n−1
i=1 gi·x̃i·x̃i+1 + gn·x̃n·x̃n+1 (18)

⇒
.

V2(t) = ∑n−1
i=1 φi + φn·x̃n+1 (19)

In Equation (19), substituting the error variable x̃n+1 from Equation (11), we then have:

.
V2(t) = −ηφ2

n ⇒
.

V2(t) ≤ 0 (20)

where η > 0.
Therefore, after combining the results of Equations (16) and (20) into Equation (15),

we have: .
V(t) = −∑n

i=1 ki·x̃2
i − ηφ2

n ≤ 0 (21)

Equation (21) is negative definite and, hence, the Lyapunov function candidate defined
in Equation (12) has now become the Lyapunov function and Theorem 1 is proved. �

Remark 1. Theorem 1 implies that the control law in Equation (10) will result in lim
t→∞

x̃i → 0, for

i = 1, 2, . . . , n. Next, from Equation (4), if lim
t→∞

x̃i → 0 then lim
t→∞

xi → xid , for i = 1, 2, . . . , n.

Hence, it can be concluded that if x̃i is globally asymptotically stable around the origin as t→ ∞ ,
then xi would be globally asymptotically stable around xid as t→ ∞ . Therefore, as per Theorem 1,
the nonlinear system (Equation (2)) would always lead towards global asymptotic stability with the
control input defined by Equation (10).

3.2. ETC Scheme with Backstepping Controller

As shown in Figure 1, the nonlinear system state vector, X(t), is first sent to the
sampling block where it is discretized and is represented by X(tk). Additionally, the
reference variable, x1d, is discretized into x1d(tk). Then, X(tk) and x1d(tk) are sent to the
controller via the communication channel and the controller output, u(tk), which is in
discrete form, is calculated. Next, the controller output, u(tk), is sent back to the nonlinear
system again via the same communication channel, and after passing through the ZOH
block, it is converted into continuous form, i.e., uk(t). Hence, uk(t) given by Equation (23)
is not a discrete signal, but it is a continuous signal. However, uk(t) would not be exactly
similar to the original continuous control signal u (t) due to the quantization error created
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by the sample and hold circuit. Due to ETC implementation, the system dynamics given
by Equation (2) can be rewritten as:

.
xi = fi + gi·xi+1.
xn = fn + gn·uk

}
(22)

The designed control law in Equation (10) ensures the asymptotic stability of the
closed-loop system in continuous time. Now, in this section, the backstepping control law
(in Equation (10)) would be converted into ETC law, which is given as:

uk = g−1
nk
[ .
xndk − fnk + kn·x̃nk

]
+ (φnk)

−1
{

∑n−1
i=1 φik

}
+ ηφnk (23)

where k represents the sample number.
Therefore, all time dependent variables in the control law of Equation (10) are re-

placed by suffix k to represent ETC. Next, the virtual control law from Equation (8) can be
recalled as:

x(i+1)d = g−1
i
[ .
xid − fi + ki·x̃i

]
for i = 1, 2, . . . , n− 1 (24)

and because of the effect of the ETC implementation, the virtual control law can be
written as:

x(n+1)dk = g−1
nk
[ .
xndk − fnk + kn·x̃nk

]
(25)

The error dynamics of Equation (9) due to ETC implementation can now be rewritten as:

.
x̃i = −ki·x̃i + gi·x̃i+1.

x̃n = −kn·x̃n + gn·x̃(n+1)k

}
for i = 1, 2, . . . , n− 1 (26)

Additionally, Equation (11), due to ETC implementation, can be written as:

x̃(n+1)k = −(φnk)
−1
{
∑n−1

i=1 φik

}
− ηφnk (27)

The virtual control law in Equation (27) creates a quantization error in the system
states and subsequently affects its stability. Therefore, we define a quantization error due
to ETC as follows:

ξi = φi − γφik for i = 1, 2, . . . , n− 1 (28)

where γ = φnφ−1
nk .

The ξi in Equation (28) is the quantization error created during the sample and hold
process of the closed-loop system. Due to non-uniform sampling, there might be an
undesired time interval between two sampling instants. It may lead the closed-loop system
towards instability unless there is a mechanism to limit the quantization error within the
permissible range of operation. Hence, we place an upper bound on ∑n−1

i=1 |ξi| such that,

∑n−1
i=1 |ξi| = ∑n−1

i=1 |φi − γφik| ≤ α, ∀ t ≥ 0 (29)

or, (
∑n−1

i=1 |ξi|
)

max
= α (30)

where the upper bound α is a non-zero positive constant and, hence, we refer to it as a
triggering parameter.

Next, we also place a lower bound on φnφnk such that,

φnφnk ≥
α

η
, ∀ t ≥ 0 (31)
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Remark 2. During the implementation of the event triggering algorithm, if φnφnk < α/η then
the virtual control law (Equations (24) and (25) and backstepping control law (Equation (23))
would fail to ensure the semiglobal asymptotic stability of the error variables, x̃i and closed-loop
system states, xi for i = 1, 2, . . . , n. It is therefore necessary to maintain φnφnk ≥ α/η, ∀ t ≥ 0.
The region of attraction exists as long as the conditions: (i) ∑n−1

i=1 |ξi| ≤ α, ∀ t ≥ 0 and (ii)
φnφnk ≥ α/η, ∀ t ≥ 0, are satisfied.

In order to ensure the stability of the closed-loop system with ETC, the upper bound-
edness on ∑n−1

i=1 ξi as defined by Equations (29) and (30) and the necessary condition,
φnφnk ≥ α/η ∀ t ≥ 0, must be maintained. Therefore, a triggering algorithm has been
designed and is described in Algorithm 1. If the condition given in Algorithm 1 is satisfied,
then the system will trigger an event which will send the new sample to the controller.
The control command will then be computed and sent back to the nonlinear system af-
ter passing through the communication network and ZOH block. If the condition given
in Algorithm 1 is not satisfied, then the previous control command will remain in the
nonlinear system input.

Algorithm 1. Event Triggering Algorithm

if ∑n−1
i=1 |ξi| ≥ α or φnφnk ≤ α/η

(i) an event is triggered (ytrig(t) = 1) and
(ii) control command is updated

else
(i) no event triggering (ytrig(t) = 0) and
(ii) control command is on hold at its previous value

end

Next, the stability analysis of the closed-loop system with ETC law is again performed
using the Lyapunov stability theory. In this regard, Theorem 2 is described next, followed
by its proof.

Theorem 2. Consider a nonlinear system in strict-feedback form (Equation (2)), and the error
dynamics due to ETC (Equation (26)). Then, the virtual control law (Equations (24) and (25),
backstepping control law (Equation (23)) and event triggering algorithm (Algorithm 1) ensure
that all the equilibrium points, x̃i for i = 1, 2, . . . , n, are semiglobally asymptotically stable with
region of attraction-∑n−1

i=1 |ξi| ≤ α and φnφnk ≥ α/η. Therefore, the closed-loop system states, xi,
are bounded.

Proof. It is again required to revisit the Lyapunov function candidate (Equation (12))
to analyze the effect of non-uniform sampling and ETC implementation on the system
stability. The derivative of the Lyapunov function candidate from Equation (13) is recalled
here as: .

V(t) = ∑n
i=1 x̃i.

.
x̃i = ∑n−1

i=1 x̃i·
.
x̃i + x̃n·

.
x̃n (32)

Substituting Equation (26) into Equation (32), we have:

.
V(t) = −∑n

i=1 ki·x̃2
i + ∑n−1

i=1 φi + φn·x̃(n+1)k (33)

Here, Equation (33) can be divided into two parts as
.

V1(t) and
.

V2(t).
.

V1(t) is inde-
pendent of ETC law and reduces to Equation (16).

.
V2(t) is dependent on x̃(n+1)k and can

be written as: .
V2(t) = ∑n−1

i=1 φi + φn·x̃(n+1)k (34)
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Putting the expression of x̃(n+1)k from Equation (27) into Equation (34), we have:

.
V2(t) = ∑n−1

i=1 φi + φn·
[
−(φnk)

−1
{
∑n−1

i=1 φik

}
− ηφnk

]
(35)

⇒
.

V2(t) = −ηφnφnk + ∑n−1
i=1 (φi − γφik) (36)

where γ = φn·φ−1
nk .

Equation (36) can further be simplified by substituting Equation (28) as:

.
V2(t) = −ηφnφnk + ∑n−1

i=1 ξi (37)

While implementing the ETC scheme, two conditions arise due to sampling.
Condition 1. At sampling instants, e.g., at t = tk and t = tk+1, we have:

φi = φik for i = 1, 2, . . . , n (38)

Therefore, Equation (38) implies that:

∑n−1
i=1 ξi = 0 and γ = 1 (39)

Therefore, Equation (37) reduces to the following form:

.
V2(t) = −ηφ2

n ⇒
.

V2(t) ≤ 0 (40)

which is same as Equation (20) and further results in Equation (21), and implies that the
system states would always lead towards asymptotic stability.

Condition 2. Between any two consecutive sampling instants, e.g., tk < Tk < tk+1,
we have:

φi 6= φik for i = 1, 2, . . . , n (41)

Therefore, Equation (41) implies that:

∑n−1
i=1 ξi 6= 0 or ∑n−1

i=1 |ξi| > 0 (42)

and γ 6= 1.
Next, we can further simplify Equation (37) as:

.
V2(t) ≤ −ηφnφnk +

(
∑n−1

i=1 |ξi|
)

max
(43)

Substituting Equation (30) into Equation (43) as:

.
V2(t) ≤ −ηφnφnk + α (44)

⇒
.

V2(t) ≤ −η

(
φnφnk −

α

η

)
(45)

Substituting Equation (31) in Equation (45), we get:

.
V2(t) ≤ 0 (46)

Now, Equation (46) along with Equation (16) is converted to the following form:

.
V(t) ≤ −∑n

i=1 ki·x̃2
i ≤ 0 (47)

From Equations (40) and (47), it can be concluded that the Lyapunov function candi-
date defined by Equation (12) is now a Lyapunov function and the closed-loop system with
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the ETC scheme is semi-globally asymptotically stable. Hence, Theorem 2 is proved for
both Condition 1 and Condition 2. �

3.3. Design of Optimized Event Triggering Algorithm

As given in Algorithm 1, it is also very important to choose triggering parameter α
very carefully so that both the objectives of attaining desired system performance and of
sending a minimum number of samples over the communication network are achieved
successfully. A numerical analysis of the need for an optimum value of triggering parameter
α is presented in Section 4. In order to optimize α, a fitness function consisting of error in
system states and the number of triggering pulses is defined wherein α has been chosen as
an unknown parameter. This can be seen in Figure 2 wherein the output of the nonlinear
system, i.e., X(t), and the output of the triggering block, i.e., ytrig(t), are given as an input
to the fitness function block. The fitness function is given as:

J f it(t) =
∫ Ts

0

{
t·‖X(t)‖+

∣∣ytrig(t)
∣∣}dt (48)

where ‖X(t)‖ is the Euclidean norm, and its mathematical expression is given as:

‖X(t)‖ =
√

x2
1 + x2

2 + . . . + x2
n (49)
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The ytrig(t), represents the triggering pulses which actually drive the sample and
hold circuit. The ytrig always toggles between 0 and 1. The ytrig(t) = 1 means that the
switches in AS and ZOH blocks (in Figure 1) are closed, whereas the switches are opened
for ytrig(t) = 0.

J f it(t) in Equation (48) is the summation of two fitness functions as: (i) integral time
norm of system states, i.e., ‖X(t)‖ and (ii) integral absolute of triggering function, i.e.,
ytrig(t). The reason for multiplying time with ‖X(t)‖ is that in the transient phase of the
simulation, the errors in the system state are high, whereas in the steady state stage the
errors become very low. Hence, in the final stage of simulation, if the time is multiplied
with ‖X(t)‖, then the errors become significant for optimization purposes. However, the
time is not multiplied to

∣∣ytrig(t)
∣∣ because the triggering pulses will always jump between

0 and 1 for the whole simulation period. The total simulation run-time has been chosen to
be Ts.

Next, an optimization algorithm is required to minimize J f it(t) for obtaining the best
possible value of triggering parameter α. In this regard, the PSO algorithm [33] has been
used due to its simplicity and popularity. It should be noted that any other optimization
algorithm could also be used to optimize α. However, optimization in itself is a very big
research area and a large number of optimization tools have been developed. Hence, the
focus of this paper is not on developing optimization techniques, but on applying them for
an event-triggered control.

Next, we consider two case studies on a single-link robot system and an inverted
pendulum system to demonstrate the proposed ETC scheme for an NCS.
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3.4. Case Study 1: Stabilization of Inverted Pendulum System

The inverted pendulum system, a nonlinear and unstable system, is widely used in
laboratories to implement and validate new ideas emerging in control engineering. In this
case study, we have considered the balancing control of the inverted pendulum system to
demonstrate the proposed control scheme of event triggering.

The dynamics of the inverted pendulum system [34] can be written as:

(M + m)
..
x + ml cosθ

..
θ −ml sinθ

.
θ

2
= Fx (50)

cosθ
..
x− g sinθ = 0 (51)

where θ is the pendulum angle (rad) and |θ| < π/2; M is the mass of the cart (kg); m is the
mass of the pendulum rod (kg); x is the cart position (m); l is the distance from the pivot
to the mass center of the pendulum; Fx is the force applied on the cart (N); and g is the
gravitational constant (N/kg).

From Equations (50) and (51), it can be concluded that the angle dynamics are inde-
pendent of cart position and can be written as:

..
θ =

(M + m)gsinθ −ml sinθ cosθ
.
θ

2

Ml + ml sin2θ
− cosθ Fx

Ml + ml sin2θ
(52)

Equation (52) can be written in state space form as follows:

.
x1 = x2

.
x2 =

(M+m)g sinx1−ml sinx1 cosx1 x2
2

Ml+ml sin2x1
− cosx1

Ml+ml sin2x1
·u

 (53)

where x1 = θ; u = Fx. Additionally, comparing Equation (53) with Equation (2) we get:

n = 2; f1 = 0; g1 = 1; f2 =
(M+m)g sinx1−ml sinx1 cosx1 x2

2
Ml+ml sin2x1

; and g2 = − cosx1
Ml+ml sin2x1

.
Now, the backstepping control law u from Equation (11) can be written as:

u = g−1
2
[ .
x2d − f2 + k2·x̃2

]
+ (φ2)

−1
{

φ1 + ηφ2
2

}
(54)

where φ1 = g1.x̃1.x̃2 and φ2 = g2.x̃2, and after solving for x1d = 0, we obtain:

φ1 = x1(k1x1 + x2)
φ2 = cosx1

Ml+ml sin2x1
(k1x1 + x2)

}
(55)

Therefore, the final expression for u can be written as:

u = Ml+ml sin2x1
cosx1

[(1 + k1k2)x1 + (k1 + k2)x2]

+
(M+m)g sinx1−ml sinx1 cosx1x2

2
cosx1

+ η cosx1
Ml+ml sin2x1

(k1x1 + x2)

 (56)

Next, for implementing the event-triggered control, Equation (56) can be expressed as:

uk =
Ml+ml sin2x1k

cosx1k
[(1 + k1k2)x1k + (k1 + k2)x2k]

+
(M+m)g sinx1k−ml sinx1k cosx1kx2

2k
cosx1k

+ η cosx1k
Ml+ml sin2x1k

(k1x1k + x2k)

 (57)

Additionally, the error due to event-triggered control can be expressed as:

∑n−1
i=1 |ξi| = |ξ1| = |φ1 − γφ1k| (58)
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⇒ |ξ1| = |φ1 − γφ1k| (59)

⇒ |ξ1| =
∣∣∣∣φ1 −

φ2

φ2k
φ1k

∣∣∣∣ (60)

Substituting Equation (55) into Equation (60), we obtain:

|ξ1| = |k1x1 + x2|·|x1 − ∆·x1k| (61)

where ∆ = cosx1
cosx1k

. Ml+ml sin2x1k
Ml+ml sin2x1

.
In Equation (61), at triggering instants, |ξ1| = 0 and the closed-loop system becomes

asymptotically stable in the same manner as it is without ETC. Otherwise, |ξ1| 6= 0 and the
closed-loop system leads towards instability. In order to avoid this, the condition given in
Algorithm 1 is forced on the control law of Equation (57).

3.5. Case Study 2: Stabilization of Single-Link Robot System

The dynamics of a single-link robot system have been adopted from [20] and are given
as follows:

J
.
y + 0.5mgl sin(y) = u (62)

where J is the inertia, y is the angle position of the link,
.
y is the angle velocity of the link,

..
y

is the angle acceleration of the link, g = 9.8 m/s2 is the acceleration due to gravity, l is the
length of the link, m is the mass of the link, and u is the control force of the link.

We denote x1 = y and x2 =
..
y and, hence, Equation (62) can be rewritten as:

.
x1 = x2

.
x2 = − 0.5mgl

J sin(x1) +
1
J u

}
(63)

Comparing Equation (63) with Equation (2), we have: n = 2; f1 = 0; g1 = 1;
f2 = − 0.5mgl

J sin(x1); g2 = 1
J .

Now, the backstepping control law u from Equation (11) can be rewritten as:

u = g−1
2
[ .
x2d − f2 + k2·x̃2

]
+ (φ2)

−1
{

φ1 + ηφ2
2

}
(64)

where φ1 = g1·x̃1·x̃2 and φ2 = g2·x̃2, and after solving for x1d = 0, we obtain:

φ1 = x1(k1x1 + x2)
φ2 = − 1

J (k1x1 + x2)

}
(65)

Therefore, the final expression for u can be written as:

u = −J[(1 + k1k2)x1 + (k1 + k2)x2] + 0.5mgl sinx1 +
η

J
(k1x1 + x2) (66)

Next, for implementing the event-triggered control, Equation (66) can be expressed as:

uk = −J[(1 + k1k2)x1k + (k1 + k2)x2k] + 0.5mgl sinx1k +
η

J
(k1x1k + x2k) (67)

Additionally, the error due to event-triggered control can be expressed as:

∑n−1
i=1 |ξi| = |ξ1| = |φ1 − γφ1k| =

∣∣∣∣φ1 −
φ2

φ2k
φ1k

∣∣∣∣ (68)

Substituting Equation (65) into Equation (68), we obtain:

|ξ1| = |k1x1 + x2|·|x1 − x1k| (69)
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Here, Equation (69) will be utilized for implementing the event triggering algorithm
as given in Algorithm 1.

In order to study the robustness of the proposed control scheme for a single-link robot
system, we have applied an external disturbance signal in the actuator/control signal uk.
Therefore, the new control signal is represented as:

uk = −J[(1 + k1k2)x1k + (k1 + k2)x2k] + 0.5mgl sinx1k +
η

J
(k1x1k + x2k) + δ (70)

where δ is the external disturbance signal and is represented as:

δ = 0.5 sin(10t) (71)

4. Simulation Results

In this section, we have performed simulations using MATALB software for imple-
menting the ETC scheme on an inverted pendulum and single-link robot system. In ETC,
suppose that the kth triggering instant is tk and the next triggering instant is defined by
tk+1, then the inter event execution time, Tk, is represented as:

Tk = tk+1 − tk (72)

where Tk ≥ Tmin. The Tmin is the lower bound on Tk and Tmin = 1ms. The Tmin = 1ms is
also the sampling time set for running the simulations in MATLAB software. If Tk < Tmin,
then many sampling instants will not be captured by the MATLAB processor. Hence,
the minimum inter-event execution time, Tk, will always be greater than or equal to
Tmin. If the Tmin is reduced below 1 ms, then the computation time increases significantly.
However, with high-speed computers, the Tmin can be reduced to values below 1 ms as
well. The upper bound on Tk is governed by an event triggering mechanism which has
been developed in Section 3.

4.1. Case Study 1: Stabilization of Inverted Pendulum System

The simulation results for the stabilization of the inverted pendulum system have been
obtained using parameters given in Table 1. Table 2 presents an analysis of the inverted
pendulum system for different values of triggering parameter α. It is observed that for
lower values of the α, the value of fitness function J f it(t) is very high, whereas the lowest
number of samples is needed to be sent to the controller. On the increase in α value, the
J f it(t) starts decreasing, whereas the number of samples goes on increasing. However,
after a certain value of α, both the J f it(t) and number of samples start increasing. Hence,
it is required to find the optimum value of α so that both the fitness function J f it(t) and
number of samples are at the minimum level.

The J f it(t) is further minimized using the PSO algorithm and an optimized value of α
is obtained. The simulation parameters taken for running the PSO algorithm are as follows:
(i) number of iterations = 50, (ii) number of particles = 20 and (iii) total simulation period
Ts = 20s. The other PSO parameters have been taken from Mishra and Chandra et al.
(2014). Now, the optimized value of α is given in the bottom row of Table 2. The value of
fitness function J f it(t) is 0.8369, which is the minimum among all fitness values given in
Table 2. The number of samples needed is 501, which is very low if we compare it with
a periodic sampling of 1 ms. If Ts = 20s then it would require 20,001 samples in case of
periodic sampling.

Table 1. Inverted Pendulum System and Controller Parameters.

M (Kg) m (Kg) l (m) g (m/s2) k1 k2 η

1 0.1 0.3 9.8 5 5 1
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Table 2. Fitness Function and Number of Samples for Inverted Pendulum System.

Value of α Fitness Function Jfit (t) Number of Samples

10−1 72.13 147
10−2 22.92 211
10−3 8.15 276
10−4 2.70 335
10−5 1.21 394
10−6 0.85 508
10−7 0.86 630
10−8 0.91 736
10−9 1.01 866
10−10 1.12 969

0.998 × 10−6 0.8369 501

Next, the inverted pendulum system performance has been evaluated by analyzing
the behavior of its system states, control effort and inter-event execution time waveforms,
which are shown Figures 3–5. Two situations of norm of system states, ‖X(t)‖, for α = 10−2

(very high) and α = 0.998× 10−6 (optimized), are shown in Figure 3. For a relatively higher
value of α as shown in Figure 3a, the system states have very poor performance, while the
number of samples is 211. For the optimized case as shown in Figure 3b, the system states
performance is very satisfactory, whereas the number of samples needed is just 501.
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Similarly, in Figure 4, the control effort waveforms are shown for α = 10−2 (very
high) and α = 0.998× 10−6 (optimized). Again, the performance of the optimized case is
superior to the case of Figure 4a. Hence, it can be said that minimum control effort could



Mathematics 2021, 9, 1262 16 of 22

be maintained with a very low number of samples as well. The inter-event execution time,
Tk, waveforms are shown in Figure 5. It is already explained that the lowest number of
triggering samples is required in the optimized case.

4.2. Case Study 2: Stabilization of Single-Link Robot System

We will now discuss the simulation results of the single-link robot system. The
simulation results for the stabilization of the single-link robot system have been obtained
using parameters given in Table 3. Table 4 presents an analysis of the single-link robot
system for different values of triggering parameter α. It is observed that for lower values
of the α, the value of fitness function J f it(t) is very high, whereas the lowest number of
samples needed to be sent to the controller. On the increase in α value, the J f it(t) starts
decreasing, whereas the number of samples goes on increasing. However, after a certain
value of α, both the J f it(t) and number of samples start increasing. Hence, it is required to
find the optimum value of α so that both the fitness function J f it(t) and number of samples
are at the minimum level.

Table 3. Single-Link Robot and Controller Parameters.

J m (Kg) l (m) g (m/s2) k1 k2 η

0.5 0.1 0.3 9.8 2 10 1

Table 4. Fitness Function and Number of Samples for Single-Link Robot.

Value of α Fitness Function Jfit (t) Number of Samples

10−1 78.33 509
10−2 25.47 521
10−3 8.56 538
10−4 3.287 556
10−5 1.71 693
10−6 1.49 971
10−7 1.60 1240
10−8 1.82 1511
10−9 2.09 1782
10−10 2.35 2057

1.001 × 10−6 1.488 968

The J f it(t) is further minimized using the PSO algorithm, and an optimized value of
α is obtained. The optimized value of α is given in the bottom row of Table 4. The value
of fitness function J f it(t) is 1.488, which is the minimum among all fitness values given in
Table 4. The number of samples needed is 968, which is very low if we compare it with
a periodic sampling of 1 ms. If Ts = 20s then it would require 20,001 samples in case of
periodic sampling.

The simulation results for single-link robot system states, control effort and inter-event
execution time waveforms are shown in Figures 6–8. Three situations of norm of system
states, ‖X(t)‖, for α = 10−2 (very high), α = 1.001× 10−6 (optimized) and α = 1.001× 10−6

(optimized) with actuator disturbance, are shown in Figure 6. For a relatively higher value
of α as in Figure 6a, the system states have very poor performance, while the number
of samples is 521. For the optimized case in Figure 6b, the system states performance is
better compared to the case of Figure 6a, and the number of samples needed is just 968.
Next, in Figure 6c, the performance of the system states is slightly affected by the actuator
disturbance. However, the states always remain in the stability region provided that the
disturbance signal is bounded within a small range.
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In Figure 7, the control effort waveforms are shown for α = 10−2 (very high),
α = 1.001× 10−6 (optimized) and α = 1.001 × 10−6 (optimized) with actuator distur-
bance. Again, the performance of the optimized case (Figure 7b) is much better than that
of Figure 7a. Hence, it can be said that minimum control effort could be maintained with
an optimized triggering parameter. As shown in Figure 7c, a slightly high control effort
is required to keep the system states in stable trajectory due to disturbance added in the
actuator signal. However, it is important to notice that the proposed ETC scheme works
absolutely fine for small disturbances. Figure 8 presents the inter-event execution time, Tk.
The range of Tk is between 0.001 and 0.15 s for α = 10−2 (very high), as shown in Figure 8a,
whereas for α = 1.001× 10−6 (optimized) it is between 0.001 and 0.28 s, as shown in
Figure 8b. For the third case with actuator disturbance as shown in Figure 8c, the range of



Mathematics 2021, 9, 1262 18 of 22

Tk lies between 0.001 and 0.045 s. This is due to the fact that the number of control updates
would increase when a continuous disturbance signal affects the actuator/control signal.

The chattering can also be observed in non-optimized event-triggered control cases
(e.g., Figure 3a, Figure 4a, Figure 6a, and Figure 7a). The optimized event-triggered control
cases do not show any chattering (e.g., Figure 3b, Figure 4b, Figure 6b, and Figure 7b).
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Finally, we consider the non-zero value of x1d, i.e., trajectory tracking control of the pro-
posed scheme. The reference trajectory for this objective is considered as x1d = 0.1 sin(0.2πt).
Next, the reference trajectory for the second system state is evaluated using the expression
of Equation (8) for i = 1. Hence, the x2d is given as:

x2d = g−1
1
[ .
x1d − f1 + k1·x̃1

]
(73)

Based on the above reference trajectories, x1d and x2d, the closed-loop system has been
simulated and the results are shown in Figure 9. It should be noted that the closed-loop
response shown in Figure 9 is obtained only for the optimized event-triggered control
for α = 1.001× 10−6. All other cases have been described in Figures 7–9. As shown in
the figure, the proposed controller forces the system states (in Figure 9a,b) to follow the
desired trajectory very satisfactorily. Similarly, the control effort does not vary after 1 s
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duration (in Figure 9c). However, the inter-event time (in Figure 9d) has been reduced
as compared to the previous cases. It is due to variable reference trajectories where a
continuous control command update is required. In cases where the control command
does not need regular updates, the number of data samples is minimized significantly. This
has been demonstrated in the case of x1d = 0.
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5. Conclusions

This paper presented an ETC scheme for an NCS. Initially, a backstepping control law
was designed for a nonlinear system in strict-feedback form. Thereafter, an optimized event
triggering algorithm by assuring the closed-loop stability of the system was developed.
Later, the proposed ETC scheme was implemented on two case studies of an inverted
pendulum and single-link robot system. Next, the simulations were performed to verify
the effectiveness of the proposed ETC scheme. The performance of the system states,
control efforts, state error due to non-uniform sampling and event execution time interval
was analyzed for both the nonlinear systems. The proposed ETC scheme can be applied
to any generalized nonlinear system provided it is in the strict-feedback form. Another
important contribution of this study is the optimized event triggering algorithm that helps
the ETC to maintain the optimum performance of the nonlinear system with a reduced
number of samples required to be sent over the communication channel. As compared to
the non-optimized event triggering algorithm, the optimized event triggering algorithm
takes more triggering pulses but provides very efficient tracking of state trajectories. The
non-optimized event triggering parameter reduces the triggering samples but leads to
the degradation of system performance, as shown in simulation results. The effects of a
communication network for data transmission have not been taken into account in the
present work, which might be the focus of future work.
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