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Abstract: This paper proposes an effective deep learning framework for Short-Term Load Forecasting
(STLF) of multivariate time series. The proposed model consists of a hybrid Convolutional neural
network-Bidirectional Long Short-Term Memory (CBiLSTM) based on the Evolution Strategy (ES) method
and the Savitzky–Golay (SG) filter (SG-CBiLSTM). The adopted methodology incorporates the virtue
of different prepossessing blocks to enhance the performance of the CBiLSTM model. In particular,
a data-augmentation strategy is employed to synthetically improve the feature representation of
the CBiLSTM model. The augmented data is forwarded to the Partial Least Square (PLS) method to
select the most informative features above the predefined threshold. Next, the SG algorithm is computed
for smoothing the load to enhance the learning capabilities of the underlying system. The structure
of the SG-CBiLSTM for the ISO New England dataset is optimized using the ES technique. Finally,
the CBiLSTM model generates output forecasts. The proposed approach demonstrates a remarkable
improvement in the performance of the original CBiLSTM model. Furthermore, the experimental
results strongly confirm the high effectiveness of the proposed SG-CBiLSTM model compared to
the state-of-the-art techniques.

Keywords: Bidirectional Long Short-Term Memory (BiLSTM); Convolutional Neural Network (CNN);
evolution strategy; Partial Least Square (PLS) method; Savitzky–Golay; Short-Term Load Forecasting (STLF)

1. Introduction

For power systems, grid stability is becoming very sensible to the bulk integration of renewable energy
sources due to the irregularity and seasonality of numerous external factors. These factors fall into two
major aspects: (i) Meteorological, such as temperature, irradiation, and wind speed, and (ii) social, such as
working days, lifestyles, and number of consumers [1]. Thus, grid sustainability is threatened by the high
fluctuations in the load profiles. These fluctuations cause financial penalties and serious technical issues
related to the electrical grid. Load forecasting (LF) is a central solution to effectively cope with the dynamic
operational environment. The LF is mainly classified into three categories based on the time horizon:
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long-term, medium-term, and short-term. The Long-Term Load Forecasting (LTLF) ranges from months
until years ahead. The LTLF is used for project planning and long-term capital investment return tasks.
While the medium-term load forecasting results, ranging from few days until weeks ahead, are employed
for asset maintenance schedule, power interchange with other utilities, and security of the grid. Finally,
the Short-Term Load Forecasting (STLF) is valid for minutes until days ahead. STLF achieves higher unit
commitment, sustainable operations, and safe economic dispatch [2].

STLF is vitally beneficial for the optimization of the operational generation capacity between
the generation units and demand-side units. Furthermore, STLF plays an extremely important role
in enabling the bulk penetration of grid-connected wind and solar energy in a reliable manner. The energy
balance between the utility grid and load demand accentuates the need for STLF techniques to
comprehensively manage electrical asset utilization and operating efficiency. However, precise STLF
persists a fairly challenging problem due to the greater complexity of underlying load patterns and
the high volatility of the meteorological parameters.

Many techniques have been employed to improve the forecasting accuracy of the STLF [3–5].
Most efforts in the area of LF have been focused on the application of Machine learning (ML) models due to
their mature development, large popularity, and ease of implementation [6]. Nevertheless, ML techniques
in many case studies were unable to satisfactory meet the actual load demand in terms of prediction
accuracy [7]. Moreover, manpower and human expertise are still required to tune the hyperparameters such
as learning rate and number of iterations. Since the load patterns have greater complexity, the traditional
ML-based STLF models lack accuracy and robustness due to the narrow variations of the load patterns [8].
Alternatively, Deep Learning (DL) presents cutting-edge technology to model complex and nonlinear
systems with higher generalization capabilities and better reliability with the increase in depth [8].
Some recent advances of DL methods could be found in [9–13]. Nevertheless, DL techniques remain less
explored compared to the large deployment of ML techniques. This is due to the fact that DL requires
a high understanding of the model construction and deployment [2]. Many researchers paid attention
to DL deployment with the progress of hardware and software resources. DL techniques, especially
Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) achieve accurate and
defensible forecasts than conventional forecasting-based modeling [14]. Authors in [15] used LSTM based
ensemble learning. The proposed model is employed for multi-step industrial power demand forecasting.
In [16], a multi-scale CNN with time-cognition is developed for STLF. A state-of-the-art time coding to
emphasize the uniqueness of the moment in one period is implemented [15]. This gives more information
about the samples periodicity [15]. To improve cognition for time series data, the authors in [17] coupled
LSTM with Singular Spectral analysis and variational mode decomposition. However, most of CNN and
LSTM deployment is applied to classification problems such as natural language recognition and image
classification. The applications of LSTM and CNN networks on regression tasks are relatively limited
according to the recently published research papers.

In [18], the authors proposed a deep CNN method based on modified Residual Networks (ResNet) to
perform the STLF. The proposed model implements the knowledge expertise based on Modified ResNet
model to cope with the nonlinear variation of the load demand. However, the computational burden
causes a low and heavy training process that remains to over 8 h. Further, the proposed Modified ResNet
does not have a higher generalization capability such as the original ResNet [18]. The authors in [19]
implemented LSTM model to forecast the load of individual residential households. The proposed method
in [19] presents one of the most efficient architectures in the realm of sequential learning. The forecasting
framework is coupled with Density-Based Spatial Clustering of Application with Noise (BSCAN) clustering
algorithm for the consistency analysis of daily power profile. The proposed LSTM model provided accurate
results compared to the back-propagation neural network and empirical Mean Absolute Percentage Error
(MAPE) minimization [19]. However, even with a deep architecture, the proposed framework-based LSTM
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was found very sensible to the inconsistency of residents’ lifestyles which significantly diminishes its
extrapolation ability [19].

Authors in [14] introduce a hybrid CNN-LSTM model for residential energy consumption forecasting.
While the proposed model outperforms several benchmarks, the visualization graphs and the score
metrics clearly show that the experimental results are not satisfactory with a MAPE = 34.84% due to
the irregular trend of power consumption data. To the authors’ best knowledge, the research works focus
to date on the development of the forecasting engine rather than the deep investigation of the feature
representations related to load data itself. The DL architectures can automatically carry out the data
processing. However, there are very few available research works oriented towards the hybridization of DL
models along with different features engineering techniques to achieve higher prediction accuracy [20,21].
Therefore, this paper aims to tackle the non-linearity and volatility of STLF by coupling data augmentation,
variable importance analysis, and feature smoothing alongside with hybrid CBiLSTM model with the aim
to provide a highly reliable hourly STLF system. The major contributions of this paper are the following:

• A novel forecasting framework is comprehensively presented for STLF. The proposed SG-CBiLSTM
model is recommended for highly nonlinear time series, whose patterns are difficult to capture by
sample models.

• A novel method for STLF is introduced and verified based on real-world dataset and simulation
results. Regardless the numerous benefits of STLF, the actual forecasting methods remain less effective
yielding non-negligible forecast errors due to the non-linearity of the load patterns. The proposed
methodology greatly enhances the overall accuracy of the prediction engine for the STLF application.

• The performance of the hybrid model is investigated using point forecast assessment, ten-fold
cross-validation, score metrics, reference DL models, and simulation graphs.

The structure of this paper is organized as follows: Section 2 introduces the existing state-of-the-art
techniques. Section 3 presents the preliminaries relative to the current study and describes the proposed
model. Section 4 evaluates the feasibility of the model with the numerical analysis. Moreover,
the comparison of the proposed method with some relevant ML techniques considered as benchmarks for
this study is conducted in Section 4. Section 5 concludes the study and ends the paper.

2. Related Works

The need for very precise load forecasts requires the use of well-defined techniques in the feature
engineering procedure. In this research study, the proposed techniques are divided into three folds: data
smoothing, features selection, and Data Augmentation (DA). A brief introduction of these techniques is
given as follows:

2.1. Data Augmentation (DA)

The DA technique is employed to reduce the underfitting problem of DL architectures by describing
the data in a meaningful way [19]. DA improves the size and quality of the load information.
This improvement lies in generating more information from the data representation to give a better
insight about the load profile for a specific forecasting horizon. However, the application of DA is not
very common on time series contrary to its vast applicability to image recognition and natural language
processing. For instance, the authors in [22] derive from the datetime data type additional information
to the celebration days and holidays such as Christmas Day, Thanksgiving Day, and Independence Day.
Authors in [23] proposed an augmented CNN method to provide better learning potential covering
unexplored input space for the CNN training. The key idea of the proposed DA procedure consists of
concatenating heterogeneous residual load data generated from the electrical load of a single household.
A technical paper in [24] provides a complete survey on the latest taxonomy of time series DL technique.
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In our work, the hourly temperature is used as indicator feature for the load state, the proposed DA
technique consists of two stages: firstly apply the time decomposition to reveal the behavior of consumers
and then lagged load generation to follow the chains of load variation in time.

2.2. Feature Importance and Dimensionality Reduction

Feature importance is highly required to identify the most relevant features of the data representation.
Feature dimension optimization is essential to improve the forecasting accuracy comprehensibility,
and avoid overfitting problems. For a high dimensional data analysis, The removal of irrelevant
and repetitive feature labels is the simplest technique to perform Dimensionality Reduction (DR).
In [23], the authors studied the effect of DR on the load demand. Their study consists of generating
67 vectors regarded as possible potential inputs of the forecasting system. Next, they demonstrated
that DR-based Principal Components Analysis (PCA) and Canonical Variate Analysis (CVA) succeed to
enhance the accuracy of the forecasting results with the performance superiority of the PCA method.
PCA is a nonparametric classical method frequently used to extract a smaller representative data set
from high-dimensional data while conserving its spatial characteristics. The mechanism of PCA lies
in using orthogonal linear transformation to transfer a dataset to another coordinate system, In the new
coordination, the first parameter has the greatest variance followed by the remaining coordinates,
respectively. The number of coordinates is fixed based on the data variability.

However, Feed Foreword Neural Network (FFNN) is not very effective for high dimensional space.
Thus, the FFNN-based PCA produces non-negligible forecast errors. On the other hand, PCA presents
a high sensitivity to the data distribution in the search space. Another study in [25] employed Echo State
Networks with PCA decomposition for STLF application. While PCA achieves an acceptable results for
correlated and accelerates the forecasting system, it has been noticed that the selection of the number
of Principal Components (PC) requires a level of expertise to achieve the desired results. A wrong PC
parameter causes a significant decrease in the performance on the model performance since some relevant
features are omitted. Further, the interpretability of the features of PCA decomposition is relatively
a difficult task.

2.3. Data Smoothing

To improve temporal cognition of data representation, the removal of the noisy samples is mandatory
to boost the forecasting system accuracy by allowing important patterns to stand out. Furthermore,
smoothing techniques are very important to track the seasonality of the data and thus improve
the performance of ML techniques. Most of the commonly used techniques implement moving average and
seasonal exponential smoothing due to their simplicity and good performance in time series forecasting [26].
For instance, the authors in [27] reviewed exponential smoothing techniques, specifically, single exponential
smoothing, double exponential smoothing, holt’s method, and adaptive response rate exponential
smoothing. The cited methods are advantageous in terms of ease of interpretability and integration of
the changing pattern effect of the data series into the prediction model. However, most of those approaches
face problems with seasonal data and parameter tuning difficulties [28]. To overcome these problems,
a Stavisky Golay (SG) filter is proposed in this paper to tackle the rapid variations from signals. In [29],
the authors used an SG filter to remove the noise from phonocardiogram signals in the preprocessing
stage. Then, an automatic classification CNN model receives the smoothed results to generate forecasts.
In [30], an LSTM SG model was proposed to predict the Large-Scale Water Quality Time Series. However,
the SG smoothing receives little attention in the field of smart grid applications despite its considerable
importance. From our paper, an SG filter is implemented for the noise reduction of the load demand to
further supplement the existing smoothing techniques for STLF in generating more accurate results.
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3. The Proposed Methodology

The various parts of the hybrid SG-CBiLSTM, particularly, SG, PLS, and CBiLSTM have been
presented. Furthermore, the workflow of the proposed technique is explicitly explained.

3.1. Bidirectional Lstm (BiLSTM) Model

The major success of LSTM model is accorded to its excellent ability in solving the vanishing problem
of vanilla Recurrent Neural Network (RNN). The LSTM mechanism consists of the deployment of three
memory gates, namely, input gate (it), forget ( ft) gate, and output gate (ot). Therefore, LSTM network
carries out long-term dependencies of sequential data with high efficiency. The mathematical equations of
LSTM gates are given as follows [31]:

it = σ(Wixt + Uiht−1 + bi) (1)

ft = σ(W f xt + U f ht−1 + b f ) (2)

ot = σ(Woxt + Uoht−1 + bo) (3)

c̃ = ft � ct−1 (4)

ht = ot � tanh(ct) (5)

where xt, σ, and ct denote the input sample at time t, the sigmoid activation function, and the memory unit,
respectively. (b f ,bi,bo) and (W f ,Wi,Wo) stands for the bias and weight matrix for each gate, respectively.
The symbol � is the corresponding multiplication of the elements. Firstly, the ht−1, ct−1, and xt pass
the input information to the LSTM unit. Then, the LSTM gates interact with the inputs to generate an action
based on a logic function. After passing by ft, a new cell state ct is built. xt and ht−1 move to the forget
layer to quantify the importance of the information between 0 and 1. At this stage, the ft gate takes
a decision whether if the information has to be stored, maintained, or removed. Then, the forget gate will
update the cell state ct with the new important information based on the proportion of the information
occupied by the actual and the previous cell state. The final hidden layer of the LSTM is computed to
obtain the remaining state value [31].

To enhance the learning capabilities of the traditional LSTM model, the temporal structure considers
two-way relationship of the input data. In other words, instead of using one direction of input processing
through the LSTM gates, the Bi-directional LSTM (BiLSTM) model considers the next information when
dealing with the current time series data as shown in Figure 1.

This bidirectional processing enhances the information-wise fashion manner with a door mechanism
by capturing more structural information. The BiLSTM model encodes the information on back to front.
This leads to acquiring additional context information that leads to better generalization ability. First,
the LSTM cells are forwarded from the input sequence. Then, the reverse form of the input sequence
is integrated into the LSTM network. The output of the forward layer (h f

t ) and backward layer (hb
t ) of

the BiLSTM model are generated as [32]:

ht = αh f
t + βhb

t (6)

yt = σ(ht) (7)

where α and σ are the numerical factors respecting the equality α + σ = 1 [32]. The experimental
results verify that the BiLSTM significantly improves the accuracy of the original LSTM using the spatial
correlation mechanism [32].
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Figure 1. Bidirectional Long Short-Term Memory (BiLSTM) model structure with σ(x) = 1
1+e−x .

3.2. Convolutional Neural Network (CNN)

The CNN model is a DL network that maps local features from the input at higher layers and
combines them into more complex features at lower layers. The general architecture of this model
consists of convolutional layers, activation function, pooling layers, fully connected layer, and dropout
layer. The convolutional layers apply a set of filters to the input to generate a set of feature maps.
The convolutional layers are advantageous for preventing the model from overfitting, accelerating
the training process, decreasing the input volume. The max-pooling layers present the commonly used
type of pooling layers. The max-pooling consists of selecting the maximum value of the field covered by
the pooling kernels with its parametric equation given as [33]:

Pl(i,j) = max
(j−1)W+1≤t≤jW

{al(i,j)} (8)

where Pl(i,j) and al(i,j) denote the width of the pooling layer and the activation value of t neuron.
The activation function permits changing the linearly of an inseparable problem into a separable one to
enhance the adaptability of the model. The Rectified Linear Unit (ReLU) function is used as an activation
function do to its inherent ability to derive values between 0 and 1. The equation of ReLU function is given
by [33]:

al(i,j = f (yl(i,j)) = max{0, yl(i,j)} (9)

where al(i,j) denotes the activation value of the layer output yl(i,j). The fully connected layers combine
the previously extracted information to generate the final prediction as shown in the following
function [33]:

zl+1(j) =
n

∑
i=1

wl
ija

l(i) + bl
j (10)

where wl
ij, al(i) and bl

j denote the weight of the ith neuron, the ith neuron of the l layer, and the bias values.
n is the length of the input data. Finally, the dropout function is employed as a regularization technique
to avoid overfitting at the end of iterations by dropping randomly selected neurons during the training
process. Much of the research work has emphasized CNN due to its better ability to approximate
complex functions.
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3.3. Convolutional Bi-Directional Lstm Network (CBiLSTM)

The CBiLSTM model consists of initial convolution layers that receive feature embeddings as input.
Its output is pooled to a smaller dimension, then fed into BiLSTM layers. The association of the CNN
layers is beneficial for its strong capabilities in local feature extraction. The proposed mechanism consists
of extracting the inherent characteristics of the load demand by CNN model and extracting the temporal
dependencies by BiLSTM layer. The motivation behind the fusion between CNN and BiLSTM is explained
by (1) the excellent feature-extracting ability of CNN model in capturing short-term trends in the time
series data. (2) the BiLSTM network is efficient in saving the temporal order between the data in both
directions and avoiding the gradient disappearance. Owing to the association of CNN with BiLSTM,
the pattern recognition for time series data is tracked spatially and temporally. Figure 2 presents a flowchart
of CBiLSTM model.

Figure 2. Flowchart of the proposed Convolutional neural network-Bidirectional Long Short-Term Memory
(CBiLSTM) model.
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3.4. Savisky Golay Filter (SG)

The SG filter is a popular smoothing technique for removing the noise from signals of abruptly
fluctuating and non-stationary data [34]. This technique lies in moving average the least square polynomial
approximation with conserving the main characteristics of the signal(width, peak, and high). The core
concept of SG consists of generating 2n + 1 equidistant points (centered at n = 0) to represent a polynomial
of degree p. Thus, SG filter uses three elements, specifically, the input signal, the order of the polynomial,
and the frame size. These elements require a specific tuning to achieve the desired results. The polynomial
order value attenuates the width of the signals. SG filter computes the value of the least square polynomial
at point i = 0, over the entire sample space. Let x(n) be a time series of n elements. We consider
y(n) = x(n) + w(n) as the observed time series where w(n) denote the noise of y(n) signal. The output of
SG filter denoted by x̂ is equal [35]:

x̂(n) =
M

∑
k=−M

h(n)y(n− k) (11)

where h(n) and M denote the filter impulse response and the SG filter parameter, respectively.
The polynomial p(n) and the squared error between the smoothed and noisy signal E are given as
follows [35]:

p(n) =
N

∑
k=0

cknk (12)

E =
M

∑
n=−M

(x(n)− p(n))2 =
M

∑
n=−M

(
N

∑
k=0

cknk − x[n])2 (13)

where k denotes the polynomial order that ranges between 0 and 2 M inclusive. C(0) is the best fitting
polynomial coefficient satisfying p(0) = c(0) as [36]:

∂E
∂ci

=
M

∑
n=−M

2ni(
N

∑
k=0

cknk − x[n]) = 0 (14)

Analytically, the optimal coefficients ck could be calculated by interchanging the order of
the summations. In order to find the optimal polynomial coefficients, we differentiate E as follows [36]:

N

∑
n=0

(
M

∑
n=−M

ni+kck) =
M

∑
n=−M

nix[n] (15)

where i ∈ (0, 1, ..., N). Equation (15) could be reformulated as (CTC)c = CTx. c = [c0, c1, ..., cn]T

denotes the polynomial coefficient vectors and x = [x−M, ..., x−1, x0, x1, ..., xM]T denotes the input
samples vector. Thus, the coefficient vector is conducted as c = (AT A)−1 ATx. Solving Equation (15)
passes by setting the derivatives equal to zero [36]. Typically, this digital filter uses the technique of
linear least squares for data smoothing, which helps to obtain a high signal-to-noise ratio and retains
the original shape of the signal. The SG filter has been employed in this paper for two major merits:
(1) the SG filter retains the width and height of waveform peaks in noisy load which allows the system
to achieve higher performance; (2) the SG method transforms the load demand without destroying its
fundamental properties.

3.5. Partial Least Square Method (PLS)

The PLS is a widely used dimentionality reduction technique. Unlike PCA dimension reduction
method, which maximizes the variance-based objective function, PLS maximizes the covariance-objective
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function [37]. The covariance-objective function maximization is conducted by the optimization of
the square of the L2 norm. Assuming we have two sets of dependent variables Y = {y1, y2, ..., ym} and
X = {x1, x2, ..., xn} representing the input variables and the response variables, respectively. For the STLF
application, we have s samples. So, X0 and Y0 could be written as:

X0 =

x1,1 · · · x1,n
...

. . .
...

xs,1 · · · xs,n

 , Y0 =

y1
...

ys

 (16)

The PLS method consists of extracting two components (t1, u1) from X and Y, respectively. The vectors
t1 and u1 acquire the variation information from the initial dataset where the correlation is set to its
maximum. Thus, the regression of yk, k ∈ N and t1 is conducted. In case the regression result provides
the best accuracy, the PLS stop improving. Otherwise, the PLS algorithm passes to the next pair of
components (tr, ur). with r presents the pair number until the PLS algorithm achieves a satisfactory result.
Mathematically, the first component could be written as [38]:

t1 = wT
1 X (17)

where w1 is the eigenvector corresponding to the maximum eigenvalue of the matrix XT
0 Y0YT

0 X0.
The component score vector t̂1 and the residual matrix X1 are calculated as [38]:

t̂1 = X0w1 (18)

X1 = X0 − t̂1αT
1 , α1 =

XT
0 t̂1

‖ t̂1 ‖2 (19)

This process is repeated untill the construction of the r components for (X,Y). The optimization of
the objective function is based on the covariance cov(Xw,Y) between the output vector Y and the input
matrix Xw of a size (N × P). Therefore, the Kth PLS component is identified by searching the weight
vector wk as [37]:

wk = argmax
w′w=1

cov(Xw, Y) = argmax
w′w=1

cov((N − 1)−1w′X′Y) (20)

where the equation Xwk = w
′
k X

′
Xwj = 0 is valid for all 1 ≤ j < k. The PLS method is advantageous for

its ease of implementation and unique biased solutions.

3.6. Evolution Strategy for Hyperparameter Optimization

Hyperparameter Optimization (HO) is one of the most difficult problems for DL models due to two
major points: large number of parameters involved and expansive computational training. These points
dramatically complicate testing all the possible values of the search space. In this paper, ES meta-heuristic
method is considered the key solution to tackle the HO problem with higher efficiency. The ES is
a meta-heuristic search technique inspired by the natural biological evolution. It consists of mutations
and combinations of the best individuals (σ) of a certain population of solutions (λ) [39]. According to
fitness values, natural selection empowers the best candidate solutions for mutation and reproduction [40].
These solutions dictate the distribution of future generations. Reciprocally, the weak candidates are
removed from the population. The mechanism of the ES is presented in Figure 3.
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Figure 3. Flow chart of the evolution strategy algorithm.

Regarding the flowchart in Figure 3. the ES algorithm starts with a random population of σ parents.
Successive recombination and mutation take place to compute the fitness values. An assessment of
the fitness values to quantify the solution effectiveness. In case there is an area of improvement, the ES
algorithm generates a λ children to improve the objective function. This process is done by the Gaussian
distributed random modifications G(xP

i , λS
i ) , where xP

i and λS
i are the mean and derivation parameters,

respectively. i(1 ≤ i ≤ n), P(1 ≤ i ≤ σ),and S(1 ≤ S ≤ µ) are the parameter index predecessor index and
successor index, respectively. The derivation parameter is calculated as follows [40]:

σS
i = σP

i exp(G(0, τ1) + G(0, τ2)) (21)

with τ1 = 0.1 and τ2 = 0.2 are the standard derivations [40]. The whole multiplicative σS mutation
operation determine vector of strategy parameters σS = (σS

i , ..., σS
N) [41]. Each vector component of

σS is mutated individually. The final σS is mutatively scaled in order to learn axes-parallel mutation
ellipsoids [41]. The evolutionary dynamics could lead to undesirable fluctuations which require
the removal to keep the high optimization performance of ES method [41]. The individual parameters are
calculated as [40]:

xS
i = G(xP

i , σS
i ) (22)

From Equation (22), the individual parameters xi are modified in order to create a λ solutions.
The mutation operation of ES is conducted through the Gaussian distributed random modifications
between xP

i and σS
i . The best individuals are selected to be used as parents for the next iterations.

The iterative process stops when the new individuals have minimal objective function value from the whole
population. In this paper, the Evolution strategy is used as a key solution for the global optimization of
the complex CBiLSTM black-box function. After fixing the search space, ES uses the batch-sequential
process to find the most suitable hyperparameters of a specific model [42]. The ES presents a robust
algorithm with a highly parallelizable architecture. Hence, the ES could face the risk of being trapped
in a local minimum in a large search space environment.
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3.7. Proposed Architecture

The proposed SG-CBilSTM is a cupola of models defined in three major stages: data engineering and
preprocessing, object determination, model construction and model evaluation as illustrated in Figure 4.

Figure 4. The adopted methodology for the proposed Savitzky–Golay (SG)-CBiLSTM model.

According to Figure 4, the proposed methodology is conducted using four main stages: (1) Data
processing and feature engineering, object determination, model construction and evaluation stages,
for further explanation of the proposed methodology, a complete flow chart is illustrated in Figure 5.

According to Figure 5, the proposed methodology is presented as follows: The data is acquired
from an open-sourced portal and cleaned from misleading values in the data preprocessing and feature
engineering stage. Then, a data augmentation strategy is adopted to enhance the significance of the data
and add value to the learning ability of the whole system. Further, data transformation is conducted to
convert all the data to its numeric form using on-hot encoder function. Next, data smoothing-based SG
filter and data normalization are conducted to remove the noise from the load demand and standardize
the data under a defined interval between 0 and 1. At this stage, SG filter is able to reject the noise efficiently
along with the least distortion from the original load data. All the feature inputs are given probability
values to assess their relevance to the load demand determination. Above a specific threshold, the features
are kept and the rest are neglected. Afterwards, the object determination stage split the data into training,
validation, and testing intervals. The hyperparameter tuning is mandatory for CBiLSTM model to generate
more accurate results. The final stage is the evaluation of the model. In this stage, the point forecast
assessment is conducted using score metrics. Moreover, K-fold cross validation technique is used in this
paper as a reliable means to evaluate the proposed model accuracy to an unknown testing data [43]. K-fold
cross validation schemes is widely used in regression problems [44,45]. The methodology of K-fold cross
validation is illustrated in Figure 6.
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Figure 5. Flow chart of the proposed architecture.

Figure 6. Ten-fold cross validation procedure where E denote the mean cross-validation error (Ei) of the ith
iteration. So, the total effectiveness of the model can be evaluated.

Regarding Figure 6, the procedure of K-fold cross validation is conducted as follows. Firstly, k equal
sized sub-samples are partitioned from the original dataset. Ten-fold cross-validation (10-CV) is preferred
to verify the model robustness with cross-validated data. The ten parts evaluate the model generalization
to an independent set. For each 10-CV round, a random data separation into k folds {D1, D2, . . . , Dk}
is constructed. The proposed model is repeatedly trained by nine training set folds and tested against
the remaining testing k− 1 set fold. The holdout method is repeated 10 times. Consequently, the bias
and variance are remarkably reduced due to the use of the original data set in the fitting and validation
procedure in the same time. For checking the model competitiveness, the proposed SG-CBilSTM is
compared to a bench of DL models to validate its performance superiority. The comprehensive model
design and the implementation details of each part are given in the following section.
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4. Simulation Results

In this section, the validation of the proposed SG-CBiLSTM for STLF is demonstrated through
extensive experimental studies with the an open source dataset. The evaluation procedure includes dataset
description, model construction stages, score metrics, and benchmarks comparison analysis.

4.1. Data Pre-Processing and Feature Engineering

The experimental settings mainly uses the ISO New England incorporation (ISO-NE) dataset [46].
The ISO-NE is non-profit incorporation to manage day-to-day operations with more than 200 market
participants in New England [46]. The publicly available data covers the hourly temperature and load
data for the public and private electricity market of New England from 2003–2014 as plotted in Figure 7.

(a) Electric load (MW) between 2003 and 2014.

(b) Hourly temperature (◦C) between 2003 and 2014.

Figure 7. The overall system level load and temperature between 2003 and 2011 (103,753 samples) for
the ISO-NE dataset.

The total data samples collected consists of 103,753 rows. The used data is cleaned from erroneous
and Not a Number (NAN) samples. The cleaning stage is mandatory to feed the model with complete data
samples and avoid any outliers or misleading values. Nevertheless, the hourly temperature for the ISO-NE
data is the only indicator of the load demand. This data is insufficient for accurate prediction and may
lead to underfitting. Therefore, data augmentation is conducted to identify and generate artificial features
using Microsoft Excel software as shown in Table 1.

According to Table 1, the total features are the DateTime components (hour, day, month, year, workday,
week number, weekend), season of the year, and hourly lagged load for the last 23 h. The Boolean features
are converted to numerical values using hot encoder function. Then, the load demand is smoothed via
SG filter to improve the pattern recognition of the forecasting system. The cleaned data is forwarded
to the feature engineering phase. Four case scenarios were investigated according to the value of
the polynomial function specifically 3, 5, 7, and 10. The load demand and its smoothed derivations
are illustrated in Figure 8.
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Table 1. Generated feature vectors.

Data Fold Augmented Data Formula Unit/Range

Load forecast Load(t − 1), . . . , Load(t − 23) L(t−1), . . . , L(t−23) MW
Load demand Lt MW

Datetime

Year Yt = YEAR (DateTime) [2003, 2014]
Month Mt = MONTH (DateTime) [1, 12]

Day D = DAY (DateTime) [1, 31]
Weekday Wd = WORKDAY (Datetime) [1, 7]

Hour Ht = HOUR (DateTime) [1, 24]
Season of the year S = SEASON (Datetime) [0, 3]

Week number Wn = WEEKNUMBER (DateTime) [1, 52]
Weekend Wnd = IF(Wd > 5 Then Yes , Else, No) Boolean

Weather data Temperature Tt
◦C

Figure 8. Comparative results of SG-CBiLSTM model with different polynomial functions.

According to Figure 8, the increase of the probability values (P-values) results in a more smoothed
signal. The generated signals are assessed together in the same conditions with the aim select the optimum
SG polynomial value based on the less error produced. Further, the data normalization is conducted
using MinMaxScaler function form Scikit-Learn library [47]. The normalized data from 0 to 1 to
keep the values within limits of the activation function and to reduce the influence of different units
on the forecasting model.

The selection of the most informative features in the dataset is an essential step of the forecasting
system performance. This technique is exploited the P-values for each feature to map the domain
representation, and assess the weights for each feature input. Therefore, the irrelevant and redundant
inputs are discarded from the feature vectors. These artificial features are associated in tandem with
the temperature to make a prediction. The data augmentation technique is commonly used for low
dimensional systems to track the seasonality and trends of the target variation and acquire more
information about domain knowledge. The ranking of the feature is essential at this stage to make
the system more efficient with less computational time due to the high number of features. The PLS
technique is used to reduce the dimension of the data. PLS is a straightforward dimensionality reduction
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technique that maps the variables in a new feature space with lower dimensions. The Variable Importance
of load Patterns (VIP) for 32 features is shown in Figure 9.
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Figure 9. Variable importance of load patterns with a threshold value (red line) equal to Variable Importance
of load Patterns (VIP) = 0.5.

Regarding Figure 9, the most important features are hour, workday, temperature and lagged load
(t− x) with x ∈ [1, 2, 3, 4, 5, 6, 7, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23]. Thus, the selected threshold is VIP = 0.5.
The rest of the simulation results adopted a feature representation including a 20 feature inputs. The data
is split into three sets: training, validation, and testing sets with a proportion of 75%, 15%, and 10%,
respectively. More precisely, the training, validation, and testing instances comprise 77,814, 15,562,
and 10,376 samples, respectively.

4.2. Score Metrics

The assessment of the model performance is conducted using Percentage Error Measure
(PEM). The PEM method is a percentage of the error regardless of the units of the measurements
(scale-independent). In order to standardize the SDEM measures, particularly, the Rooted Mean Squared
Error (RMSE) and Mean Absolute Error (MAE) measures, the Min-Max normalization method was kept for
the evaluation process. In other words, the data is normalized with a magnitude range of [0, 1]. The data
normalization is calculated as follows:

x(t) =
xr − xmin

xmax − xmin
(23)
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where xt denote the normalized value, xr is the real value. Here, xmin and xmax are the minimum
and maximum values. The error measures in this work include the coefficient of determination (R2),
normalized RMSE (nRMSE), normalized MAE (nMAE), Mean Squared Logarithmic Error (MSLE) and
MAPE. The selection of the aforementioned scores is based on their popularity for regression-based
techniques evaluation. The parametric equations of the score metrics are given as follows [48]:

nMAE =
1
N

N−1

∑
i=0
|yi − ŷi| (24)

nRMSE =

√√√√ 1
N

N−1

∑
i=0

(yi − ŷi)2 (25)

MAPE =
100(%)

N

N−1

∑
i=0
| ŷi − yi

yi
| (26)

R2 = 1− ∑N−1
i=0 (ŷi − yi)

2

∑N−1
i=0 (ȳi − yi)2

, ȳ =
N−1

∑
i=0

yi (27)

MSLE =
1
N

N−1

∑
i=0

(loge(yi + 1)− loge(ŷi + 1)2) (28)

where ŷi and yi present the ith forecasted values and the actual values. Here N denotes the total number
of samples.

4.3. Model Construction and Parameter Sittings

In this part, the assessment of the proposed SG-CBiLSTM model is reported. The simulation results
were conducted using PYTHON programming and Keras library [49]. Keras is a high-level framework
specialized in DL. All simulations were run on a Lenovo Intel ®i7 ®Nvidia Geforce GTX 1650@ 2.30 GHz.
The characteristics of the experiments in this study are resumed in Table 2.

Table 2. Exprimental environment.

Experimental Environment Proprieties

Operating system Windows 10
Processor Intel Core i7 9th Gen

Graphics card NVIDIA GeForce GTX 1650
Programming language Phython 3.6.7

Deep learning framework Keras 2.4.3
Plateform Tensorflow 2.3.0

Supplimentory tools Sklearn 0.23.2

The simulation analysis-based on trial and error method is firstly adopted to limit the search space as
much as possible for the optimization process. This method is conducted by selecting arbitrary extreme
values of BiLSTM and CNN layers and measuring the accuracy of the forecasting engine in terms of R2

score. Next, a new random values are defined to further decrease the possibilities of hyperparmaters
values. The final results of trial and error method shows that three convolutional layers with a kernel size
equal to 1× 1 associated with three successive BiLSTM layers achieve better results according the highest
the R2 criteria. For the rest of optimization work, ES is employed to tune the critical hyperparameters
of the proposed computing framework, specifically, the batch size, the number of units, the number
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of training epochs [49,50]. To tune these hyperparameters, Hyperactive library is employed on open
source [39]. It worth noting that the search space of the ES method only considers the key hyperparameters
of the proposed C-BiLSTM to reduce the number of combinations and thus accelerate the computational
time. In the model construction stage, the search space of the proposed CBiLSTM model is resumed
in Table 3.

Table 3. The search space and Evolution Strategy (ES) results of the proposed SG-CBiLSTM.

Model Configuration/Neurons/Filters Search Space ES

CNN
CNN Layer 1 [32, 64, 72, 128] 32
CNN layer 2 [32, 64, 128] 64
CNN layer 3 [32, 64, 128] 64

BiLSTM

LSTM layer 1 [100, 150, 250] 150
LSTM layer 2 [32,50, 150, 250] 50
LSTM layer 3 [32, 50, 150, 250] 32

Batch size [32, 64, 72, 256, 512] 512
Iterations number [20, 30, 70, 100] 100

Time (min) 131.64

Time/iteration (min) 8.77

The best hyperparameters are selected as follows. Firstly, the population of ES is randomly initialized.
Each candidate solution represents a possible configuration of the optimized CBiLSTM model. From the
data training, the CBiLSTM model is trained with a specific structure and parameter sittings included
in Table 3. Finally, the testing set is used to evaluate each population performance based on MAPE.
Regarding the ES performance in Table 3, the ES algorithm is characterised by a fast convergence
speed with 8.77 min for every iteration. From Table 3, the input layer consists of a 3 successive
one-dimensional Convolutional layer (Conv1D), with 32, 64 and 64 filters of the convolution, respectively.
The Conv1D layers are associated with a ReLU activation function. The ReLu function is employed
to solve the vanishing gradient with fast convergence speed. The convolution layers are followed by
a maximum one-dimensional sampling (MaxPooling1D) layer, three BiLSTM hidden layers, a dropout
layer, and a dense layer. The one-dimensional CNN layer is mainly adopted for the sequential data
processing of the load demand. The sampling size of MaxPooling1D is 1. The number of features of
the BiLSTM hidden layers is 150, 50, and 32, respectively. The proposed CBiLSTM takes advantage of
the nonlinear fitting ability form BiLSTM and the feature extraction ability from CNN. The final structure
of the SG-CBiLSTM model is resumed in Table 4.

Table 4. Layer description of CBiLSTM.

Layer Configuration/Neurons/Filters Activation Function

Input layer Sequential -
Convolution 1-D 32, k1 × k1 ReLU
Convolution 1-D 64, k1 × k1 ReLU
Convolution 1-D 64, k1 × k1 ReLU
MaxPooling 1-D k1 × k1 ReLU

Flatten 64 -
BiLSTM 150 ReLU
BiLSTM 50 ELU
BiLSTM 32 ELU

Fully connected 1 Softmax
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The general architecture of reference models is fixed through repeated training. While, the units’
number and the batch size and the activation function is selected using the ES method. The settings of
reference models are given in Table 5.

Table 5. Hyperparameter settings of nine methods.

Model Hyperparameter Sittings

SG-CBiLSTM

The convolution layers are 3 with a number of filters of 32, 64, and 64, respectively;
the activation function is ReLU;
the BiLSTM layers are 3 with a number of neurons 150, 50, and 32, respectively;
the batch size is set to 512;
the dropout function between layers is fixed at 0.5.

BiGRU

The layers number is 4 with a neurons number of 128, 32, and 4 ended by a fully
connected layer, respectively;
the dropout function between layers is fixed at 0.4, The optimizer function is Adam;
the activation function of the BiGRU layers is ReLU;
the batch size is set to 512

BiLSTM

The layers number is 7 with a neurons number of 256, 128, 64, 32, 16, 4
finished by a fully connected layer, respectively;
the dropout function between layers is fixed at 0.2, The optimizer is Adam;
the activation function of the BiLSTM layers is ReLU;
the batch size is set to 512.

CBiLSTM

The convolution layers are 3 with a number of filters of 32, 64, and 64;
the activation function is ReLU;
the BiLSTM layers are 3 with a number of neurons 150, 50, and 32, respectively;
the batch size is set to 512;
the dropout function between layers is fixed at 0.5.

BiLSTM-AE

The biLSTM layers are three with a number of neurons of 500, 400, and 300,
respectively;
the repeat vector layers are two between the located between the BiLSTM layers;
the optimizer function is Adam.

ConvLSTM-AE

The convLSTM2D is the initial layer with a filters number of 64;
the kernel size is with a dimention of 1×1;
the activation function is ReLU;
the two next layers are a flatten layers and repeat vector layers;
the LSTM layers has a number of neurons equal to 200;
the number of time distributed layers is equal to 2;
the optimization function is Adam optimizer.

CNN

The Conv1D layer has a filter units of 64;
The kernel size is 2×2; The activation function is ReLU;
The max pooling layer has a pooling size of 2;
The third layer is a flatten layer;
The fully connected layers are two with a 50 units and 1 units;
the optimizer function is Adam.

RNN

The RNN layers are two with a number of neurons of 500 and 100, respectively;
the dropout function between layers is fixed at 0.2;
the Adam optimizer function is used;
the fully connected layer uses a tanh activation function.

ELM
The neuron number of the hidden layer is 560;
the activation function is tanh;
the alpha is set to 0.5.
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4.4. Experimental Results

The SG-CBiLSTM evaluation is conducted in this section. The empirical results at this level are firstly
conducted by presenting the performance of the proposed framework individually and with several case
studies of different SG filter characteristics. Second, a comparative study is computed and presented
where the simulation settings are unified for the sake of fair assessment. The conclusive remarks and
interpretations are based on the actual results simulated in this work. During the validation experiments
of this paper, the selection of the most appropriate Polynomial (P) degree is based on the hit-and-trial
method of 4 p values. For the consistency and coherence of this section, the validation of our proposed
SG-CBiLSTM model is firstly conducted compared to the original CBiLSTM using the proposed framework
explained in the previous section. Secondly, the supremacy of the proposed method was verified compared
to different benchmarks. In order to yield credible results, each case scenario is performed 10 times and
the results are averaged. The simulation results as shown in Figure 10.

Figure 10. Performance comparison of SG-CBiLSTM model with a variety of polynomial filters p = {3,5,7,10}.

According to Figure 10, the proposed SG-CBiLSTM is generating a good result and follows the actual
load demand with high precision. Further, the SG filter demonstrated its ability to improve the performance
of the forecasting system. As can be seen, the proposed model performed best for p = 10 where the gap
between the prediction curve and the original curve is the smallest compared to the original CBiLSTM
and the other models for different p values. However, the polynomial degree variates the errors from
a point to another. It could be concluded that the higher the signal is smoothed the better the model will be
performing. A quantitative comparison of the proposed SG-CBiLSTM model performance under different
p values is given in Table 6.

Table 6. Performance variation of CBiLSTM and different SG filters.

Models MSLE MAPE(%) nRMSE(%)

3 SG-CBiLSTM 9.97 59.85 1.36
5 SG-CBiLSTM 5.82 60.14 1.04
7 SG-CBiLSTM 6.87 59.51 1.13
10 SG-CBiLSTM 4.92 56.66 0.93

Original CBiLSTM 8.38 61.17 1.23

According to Table 6, the best performance has been attributed to 10 SG-CBiLSTM which achieves
the highest results. The registered MSLE and MAPE for 10 SG-BiLSTM is equal to 0.93% and 56.66%.
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Compared to 3SG-CbiLSTM which reaches to RMSE = 1.36% and MAPE = 59.85%. This leads to conclude
that the SG filters are a key element for achieving higher performance. Furthermore, the selection of
the most suitable parameters is mandatory to achieve the desired results. For the rest of the work, it will be
considered the 10 SG-CBiLSTM as a reference for the proposed forecasting system. For notation simplicity
and flow of reading, the 10 polynomial SG-CBiLSTM is referred to as the SG-CBiLSTM hereinafter. The loss
function is the training and validation of the model simulation is an essential criterion to follow the learning
accumulation in the model construction. The parametric equation of the loss function is calculated as
follows [51]:

Loss(ŷ, y) = 2

√√√√ 1
B

1
O

B

∑
i=1

O

∑
j=1

(ŷ− y)2 (29)

where B, O are the output matrix size. Here, the proposed model is trained with a training set stating
from 2 March 2003 with the first 75% portion of the whole set. In order to track the loss values when
the proposed SG-BiLSTM fetches the next batch of data. it has been used the MAPE as a loss function with
an Adam optimizer [52]. The training process was fixed at 100 epochs with an early stopping function.
This function is adopted to automatically track the best-trained model without searching for the most
suitable epoch number. Figure 11 displays the variation of the training loss of the first 40 epochs for
the training and testing sets.

Figure 11. Training and testing loss variation for epochs.

As seen in Figure 11, the training loss value starts at 6.93% and continuously decreases until the 10th
epoch starts to stabilize. At this epoch, the loss value reaches to 2.08%. At this level, the training loss value
decreases slowly to achieve 1.59% at the 40th epoch. On the other side, the validation loss started at 4.415%
to reach 2.407% in the 10th epoch where it decreases slowly aside with the training loss. This indicates
the training and validation loss reaches their equilibrium at the same iteration. Moreover, it is verified
that the convergence speed is quite fast. The training and validation loss are following the same behavior.
The simulation results of the proposed method in tandem with its single components (CNN, BiLSTM,
and CBiLSTM) with 10-CV have been computed and shown in Table 7.
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Table 7. The error measures of 10-fold cross validation. The best result is marked in bold.

Model BiLSTM CNN

Fold R2(%) nMAE (%) nRMSE (%) R2(%) nMAE (%) nRMSE (%)

Sets Train Test Train Test Train Test Train Test Train Test Train Test

1 95.47 95.23 3.11 3.22 2.07 2.13 90.56 90.62 3.11 3.22 3.21 3.21
2 95.40 95.82 3.14 2.99 2.08 2.02 86.38 87.03 3.14 2.99 3.93 3.88
3 95.67 95.89 3.05 2.95 1.99 1.98 89.67 89.76 3.05 2.95 3.34 3.31
4 95.54 95.19 3.09 3.19 2.06 2.12 88.58 88.10 3.09 3.19 3.55 3.59
5 95.34 95.23 3.16 3.20 2.12 2.12 89.27 88.86 3.16 3.20 3.47 3.51
6 95.58 95.24 3.07 3.22 2.02 2.10 89.57 89.66 3.07 3.22 3.40 3.42
7 95.31 95.47 3.17 3.11 2.12 2.10 90.10 90.11 3.17 3.11 3.24 3.25
8 95.24 95.17 3.19 3.24 2.13 2.15 90.51 90.10 3.19 3.24 3.30 3.42
9 95.51 95.43 3.11 3.10 2.08 2.09 90.27 90.24 3.11 3.10 3.26 3.26

10 95.37 95.36 3.15 3.14 2.14 2.18 89.77 89.79 3.15 3.14 3.30 3.30

Mean 95.45 95.41 3.13 3.14 2.09 2.10 89.47 89.43 3.13 3.14 3.41 3.42

SD 0.13 0.25 0.04 0.10 0.05 0.06 1.18 1.05 0.04 0.10 0.20 0.19

Time(s) 3238.38 3643.24

Model CBiLSTM SG-CBiLSTM

Fold R2(%) nMAE (%) nRMSE (%) R2(%) nMAE (%) nRMSE(%)

Sets Train Test Train Test Train Test Train Test Train Test Train Test

1 88.54 87.79 4.96 5.16 2.84 2.95 99.18 99.05 0.78 1.43 0.89 0.90
2 88.11 88.46 5.05 4.97 3.00 3.96 99.27 99.09 0.73 1.38 0.65 0.66
3 85.84 85.52 5.52 5.54 3.17 3.18 99.02 99.28 0.91 1.22 0.70 0.71
4 87.63 87.79 5.16 5.09 2.92 2.90 99.12 99.05 0.77 1.43 0.70 0.70
5 86.55 85.84 5.37 5.53 3.12 3.18 99.22 98.97 0.79 1.48 0.62 0.64
6 86.55 85.02 5.71 5.73 3.24 3.29 99.16 99.33 0.73 1.20 0.68 0.69
7 84.80 89.16 4.76 4.81 2.74 2.77 99.21 99.16 0.78 1.33 0.73 0.73
8 89.47 86.9 5.23 5.34 2.95 3.04 99.13 99.29 0.73 1.23 0.67 0.67
9 87.26 84.91 5.68 5.64 3.31 3.33 99.29 99.02 0.76 1.45 0.74 0.75

10 85.13 85.49 5.65 5.56 3.26 3.26 99.37 99.55 0.64 0.98 0.70 0.70

Mean 86.84 86.96 5.31 5.34 3.06 3.09 99.20 99.18 0.77 1.32 0.71 0.72

SD 1.54 1.45 0.31 0.29 0.18 0.18 0.09 0.17 0.07 0.15 0.07 0.07

Time(s) 2416.56 1808.4

According to Table 7, the 10-CV results clearly demonstrate that our proposed framework significantly
outperform single models in terms of the error measures. The SG-CBiLSTM achieves a high mean testing
result of R2 = 99.18% compared to 86.96%, 89.43%, and 95.41% for CBiLSTM, CNN, BiLSTM, respectively.
The overall increase of the performance for the DL models reported in Table 7 is explained by adopting
the data augmentation strategy for the original dataset. Further, employing the S-G filter with the 10th
polynomial fitting empowers the CBiLSTM the accuracy with a 12.22% in terms of R2. An illustration
of the 10-CV results in terms of R2 is shown in Figure 12 to highlight the performance improvement of
the SG-BiLSTM model.
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Figure 12. Box plot of ten-fold cross-validation (CV) of four models in terms of R2(%).

According to Figure 12, the SG-BiLSTM model clearly outperforms the single models in terms of
R2. The SG smoothing technique helps to better see patterns and detects trends. According to the CV
variation results, the proposed model is characterized by a high location independency. The achieved
results indicate that the SG-BiLSTM could be applied for STLF at different weather and load conditions.
The experimental results of the SG-BiLSTM compared to the original load values are shown in Figure 13.

Figure 13. Hourly predictions of the forecasting system.

According to Figure 13, the proposed system achieves high accuracy and follows the real curve with
great precision. The proposed model is compared to nine other DL models trained at the same conditions
for the integrity of the evaluation. The reference models assessed here include Extreme Learning Machines
(ELM), BiLSTM, BiGRU, ConvLSTM, CNN, BiLSTM-Autoencoders (BiLSTM-AE), RNN, CNN, CBiLSTM
to verify its competitiveness with the existing benchmarks. It should be noted that the used dataset
and extracted features from the proposed model construction process are conserved for the comparison
of all the models and the rest of the validation analysis. The comparative simulation results is shown
in Figure 14.
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Figure 14. Multiple tests of different Deep Learning (DL) models using variant timesets. Despite the high
competitiveness of BiLSTM-autoencoders (AE) and the proposed model for their close performance,
the proposed SG-CBiLSTM model outperforms BiLSTM-AE model in most cases.
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Regarding Figure 14, the experimental results clearly show that the proposed SG-CBiLSTM
outperforms the rest of the models for hourly STLF due to the low gap between the actual and generated
forecasts. In order to quantify the quality of the forecasts, Table 8 presents the score errors of the proposed
SG-CBiLSTM and reference models.

Table 8. Comparison of the proposed SG-CBiLSTM with the reference models on the ISO New England
(ISO-NE) dataset.

Mean Values of 10 Times nRMSE (%) ± SD nMAE (%) ± SD R2 (%) ± SD

SG-CBiLSTM 1.22 ± 0.20 0.89 ± 0.23 99.22 ± 0.29
BiGRU 2.71 ± 0.27 2.94 ± 0.37 95.93 ± 1.10

BiLSTM-AE 1.76 ± 0.11 1.16 ± 0.05 98.56 ± 0.18
ConvLSTM-AE 4.13 ± 0.31 3.13 ± 0.11 85.21 ± 0.23

RNN 3.77 ± 0.32 2.82 ± 0.25 93.35 ± 1.06
ELM 5.86 ± 0.30 4.45 ± 0.24 83.98 ± 1.74

According to Table 8, the SG-CBiLSTM hybrid model is performing best comparing to the rest of his
counterparts on the scale of the nRMSE, nMAE, MAPE, and R2 performance measures. The R2 reaches
99.22% due to SG filtering. Furthermore, the model performance was slightly close to BiLSTM-AE model
which achieves R2 = 98.56%. Due to the complex nonlinear relationship between the load demand and
its drivers, the ELM model achieves the lowest forecasting performance accuracy with an R2 = 83.98%.
Moreover, it is evident that the proposed model is preferable compared to numerous DL baseline and
top-of-the-line models. The proposed SG-CBiLSTM is found more efficient to enhance the profitability
form the electrical load operations.

4.5. Multi-Step Validation

In this study, the model performance is assessed for multi-step forecasting using multiple case
scenarios. The multi-step validation is crucial to evaluate the model robustness under an extended
time horizon. The investigated forecasting horizons include one hour, twelve hours, twenty four
hours, and thirty-six hours ahead. In the simulations results, we conserve the same repartition of
the data set with 75%, 10%, and 24% for the training, validation, and testing sets of the whole data.
For multi-step-ahead forecasting, the structure of the proposed SG-CBiLSTM model conserves the shape
of CNN layers compared to one-step forecasting. For the on-step-ahead, the n forecasted outputs x̂i+1 =

f (xi, , xi−1, . . . , xi−n) takes into consideration the real values of the load data. However, in multi-step-ahead
forecasting, the previously generated forecasts are fed as inputs as x̂i+2 = f (x̂i+1, xi, xi−1, . . . , xi−n).
The experimental results of multi-step forecasting for ISO-NE data were repeated ten times and the results
are averaged in Table 9. Furthermore, the error between the predicted and actual load demand according
to the forecasting horizon are shown in Figure 15.

Table 9. Results of Multistep forecasting on ISO-NE dataset.

Mean Values of 10 Times One-Step Twelve-Step Twenty Four-Step Thirty-Six-Step

nRMSE (%) 0.54 3.3 2.26 3.59
nMAE (%) 1.23 2.14 1.34 2.02

R2 (%) 99.11 87.39 94.26 87.22
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Figure 15. Multi-step Short-Term Load Forecasting (STLF) error variation with the Error (%) = 100×
(ŷnorm − ynorm).

According to Table 9, it can be deduced that the most suitable scale is the hourly LF. Considering
the scores indicators, the achieved results for one hour ahead reports an R2 = 99.11% and nRMSE = 0.54%
compared to R2 = 87.22% and nRMSE = 3.59% for 36 h ahead. Thus, the lowest error measure is produced
by single-step forecasting and the highest is generated by thirty-six step forecasting ahead as shown
in Figure 15. In order to increase the model effectiveness, a state-of-the-art optimization approaches
such as Coyote Optimization Algorithm (COA) and Covariance Matrix Adaptation Evolution Strategy
(CMA-ES) could be employed as alternatives to ES for hyper parameter optimization procedure [53,54].
CMA-ES is an enhanced version of ES where the search individuals are generated according to multivariate
normal random distribution. Consequently, the corresponding covariance matrix is updated and assessed
in each iterations [53]. Similarly to ES, COA is a population-based algorithm inspired by the coyotes
adaptation the environmental conditions [54]. In our work, the lowest performance is attributed to
a sequence of thirty-six-steps ahead with a score R2 = 87.22%. This demonstrates the relative weak
stability of the SG-CBiLSTM for longer forecasting horizon which needs further investigations.

5. Conclusions

The major contribution of this paper is to propose an end-to-end forecasting framework called
SG-CBiLSTM model for hourly STLF. The proposed system implements a smoothing technique called Savistky
Golay (SG) filter to enhance the extrapolation capability for convolutional neural network-bidirectional long
short-term memory. The experimental results strongly reveal that the SG-CBiLSTM model is advantageous
for coping with the sudden variation of the load demand and improving the overall accuracy to reach a mean
R = 99.18%. The simulation results have demonstrated that the proposed methodology has the following
characteristics: (1) The ten polynomial levels provide the most suitable form after the variation of the levels of
the SG filter; (2) the proposed SG-CBiLSTM model acquires a higher extrapolation performance to achieve
better results than the single CBiLSTM-AE; (3) the proposed model outperforms nine deep learning models
used as benchmarks. The SG-CBiLSTM-AE is perfectly tailored to accurately predict the hourly load data.
However, its advantages actually hide some limitations related to the poor performance under an extended
forecasting horizon. Future work will broaden the scope to include an additional evaluation of the proposed
SG-CBiLSTM model for other power systems and a variety of forecasting applications such as the electricity
price and renewable energy prediction.



Energies 2020, 13, 5464 26 of 29

Author Contributions: Conceptualization, Methodology, Software, original draft preparation, M.M.; validation,
writing—review & editing, project administration, funding acquisition, S.S.R.; validation, formal analysis, Data
curation, Writing—review & editing, H.A.-R.; validation, writing—review & editing, I.C.; supervision, project
administration, F.S.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: This publication was made possible by NPRP grant [NPRP10-0101-170082] from the Qatar
National Research Fund (a member of Qatar Foundation), the co-funding by IBERDROLA QSTPLLC. The statements
made herein are solely the responsibility of the authors.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

STLF Short-Term Load Forecasting
ES Evolution Strategy
PLS Partial Least Square
BiLSTM Bidirectional Long-Short Term Memory
DL Deep Learning
RNN Recurrent Neural Network
σ softmax function
SDEM Scale-Dependent Error Measure
CNN Convolutional Neural Network
k1 Kernel size = 1
PCA Principal Components Analysis
CVA Canonical Variate Analysis
SD Standard derivation
CBiLSTM Convolutional Neural Network-Bidirectional Long Short-Term Memory
PEM Percentage Error Measure
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