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Abstract: Siamese trackers are widely used in various fields for their advantages of balancing speed
and accuracy. Compared with the anchor-based method, the anchor-free-based approach can reach
faster speeds without any drop in precision. Inspired by the Siamese network and anchor-free idea, an
anchor-free Siamese network (AFSN) with multi-template updates for object tracking is proposed. To
improve tracking performance, a dual-fusion method is adopted in which the multi-layer features and
multiple prediction results are combined respectively. The low-level feature maps are concatenated
with the high-level feature maps to make full use of both spatial and semantic information. To make
the results as stable as possible, the final results are obtained by combining multiple prediction results.
Aiming at the template update, a high-confidence multi-template update mechanism is used. The
average peak to correlation energy is used to determine whether the template should be updated.
We use the anchor-free network to implement object tracking in a per-pixel manner, which computes
the object category and bounding boxes directly. Experimental results indicate that the average
overlap and success rate of the proposed algorithm increase by about 5% and 10%, respectively,
compared to the SiamRPN++ algorithm when running on the dataset of GOT-10k (Generic Object
Tracking Benchmark).

Keywords: object tracking; Siamese network; anchor free; dual fusion; multi-template update

1. Introduction

Visual object tracking is a fundamental research direction in computer vision. It is
widely used in diverse fields such like visual surveillance, vehicle tracking, and human-—
computer interaction [1]. Visual object tracking, which detects and locates a specified target
in a changing video sequence, depends on the ground-truth bounding box of the initial
frame and then obtains the complete trajectory of the target. Recently, rapid progress
has been made in visual object tracking. However, it is still a great challenge in real-
world applications, as objects under unconstrained recording conditions often suffer from
illumination variation, heavy occlusion, background clutters, and scale deformation, to
name a few [1]. Modern trackers can be roughly divided into methods based on correlation
filters or deep learning.

Recently, Siamese network-based trackers [2—6] have drawn considerable attention
due to their outstanding tracking performance, especially well-balanced accuracy and
speed. Siamese trackers formulate the visual object tracking task as a target-matching
problem that learns a general similarity map by cross-correlation operation between the
feature representations learned for the target template and the search region. Since one
single similarity map contains limited spatial and semantic information, a region proposal
network (RPN) [7] is attached to the Siamese network. By jointly training both classification
and regression branches, and by setting default anchor bounding boxes of numerous fixed
sizes and aspect ratios on the similarity maps, these methods discard the time-consuming
step of extracting multi-scale feature maps for the target scale invariance. Although these
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anchor-based trackers achieve state-of-the-art results on tracking benchmarks, they are still
limited by pre-defined anchors that lead to many parameters, such as numbers and aspect
ratios of anchor boxes.

In this paper, an anchor-free Siamese network (AFSN) for object tracking is proposed.
It is built on a ResNet-50 [8] network and combines multi-level features with rich spatial
and semantic information. It combines multiple prediction results to make the final result
more stable and smoother. An anchor-free mechanism is adopted to predict the object
category and location in a per-pixel manner, which can avert a large number of complicated
calculations and complex parameters related to anchor boxes.

Our main contributions are as follows:

1.  We propose an anchor-free Siamese network (AFSN) for object tracking, which can
perform end-to-end online training and offline tracking. It changes the original strides
and receptive field and eventually achieves powerful performance.

2. A dual-fusion method is designed to combine feature maps and prediction results.
The high-level features are added to the low-level and middle-level features to make
full usage of both spatial and sematic information. Application of the weighted-sum
method to multiple prediction results can improve accuracy and boost robustness.

3. A multi-template update mechanism is designed to determine whether the template
should be updated. The score of the peak to correlation energy is used to measure the
degree of occlusion of the object and ensure the effectiveness of the template.

4. We present a proposal of replacing the RPN module with the anchor-free prediction
network, which can decrease the number of hyper-parameters, make the tracker
simpler, speed up the tracking process, and enhance performance.

5. The proposed method achieves state-of-the-art performance on GOT-10k [9], LaSOT
(Large-Scale Single Object Tracking) [10], UAV123 (A Benchmark and Simulator for
UAV Tracking) [11], and OTB100 (Object Tracking Benchmark 100) [12] tracking
datasets.

2. Related Works

Visual object tracking has always been a hot research direction. In recent years,
tracking researchers have been focusing on improving speed and accuracy from differ-
ent aspects such as feature extraction, template updating, classifier design, and location
regression [6]. With the development of various methods, significant progress has been
achieved. Siamese trackers have drawn great attention and achieved outstanding tracking
performance. This section mainly introduces two aspects: Siamese trackers and anchor-free
detection algorithms.

2.1. Siamese Network-Based Trackers

A Siamese network consists of two subnetworks with the same structures sharing
weights. The proposed fully convolutional Siamese networks (SiamFC) [2] first introduces
the correlation operation to produce a similarity map by the method of sliding windows.
The highest score represents the target position. It is simple in construction but effective in
improving accuracy. SiamRPN (Siamese Region Proposal Network) [3] constructs a Siamese
network following an RPN module. It decomposes the tracking task as classification and
regression for the object. SiamRPN sets a number of pre-defined anchor boxes to evade
the time-consuming step of extracting multi-scale feature maps for object scale invariance
and achieves robust results. DaSiamRPN (Distractor-aware SiamRPN) [4] introduces
a sample training strategy to train the distractor-aware module and a local-to-global
search strategy for long-term tracking. Through increasing high-quality positive and hard
negative samples, it improves the discrimination of the tracker and achieves robust tracking
performance. Siamese C-RPN (Siamese Cascaded Region Proposal Network) [5] constructs
a sequence of RPNs cascaded from deep to shallow layers in the backbone network. Such
cascade structure can balance training samples by motivating hard negative sampling. The
cascaded RPNs are more discriminative in distinguishing difficult and complex distractors.
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Up to now, these Siamese trackers cannot make use of features from deep networks. To
deal this problem, SiamRPN++ [6] proposes a spatial-aware sampling strategy to avoid
putting a strong center bias on objects and then successfully trains the Siamese tracker by
using the ResNet as a feature extraction network. It also adopts a method to aggregate
multiple output results obtained by multi-layer feature maps. Experimental results show
that Siamese trackers driven by deep networks can achieve better tracking performance.

To address tedious and heuristic configurations, the Siamese Box Adaptive Network
(SiamBAN) [7] views the tracking task as a parallel classification and regression problem,
and directly classifies objects and regresses their bounding boxes in a unified FCN (Fully
Convolutional Network). ATOM (Accurate Tracking by Overlap Maximization) [13] intro-
duces a classification component that is trained online to guarantee high discriminative
power in the presence of distractors. Xuesong Chen et al. [14] present a new optimization
objective function with dual-attention mechanisms to generate adversarial perturbations
for ensuring the efficiency of the one-shot attack. SiamAttn [15] introduces a new Siamese
attention mechanism that computes deformable self-attention and cross-attention. The
self-attention captures rich context information. The cross-attention aggregates contex-
tual inter-dependencies between template and search region. Siam R-CNN (Siamese
Re-detection Convolutional Neural Network) [16] takes advantage of re-detections of
both the first-frame template and previous-frame predictions to model the target. The
tracklet-based dynamic programming algorithm enables to re-detect targets after occlusion.

These Siamese trackers above are totally adopted from a set of pre-defined anchors
to evade time-consuming computations, which can significantly improve the tracking
performance in terms of both accuracy and speed. However, since these trackers need to
define anchor boxes with fixed size and aspect ratios, they still have difficulty in tracking
targets with large-scale deformation and pose change.

2.2. Anchor-Free Method of Detection

The current mainstream detectors such as Faster-RCNN [17], SSD (Single Shot Multi-
Box Detector) [18], and YOLOvV3 (You Only Look Once version 3) [19] rely on a set of
pre-defined anchor boxes and achieve state-of-the-art performance. However, these anchor-
based detectors have several disadvantages. On the one hand, a set of anchor boxes needs
to be pre-defined with large parameters and fixed hyper-parameters, and the detection
performance is sensitive to the hyper-parameters related to anchors. On the other hand,
to cope well with scale deformation problems, the detectors set a large number of anchor
boxes, causing a serious imbalance between positive and negative samples [20].

Therefore, many detectors based on the anchor-free method have been proposed
recently. A fully convolutional one-stage object detector (FCOS) [20] eliminates the pre-
defined set of anchor boxes and solves object detection in a per-pixel prediction fashion.
It completely escapes the large parameters and complex computations related to anchors.
CenterNet [21] detects each object using a triplet, including one center keypoint and
two corners. These anchor-free approaches can achieve comparable performance to the
anchor-based method, but with faster speed.

3. Methodology

In this section, we introduce the proposed anchor-free Siamese network in detail.
As shown in Figure 1, the AFSN adopts the Siamese network to extract multi-level deep
features and computes similarity maps between the template and the search region, fol-
lowed by multiple anchor-free prediction networks. The backbone network consists of two
subnetworks with the same structure sharing weights. The proposed dual-fusion method
is divided into combining feature maps and prediction results. The high-level features are
added to the low-level and middle-level features. The final result is the sum of the multiple
prediction results. The anchor-free prediction networks discard the pre-defined anchor
boxes and consist of classification and regression networks in per-pixel prediction.
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Figure 1. The architecture of our AFSN (Anchor-Free Siamese Network).

3.1. Feature Extraction with a Siamese Network

Previous Siamese networks were designed to be shallow to satisfy strict translation
invariance. Recently, the backbone network for object detection and semantic segmentation
task has been gradually replaced by deep networks, which lead to decreased perfor-
mance [1]. However, almost every modern network adds padding structures to make
it go deeper, which destroys the strict translation invariance restriction. To this end,
SiamRPN++ [6] has conducted detailed analysis experiments on intrinsic factors, obtaining
the following quantitative conclusions:

(1) A padding structure leads to a spatial bias because of the violation of the restriction.
A spatial-aware sampling strategy with a suitable shift can avoid putting a strong center
bias on targets.

(2) The original modern networks generally have a larger stride, which is not suitable
for Siamese trackers.

Based on the results of the above analysis, the proposed AFSN adopts the modified
ResNet-50 [8] as its backbone network. We reduce the original strides of res3 and res4 blocks
from 16 and 32 pixels to 8 pixels and increase the receptive field by dilated convolution
operation. Meanwhile, a spatial-aware sampling strategy is adopted to train the whole
network. To reduce the number of parameters, we change the channels of multi-level
feature maps to 256 by a 1 x 1 convolution operation. The backbone network consists
of two subnetworks: a target subnetwork, which extracts feature maps of the tracking
template patch T, and a search subnetwork, which extracts feature maps of the search region
S. The two subnetworks share the same convolutional neural network (CNN) architecture
with the same parameters.

Compared with shallow networks such as AlexNet, ResNet-50 can aggregate multiple
layers to retain richer information. Multi-level features can provide different representa-
tions. Low-level and middle-level features primarily focusing on spatial features such as the
edge, color, and shape of the target are of great significance to estimate the target location
more accurately. High-level features have better representations on sematic information,
which are of vital importance to distinguish similar distractors and can be beneficial during
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some challenging scenarios such as huge deformation and fast motion. Compounding
these representations can improve the inference of classification and localization.

In our network, we use feature maps extracted from the last three residual blocks of
ResNet-50, represented as { Ry, R3, R4}. The process of fusion is shown in Figure 1, and
these blocks are concatenated as a unity:

ﬁ3 = Cﬂt(R4, R3) 1)

where Ry agd R5 include 256 channels. Hence R3 has 2 x 256 channels.
Then R3 and R; are concatenated as a unity:

K2 = C{Zt(ﬁg,, Rg) )

where R3 and R, include 2 x 256 and 256 channels, respectively. Hence R, has3 x 256 channels.
Finally, the obtained feature maps {§2, §3, R4} will be used in the following

tracking network.

To embed the information of feature maps from target patch T and search region S,
the response map R can be obtained by cross-correlation operation. We set the extracted
feature map of target patch T and search region S as R and R®, respectively. Since the
following prediction networks take the response map R as input to generate the location
and classification information of the target, the abundant information of the response map
is essential for object prediction. We use the depth-wise cross-correlation operation to
calculate the response maps on R® with R” as a kernel to retain massive information. We
compute the response maps by using

Ry = RS * R}
Ry =R3 * R} (3)

where * denotes the channel-by-channel depth-wise cross-correlation operation. The
response maps have the same number of channels as RT (3 x 256, 2 x 256, 256). The
response maps are then convoluted with a 1 x 1 kernel to change its channels to 256; as a
result, the subsequent prediction computation can be significantly sped up. As shown in
Figure 1, the output of Ry, R3 and Ry is fed into three prediction subnetworks individually.

3.2. Anchor-Free Prediction Network

For each point (i, j) in the response map R, it can be mapped back onto the search
region S as (x, y) by computing the corresponding strides.

x=|
y=

| +ixs

| +jxs @)

NI® N|»

where s denotes the effective strides.

The anchor-free prediction operation completely eliminates the complicated computa-
tions and tricky parameter tuning related to anchor bounding boxes. If the point (x, y) falls
into the ground-truth bounding box, it can be considered a positive training sample, and
otherwise, a negative training sample. The anchor-free prediction subnetwork is shown
in Figure 2. The total prediction subnetwork can be divided into two branches: a classi-
fication branch to classify the category for each point and a regression branch to regress
the target bounding box at this point. For each response map Ry, . the classification
network outputs a classification feature map A;fsx <o and its two dimensions represent the
foreground and background scores of the corresponding point, respectively. The regression
branch outputs a regression feature map A:j‘i nxas and it encodes the location of a predicted
bounding box at this point. We set regression output A™8(i, j, :) = (I, t, r, b) corre-
spondent to the point (i, j, :), which represents the distance from this point to the four sides
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of the bounding box. To suppress numerous low-quality bounding boxes generated by
locations far away from the center of the object, following [20], we add a center-ness branch
in parallel with the classification branch to predict the distance between the location and

the center of the object. The center-ness branch outputs a center-ness feature map AS7, ;.

foreground background

Classification
25%x25%2
x4 Center-ness
25%x25x1
25%25%256 25%x25%256
Regression
e z - 25%x25x%4
x4 2|
25%25%256 25%25%256 /./ \.\
L TRB

Figure 2. The architecture of the anchor-free network. L, T, R, B represents the distance from this
point to the four sides of the bounding box respectively.

Since the output feature maps of the three anchor-free prediction subnetworks have the
same spatial resolution, the weighted sum is adopted directly on the output. A weighted-
fusion method combines all the outputs.

4 4 4

Car = Y a;i%Cp, Ryyy = Y _ Bi* Ry, Cengyy = Y Aj % Cen;. @)
=2 =2 1=

where C, R and Cen denote the outputs of classification, regression, and center-ness
branches, respectively. The combination weights (a, B, ) can be end-to-end trained
offline together with the whole network.

3.3. Multi-Template Update Mechanism

Traditional Siamese trackers adopt the features extracted from the first frame as the
template. The target often suffers from serious occlusions, large-scale variation, similar
background clutters, etc. During the whole tracking process, it is difficult to solve the
problems using only the one template extracted from the first frame. Therefore, we adopt a
high-confidence multi-template update mechanism to update templates extracted from the
last three residual blocks of the backbone network.

To prevent the features of distractors and background to be added into templates, we
use the score of the peak to correlation energy to ensure the effectiveness of templates. The
APCE (Average Peak-to Correlation Energy) can reflect the degree of occlusion and can be
calculated by

Frax = max(R)

Fin = min(R)

APCE = | Fmax—Fmin|* (6)
o (——
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where Fygx, Fyin, and F, , denote the maximum, minimum, and corresponding values
at the point (w, h) in the response map, respectively. The numerator reflects the peak
value, and the denominator represents the fluctuation of the response map. The peak value
and the fluctuation can indicate the confidence degree about the tracking results. When
the target is not occluded, the APCE becomes larger and the response map shows only
one sharp peak. Otherwise, the APCE dramatically decreases if the target is occluded
or missing.

We compute the APCE as the sum of multiple response maps (Rp, R3, Ry4) and
determine whether the threshold is exceeded. An APCE greater than the threshold reveals
that the result is reliable. Then, we can upgrade templates by using

RT =RT x5+ (1-n)«RX @)

where 77 denotes the update ratio, RT denotes template features, and RX denotes the features
extracted from high-confidence results.

3.4. Loss Function

Let (x9, yo),(x1, y1) denote the left-top and right-bottom corner point, respectively,
of the ground-truth bounding box. The output of the regression branch at point (i, j, :)
canbe setas A™8(i, j, :) = (I, t, r, b)and calculated by

l=x—x0,t=y—1yo
r=x1—x,b=y;—y ®

Then, the IOU between the predicted results and the ground truth can be computed.
Here, we only compute the IOU with positive samples, otherwise, it is set to 0. Then we
calculate the regression loss by using

Lo — Yi j f(A™8(, ], 1)) Liou(A™(i, j, 1), 8(x, v))

" Z{(f@%j;)) 0,7>0,b>0 ©)
eors >0,t>0,r>0,b>

flars(i, ) = {

0 otherwise

where g(x, y) denotes the ground-truth bounding box.
The score Cen(i, j) in center-ness output is defined by

Cen(i, j) = \/min(l, 7) " min(t, b) (10)

max(Il, ¥) © max(¢, b)

If the point (i, j) is a negative sample, it should be regressed here. The center-ness loss
can be computed by using

_ i FLATSG,j, 2))x Ceni, j) * log A", /)
cen = LA™, j, 1)) (11)
+(1 = f(A™(, j, 2)) * Cen(i, j)) *log(1 — A“"(i, j))

The loss function of the AFSN consists of the classification loss function, the center-ness
loss function, and the regression loss function, which can be calculated by using

L = L¢s+ A1Leen + AZLreg (12)

where L represents the cross-entropy loss for the classification branch.



Electronics 2021, 10, 1067

8of 17

4. Results and Discussion

Our experiments were implemented in Python with Pytorch on one Nvidia Titan
1080Ti GPU (Graphics Processing Unit). The backbone network of our architecture is
pre-trained on ImageNet [22] using the parameters as initialization to retrain our model.
We trained the whole network on the training sets of COCO (Microsoft Common Objects in
Context) [23], ImageNet DET [24], ImageNet VID [24], and YouTube-Bounding Boxes [25]
for experiments on GOT-10K [9], LaSOT [10], UAV123 [11], and OTB100 [12]. Specifically,
we set a 127 x 127 region centered on the ground-truth bounding box as a template patch
so as to set a 255 x 255 region as the search region.

During the training process, the proposed AFSN can be trained end to end. There are
in total 50 epochs performed, 6000 sample pairs per epoch, by using stochastic gradient
descent (SGD) with a learning rate exponentially decayed from 0.01 to 0.0001. A weight
decay of 0.0005 and a momentum of 0.9 are used. To substantially boost performance, the
parameters of the backbone network are frozen while training the anchor-free prediction
subnetwork in the first 10 epochs. In the last 40 epochs, the last three blocks of ResNet-50
are unfrozen to be trained together by setting the learning rate to be 10 times smaller than
the anchor-free prediction parts. Especially, we use a warm-up learning rate of 0.001 in the
first five epochs to train the anchor-free prediction network.

4.1. Results on GOT-10k

GOT-10k is a recently released large, high-diversity benchmark for generic object
tracking in the wild [14]. It collects over 10,000 video segments and manually annotates
more than 1.5 million high-precision bounding boxes. The class between training and
testing sets are zero-overlapped. It provides class-balanced metrics mAO and mSR for the
evaluation of generic object trackers and builds an official website that offers an online
evaluation server [14]. Authors need to test their models on the given testing dataset and
upload the tracking results from the website. The provided evaluation indicators include
success plots, the average overlap (AO), and the success rate (SR). The AO denotes the
average of overlaps between all ground-truth boxes and estimated bounding boxes. The
SR denotes the percentage of successfully tracked frames where the overlaps exceed a
threshold. SRy 5 and SR 75 represent the rate of successfully tracked frames whose overlap
exceeds 0.5 and 0.75, respectively.

In this experiment, we compared our method with several trackers, including
SiamRPN++ [6], CCOT [26], SPM [27], and Staple [28]. All the results are provided by the
official website of GOT-10k. Table 1 lists the comparison details of different indicators. It
shows that the proposed AFSN is able to rank first in AO, SRy 5, and SRg 5. Results of
lines 3 and 4 of the table suggest that compared with SiamRPN++, the proposed AFSN
improves the score by 5.8% on SRy 5 and 10% on SR 75. As shown in Figure 3, the proposed
AFSN can outperform other trackers and obtains a 5% gain from SiamRPN++ in the overlap
success rate. Results validate that the AFSN tracker can estimate more precise bounding
boxes and have good generalization for a visual object.

When the dual-fusion method and multi-template update mechanism are removed,
the proposed algorithm can run at 42 fps. Under the same conditions, the SiamRPN++
algorithm runs at 38.71 fps. The running speed of the proposed algorithm is higher than
that of the anchor-based algorithm. This indicates that the anchor-free prediction network
can decrease the number of hyper-parameters, make the tracker simpler, and speed up the
tracking process.

In this part, we qualitatively compare the proposed AFSN with four different track-
ers in Figure 4. As our AFSN concatenates deeper semantic information and low-level
spatial information, the tracking results shown in the figure can distinguish targets and
background accurately. Furthermore, the AFSN can locate the target more accurately with
minimum error.
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Table 1. Comparisons on GOT-10k (Generic Object Tracking Benchmark). KCF: Kernelized Correla-
tion Filter; SRDCF: Spatially Regularized Correlation Filters; SAMEF: Scale Adaptive Multiple Feature;
DSST: Discriminative Scale Space Tracker; MEEM: Robust Tracking via Multiple Experts Using
Entropy Minimization; ECO: Efficient Convolution Operators; CFnet: Correlation Filter Network;
MDnet: Multi-Domain convolutional neural Networks; CCOT: Continuous Convolution Operators
Tracking; SiamFC: Fully-Convolutional Siamese Networks; SiamRPN_R18: Siamese Region Proposal
Network with ResNet18; SPM: Series-Parallel Matching; SiamRPN++: Evolution of Siamese Visual
Tracking with Very Deep Networks; AFSN: Anchor-Free Siamese Network. AO: Average overlap;
SR: Success rate; FPS: Frames Per Second.

Trackers AO SRy 5 SRy.75 FPS
KCF [29] 0.203 0.177 0.065 94.66
SRDCEF [30] 0.236 0.227 0.094 5.58
Staple [28] 0.246 0.239 0.089 28.87
SAMF [31] 0.246 0.241 0.084 7.43
DSST [32] 0.247 0.223 0.081 18.25
MEEM [33] 0.253 0.235 0.068 20.59
ECO-HC [34] 0.286 0.276 0.096 4455
CFnet [35] 0.293 0.265 0.087 35.62
MDnet [36] 0.299 0.303 0.099 1.52
ECO [34] 0.316 0.309 0.111 2.62
CCOT [26] 0.325 0.328 0.107 0.68
SiamFC [2] 0.374 0.404 0.144 25.81
SiamRPN_R18 [3] 0.483 0.581 0.270 97.55
SPM [26] 0.513 0.593 0.359 72.30
SiamRPN++ [6] 0.508 0.601 0.313 38.71
AFSN 0.558 0.659 0413 28.09

Success plots on GOT-10k

1.0

—— AFSN: [0.558]
SiamRPN++: [0.508]
—— SiamFCv2: [0.374]
= SiamFC: [0.348]
—— GOTURN: [0.347]
—— CCOT: [0.325]
ECO: [0.316]

g —— CF2:[0.315]
o MDNet: [0.299]
« —— CFNetc2: [0.293]
2 — = ECOhC: [0.286]
o BACF: [0.260]
a == MEEM: [0.253]
== DAT:[0.251]
~ = DSST: [0.247)
— = SAMF: [0.246)
Staple: [0.246]
~ = SRDCF: [0.236]
fDSST: [0.206]
~ = KCF:[0.203]

Overlap threshold

Figure 3. Comparisons on GOT-10k (Generic Object Tracking Benchmark). Our AFSN signifi-
cantly outperforms other methods. AFSN: Anchor-Free Siamese Network; SiamRPN++: Evolution
of Siamese Visual Tracking with Very Deep Networks; SiamFCv2: Fully-Convolutional Siamese
Networks version 2; SiamFC: Fully-Convolutional Siamese Networks; GOTURN: Generic Ob-
ject Tracking Using Regression Networks; CCOT: Continuous Convolution Operators Tracking;
ECO: Efficient Convolution Operators; MDNet: Multi-Domain convolutional neural Networks;
BACEF: Background-Aware Correlation Filters; MEEM: Robust Tracking via Multiple Experts Using
Entropy Minimization; DAT: Deep Attentive Tracking; DSST: Discriminative Scale Space Tracker;
SAMEF: SAMEF: Scale Adaptive Multiple Feature; SRDCEF: Spatially Reg-ularized Correlation Filters;
KCF: Kernelized Correlation Filter.
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SiamRPN++

AFSN ECO SiamFCv2 MDNet

Figure 4. Qualitative result comparison of the proposed method with other trackers. AFSN: Anchor-Free Siamese Network;
SiamRPN++: Evolution of Siamese Visual Tracking with Very Deep Networks; ECO: Efficient Convolution Operators;

SiamFCv2: Fully-Convolutional Siamese Networks version 2; MDNet: Multi-Domain convolutional neural Networks.

4.2. Results on LaSOT

To further validate the proposed AFSN on a more challenging dataset, we conducted
experiments on LaSOT. The dataset contains more than 3.52 million manually annotated
frames and 1400 videos [10]. It contains 70 classesm and each class includes 20 tracking
sequences. The official website of LaSOT provides 280 videos with high-quality dense
annotations in the testing set and 35 algorithms as baselines. The provided evaluation
indicators include normalized precision plots, precision plots, and success plots in one-pass
evaluation (OPE).

We compared our tracker with the top 20 trackers, including SiamRPN++ [6], MD-
Net [36], MEEM [33], ECO [34], SiamFC [2], DSiam [37], and other baselines. Figure 4
reports the overall performance of our AFSN on the testing set. From Figure 5, we observe
that the proposed AFSN outperforms the best tracker by 0.2%, 0.4%, and 0.7%, respectively,
for the three indicators. Notably, compared with the provided baselines, our AFSN height-
ens the scores by more than 11%, 12%, and 10%, respectively, for the three indicators over
MDNet, which is the best tracker reported on the official website of the LaSOT dataset.

4.3. Results on UAV123

The UAV123 dataset includes in total 123 video sequences comprising more than
110,000 frames [11]. The objects in the dataset mainly suffer from an aspect ratio change,
background clutter, fast motion, and illumination variation, which make tracking challenging.

We tested the proposed tracker on the UAV123 dataset in comparison with sev-
eral representative trackers, including ATOM [13], RLS-RTMDNet [38], DaSiamRPN [4],
SiamRPN [3], ECO [34], SRDCEF [30], MEEM [33], and KCF [29]. We show the results of
the comparison with the UAV123 dataset in Table 2 and Figure 6. As shown in Table 2,
our AFSN obtains the best results, with an AUC of 61.3%, OP 5y of 75.8%, and OP 75 of
55.4%. Our AFSN improves the scores by 9.7%, 12.5%, and 23.4%, respectively, for the three
indicators over RLS-RTMDNet. Compared with the ATOM algorithm with Siamese-based
architecture, our AFSN improves the scores by 0.7% on OPg 59 and 7.8% on OP 75.
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Figure 5. Comparisons among top 20 trackers on LaSOT. (a) Normalized precision plots, (b) precision

plots, and (c) success plots. Our AFSN significantly outperforms other methods in precision and suc-
cess rate. AFSN: Anchor-Free Siamese Network; SiamRPN++: Evolution of Siamese VisualTracking
with Very Deep Networks; MDNet: Multi-Domain convolutional neural Networks; VITAL: Visual
Tracking via Adversarial Learning; SiamFC: Fully-Convolutional Siamese Networks; StructSiam:
Structured Siamese Network; DSiam: Dynamic Siamese Network; ECO: Efficient Convolution Opera-
tors; SINT: Siamese Instance Search for Tracking; STRCF: Spatial-Temporal Regularized Correlation
Filters; CFNet: Correlation Filter Network; BACF: Background-Aware Correlation Filters; TRACA:
Context-aware Deep Feature Compression; MEEM: Robust Tracking via Multiple Experts Using
Entropy Minimization; HCFT: Hierarchical Convolutional Features Tracking; PTAV: Parallel Tracking
and Verifying; SRDCF: Spatially Regularized Correlation Filters.

Table 2. Comparisons on the UAV123 dataset in terms of AUC and mean OP, given the thresholds 0.50 (OPy 5p) and 0.75
(OPy 75). KCF: Kernelized Correlation Filter; MEEM: Robust Tracking via Multiple Experts Using Entropy Minimization;
SRDCEF: Spatially Regularized Correlation Filters; ECO: Efficient Convolution Operators; SiamRPN: Siamese Region Proposal
Network; DaSiamRPN: Distractor-aware SiamRPN; ATOM: Accurate Tracking by Overlap Maximization; RLS-RTMDNet:
Recursive Least-Squares Estimator-Aided Online Learning. AFSN: Anchor-Free Siamese Network.

UAV123 KCF MEEM  SRDCF ECO SiamRPN DaSiamRPN ATOM RLS-RTMDNet AFSN

OPy 50 0.368 0.440 0.551 0.631 0.711 0.725 0.751 0.633 0.758
OPg 75 0.144 0.150 0.263 0.324 0.398 0.405 0.476 0.320 0.554
AUC 0.331 0.392 0.464 0.525 0.557 0.569 0.617 0.516 0.613
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Figure 6. Precision plots for UAV123 in terms of the following attributes: (a) camera motion and (b) viewpoint change.
In both cases, our approach improves the state of the art by a certain margin. AFSN: Anchor-Free Siamese Network;
SiamCAR: Siamese Fully Convolutional Classification and Regression; DaSiamRPN: Distractor-aware SiamRPN; SiamRPN:
Siamese Region Proposal Network; ECO: Efficient Convolution Operators for Tracking; ECO-HC: ECO with HOG and CN
features; SRDCF: Spatially Regularized Correlation Filters; MEEM: Robust Tracking via Multiple Experts Using Entropy
Minimization; KCF: Kernelized Correlation Filter.

From Figure 6, we can observe that the proposed AFSN tracker achieves the best
performance over the sequences with camera motion and viewpoint change attributes.
Compared with SiamCAR [39], our AFSN improves the scores by 0.1% and 0.4%, respec-
tively, for the two aspects. Compared with DaSiamRPN, our AFSN improves the scores
by 1.4% and 3.9%, respectively, for the two aspects. The results demonstrate that our
proposed network has good representation for a visual object, with deeper and richer
feature representation.

4.4. Results on OTB100

OTB100 contains 100 fully annotated sequences tagged with 11 attributes to repre-
sent the challenging aspects, including illumination variation, scale variation, occlusion,
deformation, motion blur, fast motion, in-plane rotation, out-of-plane rotation, out of
view, background clutters, and low resolution [12]. Each attribute represents a specific
challenging factor in object tracking. The evaluation is based on two metrics: precision plot
and success plot. The precision plot metric represents the percentage of frames in which
the estimated location is within a given threshold distance of the ground-truth position.
The success plot metric represents the ratios of successful frames whose overlap is larger
than a given threshold ranging from 0 to 1. The area under the curve (AUC) of each success
plot is used to rank trackers. In this experiment, we compared our network with eight
representative approaches, including SiamRPN [3], Staple [23], and SiamFC [2]. Figure
7 illustrates the precision and success plots of the compared trackers. Compared with
SiamRPN, the proposed AFSN improves 0.7% on the success rate and 0.6% on precision.
As shown in Table 3, the proposed AFSN significantly improves the tracking success rate
for the aspects of background clutter, fast motion, motion blur, out of view, and scale
variation. The results demonstrate that the AFSN can better deal with similar distractors
and large pose variation, which evidences the importance of richer features in enhancing
the robustness and effectiveness of our anchor-free prediction network.
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Figure 7. Comparisons on OTB100. (a) Success plots and (b) precision plots. Our AFSN achieves the best results. AFSN:
Anchor-Free Siamese Network; SiamRPN: Siamese Region Proposal Network; SiamFC: Fully-Convolutional Siamese
Networks; LCT: Long-term Correlation Tracking; CFNet: Correlation Filter Network; MEEM: Robust Tracking via Multiple
Experts Using Entropy Minimization; DSST: Discriminative Scale Space Tracker; KCF: Kernelized Correlation Filter.

Table 3. Comparisons on OTB100 with challenging aspects. SiamFC: Fully-Convolutional Siamese Networks; SiamRPN:
Siamese Region Proposal Network; AFSN: Anchor-Free Siamese Network.

Trackers
Challenging Aspects

SiamFC Staple SiamRPN AFSN

Scale variation 0.556 0.522 0.628 0.641
Deformation 0.510 0.552 0.628 0.599
Illumination variation 0.574 0.596 0.663 0.655
Background clutter 0.523 0.574 0.601 0.628
Motion blur 0.550 0.546 0.627 0.636

Fast motion 0.568 0.537 0.606 0.653
In-plane rotation 0.557 0.552 0.636 0.611
Out-of-plane rotation 0.558 0.534 0.631 0.617
Out of view 0.506 0.481 0.550 0.617
Occlusion 0.547 0.545 0.597 0.589

Low resolution 0.592 0.418 0.597 0.608

4.5. Ablation Study

To study different levers of feature map effectiveness, we performed ablation experi-
ments on OTB100. As shown in Table 4, multi-layer feature maps can improve tracking
performance effectively. A model using one single feature map achieves a performance of
0.603 and 0.827 in the AUC and precision, respectively, on OTB100. A model using two
feature maps obtains performance gains of 0.022 (0.625 vs. 0.603) in the AUC and 0.018
(0.845 vs. 0.827) in precision on OTB100. A model using three feature maps obtains perfor-
mance gains of 0.017 (0.642 vs. 0.625) in the AUC and 0.007 (0.852 vs. 0.845) in precision on
OTB100. The proposed model with a multi-template update mechanism obtains perfor-
mance gains of 0.002 (0.644 vs. 0.642) in the AUC and 0.005 (0.857 vs. 0.852) in precision. In
addition, adding more feature maps has an obvious contribution to further improvements.
The multi-template mechanism is effective for the improvement of precision.
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Table 4. Ablation study of the proposed tracker on OTB100. ResNet-50: Residual Network with
50 layers; OTB100: Object Tracking Benchmark 100; AUC: Area Under the Curve.

ResNet-50 Multi-Template Update OTB100
Ry R3 Ry Ry R3 Ry AUC Precision
v 0.603 0.827
v 0.625 0.845
v 0.642 0.852
V4 Vv 0.644 0.857

5. Conclusions

In this paper, an anchor-free Siamese tracking framework (AFSN) for visual object
tracking is proposed. The proposed AFSN adopts a deep network ResNet-50 as its feature
extraction network. A dual-fusion method is used to take advantage of multi-layer informa-
tion, which creates more distinguishable feature representations for dealing with complex
distractors. Aiming at the template update, a high-confidence multi-template update
mechanism is used to determine whether the template should be updated. In addition, the
pre-defined set of anchor boxes is omitted and the object-tracking task is implemented in a
per-pixel fashion. The experimental results on GOT-10K [9], LaSOT [10], UAV123 [11], and
OTB100 [12] datasets show that the proposed AFSN can achieve state-of-the-art results and
run in real time, which proves the generalizability and robustness of our AFSN. We hope
that our AFSN can be improved to get better performance after replacing some specific
modules in future works.
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