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Abstract: The outbreak of SARS-CoV-2 in Wuhan, China in late December 2019 became the harbinger
of the COVID-19 pandemic. During the pandemic, geospatial techniques, such as modeling and
mapping, have helped in disease pattern detection. Here we provide a synthesis of the techniques
and associated findings in relation to COVID-19 and its geographic, environmental, and socio-
demographic characteristics, following the Preferred Reporting Items for Systematic reviews and
Meta-Analyses extension for Scoping Reviews (PRISMA-ScR) methodology for scoping reviews.
We searched PubMed for relevant articles and discussed the results separately for three categories:
disease mapping, exposure mapping, and spatial epidemiological modeling. The majority of studies
were ecological in nature and primarily carried out in China, Brazil, and the USA. The most common
spatial methods used were clustering, hotspot analysis, space-time scan statistic, and regression
modeling. Researchers used a wide range of spatial and statistical software to apply spatial analysis
for the purpose of disease mapping, exposure mapping, and epidemiological modeling. Factors
limiting the use of these spatial techniques were the unavailability and bias of COVID-19 data—along
with scarcity of fine-scaled demographic, environmental, and socio-economic data—which restrained
most of the researchers from exploring causal relationships of potential influencing factors of COVID-
19. Our review identified geospatial analysis in COVID-19 research and highlighted current trends
and research gaps. Since most of the studies found centered on Asia and the Americas, there is a need
for more comparable spatial studies using geographically fine-scaled data in other areas of the world.

Keywords: spatial analysis; COVID-19; disease mapping; exposure mapping; spatial epidemiology;
health geography

1. Introduction

The epidemic intensity of COVID-19 has been strongly shaped by crowding, evi-
denced by higher prevalence in big cities as compared to smaller cities and rural areas [1],
but the pandemic’s immense spread has also been enabled by other biological, social,
environmental, and economic factors. Various epidemiological studies have been carried
out to explore the spatial spread of COVID-19. Every country has been affected differently
and has exhibited a unique pattern of incidence and mortality under the influence of many
underlying factors. Temporal and spatial variation in the incidence rate of COVID-19 have
produced the three distinctive high-rate clusters, initially China, then Western Europe, and
finally the USA [2,3].

Study of disease distribution and diffusion over time and space is a core theme
of both health geography and spatial epidemiology [4]. Spatial analysis is essential to
understanding the spatial spread of infection and its association with the community and
environment, especially in the early stages of an outbreak [5]. The spatial and spatial-
temporal proximity concept is deeply linked with the transmission of infectious diseases,
since transmission rates are more likely to be high when people are near each other [6].
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Spatial patterns of disease often suggest links between disease and potential risk
factors of a geographic area [7], and the analysis of such patterns can be traced back to
the cholera epidemic in London in 1854, when John Snow mapped cholera-related deaths,
which resulted in subsequent removal of handles from public water pumps on Broad
Street [8].

Technically, spatial analytical methods can be classified into three categories: disease
mapping, exposure mapping, and spatial epidemiological modeling [9]. Disease mapping,
or visualization, describes geographic patterns of diseases. Exposure mapping explores
the spatial covariance of potential influencing factors driving disease outcomes. Spatial
epidemiological modeling aims to estimate or predict health outcomes while adjusting for
potential influencing factors and the spatial structure of the data.

There is massive research available about COVID-19, changing and improving our
understanding on a daily basis. A previous study on the major themes of geospatial
techniques [10] took an interdisciplinary perspective on COVID-19 and reviewed relevant
scholarly work published through the end of May 2020. Our current study will expand
on the previous review and will further synthesize spatial studies of COVID-19. Our
main objectives will be to: (1) review the use of spatial analysis tools and techniques in
investigations of the geographic variation of the COVID-19 pandemic and its potential
influencing factors (environmental, socio-economic, demographic, and healthcare-related);
and (2) synthesize study results separately for three categories: disease mapping, exposure
mapping, and spatial epidemiological modeling.

2. Methods

For this scoping review, we performed a MEDLINE search via the PubMed database,
applying the Preferred Reporting Items for Systematic reviews and Meta-Analyses ex-
tension for Scoping Reviews (PRISMA-ScR) [11]. We used the following MeSH (Medical
Subject Headings) terms: ‘Spatial Analysis’ OR ‘Geographic Mapping’ OR ‘Spatial Re-
gression’ OR ‘Space time Clustering’ OR ‘Spatio Temporal Analysis’ AND ‘COVID-19′.
The search was carried out on 30 September 2020. We included published, peer-reviewed
journal articles based on the spatial analysis of COVID-19. Studies were considered el-
igible for inclusion if they broadly described the use of spatial analysis techniques for
studying and analyzing the COVID-19 pandemic. We included only English-language
articles published between 1 January 2020 and 30 September 2020. Manuscripts describing
both qualitative and quantitative study types were considered. Clinical trials were not
considered for this review.

Based on our search strategy, 74 articles were identified, and a two-stage screening
was then carried out. At the first stage of screening, only the title and abstract were
evaluated as to whether they fulfilled the eligibility criteria. At the second stage, the
selected articles were screened and reviewed completely in terms of main spatial analysis
techniques used, geographic extent of the study, mapping software, and COVID-19 data
used in the study and relationships with other determinants (reported cases, confirmed
cases, tested population, demographic aspects of patients, etc.).

Keyword frequency in the included articles was then analyzed and a word cloud
diagram was constructed via an online service (https://www.wordclouds.com) (Accessed
on 1 November 2020). Subsequently, we categorized the findings according to spatial
epidemiological terminology, that is, disease mapping, exposure mapping, and spatial
epidemiological modeling.

3. Results

In total, 74 articles matched the search criteria (Figure 1). Of these, 34 were excluded at
the first stage and two at the second stage. For the 38 remaining articles, the most frequent
months of publication were June (n = 12) and August (n = 12), followed by May (n = 8). We
noted fewer article publications in March, April, and September (n = 2, n = 3, and n = 1,
respectively). None of the articles was published in January or February.

https://www.wordclouds.com
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Figure 1. Flow chart showing the selection stages of the scoping review of spatial analysis used in
COVID-19 studies (articles retrieved on 30 September 2020).

Figure 2 displays a word cloud of keywords found in the reviewed articles. “COVID-
19” was the most frequently used word, along with its other parallel names like “SARS-
CoV-2”, “coronavirus”, “pandemic”, “disease”, or “health.” The terms “GIS”, “spatial”,
“analysis”, “mapping”, “vulnerability”, “social”, “socioeconomic”, and “infectious” also
appeared frequently as keywords used in articles. We noted that most of the studies were of
“ecological” nature and that “geographic”, “spatio-temporal”, “space–time”, “surveillance”,
and “cluster” analysis were repeatedly used as keywords for indicating spatial techniques
used in the included articles. Asia and the Americas were the geographic regions where
the most included studies were carried out.
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Table 1 shows details for study foci, spatial techniques, software used, and geographic
extent of the selected articles, and Table 2 shows the main findings of the selected articles.
ArcGIS (Environmental Systems Research Institute: Redlands, CA, USA) [12] was the
most frequently used software for spatial statistical analysis of data (n = 21), followed
by the statistical software and environment R(R Foundation for Statistical Computing:
Vienna, Austria) [13] (n = 9), GeoDa (The Center for Spatial Data Science at the University of
Chicago, Chicago, IL, USA) [14] (n = 6), Quantum GIS (Open Source Geospatial Foundation:
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Beaverton, OR, USA) [15] (n = 7), SaTScan (Kulldorff M. and Information Management
Services Inc: Calverton, MD, USA) [16] (n = 5), and TerraView (Image Processing Division,
Brazilian National Institute of Space Research: Cuiabá, Brazil) [17] (n = 3). We noted
that most of the studies used a combination of two or more spatial statistical software
products. Some articles declared their statistical analysis software as SPSS (IBM: Armonk,
NY, USA) [18] (n = 5) and MS Excel (Microsoft Corporation: Redmond, WA, USA) [19]
(n = 2). Epidemic Location Intelligence System (http://epidemija.gis.ba/webcity/#/)
(Accessed on 26 February 2021) (n = 1) and Mapbox2 (n = 1) were also mentioned.

Table 1. Second-stage screening records and their study focus, main spatial techniques, software, and geographic ex-
tent, grouped by approach: disease mapping, exposure mapping, and spatial epidemiological modeling. SAC = spatial
autocorrelation analysis.

# Reference Study Focus Main Spatial Techniques Main Software Geographic
Extent

Disease Mapping

1 Andrade et al. [20] Space–time analysis of
COVID-19

Prospective spatiotemporal
scan statistic

QGIS 3.4.11,
BrazilTerraView 4.2.2,

SaTScan 9.6

2
Briz-Redón and

Serrano-Aroca [21]
COVID-19 in relation with

temperature

Choropleth maps of
COVID-19 accumulated

observed and
predicted cases

R (automap),

SpainGstat

3
Cavalcante and

Abreu [22]
Spatial distribution of

COVID-19 cases and deaths
SAC with Moran’s I

QGIS 2.14.8,
Brazil

GeoDa 1.14.0

4 Fan et al. [23] COVID-19 reported cases
Choropleth incidence map

ArcGIS 10.2.2
Gansu Province,

ChinaLISA cluster analysis

5 Gao et al. [24] COVID-19 in healthcare
workers

Choropleth map showing
distribution of COVID-19
infected health workers

QGIS 3.12 China

6 Hohl et al. [25]
COVID-19 space–time clusters

through daily surveillance
Poisson space–time

scan statistic
SaTScan,

USA
R, R Shiny

7 Huang et al. [26] COVID-19 confirmed cases Spatial autocorrelation
(SAC) with Moran’s I None mentioned China

8 Jella et al. [27] COVID-19 confirmed case with
age and occupation

Overlay map of COVID-19
confirmed cases and

orthopedic surgeons in
patients >60 years of age

QGIS 3.12.1 USA

9 Jia et al. [28] COVID-19 and population
outflow

Overlay maps of
population outflow from
Wuhan and COVID-19

confirmed cases

ArcGIS 10.2 China

10 Kim & Castro [29]
Change in COVID-19 clusters

according to government
response

SAC with Moran’s I,
Space–time scan statistic for
spatio-temporal clusters of

COVID-19

SaTScan 9.6,

South KoreaGeoDa 1.14,

ArcGIS 10.6.1

11 Li et al. [30] Spatial analysis of
COVID-19 clusters SAC with Moran’s I ArcGIS 10.4.1 China

12 Liao et al. [31]
COVID-19 cases (age, gender,

nationality, occupation,
and address)

Choropleth maps of
COVID-19 confirmed case ArcGIS 10.2 China

13 Michelozzi et al. [32]
COVID-19 mortality in relation

with geographic area, age,
and sex

Choropleth incidence map R Italy

14
Pedrosa and

Albuquerque [33]

Spatial analysis of COVID-19
and healthcare services
(number of ICU beds)

Case detection coefficient Boxmap,
BrazilSAC with Moran’s I

(Bayesian method) Moran Map

http://epidemija.gis.ba/webcity/#/
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Table 1. Cont.

# Reference Study Focus Main Spatial Techniques Main Software Geographic
Extent

15 Ponjavić et al. [34]
Fast representation of

COVID-19 through Geo
visualization

Spatial visualization
ELIS (Epidemic

Location Intelligence
System)

Bosnia and
Herzegovina

16 Rex et al. [35] COVID-19 in relation with road
and air transport Kernel density estimation QGIS 3.8 São Paulo, Brazil

17 Rivas et al. [36]
Spatial distribution of epidemic
nodes and COVID-19 mortality

Spatial visualization of road
rail and air connectivity

ArcGIS Pro 2.5.0,
China

SPSS, Minitab

18 Tang et al. [37] Changing patterns of COVID-19
Choropleth maps of

COVID-19 confirmed cases,
SAC with Moran’s I

R,
China

ArcGIS 10.2

19 Yang et al. [38] Spatiotemporal patterns of
COVID-19 SAC with Moran’s I ArcGIS 10.2 China

Exposure Mapping

20 de Souza et al. [39]
COVID-19 in relation with Bivariate spatial correlation

and multivariate and
spatial regression models

GeoDa1.10.0.8 Brazil
living conditions

21 Gomes et al. [40]
Risk clusters of COVID-19

Transmission SAC with Moran’s I
QGIS 3.4.11,

BrazilSaTScan 9.6,
TerraView 4.2.2

22 Lakhani [41] Vulnerability assessment of
COVID-19 by risk factors

Hotspot analysis
(Getis-Ord Gi*) ArcGIS 10.4.1 Australia

23 Macharia et al. [42]
Assessment of the vulnerability

of COVID-19 (social and
epidemiological)

Spatially overlaid via Arc GIS 10.5,
Kenyaarithmetic mean and

equally weighted R 3.4.1

24 Natividade et al. [43]
Effect of living conditions on

social distancing in COVID-19
pandemic

SAC with Moran’s I

QGIS 2.18,
Salvador-Bahia,

Brazil
GeoDa 2.14,

R

25 Santos et al. [44]

COVID-19 vulnerability
assessment (household density,

old age population,
tuberculosis incidence)

Choropleth maps of
COVID-19

vulnerability Index
ArcGIS 10.5 Brazil

Spatial Epidemiological Modeling

26 A. Mollalo et al. [45] Spatial and statistical prediction
of COVID-19

Hotspot analysis by
Getis–Ord Gi* ArcGIS 10.4.1 USA

27 A. Mollalo et al. [46]

COVID-19 incidence relation
with socio-economic

demographic and
environmental factors

Multiscale geographically
weighted regression ArcGIS 10.7 USA

28 Azevedo et al. [47]
New spatial methodology for
spatial predictions assessment

Spatial Modeling,
ArcGIS online Portugal

Stochastic simulations

29
Cordes and Castro

[48]
COVID-19 and urban health

inequalities

SAC with Moran’s I I SaTScan9.6, New York,

Pearson correlations GeoDa 1.14.0, USA

ArcGIS 10.6.1,

R 3.6.2

30 Cuadros et al. [49] COVID-19 and healthcare
capacity

Spatially-explicit
mathematical modeling ArcGIS 10.2 USA

31 Kraemer et al. [50]
Human mobility and control

measures in relation with
COVID-19

Generalized linear models
(Poisson GLM, negative

binomial GLM, log-linear
regression)

R package,
China

GLMNET
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Table 1. Cont.

# Reference Study Focus Main Spatial Techniques Main Software Geographic
Extent

32 Maciel et al. [51]

Spatial analysis of COVID-19
and its correlation with the

municipal human development
index (MHDI)

Bivariate LISA analysis, TerraView 4.1.0,
Brazil

global Moran’s I GeoDa

33 Mizumoto et al. [52]
COVID-19 confirmed cases Choropleth maps of

COVID-19 morbidity rates
and crude fatality rates

R ItalyCOVID-19 crude case
fatality ratio

34 Ramírez and Lee [53] COVID-19 and social health
determinants

Interpolation by inverse
distance weighted (IDW),

Pearson’s correlation
ArcGIS Pro USA

35 Scarpone, et al. [54]
Spatial, socio-economic, and

built-environment in relation to
COVID-19 incidence

SAC with Moran’s I
ArcGIS 10.7.1,

Germany
R package spatstat

36 Xiong, et al. [55]
Spatial statistical analysis of

COVID-19 and its Influencing
factors

SAC with Moran’s I,
Spearman’s rank

correlation
ArcGIS 10.7 China

37 Ye and Hu [56] Impacts of control measures on
COVID-19 cases

Polynomial regression, SAC
with Moran’s I ArcGIS 10.4.1 China

38 Zhang and Schwartz
[57]

Spatial pattern of COVID-19 in
relation with socio-economic

variables of urban and
rural counties

Multiple regression analysis ArcGIS 10.4.3 USA

Table 2. Second-stage screening records and main study findings.

Reference Main Findings

Disease Mapping

Andrade et al. [20] Active and emerging spatiotemporal clusters in southern central Sergipe, Brazil

Briz-Redón and Serrano-Aroca [21] No evidence of a relationship between temperature and COVID-19 cases was found in Spain

Cavalcante and Abreu [22] High risk of COVID-19 infection and deaths was found in neighborhoods in the South Zone of the city of
Rio de Janeiro, Brazil

Fan et al. [23] Spatial distribution of COVID-19 hotspots in China

Gao et al. [24] Spatial distribution of COVID-19-infected healthcare workers in China, with Wuhan being the most severe,
followed by Hubei Province and the rest of China

Hohl et al. [25] As the pandemic progresses, the number of smaller clusters of remarkably steady relative risk increased in
USA

Huang et al. [26] Spatial patterns of COVID-19 in China, showing severe epidemic situation in Hubei province

Jella et al. [27] Highest quintile of orthopaedic surgeons ≥60 years of age in New York, New Jersey, California, and Florida.
These states were also most severely affected by COVID-19 in the USA

Jia et al. [28] Spatial distribution of population outflow from Wuhan to the rest of China, evidence for an association
between population outflow and COVID-19 cases

Kim & Castro [29] South Korean government’s epidemic response measures were significantly associated with changes in
COVID-19 clusters

Li et al. [30] Provinces with high and low COVID-19 clusters in China, with Hubei as the only province with high-low
aggregation

Liao et al. [31] Strict preventive strategies aimed at the local culture, with inter-sectoral coordination and high degree of
public cooperation, helped in controlling COVID-19 in Liangshan Prefecture, China

Michelozzi et al. [32] Age and sex were confirmed as risk factors for COVID-19-related mortality in Italy, with elderly (aged 65+
years) and male persons exhibiting higher mortality

Pedrosa and Albuquerque [33] Spatial distribution of intensive-care bed capacity was significantly associated with COVID-19 in Ceará,
Brazil

Ponjavić et al. [34] Distribution of COVID-19 incidence rates in Bosnia and Herzegovina

Rex et al. [35] Metropoliton region of São Paulo State was a hotspot of COVID-19
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Table 2. Cont.

Reference Main Findings

Rivas et al. [36]
Network properties, including synchronicity and directionality, determined the epidemic profiles observed
in several Chinese provinces, fostering the planning and implementation of more precise and locally
specific interventions to control COVID-19

Tang et al. [37] Spatial intensity of COVID-19 infection in China

Yang et al. [38] Spatial clusters with high incidence rates were concentrated in Wuhan Metropolitan Area due to the high
intensity of spatial interaction of the population

Exposure Mapping

de Souza et al. [39] Municipalities with low living conditions were highly exposed and would therefore need urgent attention
to control the spread of disease in Brazil

Gomes et al. [40] Higher COVID-19 risk in the northeastern metropolitan areas were found as compared to the more rural
parts of Brazil

Lakhani [41] Disability and access to health services were risk factors for COVID-19 in an elderly population in
Melbourne, Australia

Macharia et al. [42] COVID-19 risk was heterogeneously distributed across multiple social epidemiological indicators in Kenya

Natividade et al. [43] Better living conditions were associated with a higher social distance index, as compared to areas with poor
living conditions in Salvador Bahia, Brazil

Santos et al. [44] City neighborhoods with higher average household density, high tuberculosis incidence, and large older
populations (>60 years) were more vulnerable to COVID-19 infections in Rio De Janeiro, Brazil

Spatial Epidemiological Modeling

A. Mollalo et al. [45] Ischemic heart disease, pancreatic cancer, and leukemia, along with household income and precipitation
were significant factors for predicting COVID-19 incidence rates in the USA

A. Mollalo et al. [46] Income inequality was an influential factor in explaining COVID-19 incidence particularly in the tri-state
area in the USA

Azevedo et al. [47] Spatial uncertainty of COVID-19 infection risk was found in Portugal

Cordes and Castro [48] Negative associations of white race, education, and income with proportion positive tests, and positive
associations with black race, Hispanic ethnicity, and poverty in New York City, USA

Cuadros et al. [49]
Higher COVID-19 attack rates in specific highly connected and urbanised regions could have significant
implications for critical healthcare in these regions, notwithstanding their potentially high healthcare
capacity compared to more rural and less connected areas in the USA

Kraemer et al. [50] Significant decrease in COVID-19 infections was found after implementation of governmental control
measures to contain the disease in China

Maciel et al. [51] There was a positive bivariate correlation between municipal human development index (MHDI) and the
incidence of COVID-19 with the formation of a cluster in the metropolitan region of Fortaleza, Brazil

Mizumoto et al. [52] Case fatality rates of COVID-19 estimates were statistically associated with population density and
cumulative morbidity rate in Italy

Ramírez and Lee [53] Population density and asthma in urban areas and poverty and unemployment in rural areas were
determinants of high COVID-19 mortality in Colorado, USA

Scarpone et al. [54] Location, densities of the built environment, and socio-economic variables were important predictors of
COVID-19 incidence rates in Germany

Xiong et al. [55] Social and economic development and population movement have strong impact on COVID-19 spread in
Hubei province, China

Ye and Hu [56] The effectiveness of control measures of COVID-19 in the Yangtze River Delta region of China

Zhang and Schwartz [57] Positive associations were found among population density, older age, and poverty with COVID-19
incidence and mortality in urban and rural counties in the USA

China was the most frequent geographic location of the studies (n = 12), followed by
Brazil (n = 9), USA (n = 8), and Italy (n = 2). One study from each of Australia, Bosnia
and Herzegovina, Portugal, South Korea, Spain, Kenya, and Germany was also identified.
However, not a single study was found from South Asia or the Middle East.

3.1. Disease Mapping

We observed that disease mapping approaches ranged from unadjusted to adjusted
disease outcomes in space and time, with studies controlling for sex, age, occupation, and
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healthcare services. For example, during the early months of the epidemic, Huang, Liu and
Ding [26] used a simple COVID-19 heat map approach to show the spatial patterns of the
epidemic in China. Lioa et al. [30] studied COVID-19 in disadvantaged areas of Liangshan
Prefecture, China. Ponjavić et al. [34] applied geospatial visualization techniques to study
the distribution of COVID-19 incidence rates in Bosnia and Herzegovina on a series of
maps using ELIS (Epidemic Location Intelligence System). In another study by Michelozzi
et al. [32], spatial distribution of COVID-19 incidence was shown on a map, while the rest
of the analysis was largely based on statistical analysis.

Spatial autocorrelation techniques were also used by many researchers. For example,
hotspot analysis was used by Tang et al. [37] to show the spatial intensity of infection in
China. Similarly, another study carried out in China quantified the spatial distribution of
COVID-19 by hotspot analysis [23]. Likewise, Li et al. [30] analyzed clusters of COVID-19
incidence in China by using global and local Moran’s I in the ArcGIS environment. In
the Hubei province of China, spatiotemporal analysis of COVID-19 daily cases and their
incidence rate was done by Yang et al. [38], using hotspot and cluster analysis in ArcGIS.
A simple ecological study by Cavalcante and Abreu [22] explored spatial variation in
COVID-19 incidence and mortality rates in Rio de Janeiro, Brazil, using global and local
Moran’s I. The software packages used for mapping were QGIS and GeoDa.

Many researchers combined geographic visualization of COVID-19 distribution with
additional influencing factors as well, including age, sex, occupation, transport, mobility
pattern, and environmental factors. For example, Gao et al. [24] mapped the spatial distri-
bution of COVID-19-infected healthcare workers in China using QGIS. Likewise, another
descriptive study focused on occupational health and showed the spatial distribution of
total COVID-19 cases in relation to orthopedic surgeons of patients over 60 years of age in
the USA [27].

Researchers also applied smoothing techniques. For example, a study by Pedrosa and
Albuquerque [33] found that the spatial distribution of intensive-care bed capacity was
significantly associated with COVID-19 in the State of Ceará, Brazil by using smoothed
Bayesian estimators. Rex et al. [35], in their exploratory study, analyzed the spread of
COVID-19 in the state of São Paulo, Brazil by using kernel density estimation (KDE)
and related the spread of the virus to population mobility, mainly through roads and
air transport.

R-based statistical modeling of temperature and COVID-19 cases in Spain found no
significant associations [21]. Another study showed the spatial distribution of population
outflow from Wuhan to the rest of China, along with evidence for an association between
population outflow and COVID-19 cases [28]. Geo-temporal progression of the epidemic
was highly structured in China, a study by Rivas et al. [36] found. Their study revealed that
network properties, including synchronicity and directionality, determined the epidemic
profiles observed in several Chinese provinces, fostering the planning and implementation
of more precise and locally specific interventions.

Space–time clustering techniques were also used by researchers to identify propa-
gation and prediction of COVID-19. For example, Hohl et al. [25], aiming to facilitate
surveillance and improve resource allocation and decision-making, found weekly clusters
of COVID-19 in the USA by using the Poisson space–time scan statistic implemented
in SaTScan and presented their findings in an interactive web application developed in
R Shiny. Andrade et al. [20] used a prospective space–time scan statistic to detect spa-
tiotemporal clusters of transmission of COVID-19 in Sergipe, Brazil with QGIS, TerraView,
and SaTScan. In addition, using global Moran’s I and space–time scan statistic, Kim and
Castro [29] provided evidence that the South Korean government’s epidemic response
measures were significantly associated with changes in COVID-19 clusters.

3.2. Exposure Mapping

A study led by Macharia et al. [42], using ArcGIS zonal statistics and arithmetic means,
found that COVID-19 risk was heterogeneously distributed across multiple social epi-
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demiological indicators in Kenya—including elderly populations, malnutrition, smoking,
living in informal settlements—and comorbidity of obesity, hypertension, or diabetes.
Lakhani [41] used hotspot (Getis-Ord Gi*) analysis in ArcGIS and showed that disability
and access to health services were risk factors for COVID-19 in an elderly population in
Melbourne, Australia. A study in Rio De Janeiro, Brazil by Santos et al. [44] used ArcGIS to
determine that city neighborhoods with higher average household density, high tuberculo-
sis incidence, and large older populations (>60 years) were more vulnerable to COVID-19
infections. Gomes et al. [40] used a combination of various spatial statistical techniques in
a set of diverse software packages (Joint Point Regression Program for time trend analysis,
SaTScan, TerraView, and QGIS) to investigate spatiotemporal clusters of risk transmission
of COVID-19 in Brazil. Their results showed higher COVID-19 risk in the northeastern
metropolitan areas, as compared to the more rural parts of Brazil. An ecological study
by Natividade et al. [43] investigated the effect of living conditions on social distancing
in the COVID-19 pandemic in Salvador Bahia, Brazil, using local and global Moran’s I in
QGIS, GeoDa, and R. Their results revealed that better living conditions were associated
with a higher social distance index, as compared to areas with poor living conditions. Fur-
thermore, de Souza et al. [39] used bivariate spatial correlation and multivariable spatial
regression models in GeoDa to investigate the relationship of various indicators of human
development and social vulnerability with COVID-19 incidence, mortality, and fatality
rates in Brazil. They deduced that municipalities with low living conditions were highly
exposed and would therefore need urgent attention to control the spread of disease.

3.3. Spatial Epidemiological Modeling

A rigorous spatial-statistical study was done by Cordes and Castro [48]. They used
Moran’s I and scan statistics to identify clusters of COVID-19 testing rates and COVID-
19 positivity rates in order to measure the urban health inequalities in New York, USA.
They found negative associations of white race, education, and income with proportion
of positive tests and positive associations with black race, Hispanic ethnicity, and poverty.
Scarpone et al. [54] used many statistical and spatial techniques, including spatial autocor-
relation, hotspot analysis in ArcGIS, and the R package spatstat, to demonstrate spatial
associations of community interconnectedness, geographic location, transport infrastruc-
ture, and labor-market structure with COVID-19 incidence at the county scale in Germany.
A study by Cuadros et al. [49] performed spatially explicit mathematical modeling of
healthcare capacity and COVID-19. They argued that the higher COVID-19 attack rates in
specific highly connected and urbanized regions could have significant implications for crit-
ical healthcare in these regions, notwithstanding their potentially high healthcare capacity
compared to more rural and less connected areas in the US. Mizumoto et al. [52] used mul-
tivariable regression models to show that population density was statistically associated
with COVID-19 cumulative morbidity rates and time delayed-adjusted case fatality rates
in Italy and presented the geographic variability of these outcomes in choropleth maps.

Azevedo et al. [47] used geostatistical modeling to calculate spatial uncertainty of
COVID-19 infection risk in Portugal. Ye and Hu [56] demonstrated the effectiveness of
control measures of COVID-19 in the Yangtze River Delta region of China through spatial
autocorrelation, polynomial regression, and hotspot analysis in ArcGIS. Another study by
Mollalo et al. [45] used artificial neural networks in ArcGIS to show that ischemic heart
disease, pancreatic cancer, and leukemia, along with household income and precipitation,
were significant factors for predicting COVID-19 incidence rates in the USA. Likewise,
another study by Maciel et al. [51] found positive associations between municipal human
development index and COVID-19 in Brazil. They used spatial autocorrelation techniques
in TerraView and GeoDa. Zhang and Schwartz [57] used ArcGIS to analyze the spatial
disparities of COVID-19 in relation with socio-economic variables of urban and rural coun-
ties in the USA through multiple regression analysis. They found positive associations of
population density, older age, and poverty with COVID-19 incidence and mortality. Xiong
et al. [55] performed a detailed spatiotemporal investigation of environmental factors (land
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area, minimum elevation, maximum elevation, and range of elevation) and socio-economic
factors (registered population, resident population, regional gross domestic production,
and total retail sales of consumer goods) and COVID-19 at both prefecture and county
levels in Hubei Province, China during the early months of epidemic. Spatial autocorrela-
tion and Spearman’s rank correlation, executed in ArcGIS, were the main spatial statistical
methods employed in this study. A study using inverse distance weighted (IDW) interpo-
lation techniques and Pearson’s correlation in ArcGIS found that population density and
asthma in urban areas and poverty and unemployment in rural areas were determinants
of high COVID-19 mortality in Colorado, USA [53]. Similarly, Mollalo et al. [46] carried
out multiscale geographically weighted regression modeling of COVID-19 incidence in
the USA, in relation with socio-economic, demographic, behavioral, topographical and
environmental factors. They found that income inequality was an influential factor in
explaining COVID-19 incidence particularly in the tri-state area. The main spatial analysis
software used was ArcGIS. Kraemer et al. [50] modeled population mobility in Wuhan and
other provinces in China with R and found significant decrease in COVID-19 infections
after implementation of governmental control measures to contain the disease.

4. Discussion

We reviewed and synthesized the use of spatial analysis tools and techniques in
the context of the COVID-19 pandemic. Our review identified the application of spatial
techniques, from simple disease mapping to the exploration of vulnerability factors and
spatial epidemiological modeling. These studies not only tracked the changes in and
intensity of COVID-19 spatial patterns, but also analyzed relationships with various po-
tential influencing factors, such as socio-economic (occupation, income, transportation,
population mobility, household density, government response, etc.), demographic (age,
sex, ethnicity, nationality, etc.), environmental (temperature, topographic and built envi-
ronment, etc.), and epidemiological and healthcare-related (tuberculosis incidence, social
distancing, testing facilities, availability of ICU beds, health inequalities, etc.) variables.
The findings of these studies are very important to our understanding of the spatial nature
of the COVID-19 pandemic and enable the formulation of control strategies and allocation
of appropriate healthcare measures to contain the disease.

Several studies used simple visualization techniques to present the spatial distribution
of COVID-19, either by choropleth maps or dot density maps. Azevedo et al. [47] advocated
the use of spatial statistics for the analysis of public health data, in comparison with more
cartographic visualization, as spatial statistics were an improved way to measure disease
risk and to reduce the bias of visual perception. Moreover, the authors claimed that
spatial statistical techniques may facilitate the monitoring of governmental risk measures
to contain the disease and to evaluate their efficiency [47].

Most of the spatial epidemiological studies were conducted during the initial months
of the epidemic in China, USA, and Brazil. COVID-19 mapping with various other demo-
graphic, socio-economic, and environmental factors revealed and verified some basic facts
about this new disease. For example, elderly male [31,32] and frontline health workers [24]
showed high rates of infection and mortality. There was a direct relationship between living
condition and maintaining social (i.e., physical) distancing [43]. Disease mapping revealed
high transmission associated with high population mobility through road, rail, and air
transport [35], suggesting that measures to reduce the mobility of people may be effective
at controlling COVID-19 [28,50]. However, in terms of environment, no relationship was
found between temperature and COVID-19 [21].

Furthermore, spatial analysis of COVID-19 also exhibited within-country variation,
driven by various influencing factors [39]. For example, people living in disadvantaged
areas were at higher risk of COVID-19 as compared to those living in more affluent areas.
Particularly people living in areas with low socio-economic status, with poor access to
sanitation and hand washing facilities, and those who were marginalized were at higher
risk [42]. However, highly developed, high-density cities were at high risk too, and equity



Int. J. Environ. Res. Public Health 2021, 18, 2336 11 of 14

in testing and accessing healthcare facilities was critical in those urban neighborhoods
that have high incidence rates of COVID-19 [48]. These studies demonstrate the need to
prioritize deprived areas, both urban and rural, for infection control and healthcare [43].

In addition, COVID-19 cluster and hot spot studies were particularly useful for COVID-
19 surveillance by identifying the size, location, and comparative risks of the disease. For
example, daily cluster detection could track the emergence of hotspots of COVID-19 in
the USA, as shown on a live web application for daily surveillance [25]. Authors called
for locally specific interventions, in accordance with locally specific needs, to increase the
effectiveness of emergency plans [22]. However, the application of these techniques was
highly dependent on the availability of geographically fine-scaled data on demographic,
environmental, epidemiological, and socio-economic characteristics.

In terms of disease modeling, most of the researchers used data-driven models instead
of theory-driven methods. In multivariable regression models, strong positive correla-
tions were found for socio-economic factors including population density, proportions of
elderly residents, poverty, and percent population tested with COVID-19 morbidity and
mortality [57].

According to the latest research on COVID-19 (not part of our review), the greater
the number of transmissions, the more likely it is that new strains emerge and establish
themselves in susceptible populations [58,59]. For example, as this manuscript is being
written, two especially transmissible viral variants have become locally prevalent and are
now spreading internationally, one in the United Kingdom, variant B.1.1.7, which probably
emerged in September 2020 [58], and one in South Africa, the highly virulent variant
501.V2 [58].There is a need for future studies to detect and explore the potential impact of
emerging variants on diagnostics, treatments, and vaccines [60]. Spatial epidemiological
approaches may help enable early assessments of local variants and of the effectiveness of
COVID-19 vaccines, and they may further contribute to the exploration of the economic
consequences of this pandemic, if data and the global research agenda are coordinated
effectively and efficiently across disciplines and international institutions.

However, in our study, data quality was the main limitation of any spatial analysis
and determined the use of spatial techniques and methods. We observed great variation
in the selected articles for the source, acquisition, and use of COVID-19 data along with
demographic, social, and environmental variables. Many authors reported that the inter-
pretation of their findings was limited by ecological fallacy [61]. Some limitations that
were pointed out by researchers included bias of data because of low testing rate and
asymptomatic population [43], underreporting of COVID-19 cases and deaths [39], and
lack of locational data [40]. Because of such limitations, most of the studies did not explore
causal relationships among COVID-19 variables [48]. Furthermore, availability of more
detailed geographic data would allow analysis at finer spatial levels [29].

Our study also had some limitations. In our search for spatial studies of COVID-19, we
used only the PubMed database. Our retrieval time was nine months (January–September
2020), and articles published after this time were not considered in this review. Furthermore,
we only considered articles published in English; therefore, we had to exclude one article
on the basis of language, although it did fulfill other eligibility criteria.

5. Conclusions

Notwithstanding these limitations, this scoping review extends existing reviews of
spatial studies of the COVID-19 pandemic. Our review, by reflecting the application of
most recent spatial techniques in visualization, exploration, and modeling of COVID-19,
also showcased the most up-to-date trends in the field of health geography and spatial
epidemiology. Cluster analysis through global and local Moran’s I, hotspot analysis,
interpolation, and space–time scan statistics were found to be the main spatial techniques
used to analyze COVID-19 data. However, the use of all these techniques was determined
by the availability of spatial and relevant attribute data. We conclude that disease mapping
has been used by researchers not only to detect spatial and temporal distribution, clusters,
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and hotspots of COVID-19, but also to explore relationships of COVID-19 with other factors.
Exposure mapping has revealed that poor living conditions, elderly population, limited
access to health facilities, and high population density were key risk factors for COVID-19
infections. Spatial epidemiological modeling has been used to explore and confirm positive
associations between above mentioned socio-demographic factors (e.g., population density,
proportion of elderly residents, poverty) and COVID-19 morbidity and mortality. We
maintain that there is a need for spatial studies in other geographic areas of the world,
since current studies were mainly focused on Asia and the Americas. We also call for
a wider availability of health data at a fine-scaled geographic resolution (to the extent
allowed by data-privacy rights) in order to facilitate application of the most advanced
spatial approaches.

Spatial methods in epidemiology help to elucidate the spatial distribution of pop-
ulation health and the locally specific causes, so that we know where to intervene to
prevent disease and promote health. This is particularly important in the current pandemic,
as global public health measures to contain the disease (hand washing, social distance,
mask wearing) need to be combined with locally targeted health interventions. Health-
geographical approaches will continue to play a crucial role within the current pandemic
and also beyond this crisis.
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