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Abstract: Sensor technology provides the real-time monitoring of data in several scenarios that
contribute to the improved security of life and property. Crowd condition monitoring is an area that
has benefited from this. The basic context-aware framework (BCF) uses activity recognition based
on emerging intelligent technology and is among the best that has been proposed for this purpose.
However, accuracy is low, and the false negative rate (FNR) remains high. Thus, the need for an
enhanced framework that offers reduced FNR and higher accuracy becomes necessary. This article
reports our work on the development of an enhanced context-aware framework (EHCAF) using
smartphone participatory sensing for crowd monitoring, dimensionality reduction of statistical-based
time-frequency domain (SBTFD) features, and enhanced individual behavior estimation (IBEenhcaf).
The experimental results achieved 99.1% accuracy and an FNR of 2.8%, showing a clear improvement
over the 92.0% accuracy, and an FNR of 31.3% of the BCF.

Keywords: context-aware framework; accuracy; false negative rate; individual behavior estimation;
statistical-based time-frequency domain and crowd condition

1. Introduction

Crowd abnormality monitor (CAM) is a process of determining individual behavior in a crowd to
prevent accidents in crowd-prone areas. Crowd monitoring using activity recognition (AR) to analyze
individual behavior is maturing rapidly due to the current advancement in sensor technologies [1].
Increased research focus on human activity recognition (HAR) in diverse application domains highlights
the significance of human–computer interaction (HCI) [2]. Two conventional methods are employed in
the analysis of abnormal behavior in crowds. According to Zhang et al. [3], the “object-based” method
identifies a crowd as a collection of individuals, while segmentation methods are used for analyses
of crowd behaviors. In crowd behavior analysis, the performance of segmentation or detection of
objects is usually faced with the complexity in the detection of objects [3]. Previous studies have
demonstrated the object-based method with individual activity recognition. Issues in ongoing research
have been extensively discussed, with initial solutions suggested in [4]. Context-aware approaches
have been proposed previously; for example, [5]. However, only one [6] focused on crowd abnormality
monitor and mitigation with the use of individual AR. However, the threshold used for crowd density
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in terms of the prediction of crowd condition is unclear [6]. An efficient approach should be able to
accurately determine the number of persons within a square meter in order to prevent accidents during
an emergency in a crowd scenario [7]. In the study by [6], the simulation was done inside a university
building and conducted with a system of CAM [6], thus reducing the practical applicability of the
system. Therefore, an alternative with high accuracy performance and a low false negative rate (FNR),
which measures the false alarm to promote the efficient and reliable prediction of crowd conditions
based on individual behavior [6], is needed. This will be based on an extension of the proposed
basic context-aware framework (BCF) proposed [6]. A potential solution is to advance the previous
BCF using the reduction of relevant statistical-based time-frequency domain (SBTFD) features with
improved accuracy, reduced the FNR, and IBEenhcaf for individual and crowd condition prediction.

The motivation of this article proposes an enhanced context-aware framework using IBEenhcaf to
improve the safety of human lives in a crowd-prone environment. The proposed approach utilized
reduced features, with high-accuracy performance previously reported [4,8]. This study reports the
result of an ongoing study on other sensor data validation, which included the effect of low FNR,
and a clear definition of crowd density threshold for individuals per square meter (m2) for crowd
monitoring. The proposed approach employs the crowd density definition suggested in [7] and utilizes
individual contexts from sensor signals in real time. In addition, the detection of five or more persons
per m2 is considered an extremely high density [9] to minimize the risk of accident in a moving
crowd. The suggested solution promises accurate and reliable feedback to likely accident victims in
an unforeseen situation. In this article, the context-aware framework is defined as a BCF that utilizes
contexts such as individual user activities, location, and time [6]. The contexts are hidden information
derived from smartphone sensor data [6]. The contributions of this article are:

(1) To present the validation result of other sensors used for individual behavior estimation (IBE)
to extend the BCF.

(2) To suggest a clear crowd density threshold (CDT) per m2 using a low FNR from reduced
features to extend BCF.

(3) To propose an enhanced approach with reduced SBTFD features and modified IBE for crowd
condition prediction with CDT to improve on BCF.

The proposed solution has the potential to minimize incessant death occurrences in social
gatherings through a viable technology concept. The rest of the article is organized as follows:
Section 2 discusses the current approaches to crowd monitoring, Section 3 presents the materials and
methodology used in the study, Section 4 presents experimental results for the investigated issue to
achieve the contributions in the article. The results are discussed in Section 5, while Section 6 addresses
the conclusion and future work.

2. Current Approaches in Crowd Monitoring System

The crowd monitoring system (CMS) currently has three approaches, namely: (i) computer
vision-based methods, (ii) sensor data analysis, and (iii) social media data analysis [10]. The most
commonly used is sensor data analysis, which is also employed in this study [11] for several reasons.
These include (i) a tendency for the provision of accurate and real-time information, (ii) nowadays,
the new sensors on smartphones having the potential to revolutionize how we manage information,
(iii) offering safety and enhancing security if well utilized in crowded places, (iv) wider coverage,
as smartphones are used by almost everyone, and (v) feedback to potential victims in case of
accidents [12]. Besides, sensor data analysis is widely used in AR with promising results [1,2,5].
Several feature extraction methods (FEM) have been employed in recent studies [13,14]. Table 1
presents the strengths and limitations of existing feature extraction methods.

The following section presents an analysis of FEM, including time domain (TD), frequency domain
(FD), and feature reduction, and highlights those that can potentially be used for individual and
crowd condition monitoring. Then, feature reduction based on feature selection methods (FSM) is



Entropy 2019, 21, 487 3 of 27

examined for CMS for the minimization of time, classification, and accurate prediction. Related studies
in context-aware frameworks are also discussed.

2.1. Time Domain (TD)

TD features include mean, median, range, variance, maximum, minimum, skewness, and kurtosis,
to name a few. The features are widely used in HAR [15–17]. According to [17], the integral method
has been applied to extract energy expenditure information from raw sensor signal data, where the
total integral of the modulus of acceleration (IMA) was employed. The method is referred to as the
time integral of the module of accelerometer signals, and is expressed in Equation (1):

IMAtot =

∫ N

t=1
|ax|dt +

∫ N

t=0

∣∣∣ay
∣∣∣dt +

∫ N

t=0
|az|dt (1)

where ax, ay, az represent the orthogonal components of acceleration, t denotes time, and N is the
window length. Some of the methods of extracting features rely on the ability to transform input signals
to and from different domains [14]. To apply feature computations on a smartphone, one needs to be
careful due to computational complexity as a result of limited memory, processing time, and battery
lifetime. According to [18], almost all TD features are suitable for mobile devices, because their
correlation operations have higher computational cost. A feature extracted from the raw sensor
signal’s data from individual activity recognition is such a piece of information, and can be used when
classifying activity recognition to determine the characteristics of the individual in a crowd scenario
in this thesis. In order to create features from the AR sensor raw dataset, different methods and
mathematical calculations are applied to the raw dataset, and new features are extracted. Other time
domain features such as zero crossing, signal vector magnitude, the signal magnitude area, and angular
velocity have also been used in AR [19,20].

2.2. Frequency Domain (FD)

Features in this domain are important because the Fourier domain in AR sensor data has a much
greater range than the AR in the spatial domain. To be sufficiently accurate, its values are usually
calculated and in float values. Fast Fourier transform (FFT) also preserves information from the original
raw signal and ensures that important features are not lost as a result of FFT [21]. FD splits the signal
into sinusoidal waves with various frequencies using Equation (2):

f =
∫ w

1
x(t)e− j2π f tdt; x(t) =

∫ w

1
X( f )e j2π f tdt (2)

where t = time; f = frequency; X(f) = inverse Fourier transform; and x(t) depicts Fourier
transformation [22].

The proper selection of FD feature and sampling frequency is a key factor for extracting the
frequency components; an inability to realize this may result in a false prediction of an individual in a
crowd [3]. Zheng [3] transforms x(t) to overcomes the drawback of inaccurate detection by introducing
a frequency domain component and obtaining relevant information for AR [3,23]. Other important
domains include the wavelet domain (WD), which are better noted in the analysis if irregular data
patterns are used; that is, impulses exist at different time intervals [12], and therefore, require the
selection of a proper mother wavelet. The heuristic domain (HD) works by using the assignment of the
correct value to suggest the best corrective measure of sensor signals [16]. Therefore, HD requires input
from multiple experts aggregates the result. The time domain–frequency domain (TDFD) produces an
efficient performance for individual’s representation in the crowd [14]; however, the use of FFT_RMS
as the only FD may not assume the performance of other TD features.
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Table 1. Strength and limitations of existing feature extraction methods.

Feature Domain Feature Extraction
Methods Merits Demerits

TD

Mean

Is a good discriminator of
individual characteristics calculated
with small computational cost and a

small memory requirement, is
commonly used a feature in activity
recognition (AR) research [12,16,22]

Does not produce a good
result when isolated
from other measures.

Standard deviation
Derived through the use of mean to
reveal any deviation in AR sensor

data [6]

Frequency domain
absence hinders its

performance

Correlation

Help to determine the correlation
between one individual’s

characteristic feature and the other
to express [6].

Failure to produce the
FD along the

corresponding axis
affects the performance

of AR accuracy.

Root Mean Square

Quality of sensor’s data may dictate
its tendency to reveal the actual

location for individual in the
prediction of crowd disaster [6].

Could not work in
isolation from other

measures.

FD FFT_RMS Good tool for stationary signal
processing [6,18].

Weakness in analysing
non-stationary signals

from sensor data.

TDFD Time domain -frequency
domain

Produce an efficient performance for
individual’s representation in the

crowd [6,14].

The use of FFT_RMS as
the only FD may not

assume the performance
of other TD features.

1 Note: TD = Time domain feature; FD = Frequency domain feature; TDFD = Time domain–frequency domain
feature; FFT_RMS = Fast Fourier Transform of Root Mean Square.

Table 2 presents a synthesis of existing FEMs and their names in AR. It shows the features used
in a crowd condition, the application domain, and the researcher, and those that have not been used
in crowd conditions are also indicated. Table 2 shows that only conventional FEMs have been used
in previous crowd-related research with Mean, Std, along x, y, and z [16,18,22], and variance along
x, y, and z [14,18]. This could be responsible for the observed inaccuracy of 92% reported for CAM,
which has also been noted by [24] to be generally low. It can also be noted that some salient TDFD
features that are capable of accurate prediction were overlooked in the BCF, thus strengthening the
need for further studies.
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Table 2. Summary feature extraction methods (FEM) methods used and those that have not been used
in crowd-related studies.

Feature Extracted Methods in
Activity Recognition Application Domain Features That Have Been

Used in a Crowd Reference

DD: Discrete cosine transform (DCT)
48 coefficients DCT features extracted Daily activity N/A [25]

Variance (Var.) ax, ay, and az; number
is not specified Crowd behavior Var. along x, y, and z [26]

TD: Mean; std.; mad; max; min; sma;
interquartile range (Iqr); entropy;

arCoeff; cor.; maxfreq.; meanfreq.; FD:
Max; min; sma; interquartile (iqr);
skewness; kurtosis, energy band;

angle; TDFD: 561 features

Daily living activity Mean, Std, along x, y, and z [18]

TD: mean, std., correlation (corr.), rms
ax ay az. FD: FFT_rms ax ay az; TDFD:

15 features

Crowd abnormality
monitor (CAM)

Features in the baseline
study Known as BCF [6]

TD: all time domain features in
Table 1; FD: spectral coefficient; max.

frequency; entropy of coefficient;
dominating frequency; discrete

coefficient; empirical cumulative
distribution function (ECDF): with the
setting of parameter value based on
bin used for inverse computation;

number is not specified

Motion sensing in daily
life Mean, Std, along x, y, and z [27]

TD: mean, max, min, std., zero cross,
median, range, sum of square, rms

and var. TD: 30 features

Individual activity
contexts Mean, Std, along x, y, and z [11]

TD: Mean; std.; max.; min.; corr.; Iqr.;
DD: Dynamic time warping distance
discrete time wavelet (DTW). FD: FFT

coefficients as frequency domain
features; except the first FFT

coefficient. WD: wavelet energy
TDFD and WD: 89 features

Motion sensor for daily
activity Mean, Std, along x, y, and z [28]

TD: min, max, mean, STD, signal
magnitude area (SMA),

signal vector magnitude (SVM),
tilt angle,

FD: power spectral density (PSD),
signal entropy, special energy: 60

features

User’s daily detection of
abnormality Mean, Std, along x, y, and z [29]

Improved SBTFD features presented
in our previous work

Individual and crowd
condition prediction

15 features are newly
suggested as improved TD

for SBTD, and 24 features as
improved FD for SBFD

[4]

2.3. Related Works on Feature Reduction, Context-Aware Framework (CAF), and Activity Recognition (AR)

Feature reduction methods are important approaches that help avoid the cause of
dimensionality [30], that is, the number of feature spaces in a feature vector. It targets a reduction in the
number of previously used features on a mobile device in AR. High dimensionality on the accuracy of
classification performance has been an important domain of research in HAR [31,32]. Feature reduction
can facilitate the early detection of an emergency in an unforeseen circumstance [29]. Thus, the risk
associated with individual activity recognition (IAR) in a crowd condition can be minimized by the
reduction of FNR. The issue of high false alarm with FNR was not addressed in BCF. The solution
proposed in our previous work as Phase 2 was reported [4].

The review of AR recognition works on individuals and crowds explains the potential of
features dimensionality reduction for accurate and efficient crowd conditions; however, a feature
reduction-based feature selection method has never been applied for this purpose. The work of [33] on
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early recognition supports this objective; it predicts a one-shot learning-based pattern transition for
early detection recognition. A great benefit of the approach proposed by [34] utilized a smaller number
of features for the prediction of ovarian cancer survival, and achieved very limited computational
efforts. The use of a smart selection of a lesser number of relevant features compared with the number
of features used with FEM in BCF diminishes the computational effort greatly, and reduced the false
negative alarm. Moreover, an unclear definition of CDT has been noted by [7,9] as a major challenge
in BCF. An inappropriate threshold of high density used for individual behavior estimation by [6],
and a lack of feedback to victims resulting to a high false alarm in an emergency led to an unreliable
prediction of crowd conditions, such as for example crowd abnormality behavior. Chang et al. [35]
introduced a context-aware mobile platform for an intellectual disaster alerts system (IDAS); it focused
on how environmental changes can result in accidents and disasters. According to the authors, a quick
and accurate alert delivered to victims is essential in a disaster situation. However, their work focuses
on addressing disaster issues, rather than crowd monitoring for safety.

Context-aware computing, an application concept that can sense the physical environment and
reacts accordingly, was proposed by [36]. It is aimed at facilitating the quick and efficient development
of a framework that combines context-aware service and machine learning [36]. The study led to the
development of context-aware and pattern oriented machine-learning framework (CAPOMF). It focused
on how commuters can avoid potholes to save vehicle repair costs. In previous context-awareness
research, machine learning is rarely used [36–38] for the realization of context-aware framework.
The studies of [6,39] also emphasized that context-aware application and its services remain open
research issues. Prior to [6], no context-aware research with activity recognition have been applied or
proposed for crowd abnormality mitigation in the literature. The outstanding problems that constitute
a challenge in context-aware research regarding their affects on crowd disaster mitigation are itemized
as follows:

(1) Context acquisition, modeling, inference, and sensing.
(2) Determination of appropriate sensors and the nature of contexts to be acquired.
(3) Real-time management of sensors and context-based action generation.

As of June 2018, context-aware computing was worth US$120 billion [40]. Its research finds
application in many domains with only few in disaster management. The extant literature highlights
three methods used in context-aware framework: (i) scenario-based with a hypothetical example using
a develop application, (ii) comparative analysis using a side-by-side comparison of components [41],
and metric evaluation with accuracy, precision, recall, and f-score with an experiment on related
activities [35]. Table 3 presents related works and highlights gaps in previous research.
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Table 3. Related context-aware frameworks and activity recognition methods with the research gaps
for individual and crowd condition prediction.

Context-Aware
Framework/AR ARAC FSM CCP Features Used Why the Features Are

Not Enough

CAM-BCF [6,42] 92% based on
TDFD N/A A high false

negative rate

TD: mean x, y,
z, std. x, y, z;

cor. xy, yz, xz;
rms. x, y, z;

FD: FFT rms
along x, y,

z-axes as TDFD
features

Salient TD and FD
features with better

result commonly used in
literature were

overlooked

IDAS [36] N/A N/A N/A N/A N/A

Context
recognition [11]

55–98% based
on TD N/A N/A

TD: Mean,
STD.; Med.
Min., Max.,

Zero Crossing,
(ZC), Sum of

Squares (SOS),
rms, Range, Var

Attention paid to the
only TD without giving
consideration to FD that
compliments TD features

Feature analysis
[42]

86–93% based
on FSM

CFS, CHI,
MRMR N/A

75th Percentile
(PE): PE_y,
min-max:

mm_x, mm_y,
PE_x, mm_z,

PE_z

Negligence of FD
features in selected
features and 86.6%

reported for MRMR

Coupling HAR
[43]

86–91% based
on TDFD N/A N/A Not specified The detail was not given

3 Note: ARAC = Activity recognition accuracy, AR = Activity recognition, FSM = Feature selection method adopted
to reduce features and CCP = Crowd condition prediction. CFS = Correlation-based feature selection, CHI =
Chi-square feature selection and MRMR = Minimum redundancy–maximum relevance feature selection.

3. Materials and Methods

This section presents the methodology employed in this study. It provides a description of
the development of the context-aware activity recognition application used for data collection,
data validation outcome, adopted and modified algorithm implementation, and results in
analysis approaches.

We developed an Android application called Context Activity Data Collector (CADC) based on
Java programming as a client, and the crowd controller station (CCS) as a server to store the CADC
in real-time for offline data analysis. The CADC runs on an Android 3.0.2 version of a Samsung
Galaxy SM-G530H. Figure 1 shows the CADC data collection interface. An example of the sensor
signals collected at a Malaysian public institution between March and April (2015) is shown in Figure 1.
The eight (8) classes considered in the experiment conducted are selected from multiple possible
conditions of an individual in the considered scenario. The scenarios considered are: climb down
(V1), climb up (V2), fall (V3), jogging (V4), peak shake while standing (V5), standing (V6), still (V7),
and walking (V8).
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Figure 1. Sensor signals dataset collection interface used by volunteers during the experiment.

Several instances were captured for each scenario performed by volunteers (node S), yielding
22,350 class instances. In this case, S is referred to as the volunteers that make use of Figure 1 in the
experiment conducted. The class instances obtained from S during the experiment include V1: 1975, V2:
2410, V3: 3159, V4: 2952, V5: 2937, V6: 2757, V7:3230, and V8: 3470 for dataset D1. The validated results
of other sensor signals (captured as six additional classes, V12 to V18) for D1, which include a digital
compass, longitude, latitude, and timestamps used for individual behavior estimation, were reported
for dataset D1 based on IAR. Table 4 summarized the D1 dataset used for this research.

Table 4. Summary of sensor signals for the D1 raw dataset based on experiment conducted.

Attribute Dataset 1 (D1) [4] Class Activity/Sensors Name

Age 25–51 years V1 Climb down

Activity count 8 V2 Climb up

No of instances 22,350 V3 Fall

No of participants 20 V4 Jogging

Sensor type

Accelerometer x, y, and z
digital compass (DC),

longitude, latitude,
timestamp

V5 Peak shake while standing

Position placement Hand V6 Standing

No. of devices 20 smartphone V7 Still

Dataset gathering Crowd controller as a server
V8 Walking

V12 Latitude

V13 Longitude

V14 Speed

V15 Altitude

V16 Timestamp

V17 Digital compass

V18 Accuracy

3.1. Methodology for the Proposed Enhanced Approach

The methodology in this article focuses on Phase 4 of Figure 2, while phases 1–3 were activities
presented in the previous work [4,8]. They are important to achieve Phase 4 focused in this article as
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stated in the objective highlighted in Section 1, and the need for the reflection of these parts in Figure 2
for clear flow and understanding of this article.

Entropy 2019, 21, x FOR PEER REVIEW 9 of 26 

 

stated in the objective highlighted in Section 1, and the need for the reflection of these parts in Figure 
2 for clear flow and understanding of this article.  

AR validated dataset D1
Feature vector

Improved SBTFD features based on FEM 
[4]

Reduced SBTFD features using Minimum 
redundancy maximum relevance and information 
gain (RMR-IG) feature selection method [8], a sub 

component of individual behavior estimation (IBE) 

Phase 1: steps 1-4 activities Phase 2: steps 5 to 7 activities Phase 3 : step 8 activity

1.  Modified algorithm for region 
identification & grouping of nodes S1 

to S20 [34]

2. Flow velocity (Vsi) & Flow  direction (Dsi) 
computation for flow patterns of individual 

determination [45]

3. Implementation of modified pair-wise 
behavior estimation algorithm (PBEA) using 

equations 6, 8 & 9 

IF CDT conditions hold 
using equation (12)

 Compute CDD using 
CDT for all nodes S with 

equations (10-11)

No

YesDetermine inflow, outflow 
and crowd turbulence using 

CDD as individual count

4. Predict individual and 
crowd condition using phase 

3 for IBEeh caf 

5. EHCAF for individual 
and crowd condition 

prediction equation (3) 

Threshold

IARehcaf  :   Individual activity recognition enhanced for context-aware framework 

IBEeh caf  :   Individual behavior estimation enhanced for context-aware framework 

CCPFSM  :  Crowd condition 
prediction using reduced 

features with feature 
selection method newly 

suggested

Phase 4 : Focus approach in this paper

Phases 1-3: Previous work

Key 

Phase 4: focus in this paper

 

Figure 2. The process flow of the methodology used for the enhanced context-aware framework 
approach (EHCAF). 

A high accuracy and reduction of a negative false alarm are highly desirable and central to crowd 
condition prediction; however, the approach cannot be adopted without adequate changes to the 
algorithm using the same data collection with the activity recognition method as shown in Figure 1 
using Table 4. This was done by adopting the suitable threshold, which is called the crowd density 
threshold (CDT) (Figure 2) in Equation (4), while modifying the algorithms presented in BCF with a 
clear threshold definition of crowd density estimation to accurately detect individual per m2 in crowd 
scenarios experimented. The crowd density in this study is defined as >2 persons/m2. In order to 
achieve the stated objectives, the following tasks were carried out as summarized in Figure 2: 

Step 1: Design: experimental; data type: sensor-based real-time IAR; Sample: 20 volunteers; 
provided: 22350 instances for D1 dataset. 

Step 2: Procedure: development of CADC application (Figure 1) with algorithm implemented 
based on CDT using Java installed on volunteers’ phones; sensors (digital compass, longitude, 
latitude as Global Positioning System (GPS) data for location etc., as presented in Table 4.  

Step 3: Functioning of CADC: internet-enabled with hotspots; 50 to 100 m2 coverage. 
Step 4: Server setup: crowd controller station (CCS); volunteers (node S) launch the CADC app 

by pressing the start button; select activity scenario; perform each for 10 min while maintaining a 
range of 1 m2 to each other, which was done collectively until all activity is reached; CCS store the 
sensor signals’ collected data in text format; each volunteer stops the app as specified to end the data 
collection; duration was 5 h for each round of data collection. The guideline in the previous AR data 
set is employed [11,13,20]. The D1 collection became necessary because the sensors required were not 
available in the public domain [11,13,20] at the time of this study.  

Figure 2. The process flow of the methodology used for the enhanced context-aware framework
approach (EHCAF).

A high accuracy and reduction of a negative false alarm are highly desirable and central to crowd
condition prediction; however, the approach cannot be adopted without adequate changes to the
algorithm using the same data collection with the activity recognition method as shown in Figure 1
using Table 4. This was done by adopting the suitable threshold, which is called the crowd density
threshold (CDT) (Figure 2) in Equation (4), while modifying the algorithms presented in BCF with a
clear threshold definition of crowd density estimation to accurately detect individual per m2 in crowd
scenarios experimented. The crowd density in this study is defined as >2 persons/m2. In order to
achieve the stated objectives, the following tasks were carried out as summarized in Figure 2:

Step 1: Design: experimental; data type: sensor-based real-time IAR; Sample: 20 volunteers;
provided: 22350 instances for D1 dataset.

Step 2: Procedure: development of CADC application (Figure 1) with algorithm implemented
based on CDT using Java installed on volunteers’ phones; sensors (digital compass, longitude, latitude
as Global Positioning System (GPS) data for location etc., as presented in Table 4.

Step 3: Functioning of CADC: internet-enabled with hotspots; 50 to 100 m2 coverage.
Step 4: Server setup: crowd controller station (CCS); volunteers (node S) launch the CADC app

by pressing the start button; select activity scenario; perform each for 10 min while maintaining a
range of 1 m2 to each other, which was done collectively until all activity is reached; CCS store the
sensor signals’ collected data in text format; each volunteer stops the app as specified to end the data
collection; duration was 5 h for each round of data collection. The guideline in the previous AR data
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set is employed [11,13,20]. The D1 collection became necessary because the sensors required were not
available in the public domain [11,13,20] at the time of this study.

Step 5: Validation: The validation of raw sensor signals [44] was performed using an analysis of
variance (ANOVA). This helps for the significant test of the dataset used in this study.

Step 6: Data analysis: Missing data was handled by employing moving average; noise removal
from D1 was achieved using segmentation with 50% overlapping based on 256 sliding windows;
for detail, see [4].

Step 7: Improved SBTFD features with newly suggested 39 features based on FEM (total 54
features) yields 7.1% accuracy improvement; this was implemented in Python; and reported in [4].

Step 8: Feature reduction using a feature selection method newly introduced to this domain
produced seven (7) effective features; this again yields 99.1% accuracy, which is also an enhancement
in AR and crowd monitoring studies; details are provided in [8].

This section described the procedure for enhanced IBE. Following the AR in steps 7 and 8;
it is necessary to obtain other necessary features that can identify and estimate the behavior of an
individual [6]. It begins with the implementation of a modified algorithm for the identification and
grouping of individual participants (smartphone) as node S by the crowd controller station (CCS) using
GPS as sensor data [5]. This is followed by the implementation of adopted algorithms, which determines
abnormal movement behavior among individuals using the flow velocity Vsi estimation and flow
direction Dsi identification [44]. The Vsi and Dsi were computed using the sensor fusion method based
on Kalman filter as reported in [44].

The next stage picks the Vsi and Dsi, and combines them with the seven best (reduced) features
previously achieved in step 8 from each class of activity scenario e.g., V2; for detail, see [33]. Thereafter,
the combined Vsi, Dsi, and reduced features were used as input to modify the pairwise behavior
estimation algorithm (PBEA). The PBEA was implemented to identify and determine the behavior of
the individual in a crowd with a disparity value computed using the disparity matrix. The final stage
employs the IBE using the reduced features based on CDT to evaluate the individual crowd density
determination (CDD) per m2. The CDD help to appraise the inflow and outflow of moving individuals
to ascertain crowd turbulence. This was realized using the CCS, which triggers up a context-aware
alert to predict the abnormal behavior of an individual and crowd condition. It also determines the
participation of the individual in a crowd scenario based on disparity values to develop the proposed
approach, an enhanced context-aware framework (EHCAF), which is an improvement on the BCF.

The following sections present details of the steps in the research methodology after the IAR
using the reduced features in Phase 3 to achieve an IAR flow pattern. The flow pattern differentiates
the behavior of one node from the other nodes in the experiment [5]. In the following section, a brief
description of these sensors’ validation is presented.

3.2. D1 Validation of Sensor Signals apart from Accelerometer Data

The result of the accelerometer signals of D1 was earlier reported [4]. D1 validation was carried
out to validate the processed raw sensor signals for other sensors used for IBEehcaf in this article.
The validation task was carried out to ascertain the quality of the D1 dataset displayed in Figure 1.
We have applied the statistical validation technique (SVT) commonly used in the literature [3,22] based
on the parametric nature of the dataset. For the validation, two hypotheses were formulated and tested
using IBM SPSS 22.0. The hypotheses are as follows:

(1) Null hypothesis H0: µ1 = µ2 = µ3 . . . ,µ11; there is no significant difference between the means
of the variables V12, V13, . . . , V18 used for the analysis of D1 for prediction in this study.

(2) Alternative hypothesis HA: µ1 , µ2 , µ3 , . . . ; there is a significant difference in at least one
of the means of the variables V12, V13, . . . , V18 used for the analysis of D1 for prediction in this study.
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3.2.1. Reduced Features from Improved Statistical-Based Time-Frequency Domain (SBTFD)

This section discusses the reduced features from SBTFD employed for an enhanced context-aware
framework for individual activity recognition (IARehcaf) in (Phase 2 of Figure 2) based on improved
SBTFD features reported in our previous works [4]. In this article, we focus on the individual behavior
estimation enhancement (IBEehcaf) while utilizing the reduced features (Phase 3 of Figure 2) for crowd
condition prediction using the feature selection method (CCPFSM) to enhance the proposed approach
shown in Equation (5) in Phase 4 of Figure 2 using Equation (3). The EHCAF is discussed as follows:

EHCAF = IARehcaf + IBEehcaf + CCPFSM (3)

where EHCAF comprises the improved SBTFD and reduced features from the FSM in our previous
work [8]. IBEehcaf represents the newly reduced features achieved using the employed FSM combined
with Vsi and Dsi performed for IBE implementation with the modified and adopted algorithms (1) and
(2). This serves as input to the modified Algorithm (3) in Figure 2, and are employed in this article.
Note that the detail about improved SBTFD features and dimensionality reduction based on FSM
(phases 1–3) are out of the scope of this article.

CCPFSM denotes the prediction achieved by the reduced features and other parameters known as
flow velocity Vsi and flow direction Dsi in Equation (2) (Phase 4), which were used to perform a task for
the prediction of crowd condition in Equation (3). It employs an enhanced context-aware framework
through the use of context-sensing from node S and crowd density determination (CDD) in Phase 4 for
the inflow and outflow movement of individual behavior to evaluate the possible causes of abnormality
in a crowd using the proposed approach as a solution. This helps to realize the development of EHCAF
shown in Equation (3).

3.2.2. Modified Algorithm for Region Identification and Grouping of Nodes S

Crowd behavior monitoring was done with the use of sensor signals for identifying each participant
with a smartphone as node S, based on an individual followed up by a grouping of the nodes (S)
(see Algorithm 1 in Appendix A). It was conducted using the individual sensor analyses in Step 4
(Section 3.1) with context recognition performed on the activity recognition of an individual, in order to
estimate participants’ behavior. The mapping between the program sensors and activities considered
were utilized as input to algorithm 1 (Appendix A) implementation. In Algorithm 1, S is the participant
node used as input in Step 4 (Section 3.1).

The crowd formation distribution is divided into sets of sub-regions using the crowd controller
station (CCS). When a new participant node S is detected, the context-aware application notifies the
crowd controller station, which automatically adds the new node to the specific sub-region of the
present location in line 19 (Algorithm 1 in Appendix A). The region identification of participant is
actualized with the smartphone of the participant as a node S, line 1, with the GPS data in lines 2–3
with respect to time (line 4 of Algorithm 1 in Appendix A) using the data displayed in Figure 1.

The grouping of participants into the sub-region list SA1, SA2, and SAn is achieved using line
20 of Algorithm 1 in Appendix A. It takes care of the movement of the participant from one place to
another for the scenario used in the experiment. Node S was equipped with the context-aware mobile
application prototype during the experiment, whenever the distance moved by the participant is
greater than a threshold value in (line 18 of Algorithm 1 in Appendix A), as adopted in the work of [6].
The threshold value is about 20 m from the hotspot for effective monitoring via communication within
the coverage area. Once the node is outside the hotspot range, it is exempted. The algorithm also
determines the neighbouring nodes in a sub-area by estimating the distance between two participant
nodes and other nodes monitored by the CCS. Based on the work of [6], if the distance between nodes
is less than 10 m, the new participant node will be added to the same area using line 19 of Algorithm 1
in Appendix A. The distance of 10 m was selected for the hotspot to allow for ease of assessments
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in case of an emergency. The distance estimation is based on Vincenty’s formula and is adopted for
computing latitude and longitude coordinate points [5,44].

3.2.3. Flow Velocity Estimation and Flow Direction Identification Based on Activity Recognition

The implementation of this algorithm takes the contexts from sensor signals—specifically latitude,
longitude (GPS data), accelerometer x, accelerometer y, accelerometer z, and timestamp—as input
to Equation (3) of Figure 1. The input data were used to compute the flow velocity estimation and
also used to determine the flow direction of individual movement behavior. The output from the
implementation of the algorithm is flow Velocity (Vsi) and flow Direction (Dsi) [44]. The Vsi and Dsi are
important informative features used to obtain hidden context information from individual behaviors
in a crowd scenario that is considered to determine flow patterns of individual movement.

3.2.4. Implementation of Modified PBEA Algorithm

The disparity matrix is the difference between a node and any other nodes used in (Algorithm 2
of Appendix B). For example, u and v; si or sj. The diagonal elements of the disparity matrix are
usually defined as zero, which implies that zero is the measure of disparity between an element and
itself [44,45].

Given two R-dimensional xi = (x1
i , x2

i , . . . xR
i ) and x j = (x1

j , x2
j , . . . x

R
j ), the Euclidean distance

(EUD) d (i, j) as observed in [45] is expressed in Equation (4):

di, j

√
(x1

i − x1
j )

2
+ (x2

i − x2
j )

2
+ . . .+ (xR

i − xR
j )

2 (4)

where d i,j denotes the Euclidean distance in Equation (4).
The computation was performed to calculate the distance between nodes for the input data from

S1 to S20. This is to determine the disparity value for individual estimation in each region where
node S is located. The variables x1

i , x1
j correspond to the features and their instances in pairs; based

on SBTFD, a reduced feature set (fft_corxz, y_fft_mean, z_fft_mean, z_fft_min, y_fft_min, z_fft_std,
y_fft_std) is then combined with Vsi and Dsi contexts from the sensor signals of D1. These serve as
input to the PBEA. Euclidean distance (EUD) is commonly used in research across different domains.
It has been used to compute the distance between two points with reliable results; hence, the choice of
using it to generate distance from each participant to every other participant based on nodes [45,46].
In addition, the investigation revealed that EUD is suitable for the modified PBEA adopted from the
BCF implemented in this research.

The algorithm caters for n numbers of nodes, but the location used for an experiment does not
vary for all the activities performed. This was due to the aforementioned communication range stated
in (Algorithm 1 of Appendix A). Thereafter, the clustered results obtained were similar beyond three
sub-areas, since the location considered is uniform for the experiment. This was noticed from the GPS
data for longitude and latitude obtained in the experiment used with D1. It was observed that there is
a variation between nodes whose monitor’s device is represented by S for identification. The cluster of
nodes was performed using Equation (5):

EUD (di, j) =
∑n

i=1

∑
p ε Ki

dist(p, ki)
2 (5)

In Equation (5), EUD represents the Sum of the Square Error (SSE). SSE is determined by using
the node of the participant that is nearest to each pair of the participant node, which helps for S
identification in the monitoring group and subsequent ones in the group. The advantages of K-means
that were adopted and used in Algorithm 1 in Appendix A were discussed in [44,46]. Equation (6) was
applied to perform the IBEehcaf in Equation (3) (of Phase 4).
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For the IBEehcaf task, let δ be a matrix of pairwise between n attributes in Equation (6) [26]:

δi, j =


δ1,1 δ1,2 δ1,3 δ1,4 . . . δ1,n
δ2,1 δ2,2 δ2,3 δ2,4 . . . δ2,n

δ3,1 δ3,2 δ3,3 δ3,4 . . . δ3,n

δn,1 δn,2 δn,3 δn,4 . . . δn,n

 (6)

where δi, j represents the disparity between the aforementioned features i and j. Also, let f (δi, j) be a
monotonically increasing function that transforms differences into disparities using Equation (6).

The equation produces an R-dimensional matrix (where R ≤ n) configuration of points.
xi = (x1, x2, . . . , xi, . . . x j, . . . xn); likewise, xi = (x1

i , x2
i , . . . xR

i ) and x j = (x1
j , x2

j , . . . x
R
j ), for (1 ≤ i, j ≤

n). The EUD between any two nodes, S of xi and x j in this configuration, equals the disparities between
features i and j expressed using Equation (7):

di, j ≈ f (δi, j) (7)

The di, j is defined by Equation (6). The measure has been applied to find the pairwise
(Euclidean distance) between two cities with minimum possible distortion by [47], as reported
in [46]. In this case, we represent the n nodes of the matrix D (N, A) where u =N and v =A for B(s)

with the positive integers 1, 2, 3,... n. Then, a distance matrix, B(s+1), is set up with elements, and is
expressed using Equation (8) [46]:

d0(i, j) =


l(i, j) i f participant(node)(i, j) exist

di, j = 0 i f i = j
di, j > 0 i f i , j

(8)

The length, d(i, j), of the path from node i to node j is given by element D (u, v) of the final matrix
D(n) B(n), which makes it possible for the tracing back of each one of the node paths. An example of
disparity matrix computation can be computed using Equation (9) as employed for the participant
estimation algorithm noted in [5,24]:

D(u;vT) = g(Corr( f (Bsi, T), f (Bsi + 1, T))) (9)

where D is the disparity based on function f, and g is a variable that provides the mapping to a disparity
value f. The disparity value is computed based on the input data, specifically fft_corxz, y_fft_mean,
z_fft_mean, z_fft_min, y_fft_min, z_fft_std, y_fft_std, Vsi and Dsi. While f depicts correlation (Corr)
performed on a matrix containing the input data in pairs; Bsi is an individual participant node; u is the
number of nodes of the participant along the column of the matrix; v is nodes of the participant along
a row of the matrix, and T denotes time. The function f , Corr, and g depend on the specific crowd
that is considered. Typically, f is a pre-processing function. Corr computes a measure of differences
between the input data for every (i, j) pair of nodes to determine an individual in a crowd scenario.
Finally, g maps to a disparity value. The disparity value is defined to be zero if the two participants
are likely resulting from their participation in the same crowd. Conversely, the disparity tends to one
or more if the node s is not likely to be the result of participation in the same crowd. The outcome
generates a disparity matrix DT = [D((u;vT)]m x n

at time T. The reduced features set achieved and
other parameters derived as features previously reported in [33]—namely, Vsi and Dsi [44], are fed into
the PBEA, as shown in Equation (6) of (Phase 4) as input to generate the output for individual and
crowd condition prediction illustrated in the next section.

3.2.5. Crowd Density Threshold Condition

This study adopted the conditions that trigger abnormality to set a threshold for crowd density
determination within the coverage area as established in previous studies [48] and employed in other



Entropy 2019, 21, 487 14 of 27

studies [3,4,6,49]. The threshold adopted in this study was first suggested by [6], who defined a crowd
as made up of three or more persons. This study employs two persons per m2 for the experiment based
on [6]. However, the monitoring of participants occurs within the coverage areas and range of distance
for the hotspot, and can be assessed using the device of a participant smartphone, which is referred to as
node S. It is generally acknowledged that five persons/m2 is an extremely high density, four persons/m2

is high density, three persons/m2 is medium density, two persons/m2 is low density, while one or
no persons/m2 is considered very low density [7]. In addition, six or more persons/m2 is considered
extremely dangerous, with the potential to cause abnormality [7]. Crowd density determination (CDD)
was employed to compute the density of the monitored crowd of moving nodes based on a crowd
density threshold (CDT) condition shown in Equations (10)–(12) of (Phase 4). Node S is recognized by
the crowd controller station (CCS) based on node count using Equations (10) and (11) [50].

Density = LN < area in m2
∗ 5 (10)

CDD = 1 + 4 ∗
[

Density− λ
ψ− λ

]
(11)

where LN represents the number of participants monitored, λ denotes the minimum density level,
and ψ is the maximum density observed in the experiment at a particular time. The maximum capacity
has also been proposed to be calculated using the number of participants < area in m2

× 10; where 10 is
regarded as extreme crowd density, as noted in the work of [50]. More than two participants per m2

exceed the threshold. In order to explain the disparity matrix (a low value and high value) employed
by [5], which is used to explain the type of crowd observed in the analyses of the result for this article,
Equation (12) shows the crowd density threshold condition (CDT) used for the CDD evaluation.

1. I f CDT f or di, j per sqm2
≤ 2 then

low crowd density occur
2. else I f CDT f or di, j per sqm2 = 3 then

medium crowd density occur
3. else I f CDT f or di, j per sqm2 = 4 then

high crowd density occur
4. else

extremely high crowd density occur


(12)

4. Experimental Results

This section presents results based on the highlighted objectives as follows: the raw sensor
data validation, and the descriptive analysis for the validation summarized for all classes N: 22,350,
which consists of V1 to V8. V12 provided a mean of 4.735, the standard deviation of 2.519, and a
standard error of 0.2216. V13 provided a mean of 47.762, the standard deviation of 47.501, and a
standard error of 0.4179. V15 produced a mean of 21.629, the standard deviation of 82.162, and a
standard error of 0.7228. Meanwhile, V18 provided a mean of 48.891, the standard deviation of 106.286,
and a standard error of 2.255. Inferential statistics for the ANOVA test conducted at p = 0.05 shows V12,
V13, V15, and V18 having F-values of 46644.20, 4653.71, 196.41, and 967.01, respectively. The p-value
= 0.000 is statistically significant. Hence, we reject H0, and accept HA, and conclude that there is
a significant difference in at least one of the means of the variables V12, V13, . . . , V18 used for the
analysis of D1. This conclusion implies that the D1 dataset is valid, consistent, and adequate for the
analysis conducted in this study.

4.1. Result on the Classification of Raw Dataset D1

The results of classification after validation is as follows. In Table 5, out of the 22,350 instances
(last row); about 10,692 (bold in diagonal) of the confusion matrix were correctly predicted, while the



Entropy 2019, 21, 487 15 of 27

remaining 11,658 instances were wrongly predicted. In Figure 3, the summary of classification results
for baseline, a raw dataset D1, an improved SBTFD with 54 features, and seven reduced SBTFD features
newly introduced to extend the BCF to produce an enhanced approach (EHCAF) is presented in
Equation (3). The best ARAC, FNR, and RMSE are achieved with EHCAF-7 features having 99.1%,
2.8%, and 7.9%, respectively. This is against 92.0%, 31.3%, and 21.6%, respectively.

Table 5. Confusion matrix from the classification result of individual activity recognition (IAR) using
the sensor signals of the D1 raw dataset.

Class Label
Predicted Class Actual Class

V1 V2 V3 V4 V5 V6 V7 V8 TP + FN

Climb down: V1 591 425 228 147 106 137 41 300 1975
Climb up: V2 405 705 292 178 161 186 57 426 2410

Fall: V3 188 273 778 325 858 254 99 384 3159
Jogging: V4 147 163 269 1698 190 131 42 312 2952

Peak shake_wst: V5 113 161 854 233 767 101 24 144 2397
Standing: V6 106 142 210 110 70 1813 85 221 2757

Still: V7 40 67 112 49 47 110 2733 72 3230
Walking: V8 273 380 418 312 159 255 66 1607 3470

Total 22350

Figure 3. Comparison of BCF—baseline classification results, raw dataset—D1, improved
statistical-based time-frequency domain (SBTFD), and reduced features for the enhanced approach.

4.2. Results of Region Identification and Grouping of Nodes Using Clusters

Figure 4 provided a higher number of clusters, which shows that more participant nodes gathered
in subarea SA1 than subareas SA2 and SA3 in the experiment. Thus, SA1 is more prone to risk than
SA2 and SA3.



Entropy 2019, 21, 487 16 of 27

Entropy 2019, 21, x FOR PEER REVIEW 16 of 26 

 

 
Figure 4. Results of clusters for identifying and grouping participant into subareas with GPS data. 

4.3. Results on the Algorithm Implemented for Flow Velocity and Flow Direction 

For details of the algorithm implemented for flow velocity and flow direction, please refer to 
[44]. This article focuses on the individual behavior estimation method combined with reduced 
features, which were not considered in the BCF.  

4.4. Modified PBEA Using Reduced Features and Enhanced Individual Behavior Estimation 

The output serves as input to the modified PBEA as shown in Figure 2 to produce an enhanced 
context-aware framework for individual and crowd conditions. The analysis is based on pairs of the 
node; for example, 1 and 2, 1 and 3, 1 and 4... up to 20 for individual behavior estimations. A disparity 
matrix was computed for the estimation of an individual based on the 20 nodes used as input for S1 
to S20 for different nodes in the experiment. The experimental result revealed the interaction of 
participating (nodes) and their behavioral patterns in a crowd scenario based on the CDT employed 
and crowd density estimate. It shows two, three, three, and 12 nodes of a different number of 
individuals per m2 (Appendix C). 

4.4.1. Crowd Condition Prediction Using Individual Behaviour Estimation 

For crowd estimation, it is necessary to estimate individual activity recognition and behavior 
initially. This had been addressed in our earlier works [4,8]. The crowd condition prediction using 
seven reduced features with Vsi and Dsi is newly introduced. This achieved higher accuracy by 99.1% 
against 92.0%. Also, a marginal reduction of the false negative rate by 28.5% from 2.8% against 31.3%, 
which is an improvement over the BCF [5], was obtained to achieved EHCAF see Figure 7 of 
Appendix D. The individual behavior estimation with suggested CDT and crowd density 
determination computation for crowd count serve as a means to extend the BCF [5]. This could help 
identify early danger by using context sensing through a smartphone with a context-awareness alert, 
thus minimizing the level of abnormality behavior in a crowd-prone area.  

4.4.2. Implication of Low False Negative Alarm on the Enhanced Approach Based on PBEA 
Experiment 

Figure 5 shows that the experimental results based on the proposed approach using reduced 
features and enhanced IBE in this article for crowd condition prediction has a low false negative rate 
(FNR), achieving an FNR of 2.8% and an ARAC of 99.1%, compared with an FNR of 31.3% based on 

Figure 4. Results of clusters for identifying and grouping participant into subareas with GPS data.

4.3. Results on the Algorithm Implemented for Flow Velocity and Flow Direction

For details of the algorithm implemented for flow velocity and flow direction, please refer to [44].
This article focuses on the individual behavior estimation method combined with reduced features,
which were not considered in the BCF.

4.4. Modified PBEA Using Reduced Features and Enhanced Individual Behavior Estimation

The output serves as input to the modified PBEA as shown in Figure 2 to produce an enhanced
context-aware framework for individual and crowd conditions. The analysis is based on pairs of the
node; for example, 1 and 2, 1 and 3, 1 and 4... up to 20 for individual behavior estimations. A disparity
matrix was computed for the estimation of an individual based on the 20 nodes used as input for
S1 to S20 for different nodes in the experiment. The experimental result revealed the interaction of
participating (nodes) and their behavioral patterns in a crowd scenario based on the CDT employed and
crowd density estimate. It shows two, three, three, and 12 nodes of a different number of individuals
per m2 (Appendix C).

4.4.1. Crowd Condition Prediction Using Individual Behaviour Estimation

For crowd estimation, it is necessary to estimate individual activity recognition and behavior
initially. This had been addressed in our earlier works [4,8]. The crowd condition prediction using
seven reduced features with Vsi and Dsi is newly introduced. This achieved higher accuracy by
99.1% against 92.0%. Also, a marginal reduction of the false negative rate by 28.5% from 2.8% against
31.3%, which is an improvement over the BCF [5], was obtained to achieved EHCAF see Figure A2 of
Appendix D. The individual behavior estimation with suggested CDT and crowd density determination
computation for crowd count serve as a means to extend the BCF [5]. This could help identify early
danger by using context sensing through a smartphone with a context-awareness alert, thus minimizing
the level of abnormality behavior in a crowd-prone area.
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4.4.2. Implication of Low False Negative Alarm on the Enhanced Approach Based on
PBEA Experiment

Figure 5 shows that the experimental results based on the proposed approach using reduced
features and enhanced IBE in this article for crowd condition prediction has a low false negative rate
(FNR), achieving an FNR of 2.8% and an ARAC of 99.1%, compared with an FNR of 31.3% based on an
ARAC of 92% in the baseline. The results suggest that the higher the false negative rate (FNR) of AR,
the higher the number of participants that may be at risk. Figure 5 also shows the comparative risk
situation for EHCAF in blue color and BCF in red color, showing one (1) participant (node) in 20 and
28 participants in 1000 for the EHCAF, and six in 20 and 313 participants for 1000 in the BCF. The value
was computed using a FNR of 2.8/100 * Number of the participants (NOPs) based on a crowd of people
considered which will be varied in a real-life scenario when the proposed is applied.
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Figure 5. Effects of the false negative rate on the proposed approach when applying to human behavior
monitoring in real life in a crowd condition.

This section presents the details of benchmarking with related works in the literature [5,51,52].
To confirm that the achieved higher results for the proposed approach is significantly better on the
evaluation measurements used, Statistical t-tests were carried out using SPSS version 22.0 on dataset D1
and the BCF. The results of the seven reduced features based on FSM from method A, with p-values of
0.003 for the improved SBTFD and 0.021 against BCF, indicates p < 0.05, implying that the performance
of the proposed approach is statistically significant at an 0.05 alpha level.

This supports the objective presented in this article. Based on the analysis of results, the enhanced
context-aware framework (EHCAF) depicted in Figure A2 (Appendix D) is an improvement on the
basic context-aware framework (BCF) benchmark, as shown in Table 6. However, Table 6 shows the
components for EHCAF; likewise, the justification for improved parameters to establish the validity of
our findings in the entire study.
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Table 6. Comparison between BCF [6] and proposed approach (EHCAF).

Components EHCAF Justification
IARehcaf

AR dataset Validation of D1 performed with ANOVA is
significant

Explain the suitability of the D1 in line with
the literature. Quality of data is very

important for crowd monitoring and accurate
prediction

Accuracy 99.1%, 98.0%, and 99.0% were achieved An improvement over BCF with enhanced
accuracy performance is achieved

Feature selection method (FSM)

Minimum Redundancy Maximum Relevance
with Information Gain (MRMR-IG) with
SBTFD provided seven reduced features

(Corr_xz-fft, y_fft_mean, z_fft_mean,
z_fft_min, y_fft_min, z_fft_std, and y_fft_std)

Reduces the dimensionality of features space
on the monitoring devices.

Lower computational task. Facilitates early
recognition and utilizes less time for

classification

Classifier J48, Random forest (RF) Compatible with an Android device and
widely used in AR

Accuracy & FNR 99.1%; 2.8% Improvement of 7.1% accuracy and 28.5%
FNR over BCF

Individual Behavior Estimation IBEehcaf
Provide accurate prediction to enhanced the

safety of human lives

Region identification
Modified algorithm using k-means to

implement Algorithms 1 and 2 with D1 to
identify the region, cluster nodes S, and group

into sub-areas

Potential to reveal susceptible clusters nodes
in sub-areas that are prone to danger.

Ascertain threshold with the specify coverage
of nodesGrouping of node S into Sub-area

Flow velocity and flow direction Adopted and implemented using D1
Serve as informative features to extract

individual context behavior not possible for
IAR in phases 1 to 3

IBE
Modified PBEA using flow velocity (Vsi),
flow direction (Dsi), and seven reduced

features for IBE

Estimation of nodes per m2 and analysis
within coverage areas experimented with

volunteers

Threshold Threshold > two per m2

An efficient method should measure
accurately the number of volunteers (node)

within per m2 to prevent abnormality
occurrence in a crowd.

Inflow, outflow & crowd
turbulence

Compute and evaluated using CDD based on
individual count

Potential to identify person prone to danger
early using context-awareness alert

Crowd condition Crowd abnormality behavior To enhanced the safety of human lives in a
crowded area

Prediction Crowd condition prediction using modified
PBEA with reduced features (CCPFSM)

Enhanced approach with improved accuracy
and FNR performance

Validation

Inferential statistics and paired sample
statistics test was used to validate all the three

methods employed for the enhanced
approach

Improved SBTFD with 0.002; reduced features
with 0.003 and 0.021 of p < 0.05 are

statistically significant

5. Discussion of Results

The result achieved an improvement of 7.1% and a false negative rate of 28.5% with an error
reduction of 13.7% in terms of root mean square errors. This suggests safety to human lives in a
crowd-prone situation when applying to real-life applications against the BCF by [5] as analysed in
Table 7. In Figure 4, the susceptible area where crowd abnormality is likely to occur suggests sub-area
list SA1; this was obvious from the plot as more clustered nodes were observed in the area, which is an
indication of more participants interacting together at a very close range to one another, as shown in
Figure A1 (of Appendix C).

Based on the flow velocity Vsi and flow direction Dsi from accelerometer sensor signals analyzed,
the V3 fall scenario revealed that only 778 were correctly recognized as TP, out of the 3159 expected
among the instances of 22,350. Meanwhile, the rest consists of FP: 2383, FN: 2831, and TN: 16808 in
Table 5. In Table 5, the unrecognized individual activity from 2381 which accounted for the abnormal
behavior of individuals could be responsible for disaster manifestation. In a nutshell, the incorrect
recognition demands effective features such as those suggested with the statistical-based time-domain
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in [10–16] and statistical-based frequency domain in [27,52], which informed the solution adopted in
our previous work [4,33].

Table 7. Comparison of the proposed approach (EHCAF), activity recognition, and basic context-aware
framework (BCF).

Context-Aware
Frameworks SCI ARAC FEM FSM CCP RMSE

BCF-baseline [5] 3 92.0% TDFD-15 N/A High FNR
(31.3%) 21.6%

[11] 3 55% to 98.0% TD-30 N/A N/A N/A

[40] N/A N/A TDFD
Wavelet MRMR 86.6% High FNR

(56.5%) 31.0%

Proposed approach
(EHCAF) 3 99.1% Improved

SBTFD-54

7 reduced features
using MRMR-IG

(method A)-99.1%
Low FNR (2.8%) 7.9%

Note: SCI: Context-aware issues. ARAC: Activity recognition accuracy. FEM: Feature extraction method. FSM:
Reduced features achieved using Feature Selection Method. CCP: Crowd Condition Prediction. RMSE: Root mean
square error. N/A: Not applicable.

Figure A1 (Appendix C) showed four distinct groups with the highest and lowest number of
participants with 12, three, three, and two nodes, respectively. It shows the interactions and range at
which those nodes interconnected for the scenario used as an example. Another plot from the data using
a different set of 20 nodes to compute a different set of disparity values based on the disparity matrix
with implemented algorithm three gave a similar result. The 12 nodes suggested a dangerous situation
in terms of crowd scenario according to [6,7]. This implies a high inflow and outflow, which could
bring about high crowd turbulence, and thus requires an immediate control if it happens in a crowded
situation. All three nodes in Figure A1 (Appendix C) signify a medium crowd density, and the two
nodes indicated a very low crowd density, which is basically known as a normal situation. Therefore, it
is found to be within the threshold suggested using Equation (11). Based on this, the pattern of 12 nodes
using an undirected graph in real life may result in crowd abnormality occurrence. In such cases of the
12 nodes with early recognition and sensitization using the proposed context-aware framework, such
crowd density can easily be controlled before it reaches a critical state. Most importantly, for example,
in Appendix D, with an FNR of 2.8% for every 20 and 1000 participants (nodes), which were assumed
to be monitored one node and 28 nodes, respectively, will be at risk using the proposed solution, versus
six and 313 nodes respectively in the basic context-aware framework (BCF) [5]. Experimental results
support activity recognition studies in the literature for both cross-validation and split [11,39]. It also
identifies that RF and J48 are the best classifiers suitable for the enhanced context-aware framework
(EHCAF) Figure A2 Appendix D for individual and crowd condition prediction as compared to the
other classifiers investigated. In view of our findings, the limitation of this work includes an inability to
develop a context-aware system to effectively implement the reduced features that are newly suggested
in this research. Future work could investigate and integrate the use of this methodology to the
realization of safety for human lives through viable application in real life. Also, there was an inability
to handle the technicality on the part of the monitoring device functionality to identify none of the
functional sensors that could hinder the smooth data acquisition of individual activity recognition
for prediction.

6. Conclusions

This study has described the sensor signals of activity recognition that are adequate for the
prediction of individual and crowd conditions. The entire approach demonstrated in this article fulfills
the aim, which focused on complementing other research in human activity recognition and pervasive
computing toward the mitigation of crowd abnormality in the 21st century. In this article, an enhanced
context-aware framework (EHCAF) was developed. The potential of reduced features with the feature
selection method based on the improved feature extraction method using SBTFD was demonstrated.



Entropy 2019, 21, 487 20 of 27

The relevant parameters were derived and applied to implement the modified algorithm for grouping
participants using smartphones as nodes. Based on findings, an enhanced approach for individual and
crowd condition prediction is summarized as follows: the utilization of reduced features and enhanced
individual behavior estimation (IBEenhcaf) with high accuracy and low FNR performance is achieved;
a clear definition of crowd density formulation for crowd condition prediction in a crowd scenario is
presented. Above all, from the previous study, the FNR is 31.3%, while in this study, it is 2.8%. Hence,
an improvement of 28.5% is achieved based on the experiment. However, the limitations and gaps
left by previous studies have been equally addressed. The experimental results of this article have
shown significant improvement from the previous studies done by [5,11,24,39]. The methods applied
to achieve the proposed enhanced approach showcased in this article support the objective of the
article. In the future, the approach promises a dynamic solution that intends to explore the collection of
the ground truth dataset for the purpose of mitigating disasters among individuals gathering in places
such as Mecca, medina during the pilgrimage in Saudi Arabia by integrating cloud-based technology.
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Appendix A

Algorithm A1. Modified algorithm for region identification and grouping of participants based on clusters
using K-means with node S

1. Set S: node for participant’s smartphone
2. Set Lat: Latitude
3. Set Long: Longitude
4. Set T: Time
5. Set SA: Sub-arealist = [SA1, SA2, SA3, . . . , SAn]
6. Set Dist: Distance
7. K: Clusters of nodes into sub-areas
8. TWindow: Time T, set for the location of nodes a threshold
9. Start
10. Input S: Output (Lat, Long, Time)
11. Input Sub-area list [SA1, SA2, SA3, . . . , SAn, Lat, long, T]
12. Output S clusters in Sub-areas, SAn

13. While S is ready do
14. For each S for participant in Sub-Arealist do
15. Set locationUpdateWindow
16. Set minT i.e., for location manager minimum power consumption with minT
Milliseconds between location update to reserve power
17. Set minDist: as location transmission in case device moves using minDistance
meters
18. TDifference = location.getT( )- currentbestlocation.getT( )
If TDifference > TWindow then participant (node) have moved and transmit
the new location into a Crowd Controller Station (CCS) based on timestamp
change
19. If (Lat, Long) in location context with Sub-arealist SAn are the same,
clusters set K using Dist between the nodes S
20. Group S into SA1, SA2, SA3, . . . , SAn clusters
21. Crowdcount = S + 1
22. End If
23. End If
24. End For
25. End While
26. End



Entropy 2019, 21, 487 22 of 27

Appendix B

Algorithm A2: Enhanced approach for individual and crowd condition prediction proposed to extend BCF

1. IARehcaf Module
2. Set S: as node for a participant using a smartphone
3. Set CCS: crowd controller station: stakeholder as STHD
4. Set IAR: Individual activity recognition
5. Set SBTFD: Improved feature extraction method
6. Set Vsi and Dsi: Flow velocity and flow direction
7. Set PBE: Pairwise behavior estimation
8. Set CCP: crowd condition prediction = 0 for all nodes using S
9. Set CCP as threshold using equation (11)
10. Input IAR sensor signals dataset D1 from CCS
11. Execute IAR for S using improved SBTFD
12. Execute dimensionality reduction using reduced features based on FSM
13. IBEehcaf Module
14. Cluster node S using set K based on Algorithm 1
15. Compute Vsi and Dsi for each S based on Section 3.2.3
16. Execute PBEA using lines 12 and 15 for each class based on Figure 4
17. CCP Module
18. Compute CDD using equations 9 and 10
19. If the threshold satisfies condition 1, then
20. Terminate the PBE testing
21. Else
22. If the threshold satisfies condition 2, then
23. Terminate the PBE testing
24. Else
25. If the threshold satisfies condition 3, then
26. Evaluate CDD inflow, outflow and crowd turbulence
27. Else
28. If the threshold satisfies condition 4, then
29. Evaluate line 26 and set CCP = 1
30. (Send context-aware alert to S and STHD for safety measure)
31. Output context-aware alert for CCP based on line 29 using EHCAF
32. End if
33. Else
34. Execute line 14 to 31
35. End if
36. End if
37. End if
38. End
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for the recognition of abnormality of individual behavior per m2. 
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