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Abstract: In this paper, a fractional-order memristive model with infinite coexisting attractors is
investigated. The numerical solution of the system is derived based on the Adomian decomposition
method (ADM), and its dynamic behaviors are analyzed by means of phase diagrams, bifurcation
diagrams, Lyapunov exponent spectrum (LEs), dynamic map based on SE complexity and maximum
Lyapunov exponent (MLE). Simulation results show that it has rich dynamic characteristics, including
asymmetric coexisting attractors with different structures and offset boosting. Finally, the digital
signal processor (DSP) implementation verifies the correctness of the solution algorithm and the
physical feasibility of the system.

Keywords: chaos; fractional-order calculus; memristor model; coexisting attractors; Adomian de-
composition method

1. Introduction

Chaotic systems have initial sensitivity, long-term unpredictability and other excellent
characteristics; therefore, they can be cross-combined with other scientific fields such as bi-
ology, information science, security, and engineering [1–5]. For this reason, more and more
scholars are focusing on establishing new chaotic systems with better chaotic characteristics.
Among them, building a memristive chaotic system is an effective method [6,7]. A memris-
tor is a bridge connecting magnetic flux and electric charge [8], although it took a long time
from the concept of the memristor to the advent of the real memristor [9]. However, in
recent years, memristors have been widely studied due to their special properties, which
have promoted memristors in electrical and electronics [10], communication [11], neural
networks [12], biological simulation [13], and security [14] and other fields of application.
In the field of chaos, memristors have become a research focus due to their rich nonlinear
characteristics. For example, by introducing memristors with different properties into the
existing dynamic systems, some chaotic or hyperchaotic systems with rich characteristics
have been studied [15,16]. A new memristive chaotic circuit was obtained by replacing the
non-linear resistor with a memristor in a chaotic circuit [17–20]. Most of these studies are
based on integer-order calculus systems. Fractional-order calculus can more accurately
describe physical models, so it has attracted the attention of researchers and became a focus
of nonlinear research.

By combining fractional calculus and memristors, people pay more attention to the
behavior of the system with its control parameters. Study results show that many fractional-
order memristive systems have rich dynamic characteristics. For example, Mou et al. [21]
analyzed the dynamic behavior of a 4D hyperchaotic memristive circuit with different
parameters. Li et al. [22] reported a 4D system with an infinite equilibrium point of order
memristor, but with further research, some scholars found that the system parameters
are not the only factors that affect the dynamic characteristics of the system. Recently,
Bao’s team found that some memristive systems have extreme multistability [23,24], which
is reflected in the complete bifurcation path of the system with changes in initial values.
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For example, the memristor-based system proposed in Ref. [24] has unlimited coexistence
attractors and the transition behavior is completely different from the transient chaos.
Moreover, as a special dynamic characteristic, extreme multistability does not only appear
in memristive systems. For example, Wan et al. [25] reported super multistability in discrete
neural networks. Chen et al. [26] made a more in-depth study of extreme multistability.
In Ref. [26], Chen et al. constructed a 3rd-order dimensionality-reducing flux capable of
maintaining the original dynamics of the original 5th-order memristive Chua circuit. The
charge model confirms that sensitive extreme multistability phenomena can be detected in
the magnetic flux domain.

Offset boosting is a method of chaotic control. It is usually achieved by adding a
constant term after a certain parameter of the system. By changing the constant, the
attractor of the system can be copied and panned. In 2016, Li et al. presented many systems
by applying offset boosting and summarized the rules [27]. Offset boosting can effectively
produce multistability phenomena. Therefore, many scholars have used it in their own
research [28–32], but most of them focused on integer-order systems. In contrast, offset
boosting has fewer applications in fractional-order systems [33,34].

In this paper, we constructed a 4D fractional-order hypogenetic jerk system based
on a memristor and implemented digital circuit implementation. The introduction of the
memristor led the system to show extreme multistability phenomena. In addition, offset
boosting is realized by introducing constants. In Section 2, the fractional-order hypogenetic
Jerk system model based on a memristor is presented and the solution of this system is
derived based on the ADM algorithm. In Section 3, the dynamic characteristics of the
system are analyzed from three aspects: order change, control parameter change and
system initial value change. In Section 4, coexistence of multiple attractors is shown and
the existence of these coexistence attractors is verified with DSP technology. Offset boosting
as a chaos control method is successfully implemented in this system. Finally, the research
results are summarized and the future research directions are pointed out.

2. Solution of the Fractional-Order Memristor-Based Hypogenetic Jerk System
2.1. Description of Adomian Decomposition Method

The Adomian decomposition algorithm is an analytical algorithm. The main idea
is to decompose the differential equation into three parts: linear, nonlinear and constant
terms. The nonlinear term needs to be transformed into an equivalent special polynomial,
and then the inverse operator method is used for step by step derivation, and finally,
the sum of the deduced components is the high-precision approximate solution of the
differential equation. The Adomian algorithm has been widely used to solve fractional
chaotic systems [35–39] due to its fast calculation speed and high solution accuracy.

For the fractional order system Dq
t0

x(t) = f (x(t))+ g(t), where x(t) = [x1(t), x2(t), · · ·
xn(t)]T are the system state variables, g(t) = [g1, g2 · · · gn]T is the constant of the system,
and f represents a functional formula containing linear and nonlinear parts. The system
can be expressed as the following form

Dq
t0

x(t) = Lx + Nx + g(t)
x(k)(t+0 ) = bk, k = 0, 1, · · · , m− 1
m ∈ N, m− 1 < q < m

, (1)

where L and N are the linear and nonlinear terms of this equations, respectively, bk is the
initial condition. After multiplying both sides of the equation by the integral operator Jq

t0
,

we can obtain
x = Jq

t0
Lx + Jq

t0
Nx + φ, (2)



Electronics 2021, 10, 841 3 of 15

where φ = ∑m−1
k=0 bk

(t−t0)
k

k! is the initial value. According to the principle of adomian
decomposition algorithm [35], the solution of the system is expressed by

x(t) =
∞

∑
i=0

xi = F(x(t0)) , (3)

Decompose the nonlinear term{
Ai

j =
1
i! [

di

dλi N(vi
j(λ))]λ=0

vi
j(λ) = ∑i

k=0(λ)
kxk

j
, (4)

where i = 0, 1, 2, · · · , ∞, j = 0, 1, 2, · · · , n, then the nonlinear term is expressed by

Nx =
∞

∑
i=0

Ai(x0, x1, · · · , xi) . (5)

Thus, the following equation is obtained

x =
∞

∑
i=0

xi = Jq
t0

L
∞

∑
i=0

xi + Jq
t0

N
∞

∑
i=0

xi + Jq
t0

g + φ . (6)

By applying the following recursive relation, we have

x0 = φ

x1 = Jq
t0

Lx0 + Jq
t0

A0(x0)

x2 = Jq
t0

Lx1 + Jq
t0

A1(x0, x1)
...
xi = Jq

t0
Lxi−1 + Jq

t0
Ai−1(x0, x1, · · · , xi−1)

...

. (7)

2.2. Solution of the Fractional-Order Memristor-Based Hypogenetic Jerk System Based on ADM

In recent years, many memristive chaotic systems have been proposed. A memristor-
based hypogenetic chaotic jerk system is reported in Ref. [24]. Through replacing the newly
proposed memristor featured by W(φ) = α + 3βϕ2 and introducing fractional calculus into
the hypogenetic chaotic jerk system, the new system is established by

Dq
t0

x = |y| − b
Dq

t0
y = (α + 3βw2)z

Dq
t0

z = |x| − y− az− c
Dq

t0
w = z

, (8)

where x, y, z are state variables, and w is the state variable of the memristor. a, b, c are the
control parameters. α and β are the control parameters of the memristor. q is the order
number of the system. According to the Ref. [35], the solution of this system is expressed by

X(t) =


x(t)
y(t)
z(t)
w(t)

 =


x(t0)
y(t0)
z(t0)
w(t0)

+ Jq
t0


|y| − b
αz
|x| − y− az− c
z

+ Jq
t0


0
3βzw2

0
0

 . (9)
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Decomposing the non-linear terms 3βzw2, we obtain
A0 = 3βz0w2

0
A1 = 3β · (2z0w0w1 + z1w2

0)
A2 = 3β · (z0w2

1 + 2z0w0w2 + z1w0w1 + z1w0w2 + z2w2
0)

A3 = 3β · (4z0w0w3 + 4z0w1w2 + 2z1w0w3 +
8
3 z1w0w2 +

2
3 z1w1w2

+ 8
3 z2w0w1 +

4
3 z2w0w2 + 2z3w2

0)

According to the following initial conditions
x0 = x(t0)
y0 = y(t0)
z0 = z(t0)
w0 = w(t0)

, (10)

make c0
1 = x0, c0

2 = y0, c0
3 = z0, c0

4 = w0 and according to Formula (9) and fractional
calculus properties, we can obtain

x1 = (|c0
2| − b) (t−t0)

q

Γ(q+1)

y1 = (αc0
3 + 3βc0

3(c
0
4)

2) (t−t0)
q

Γ(q+1)

z1 = (|c0
1| − c0

2 − ac0
3 − c) (t−t0)

q

Γ(q+1)

w1 = c0
3
(t−t0)

q

Γ(q+1)

, (11)

then assign the coefficient value of the above formula to the corresponding variable. That is,
assign the first coefficient to c1

1, the second coefficient to c1
2, and so on. After three iterations,

the other three coefficients of the equation are derived as
c2

1 = (|c1
2| − b)

c2
2 = (αc1

3 + 3β[2c0
3c0

4c1
4 + c1

3(c
0
4)

2)]
c2

3 = (|c1
1| − c1

2 − ac1
3 − c)

c2
4 = c1

3

, (12)


c3

1 = (|c2
2| − b)

c3
2 = (αc2

3 + 3β[c0
3(c

1
4)

2) + 2c0
3c0

4c2
4 + c1

3c0
4c1

4 + c1
3c0

4c2
4 + c2

3(c
0
4)

2)]
c3

3 = (|c2
1| − c2

2 − ac2
3 − c)

c3
4 = c2

3

, (13)


c4

1 = |c3
2| − b

c4
2 = α · c3

3 + 3β · [4c0
3c0

4c3
4 + 4c0

3c1
4c2

4 + 2c1
3c0

4c3
4 +

8
3 c1

3c0
4c2

4 +
2
3 c1

3c1
4c2

4
+ 8

3 c2
3c0

4c1
4 +

4
3 c2

3c0
4c2

4 + 2c3
3 · (c0

4)
2]

c4
3 = |c3

1| − c3
2 − a · c3

3 − c
c4

4 = c3
3

Finally, the fractional order approximate solution of the system is expressed by

x̃j(t) = c0
j + c1

j
(t− t0)

q

Γ(q + 1)
+ c2

j
(t− t0)

2q

Γ(2q + 1)
+ c3

j
(t− t0)

3q

Γ(3q + 1)
+ c4

j
(t− t0)

4q

Γ(4q + 1)
. (14)

Based on this approximate solution, we let the system order q = 0.95, the system
parameters a = 0.4, b = 2.1, c = 2.6, α = 1.8, β = 0.01, and the initial value (0.1, 0.1, 0.1,
0.1). Under this parameter condition, the system was simulated by MATLAB. Figure 1
displays the phase trajectories of two different planes under this condition. It shows a
strange attractor symbolizing chaos.
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Figure 1. Phase diagrams of the system: (a) x− y plane; (b) z− w plane.

The QR decomposition method [40] is an effective method used to calculate the
Lyapunov exponent. By this method, the Jacobian matrix of the system is decomposed
into the product of the orthogonal matrix Q and the upper triangular matrix R. Then, the
Lyapunov exponent of the system can be calculated:

λj =
1

Mh

M

∑
i=1

ln(|Ri(j, j)|) , (15)

where j is the dimensionality of the system, M is the number of iterations, and h is the
iteration step size. In this case, the system Lyapunov exponents are calculated by the
QR method as LE1 = 0.1917, LE2 = 0, LE3 = −0.0272, LE4 = −0.6812. The Lyapunov
exponent distribution is [+ 0 − −], so it is a chaotic system.

3. Dynamical Analysis of the System

In this section, the phase portraits, bifurcation diagrams, Lyapunov exponent spectra
and dynamic map are utilized to analyze the system dynamics.

3.1. Dynamical Analysis with the Order q

The control parameters are set as a = 0.4, b = 2.6, c = 2.1, α = 1.8, β = 0.01, and
the initial value (1, 1, 1, 2). The phase portraits with different q are shown in Figure 2.
This figure shows that the attractor structure of the system is also different for different
q. Figure 2a,b show two densely structured strange attractors. A single scroll attractor
is shown in Figure 2c, and Figure 2d is periodic. The attractor shown in Figure 2e is
interesting, and it looks like a combination of the attractors in Figure 2c,f.
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Figure 2. Phase diagrams with different q: (a) q = 0.21; (b) q = 0.35; (c) q = 0.5; (d) q = 0.52; (e) q = 0.6;
(f) q = 0.9.

To identify the transition from periods to chaos in the system, we set the control
parameters and initial values remain the same as above and q varies at the range [0.2, 1]
with the step size of 0.004. The bifurcation diagram and the LEs of system are obtained in
Figure 3. The lowest order that makes the system chaotic is q = 0.21 in this case. It was
found that there is an obvious periodic window at the interval range q ∈ [0.507, 0.524], and
from the LEs, it can be seen that other regions except for this interval and some narrower
periodic windows are chaotic. Some special properties are displayed in Figure 3a. First,
unlike most bifurcation diagrams, it has a no period-doubling bifurcation path and is not a
continuous whole. In some regions, it changes abruptly, and the bifurcation area jumps
without portent from one area to another. Then, the chaotic system stays in the state of
chaos at a large range of order, except for several windows. Finally, the system evolves into
a periodic state through reverse-period-doubling bifurcation. By observing Figures 2 and 3,
we can find that different bifurcation behaviors correspond to different attractor structures.

0.2 0.4 0.6 0.8 1

q

-40

-30

-20

-10

0

10

L
E

s

LE1

LE2

LE3

LE4

10.8

-1.5

0

0.5

(a) (b) 

Figure 3. Dynamics with q change: (a) bifurcation diagram, (b) Lyapunov exponents.

3.2. Dynamical Analysis with the Parameters

Set a as the bifurcation parameter, and set the remaining parameters as b = 2.1, c = 2.6,
α = 1.8, β = 0.01, and the order q = 0.95. When a is changed at the range [0.35, 0.7], the
bifurcation diagram and its LEs are shown in Figure 4. When the control parameter a
gradually increases, the system starts from the chaotic state, and several period windows
appear as a increases. When a = 0.445, there is a jump in the bifurcation diagram. After
the system returns to the original bifurcation path, it goes to the periodic state through the



Electronics 2021, 10, 841 7 of 15

reverse period-doubling bifurcation. Figure 4b also proves the existence of these periodic
windows, which verifies the above analysis.

0.4 0.5 0.6 0.7

a

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

L
E

s

LE1

LE2

LE3

LE4

(a) (b) 

Figure 4. Dynamics with a change: (a) bifurcation diagram; (b) Lyapunov exponents.

Set a = 0.4, while q and other parameters remain unchanged, We studied the influence
of parameter c on system behavior. When c is changed at the range [0, 3], the bifurcation
diagram and its LEs are shown in Figure 5. It can be seen that the system stays in the state of
chaos at a large range of parameter c, except for three small period windows c ∈ [0.66, 0.77],
[1.27, 1.38] and [2.3, 2.43].

0 1 2 3
c

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

L
E

s

LE1

LE2 LE3

LE4

(a) (b) 

Figure 5. Dynamics with c change: (a) bifurcation diagram; (b) Lyapunov exponents.

3.3. Dynamical Analysis with the Initial Values

Generally, chaotic systems are sensitive to initial values, but the structure of the
attractor remains stable. Even if some systems are capable of coexisting attractors due
to the existence of multiple stable states, the number of coexisting attractors is usually
limited. Ref. [24] reported that the four-line balanced deformed Jerk system has extreme
multistability. The bifurcation diagram and Lyapunov exponent spectrum of the system (8)
with the initial value are plotted to analyze the behavior of the system.

Set the control parameters as a = 0.4, b = 2.6, c = 2.1, α = 1.8, β = 0.01, and the
order q = 0.95, and the remaining three initial values are all set to 1. Figure 6 shows
the bifurcation diagram of the system changing x0 and z0, where x0 varies at the range
[−7, 5] and z0 varies at the range [−3, 6]. The bifurcation behavior of the system remains
unchanged when x0 and z0 change. So, we mainly analyze the dynamic characteristics of
the system with y0 and w0.
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（a） （b）

Figure 6. Bifurcation diagrams with x0 and z0 change: (a) x0 change; (b) z0 change.

Set the same system parameters and order as before, the initial conditions are assigned
as x0 = 1, z0 = 1, w0 = 4. y0 varies at the range [−7, 9]. The bifurcation diagram and
the LEs of the system (8) are shown in Figure 7. In the interval [−7, −4], the bifurcation
behavior of the system is special. When the initial condition y0 increases from −7, the
system breaks into chaos at first through a period-doubling bifurcation. The bifurcation
paths have many narrow periodic windows, and the bifurcation points corresponding to
these windows form another bifurcation path with a breakpoint. Then, the system suddenly
jumps to another chaotic state. As y0 continues to increase, the bifurcation becomes normal.
There are three obvious periodic windows, and the system quickly evolves into chaotic
state again through the period-doubling bifurcation. The LEs shown in Figure 7b verify
the accuracy of bifurcation diagrams.

-5 0 5

y
0

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

L
E

s

LE1

LE2
LE3

LE4

(a) (b) 

Figure 7. Dynamics with y0 change: (a) bifurcation diagram; (b) Lyapunov exponents.

The control parameters and order of the system (8) remain unchanged, and change the
initial value to x0 = 1, y0 = 1, z0 = 1; w0 varies at the range [−7, 8]. The bifurcation dia-
gram and the LEs of the system (8) are shown in Figure 8. As w0 increases, it is obvious that
the bifurcation diagram can be divided into five intervals of [−7,−5], (−5,−1.9], (−1.9,5],
(5,6.7], (6.7,8] numbered 1–5. These five intervals have a certain degree of symmetry. In
interval 1 and 5, the system evolves into a chaotic state through forward (reverse) period-
doubling bifurcation. Then, the system entered interval 2 and 4 and re-evolved. In interval
3, the system is chaotic, except for a few periodic windows. LEs have more severe oscilla-
tions than Figure 7b. This is because the system state switches rapidly between periodic
and chaotic. This phenomenon can be seen from interval 4 of the bifurcation diagram.
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Figure 8. Dynamics with w0 change: (a) bifurcation diagram; (b) Lyapunov exponents.

Dynamical maps based on the SE complexity [41] and the maximum Lyapunove
exponents in the y0 − w0 plane with a = 0.4, b = 2.6, c = 2.1, α = 1.8, β = 0.01 are shown
in Figure 9. In Figure 9a, dark colors indicate a system is chaotic, and light colors indicate
that the system may be periodic states, and white indicates divergence. The dynamic map
based on the maximum Lyapunove exponent is more precise. Orange indicates the system
is chaotic (LEmax > 0.03), and yellow indicates stable resting behavior(0 < LEmax < 0.03),
and cyan-blue indicates periodic states and blue indicates divergence. Dynamic map
based on the maximum Lyapunov exponent can distinguish the state of the system at the
critical region.

(a) (b) 

Figure 9. Dynamic maps in y0 − w0: (a) based on SE complexity; (b) based on maximum
Lyapunov exponent.

4. Multiple Coexisting Attractors of System
4.1. Multiple Coexisting Attractors and Its Digital Circuit Implementation

The control parameters and the order of system (8) remain unchanged, and we set
different initial values to plot the phase diagrams. Figure 10 shows nine asymmetric
coexisting attractors. In order to observe more clearly, the coexistence attractors at each
initial value are separately plotted. There are four chaotic attractors with different structures
and five periodic attractors. It illustrates the multiple stability of the system, and it is just a
dynamic characteristic exhibited by a few sample points in the initial value space.



Electronics 2021, 10, 841 10 of 15

-10 -5 0 5

x

-10

-5

0

5

10

y

(1 1 1 -6)

(1 1 1 -4)

(1 1 1 -2.7)

(1 1 1 1)

(1 1 1 2)

(1 1 1 6)

(1 1 1 7)

(1 1 1 8)

(1 1 1 -2)

Figure 10. Multiple coexisting attractors with different initial values.

The hardware implementation of a chaotic system is an important method for verifying
the feasibility of the system. Due to the tolerance of electronic component parameters, this
increases the difficulty of using analog circuits to implement chaotic systems. However,
the digital circuit implementation scheme based on the DSP platform used in this article
does not have this problem. Figure 11 shows the DSP hardware connection schematic
diagram. In the experiment, the IDE (Integrated Development Environment) of the DSP
platform uses CCS (Code Composer Studio). We can use it to set various parameters such
as system parameters and iteration step length. The initialized data are transmitted to the
DSP through the communication interface for calculation, and the result is transmitted to
the oscilloscope (Tektronix MDO 3104, Tektronix, Hong Kong, China) through the D/A
converter (DAC8552, Texas Instruments, Dallas, TX, USA) for display.

Figure 12 shows the program flowchart. After the DSP is initialized, the various
parameters of the system are set, and then iterative calculations are started. Push the
result into the stack to facilitate the next calculation to call the result. The result after data
processing is output through D/A. In the experiment, we set the same initial conditions as
when the system has coexistence attractors. The DSP implementation hardware connection
diagram is shown in Figure 13. After debugging, the system experimental phase diagram
is obtained. Comparing Figures 10 and 14, it can be concluded that we have successfully
completed the DSP implementation.

DSP

(TMS320F28335)

Communication Interface

(MAX3232)

D/A

(DAC8552)

IDE

(Code Composer Studio)

Oscilloscope

(Tektronix MDO3104)

Figure 11. The digital signal processor (DSP) hardware connection schematic diagram of fractional-
order memristor-based hypogenetic jerk system.
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End

Initialize DSP

Set initial 

values

Iteration

Update initial 

values

Push the result

Data processing

Output to D/A

Pop the results

Finished?

Start

Y

N

Figure 12. Flowchart for DSP implementation program.

Oscilloscope

DSP D/A

Emulator

Figure 13. The DSP implementation hardware connection diagram.
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Figure 14. Multiple coexisting attractor with different initial values: (a) (1 1 1 6); (b) (1 1 1 −2.7);
(c) (1 1 1 7); (d) (1 1 1 2); (e) (1 1 1 1); (f) (1 1 1 −6); (g) (1 1 1 −2); (h) (1 1 1 −4); (i) (1 1 1 8).

4.2. Offset Boosting

Offset boosting control is discussed in this section. According to Ref. [27], we can
generate the offset by adding a constant term after the variable that has only appeared
once in the system. By observing Formula (8), we can find that the variable x satisfies
the conditions for constructing offset boosting. The constant term p is added to the third
dimension, so we can obtain

Dq
t0

x = |y| − b
Dq

t0
y = (α + 3βw2)z

Dq
t0

z = |x + p| − y− az− c
Dq

t0
w = z

. (16)

Set the system parameters and order to remain the same as during characteristic
analysis, the initial conditions [1, 1, 1, 4], and the offset parameter p are set to −3, 0, 3. The
offset boosting phenomenon is illustrated in Figure 15. After the offset boosting control is
applied, the system has richer dynamic behavior under certain initial values. Only change
the initial conditions to [1, 1, 1, 5.5] without changing other conditions. Figure 16 shows the
offset boosting phenomenon under this condition. It shows the boosting phenomenon of
three different states under the same initial value. When p = 3, 2, 1, 0, the system remains in
a chaotic state for boosting. When p = −1, −1.2, −1.4, −1.6, the system remains a double-
periodic orbit for boosting. When p = 3, −4, −5, −6, the system remains a single-periodic
orbit for boosting.
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Figure 15. Offset boosting with control parameter p. p = 3 (green), p = 0 (blue), p = −3 (red).

(a) (b) (c)

Figure 16. Offset boosting with control parameter p. (a) p = 3, 2, 1, 0; (b) p = −1, −1.2, −1.4, −1.6;
(c) p = −3, −4, −5, −6.

5. Conclusions

In this paper, many analysis methods are used to analyze the dynamic characteristics
of this fractional-order menristor-based hypogenetic jerk system, such as a phase diagram,
bifurcation diagram, and Lyapunov exponent spectrum. DSP technology is used to suc-
cessfully verify the feasibility of the system. It is found that the system not only has rich
dynamic characteristics with the change of the order and system parameters, but also
has a complete period-doubling bifurcation path from single-cycle to multi-cycle with the
change in initial values. A change in the bifurcation path implies a change in the structure
of the attractor. Through phase diagram analysis, at least nine coexisting attractors were
found. The control and application of this fractional-order menristor-based hypogenetic
jerk system will be studied next.
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