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Abstract: It is well-known that cardiovascular disease is one of the major causes of death worldwide
nowadays. Electrocardiogram (ECG) sensor is one of the tools commonly used by cardiologists to
diagnose and detect signs of heart disease with their patients. Since fast, prompt and accurate inter-
pretation and decision is important in saving the life of patients from sudden heart attack or cardiac
arrest, many innovations have been made to ECG sensors. However, the use of traditional ECG
sensors is still prevalent in the clinical settings of many medical institutions. This article provides a
comprehensive survey on ECG sensors from hardware, software and data format interoperability
perspectives. The hardware perspective outlines a general hardware architecture of an ECG sensor
along with the description of its hardware components. The software perspective describes vari-
ous techniques (denoising, machine learning, deep learning, and privacy preservation) and other
computer paradigms used in the software development and deployment for ECG sensors. Finally,
the format interoperability perspective offers a detailed taxonomy of current ECG formats and the
relationship among these formats. The intention is to help researchers towards the development of
modern ECG sensors that are suitable and approved for adoption in real clinical settings.

Keywords: cardiovascular disease; cloud computing; communication unit; deep learning; denoising;
ECG sensors; format interoperability; machine learning; privacy preservation; sensing unit

1. Introduction

Heart disease refers to disorders that affect the functionality of our hearts [1]. It in-
cludes disorders of blood vessels associated with the heart, abnormal heart rate or rhythm,
or defects in the structure of the heart. According to World Health Organization (WHO),
about 17.5 million people are dying each year due to heart disease. Early diagnosis and
detection of heart disease is important to avoid sudden death due to heart attack or cardiac
arrest [2]. Electrocardiogram (ECG) sensor is a device commonly used by cardiologists to
check for abnormal heart rhythm and signs of potential heart disease quickly and without
intervention. Sometimes, the signs of heart disease for a patient do not show up in a short
period of ECG signal recording and require longer recording and monitoring period of
more than 24 h. This makes the interpretation of ECG graphs by cardiologists longer and
more error prone. Thus, a lot of innovations have been made in the recent years on ECG
sensors to reduce the mortality rate and assists cardiologists in making prompt, accurate,
and quality decisions. The innovations encompass various perspectives such as the ECG
hardware, signal preprocessing algorithms, automatic detection of heart disease algorithms
from ECG graphs and data format interoperability with other applications of Electronic
Health Record (EHR) system.
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1.1. Existing Survey Work

There exist significant survey works on various aspects of the ECG sensors. Survey
work in [3] compiles progress in the field of wearable sensors and systems related to the
rehabilitation field. Specifically, a brief explanation of various technologies needed for the
implementation of the wearable systems is provided followed by a detailed explanation of
their applications with a special focus on home rehabilitation, safety, health, and wellness.
Another survey work in [4] reviewed wearable ECG monitoring systems for older adults
based on the system’s wireless, mobile, and remote technologies. Specifically, 120 ECG
monitoring systems in this work were described and classified into wireless, smart wear-
able, and mobile ECG monitoring systems while also taking into account the related signal
processing algorithms. A review of heart monitoring systems comprising details of their
functions, progress, and limitations is provided in [5] based on several modules, namely
body sensors, analog to digital conversion and compression, analysis and classification,
wireless transmission, and signal conditioning. A survey on various denoising techniques
for ECG signals was presented in [6]. Work in [7] carries out the study comparing several
wearable sensors utilized for ECG measurements while also reviewing various technical
hurdles encountered during their development. Specifically, the comparison is based on
the working principle, materials and methods used to develop the sensors, implementation,
and performance. Finally, work in [8] provided a detailed classification of ECG monitoring
systems based on their monitoring contexts, targets, schemes, and technologies. In addition,
the work provided other details including a generic architectural model, complete set of
processes for analyzing, designing, and validating the reviewed ECG monitoring systems.

1.2. Motivation

Although the survey work in the field of ECG sensors is significant, but to the best
of our knowledge, a comprehensive survey of ECG sensors in terms of their hardware
components, software algorithms and data format interoperability is still lacking. Besides
the innovations, the use of traditional ECG sensors are still prevalent in real clinical settings
of many medical institutions. A survey on ECG sensors from the perspectives of hardware,
software and data format interoperability will help researchers to identify future works
and facilitate the development of modern ECG systems that are suitable and approved for
adoption in real clinical settings. In this article, a comprehensive survey on ECG sensors
from these three perspectives are provided.

The rest of the article is organized as follow. Section 2 offers an overview of the back-
ground information relevant to the topic. Specifically, a brief description of cardiovascular
disease, introduction to ECG signals and common heart attributes are provided. Section 3
explains the general hardware architecture of ECG sensors followed by the description
of the individual hardware components. In Section 4, the details regarding the software
aspects of the ECG sensors are provided by surveying the denoising, machine learning,
and deep learning techniques while also highlighting other computer paradigms such as
cloud computing and smartphone-based applications followed by a survey on privacy
preservation techniques. Section 5 offers taxonomy of several ECG data formats. In addi-
tion, the section also highlights the relationship among these formats. Finally, Section 6
concludes the paper and provides future insights relevant to the topic.

2. Background

In this section, the background information relevant to the topic is provided. An intro-
duction to cardiovascular diseases is offered followed by an explanation of the Electrocar-
diogram signal and listing the common heart attributes present in a heart dataset.

2.1. Cardiovascular Disease

The terms heart disease and Cardiovascular Disease are used interchangeably in the
literature. Cardiovascular disease (CVD) refers to the abnormal behavior of heart and
blood vessel systems (arteries, veins, and capillaries) that are responsible for maintaining
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oxygen levels to all body tissues and organs. This includes essential life-sustaining areas
such as the brain and the heart itself, among other functions. The tissue or organ will
die (necrosis) if oxygen doesn’t reach. The most common types of heart diseases, their
symptoms, cause, and prevention methods are shown in Table 1. The principal components
of CVD are coronary heart disease and stroke. Coronary heart disease refers to blood vessel
disorders that provide the heart with oxygen. Strokes occur when a blockage (ischemic
stroke) or collapse of the blood vessel (hemorrhagic stroke) causes a disruption of the blood
supply to the brain [9].

Table 1. Different types of cardiovascular diseases based on [10].

CVD Type Symptoms Cause Prevention Methods

Heart Attack
Discomfort, Indigestion,
Sweating, Vomiting, Irregular
heartbeats.

Artery plaques attributable to
calcium, fatty matter, proteins,
and cells which are
inflammatory.

Narcotics (aspirin, brilinta,
etc.)surgical procedure
Processes-Angioplasty

Coronary Heart Disease Chest pain, Aching, Heaviness Pulmonary embolism,
Cardiomyopathy, Pericarditis,

Angioplasty, Bypass
surgery.

Ischemic stroke
Headache, paralysis, or facial
numbness, leg and arm, trouble
with talking

Blocked artery hemorrhagic
stroke.

Carotid endarterectomy,
Angioplasty

Arrhythmia Palpitations, fainting, dizziness,
weakness, fatigue.

Electrolyte’s incorrect balance
in the blood, muscle changes
in the heart

Medication, Change
lifestyle, and surgery.

Heart valve Disease
Swelling of the feet, ankles, or
abdomen, trouble with breathing
and rapid gain in weight

Acquired valve disease,
Congenital valve disease,
Rheumatic fever

Medication, brush
carefully to prevent teeth
and gums infection

Enlarged Heart
(Cardiomegaly)

Shortness of breath, weight gain,
fatigue and leg swelling

Genetic and inherited
conditions, infection of HIV,
abnormal heart valve, high
blood pressure.

Cardiac catheterization,
high-blood regulation
pressure, Avoiding the
usage of harmful alcohol
substances and caffeine

Heart Murmurs High Blood Pressure and Anemia Fever and hyperactive
thyroid,.

Prevention of blood clots,
surgery and diuretics
through medicines

Cardiac Arrest Racing Heartbeat, Dizziness Abnormal Heart rhythms
(Arrhythmia)

Consistently following-up
with the doctors, surgery
and medication

2.1.1. Electrocardiogram Signals

ECG is used to detect electrical activity in the heart to identify and locate the problem
if any. A series of leads called electrodes will be placed onto the skin of the limbs and chest
of a patient. The ECG will then detect the ionic current flow in the heart which causes the
cardiac fiber to contract and afterward relax, in the form of the time-varying signal [11]
and plotted as P, Q, R, S, and T waves. ECG waveforms of normal heartbeats could be
referred in [12] and many other sources in literature. P wave shows depolarization of
the left and right atrium. While Q, R, and S waves occur in rapid succession called QRS
complex represents electrical flow in the ventricles and implies right and left ventricular
depolarization. Next, the T wave indicates ventricular repolarization. At the start of the P
wave, the PR interval arises and closes at the start of the QRS complex. The PR interval’s
usual values are between 0.12 and 0.20 s. The length is represented by the QT interval of
the electrical systole. At the beginning of the QRS complex is the beginning of this interval
and the closure is at the endpoint of the T wave. The magnitude of this interval is usually
smaller than 0.42 s. The origin of the QRS complex is at the beginning of the Q wave and
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stops at the S wave terminal, corresponding to the duration of ventricular depolarization.
The QRS complex’s range is usually less than 0.10s while the QRS complex’s amplitude
range is between 0.5 and 0.7 mV [12].

2.1.2. Heart Attributes

Attributes of heart disease are useful in developing ECG applications that would
automatically detect heart diseases. It is also useful in selecting suitable datasets to use in
training machine learning models for prediction or interpretation of heart diseases based
on ECG. Examples of available datasets are Physionet [13] and MIT-BIH [14].

Some of the common attributes used for diagnosing heart disease are age, sex, rest-
ing blood pressure, chest pain type, Resting ECG, cholesterol level, fasting blood sugar,
etc. [15]. Table 2 describes the 14 attributes of a common heart dataset from Cleveland
database [16,17]. Although the database comprises 76 attributes, only 14 of them are the
most commonly used by researchers. Moreover, the real names of other critical details of
the patients are removed from the database and replaced with insignificant values. Re-
searchers so far with the Cleveland database have only attempted to distinguish presence
(values 1,2,3,4) from absence (value 0). In Table 2, typical angina refers to chest pain that
gives a sensation similar to squeezing or pressure. It generally occurs when the oxygenated
blood is not received by the heart muscle in an adequate amount. On the other hand, chest
pain that does not satisfy angina’s criteria is called atypical angina.

Table 2. Heart disease dataset based on [15,16].

Attributes Values

Age —

Sex 1 = Male, 0 = Female

cp: Chest pain type 1 = Typical angina, 2 = Atypical angina, 3 = Non-anginal,
4 = Asymptomatic

Trestbps: Resting Blood; Pressure (in mm Hg)

Chol: Serum cholesterol in mg/dL

Fbs: fasting blood sugar >120 mg/dL 1 = True, 0 = False

Restecg: resting electrocardiographic results 0 = Normal, 1 = Having ST-T wave abnormality, 2 = Showing
probable or definite left ventricular hypertrophy

Thalach: maximum heart rate achieved

Exang: exercise-induced angina 1 = Yes, 0 = No

Old speak: = ST depression induced by exercise relative to rest

slope: the slope of the peak exercise ST segment 1 = Up sloping, 2 = Flat, 3 = Down sloping

ca: number of major vessels (0–3) colored by fluoroscopy

Thal: Heart condition summary 3 = Normal, 6 = Fixed defect, 7 = Reversible defect

Num: Diagnosis of heart disease (angiographic disease status) 0: <50% diameter narrowing 1: 50% diameter narrowing

3. Hardware Perspective

ECG hardware has evolved from a unit that is big in size, wired and portable, to units
that are smaller in size, wireless and wearable, allowing real-time continuous monitoring
of patients irrespective of where they are whether in hospital or other places. In this
section, the hardware perspectives of an ECG sensor is covered. An introduction to the
general hardware architecture of an ECG sensor is followed by the description of every
individual component in the architecture. Figure 1 illustrates general architecture of an
ECG sensing device. The architecture comprises of three main units. The sensing unit is
responsible for storing, monitoring and processing the ECG data and comprises of three
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sub-units: leads, heart-rate monitor and processor. The wireless communication unit
is responsible for the transmission of the recorded ECG data to the cloud or any other
receiving device. The battery unit is responsible for supplying power to both sensing and
wireless communication unit. These three units are explained in more detail next.

Wireless 

Communication Unit

Sensing Unit

Battery Unit

Leads 
Heart-rate 

Monitor 
Processor

Process data

Read data

Figure 1. General hardware architecture of an electrocardiogram (ECG) sensing device.

3.1. Sensing Unit

As can be seen in Figure 1, the sensing unit further comprises of three blocks: leads,
heart-rate monitors, and processing boards. The description of these individual blocks is
provided next.

3.1.1. Leads

The graphical description of the heart’s electrical activity is represented by ECG lead,
which is generated by interpreting the electrical currents detected at different electrodes.
In other words, the computation of ECG lead involves the interpretation of the electrical
currents detected at various electrodes. Here, an electrode comprises a conductive pad
that is connected to the skin and allows the recording of electrical current. 3-lead ECG
monitoring has three electrodes (RA, LA, and LL) RA placed under the right clavicle close
to the right shoulder within the rib cage frame, LA placed under the left clavicle close to
the left shoulder within the rib cage frame, and LL placed on the left side below the lower
edge of the left rib cage muscles. It’s Monitor shows bipolar leads [18]. 5-lead monitoring
is the same as 3-lead monitoring, but with two additional electrodes enabling extra lead
monitoring and helping to improve ST elevation readings. It is monitoring 5 electrodes.
The placement of 5-lead ECG monitoring electrodes is standardized to ensure that the
information collected is accurate and can be compared with other records. Location of
the 5-lead ECG monitoring is right arm, right leg, left arm, left leg, and chest [19]. 5-Lead
monitoring can provide a sufficient amount of information if there is some concern, such as
cardiac arrhythmia, a 12-lead monitoring can be performed to gain a better understanding
of the problem. A 12-lead ECG gives a full picture of the electrical activity of the heart
by recording information from 12 different perspectives. Adequate electrode placement
is crucial to accurately measure the electrical activity of the heart. There are 12 leads
calculated on a 12-lead ECG using 10 electrodes. Six electrodes placed on chest (V1, V2, V3,
V4, V5, V6,) four electrodes are placed on limb ( RA, RL, LA, LL) [20].

3.1.2. Heart-Rate Monitor Board

Heart-rate monitor boards assist in the continuous measurement and displaying your
heart rate. The specifications of some of the heart-rate monitor boards that are commonly
used in ECG sensors are explained next.
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AD8232:

To assess the heart’s electrical activity, the AD8232 Single Lead Heart Rate Monitor is
used [21–25]. This electric activity can be plotted as an electrocardiogram and output as an
analog reading. The Single Lead Heart Rate Monitor AD8232 acts as an op-amp to assist
the smooth generation of a reliable signal from the PR and QT intervals. It can be very
noisy with ECGs. AD8232 for ECG and other bio-potential measurement applications is
the optimized signal conditioning block. In the presence of noisy conditions, it is intended
to isolate, amplify, and refine small biopotential signals such as those produced by motion
or remote placement of electrodes [26]. With the AD8232, the 4 mm x 4 mm, 20-lead LFCSP,
and the LFCSP SS kit are available. The production is defined from 0 ◦C to 70 ◦C for
A-grade models and the models are operational from −40 ◦C to +85 ◦C. Performance for
the W grade models is defined in the automotive temperature range of −40 ◦C to + 105 ◦C.
It has a 0.25-inch diameter, a 0.26-inch thickness, and a 0.30-centiliter volume.

AD8233:

AD8233 is an integrated electrocardiogram (ECG) signal conditioning block compris-
ing of different biopotential application measurements [27–29]. It is designed to avoid,
amplify, and filter tiny biopotential signals in the presence of noisy conditions such as those
induced by motion or remote electrode placement. This design allows an ultra-low-power
analog-to-digital converter (ADC) or an embedded microcontroller for smoothly acquiring
the output signal. Basic restore functionality is included in the AD8233 that reduces the
length of the high-pass filter’s otherwise long settling tails. The AD8233 automatically
transitions to a higher filter cutoff (such as a lead-off condition) after a sudden signal
shift that rails the amplifier. This feature helps the AD8233 to recover easily, and thus to
take valid measurements soon after attaching the electrodes to the subject. The AD8233 is
available for height-constrained applications in a 2 mm × 1.7 mm, 20-ball WLCSP box,
and a 150 µm thin die. Output from 0 ◦C to 70 ◦C is defined and from −40 ◦C to +85 ◦C is
operational.

MSP430FG439:

The MSP430FG439 microcontroller is the central feature of the monitor terminal [30].
It’s a processor with 16 bits. It has low power consumption, high integration, high space for
computing, online processing, and is easy to integrate with an on-chip wireless computer.
The power consumption is 300 µA, 2.2 V, while the idle mode is at 1MHz, while the standby
mode is 1.1 µA and the off mode is just 0.1 µA. 1.8–3.6V is the low voltage supply spectrum.
The five power-save modes are LPMO, LPM1, LPM2, LPM3, and LPM4. These features
preserve the low consumption of fuel. 16-Bit RISC architecture; instruction loop time of
125-ns. The instruction set of serial onboard programming consists of 51 instructions with
three formats and seven modes of address. On word and byte data, each instruction can
operate [31].

SEN0213:

The specifications of SEN0213 [32] are as follows. The input voltage required is in
between 3.3–6 V (5 V recommended) while the output voltage is in the range of 0–3.3 V.
The operating current, dimension, and interface type are <10 mA, 35 × 22 (mm), 1.378” ×
0.866” (in), and PH2.0-3P, respectively.

3.1.3. Processing Board

Although several processing boards have been utilized for the development of ECG
sensors, Arduino and Rasberry’s Pi boards are the most widely used. The specifications of
commonly used Adruino and Rasberry Pi processing boards are explained next.
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Arduino UNO:

Arduino Uno has been used in ECG sensors in several works [33–40]. Arduino is a
platform for open source electronics, based on easy-to-use hardware and software. Arduino
UNO is the primary processing unit used as a microcontroller in the healthcare system
consisting of ATmega328P 8-bit microchip. The board of Arduino UNO has collections
of 14 digital and analogue input/output pins that can be interfaced with different expan-
sion boards and other circuits. Arduino Uno microcontroller which processes the data
received from the ECG test, ESP Wi-Fi module which transmits the information generated
to the remote API application and finally Blynk IoT application which displays the infor-
mation received on the screen. Operating voltage required for Arduino UNO is 5V and
recommended input voltage is 7 to 12 V with a frequency of 16 MHz.

Arduino Pro Mini:

Arduino Pro Mini has been used in ECG sensors in several works [41–44]. The AT-
mega328 based microcontroller board is the Arduino Pro Mini. It has 14 digital in-
put/output pins, 6 analog inputs, an on-board resonator, a reset button, and pin header
mounting holes and (6 of which can be used as PWM outputs). To provide the board with
USB power and communication, a six-pin header may be attached to an FTDI cable or
Spark fun breakout board. To give the board USB power and connectivity, a six-pin header
can be linked to an FTDI cable or Spark fun breakout board. Two versions of the Pro Mini
are available, one running at 3.3 V and 8 MHz, and the other running at 5 V and 16 MHz.

Arduino DUE:

Arduino Pro Mini has been used in ECG sensors in several works [45,46]. Arduino
DUE board is one of the most powerful Arduino development boards in the series. DUE
board not only has lots of features that make it ideal for advanced applications, it also
has great processing speed. DUE may be considered a technical board used as a starting
board for UNO. DUE board is built on ARM controller series where ATMEGA controller
series develops like other boards. This board is based on a powerful CortexM3 ARM 32 bit
microcontroller that is programmable via the familiar Arduino IDE. The Arduino Due has
54 digital input/output pins (including 12 as PWM, and 42 as input/output). The board
Arduino Due operates at 3.3 V. The maximum voltage allowed by the i/o pins is 3.3 V.
Providing higher voltages could damage the board, like 5 V to an i/o pin having 84 MHz
external and 12 MHz internal frequencies.

Lilypad Arduino:

Arduino Lilypad is used for processing and digital conversion analog. It’s designed
specifically for wearable applications. It is a microcontroller board with the Arduino
boot loader, based on the ATmega328V microcontroller. Lilypad is an e-textile wearable
technology created by Leah Buechley and co-designed by Leah and SparkFun. Lilypad
have 14 digital input/output pins (of which 6 provide PWM output and 6 analog pins. It is
also used to create communications via Bluetooth with your mobile device [47]. The board
runs from 2 V to 5 V with 8 MHz . The new Lilypad version supports automatic reset to
simplify programming even more.

Raspberry Pi:

The Raspberry PI (RPI) is a credit-card-sized single-board computer with an ARM
processor weighing just 50 g. As an individual device, it uses 5 V, 700 mA, and cost-
effective power ratings. The Raspberry base designs RPI in various models: A, B, and a
more sophisticated version of B+. The B+ model has a RAM of 512 MB, runs on an ARMII
processor, and has an operating frequency of approximately 700 MHz. They aim to promote
the use of an inexpensive portable computing system to research information and related
subjects [48]. Using its four USB2.0 connectors, various peripherals such as the mouse,
keyboard, and Wi-Fi adapter can be linked to make it a full-size device. A network-attach
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ethernet port, GPIO controller, and control switch pins, switches, LEDs, and other gadgets
are also part of the board [49]. These various functions allow users to use Raspberry pi in a
wide variety of applications.

Raspberry Pi 2:

The Raspberry Pi Model 2 is a second-generation small-sized mini-computer devel-
oped by Raspberry pi in the UK. The Raspberry Pi 2 was released in February 2015 and
featured a 900 MHz quad-core ARM Cortex-A7 processor and 1 GB RAM. It is the cheap
but genuinely efficient and effective method for simultaneously interfacing with several
devices. It is a low-power unit that operates on 5V, 2A [50].

Raspberry Pi 3:

A Raspberry Pi 3 can be used as the system’s controller. It is a mobile and portable
Linux-based platform with integrated wired and wireless networking comprising of a
40-pin GPIO port extension [51]. The Raspberry Pi is based on a 64-bit, quadcore ARMv8
Cortex A53 1.2 GHz Broadcom BCM2837 processor with 1 GB of RAM. Four USB 2.0 ports
can be used for many devices such as a keyboard or a mouse, in addition to an HDMI port
that can be connected to a portable graphical LCD screen interface. The Raspberry Pi 3
needs a 2.5 A, 5 V nominal current power supply [52]. Raspberry Pi 3 can be programmed
on a multitude of programming languages such as Python, C/C++, and others making it
incredibly flexible for rapid development.

3.2. Communication Unit

The wireless communication capability of an ECG sensor is significant and enables the
ECG sensor to transmit the recorded data to nearby receiving devices. The specifications of
the five major communication standards utilized in ECG sensors are explained next.

3.2.1. ZigBee

For its many beneficial characteristics, the ZigBee protocol is well known: low power,
long battery life, license-free industry operation, science, and medical (ISM) bands, and effi-
cient networking. As a wireless solution for many different situations, the ZigBee Alliance
has therefore proposed ZigBee: commercial building automation (CBA), home automation
(HA), home and hospital treatment (PHHC), smart energy (SE), telecom applications (TA),
and wireless sensor applications (WSA) [53]. Three topological forms are provided by
ZigBee: star tree, mesh, and cluster tree [54]. Each topology has its benefits and is suitable
for use in different circumstances. Star topology is lightweight, and here the battery life
is very long. The tree topology utilizes a structure. The mixed routing approach com-
bines hierarchical tree routing with Ad hoc On-Demand Distance Vector (AODV) routing
and is used by the mesh network. There are three types of nodes in ZigBee networks:
(1) ZigBee coordinator that manages the network; (2) the routers that can participate in the
AODV routing process; (3) the end devices transmitting and receiving frames through their
parent node.

The first industry-standard WPAN interface that uses the 2.4GHz ISM band is ZigBee.
The transmission distance varies between 10 and 75m, depending on the power output
and environmental conditions [55]. In addition, based on the flow of the data transmitted,
ZigBee devices can save energy by switching to sleep mode [56]. As a result, battery life,
combined with sleep mode hours, will last for months (more than two years). This feature
promotes ZigBee to a very high position in the networks of wireless sensors used for
monitoring and management. The Zigbee Alliance developed the Zigbee specifications for
multiple sensor network applications and control for low-cost networking and low-power
for battery-operating devices. The key characteristics of the Zigbee are based on IEEE
standards 802.15.4 [55].
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3.2.2. Bluetooth

The Bluetooth standard provides significant advantages: low cost, low EM interfer-
ence, reduced power consumption, data confidentiality, transmitter measurements, and
the ability to produce a small pico-net of some devices [57]. It is also embedded in most
compact, palm computers and cell phones, and is also used in a significant number of
wearable devices (e.g., wireless headsets and mobile phones). Several wireless technologies,
such as GSM/GPRS, Bluetooth, ZigBee, WLAN IEEE 802.11, and so on, can be used to
relay ECG signals [58–60]. Many ECG experiments-Bluetooth has established a prototype
wireless ECG monitoring system and is able to read the patient’s ECG signal, send a signal
via a Bluetooth interface, and view a personal computer with the ECG waveform [61].
Bluetooth enabled ECG monitoring system consists of three parts, the ECG sensors, PC
signal processing circuit, and display controller as well. The Bluetooth protocol allows
both portable and stationary devices to communicate using wireless short-range technolo-
gies, creating permanent or temporary wireless local area networks. Bluetooth wireless
technology facilitates either one-to-one contact or up to seven separate Bluetooth devices
to connect and interact with a radius of 10 meters, which is called Piconet or PAN, personal
area network. Communication with Bluetooth was designed using the Bluetooth API.
The J2ME Wireless Toolkit was used to obtain binaries [62]. The software application takes
the bytes obtained from the buffer and analyses the ECG, revealing the body temperature
and blood pressure. The ECG telemedicine information system takes advantage of all the
benefits of internet communication. The ECG data of the digital portable ECG recorder is
transmitted to the cell phone via a radio frequency route using the Bluetooth device.

3.2.3. Infrared Data Association

Based on Infrared Data Association (IrDA) criteria, infrared network communication is
widely accessible on personal computers and peripherals, and there is a timely potential for
effective and inexpensive short-range wireless communications on embedded systems and
devices of all kinds. The IrDA is an industry-based group of more than 150 organizations
that have developed networking protocols at a wide range of speeds that are best suited to
low cost, short-range, cross-platform, point-to-point communications. Infrared transfer of
the ECG signal wireless delivery of biomedical signals has also been carried out in recent
years. In early years, IrDA commissioned a working group to identify and establish a
specification of the physical layer under the current specifications except with data rates
far above 4 Mb/s [63]. The modules and devices designed for wireless infrared systems
operate primarily in high-volume markets where both cost and power consumption are key
parameters and it is highly desirable to simply comply with existing standards. The new
IrDA norm is called VFIR (Very Fast Infra-Red). It is a small angle point-to-point (30◦ cones),
the basis for ad-hoc data transfer [64]. VFIR also has good bandwidth and delay. The IrDA
protocols are organized in a traditional architecture layered or stacked in. The existing
protocols have communication up to one meter at distances and speed up to 4 Mbps [65].

3.2.4. Medical Implant Communication Service

The Medical Implant Communication System (MICS) [66] is an internationally recog-
nized short-range, low-power (2 m), high-data, 401–406 MHz (main band 402-405 MHz)
data processing communication network. It is utilized for serving medical or therapeutic
purposes linked to devices used for surgical implants [67]. The band supports a high data
rate and has a contact spectrum of high conductivity in the human body. High-performance
and fault-tolerant wireless solutions can be used in the advancement of wireless technolo-
gies to minimize medical errors, decrease workload, improve hospital staff morale, and
enhance patient satisfaction. Researchers have been increasingly interested in the produc-
tion of wireless recording and tracking of real-time physiological parameters from patient
bodies in the medical field (e.g., EOG, ECG, EMG, EEG, Blood pressure Neurological,
Blood flow, etc.) over the past decade [68]. A MICS network involves devices inserted into
a body called an embedded device (IMD) or devices mounted on the body or wearable as
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body-worn devices (BWD) and programmer/controller (P/C) devices. The transmission
medium between a P/C and an IMD in the MICS network consists of air, skin, and fat
tissue [69]. IMDs perform sensing and therapy functions in a MICS network and the P/C is
used to reprogram and send commands to implanted devices in addition to gathering data
from implanted devices. Implanted instruments can be tracked within 2 meters by patients
and doctors. In support of the diagnostic and therapeutic functions associated with medi-
cal implant devices, MICS was implemented as an unlicensed, compact radio service for
data transmission. Without competing with other users of the electromagnetic radio spec-
trum [70], the MICS band allows medical practitioners and people to use ultra-low-power
electronic stimulation devices such as cardiac pacemakers and defibrillators.

3.2.5. IEEE 802.11g

Currently, the IEEE802.11g specification, which was only ratified in June 2003, has
become the most commonly used standard for local area wireless networks (WLAN).
Its popularity is mainly due to higher data rates being supported, thus retaining back-
ward compatibility with legacy IEEE 802.11G WLANs [71]. As it interacts with other
802.11g devices using multiplexing orthogonal frequency division (OFDM) modulation,
an IEEE802.11g device achieves higher data rates. For three distinct physical layers, the
original IEEE 802.11 protocol [72] defines data rates of 1 Mb/s and 2 Mb/s using direct
sequence spread spectrum (DSSS), frequency hopping spread spectrum (FHSS), and in-
frared (IR) techniques respectively. The specifications of both DSSS and FHSS operations
are listed in the 2.4 GHz Commercial, Scientific, and Medical (ISM) band.

3.3. Battery Unit

The battery unit is responsible for the continuous supply of energy to the sensing
and communication unit. The battery unit must be easy to operate the lightweight and
compact ECG machines and enables doctors to adapt them to the needs of patients for
faster, more efficient cardiac examination and better patient care. Lithium-Ion ( Li-Ion)
batteries can store about three times more energy than the same weight and volume of
Ni-Cd batteries. This quality makes them ideal for applications that are portable. A Li-Ion
cell’s nominal voltage is 3.6 V, which is about three times the voltage of a Ni-Cd or Ni-MH
cell (1.2 V). A Li-Ion battery’s typical internal resistance (around 100 mΩ) is much higher
than a Ni-Cd battery’s typical internal resistance (around 5 mΩ–20 mΩ). This feature
makes Li-Ion batteries more suitable for devices that do not drain a lot of battery current.
Li-ion batteries are prone to over-charge as well as over discharge. There is no jig without
placing it into the portable ECG machines to charge the batteries alone [73,74]. Different
components are used to require different input voltages; a voltage regulator of 3.3 V, 5 V
and 12 V is therefore used to provide unique IC’s with the appropriate input. An LCD is
used to show battery condition that is changed every second. High-speed battery charger
transport is required in the manufacture of portable ECG machines and in order to process
mass production of these ECG machines promptly, apart from the fast assembly of portable
ECG machines

4. Software Perspective

In this section, the software perspectives of an ECG sensor are covered. Several
advancements have been made to improve ECG data acquisition, preprocessing, storage
(for long time monitoring), diagnosis and interpretation processes. Denoising and AI
techniques are discussed followed by introducing other computer paradigms, namely
cloud computing and smartphone-based applications, while also offering their practical
use cases. A literature survey on existing software architectures for CVD detection and
classification, highlighting the usage of the above-mentioned techniques and computer
paradigms, is also provided. Finally, a study on the existing privacy preservation techniques
utilized in the ECG monitoring system is presented.
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4.1. Denoising

Denoising refers to the removal of noise from an ECG signal. Existing literature [6,75,76]
comprises of several denoising techniques for an ECG signal. However, in this section,
three fundamental and widely use ECG denoising techniques (wavelet transform, adaptive
filtering, and Savitzky-Golay filtering) are explained.

4.1.1. Discrete Wavelet Transform

One of the significant tools for signal processing is the fast Fourier transform (FFT) [77]
that transform signals into the frequency domain for all the time and is suitable for the
stationery signals analysis. Short-time Fourier transform (STFT) is the simplest form of time-
frequency analysis and gives a constant resolution. Here, there is a trade-off between the
resolution of time and frequency as STFT takes into account the window size. The wavelet
transform (WT) [78] technique was developed to overcome this shortcoming of STFT and
is used for signal compression and noise reduction. Discrete wavelet transform (DWT) has
lower computation complexity, denoted as O(n), when compared to that of FFT, and can
be utilized in biomedical signal processing to study time-frequency analysis.

Discrete wavelet transform (DWT) takes relatively less computation time in the con-
struction of the multi-resolution analysis utilizing filter banks. The two broad categories of
filters in SWT are the low pass filter (LPF) and the high pass filter (HPF), and the cut-off
frequency for both is half the bandwidth of the incoming signal. The wavelet analysis
combines filtering and down-sampling. In the first level, the original signal is passed
through the two filters and down-sampled by a factor of 2. The decomposition level is at
most log2N. Here N represents the signal length. In the case of reconstruction, there are
two filters as well. However, instead of downsampling steps, the upsampling process is
utilized. In this process, the signals are upsampled by the factor of 2, and zeros are inserted.
The reconstruction formula based on [78] is defined as follows:

cAi[k] =
∞

∑
−∞

(cDi+1[k]g[−n + 2k] + cAi+1[k]h[−n + 2k]) (1)

where cAi and cAi represents the approximation and detail coefficients, respectively. As for
thresholding, two algorithms are commonly utilized for wavelet-based denoising and are
called hard and soft thresholdings. The wavelet coefficients after and before thresholding
for the two thresholding algorithms are computed as follows:

• Hard thresholding

cD̂j =

{
cDj, |cDj| ≥ t
0, |cDj| ≤ t.

(2)

• Soft thresholding

cD̂j =

{
sign(cDj)(|cDj| − t), |cDj| ≥ t
0, |cDj| ≤ t.

(3)

The wavelet coefficients after and before thresholding are denoted as cD̂j and cDj,
respectively.

4.1.2. Adaptive Filtering

A simple diagram of an adaptive filter is illustrated in Figure 2.
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Figure 2. A general diagram of adaptive filter based on [79].

Here, input ECG with the additive noise is denoted as s1 and n represents the noise.
The reference signal s can be either a signal related to n or a pure noise generator. Since
signal and noise are uncorrelated, the mean-squared error (MSE) is calculated based on [80]
as follows:

E[e2] = E[(n− y2] + E[s2
1] (4)

where E[e2] represents MSE and y is the filter output. Let the N coefficients of the filter
at the kth iteration be represented as Wk = [w1(k), w2(k), ..., wN(k)]T . For an input vector
Xk = [x1(k), x2(k− 1), ..., xk(k− N)]T , the output based on [80] is as follows:

y(k) =
N

∑
i=0

wi(k)s(k− i) = WT
k Xk (5)

To minimize the mean square error (MSE) between the primary and the reference
inputs, the filter is required to adjust its weights W iteratively. This adjustment is mainly
achieved by utilizing two iterative techniques that explained next.

Least Mean Squares (LMS) Algorithm:

To reduce the MSE between the primary and the reference inputs, an iterative tech-
nique known as LMS algorithm [81] can be used. LMS is utilized in several applications,
such as approximation of unknown signals, due to its simplicity [82] and requires fewer
computational operations [83]. The weights of the LMS adapting algorithm at the kth
iteration is computed based on [79] as in follows:

Wk+1 = Wk + 2µεkXk (6)

where the desired primary input filtered from the ECG is denoted as dk and yk refers to the
filtered output that is the best least-squares estimate of dk.

εk = dk − yk (7)

The empirical selection of parameter µ is to produce convergence at the desired rate.
The convergence becomes faster with increasing µ. The time constant for convergence is

1
(4µα)

. Here, the highest eigenvalue of the auto-correlation matrix of the reference signal is

referred to as α [84]. Large µ may cause instability and must be in the range 1
α > µ > 0 to

maintain stability.

Recursive Least-Squares (RLS):

Although RLS takes a relatively fewer number of iterations for convergence when
compared to LMS, it requires a higher number of computations per iteration. Work in [85]
highlight the iterative steps to update the weights Wk of an RLS filter and are as follows:

Wk = Wk−1 + Kk(I − XkWk−1) (8)
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where I refers to the identity matrix, Kk denotes the Kalman gain vector, and Pk is the
correlation matrix. The computation of Kk and Pk is as follows:

Kk =
Pk−1Xk

β + XkPk−1X∗k
(9)

Pk =
Pk−1 − KkXkPk−1

β
(10)

where β is a weighting factor in the range 0 < β < 1. For the expedition of the convergence
rate and to achieve the minimized mean square error at fewer steps, substituting the step-
size parameter in LMS by the correlation matrix of the input vector in RLS has a significant
impact [82].

4.1.3. Savitzky-Golay filtering

Work in [86] proposed a sample smoothing method that utilizes local least-squares
polynomial approximation. To reduce the error: εN = ∑M

n=−M(p(n)− x[n])2 by choos-
ing the suitable vector a = [a0, a1, . . . , aN ]

T , a group of 2M + 1 noisy samples x[n] is
approximated using the polynomial p(n) = ∑N

k=0 aknk. There are M samples for ev-
ery considered group of the input at each side around the central point, and can be
referred as x = [x−M, x−M+1, . . . , x−1, x0, x1, . . . , xM]T . The output samples referred to
as y[n] or each of these sets of the input x are calculated by the discrete convolution
[n] = ∑M

m=−M h[m]x[n−m]. Here, the finite impulse response denoted as h[.] is equivalent
to the least-squares polynomial approximation. The vector a can be computed based on [80]
as follows:

a = (AT A)−1 ATx = Hx (11)

where the matrix A = {ni}, i = 0, 1, . . . , N and −M ≤ n ≤ M. x was set to x = d =
[0, 0, . . . , 0, 1, 0, . . . , 0, 0]T to obtain the vector: ã = (AT A)−1 ATd for the impulse response
calculation. Moreover, the 0th row of the matrix: H = (AT A)−1 AT is [h0,−M, h0,−M+1, . . . , h0,−1,
h0,0, h0,1, . . . , h0,M] equals [ p̃(−M), p̃(−M + 1), . . . , p̃(0), . . . , p̃(M)]. Here, the polynomial
that approximate d with least-square error is referred to as p̃(n). Therefore, h[−n] = p̃(n) [87,88].
To achieve the best approximation and smoothing of the noisy data, the selection of M and N
is significant.

4.2. AI Techniques

In this section, two artificial intelligence (AI) techniques, namely machine learning
and deep learning, are explained. These techniques play a vital role in analyzing the ECG
data, thereby significantly contributing to the CVD prediction and classification. The basic
notion of these techniques is explained next while also highlighting their commonly used
algorithms followed by a use case highlighting the utilization of AI techniques in CVD
prediction.

4.2.1. Machine Learning

Machine learning (ML) [89] is the subset of AI where a computer program is trained
to make decisions like a human with the ability to learn different characteristics from a set
of data instead of just solving a simple problem. It is suitable for a program with a complex
task or a large set of data with an unknown formula. Machine learning techniques have
great potential to assist the healthcare industry and researchers in the diagnosis of CVD
and have been used in the literature [90–94] for CVD prediction and classification.

The three broad learning techniques of ML are supervised, unsupervised, and rein-
forcement learning. Supervised learning makes use of labeled data. Here, the model is
trained by giving the input and the correct output data for the program to learn. The model
then classifies or predicts the future output of new data using the knowledge that was
developed from the training. On the other hand, unsupervised learning utilizes unlabeled
data. Here, the model is only given input data and learns patterns from the given input
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data. The inference is then used to predict the solution. In the case of reinforcement
learning, the program learns from experience. Using rewards and hurdles, the program
tries all the possibilities to achieve the goal. The best solution is then decided based on the
maximum reward gotten. Table 3 highlights some of the commonly used ML algorithms,
their ECG applications, to which learning category they belong, and their short summary.

Table 3. Summary of commonly used machine learning (ML) algorithms.

ML Algorithm ECG Applications Learning Category Summary

Decision Tree [95] [96–98] Supervised
Based on multiple input variables, the model
utilizes a decision tree to predict the target
variable’s value.

Independent Component
Analysis [99] [100–102] Unsupervised A method to divide independent sources from

a mixed signal.

K-means clustering [103] [104] Unsupervised

A vector quantization method that divides
multiple observations into k clusters where
every observation relates to the nearest
mean cluster.

k-Nearest neighbor
classifier [105] [91,106,107] Supervised

The input comprises the k closest training
instances of the specific feature, and the output
is a class membership. Here, the object is
attributed to the class most prevalent between
its nearest k neighbors.

Linear regression [108] [109,110] Supervised
Model is trained based on two variables, that
are correlated linearly on the x-axis and y-axis,
to predict the behavior of the data.

Logistic regression [111] [112] Supervised
Based on the binary target variable, the
probability of it being in either of the two
clauses is predicted.

Monte Carlo [113] [114] Reinforcement A method that carries out several random
sampling to collect numerical results.

Principal Component
Analysis [115] [116–118] Unsupervised

A dimensionality-reduction method that
transforms an extensive set of variables into a
smaller one while retaining most of the
information available in the original set.

Q-learning [119] [120] Reinforcement

A technique to find an optimal policy to
maximize the expected value of the total
reward beginning from the current state to
over any successive steps.

Random forest [121] [93,122–124] Supervised

Comprises several decision trees and to setup a
forest of trees which is uncorrelated, utilizes
bagging and feature randomness during
individual tree creation.

SARSA [125] [126] Reinforcement A technique to enable the learning of a Markov
decision process policy

Singular Value
Decomposition [127] [128–130] Unsupervised

A matrix factorization technique that
decomposes a matrix into singular values and
singular vectors.

Support vector
machine [131] [90,92] Supervised A technique to obtain a hyperplane that splits

the data into different classes.
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4.2.2. Deep Learning

Deep learning (DL) is a subset of ML. It is where ML extends its ability to learn
inspired by the human brain using an artificial neural network (ANN). Here, various layers
of ANN provide the possibility for the machine to learn better. Besides that, to improve
learning, a large amount of data is needed. Instead of manually instructing a program
what it needs to do, the DL model learns by repeatedly performing tasks using the data
provided and tweaking where needed until the best result is achieved. The larger the data
set, the better the DL model can learn and perform decision. A complete DL model can
make its own intelligent decision without any human help even for complex problems
with an unstructured, diverse, and interconnected dataset. Deep learning techniques are
also being extensively used in the healthcare industry [132–137] for the timely detection
of ECG anomalies, thereby facilitating the prediction and classification of CVDs. Table 4
highlights some of the commonly used DL algorithms, their ECG applications, and their
short summary.

Table 4. Summary of commonly used deep learning (DL) algorithms.

DL Algorithm ECG Applications Summary

Artificial neural
network [138] [132,133]

A technique to enable the simulation of the
network of neurons, similar to a human
brain, to automate the learning and
decision making of a computer.

Convolutional
neural network [139] [136,137]

A type of ANN designed for pixel data
processing and is most widely used for
analyzing visual imagery.

Recurrent neural
network [140] [141–143] A class of ANN that utilizes the previous

step’s output as input for the current step.

Long short-term
memory [144] [135,145,146]

Recurrent neural networks that, in
sequence prediction problems, can learn
the order of dependence.

4.2.3. Use Case: Arrhythmia Detection for Varied-Length ECG using ATI-CNN

Work in [147] proposed an attention-based time-incremental convolutional neural
network (ATI-CNN) to predict paroxysmal arrhythmias from 12-lead varied-length ECG.
ATI-CNN integrates the attention module and recurrent cells with CNN to accomplish the
fusion of both temporal and spatial information from ECG signals. Figure 3 illustrates the
architecture of the proposed ATI-CNN model.

Here, a preprocessed time-series data is obtained by feeding 12-lead ECG to the fully
convolutional network and is then inputted to long short-term memory (LSTM) cells to
interchange information between several time points. Finally, the output from the LSTM
cells is fed to the attention module that is responsible for assigning weights for every time
point before outputting the final result. The architecture has some key features. During
the ECG processing, the pipeline is divided into two phases. Spatial fusion information is
obtained from ECG signals based on convolutional neural network (CNN), while temporal
fusion information is achieved using LSTM with the attention module. In order to extend
ATI-CNN’s input to varied-length ECG signals, the recurrent cell’s unwrapping ability was
utilized. Moreover, it accurately detects paroxysmal arrhythmias as there is no prior need
for cropping/padding signal when dealing with the varied-length signal database. The
classification result along with the signal segment of interest is then outputted from the
attention module. The utilization of the attention module significantly assists in finding
out the abnormalities in ECG signals, thereby making the deep learning model more
interpretable. China Physiological Signal Challenge [148] was utilized to validate and
demonstrate the performance of the proposed model for the classification of the cardiac
arrhythmia’s nine classes by utilizing 12-lead ECG signals.
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Input : 12-Lead ECG

Fully Convolutional Network (13 Layers)

LSTM (2 Layers)

Attention Module

Prediction

Spatial Fusion

Temporal Fusion

Figure 3. Architecture of attention-based time-incremental convolutional neural network based
on [147].

4.3. Other Computer Paradigms

Computer paradigms such as cloud computing and smartphone utilization also have
a significant impact on facilitating ECG-based applications. These paradigms along with
the use case of analyzing ECG data are explained next.

4.3.1. Cloud Computing

Cloud computing can be defined as a model for enabling convenient, on-demand net-
work access to a distributed pool of configurable computing resources that can be smoothly
provisioned and launched with minimal latency or service provider intervention. There are
four types of cloud models. The first type is the private cloud that refers to a management
that is centralized and where the services are either distributed within one company or
its subsidiaries. The second type is the community cloud refers to a collaborative effort
where multiple organizations belonging to specific domain share services. The third type
is the public cloud that comprises a set of services available to the general public. Finally,
the fourth type is the hybrid cloud that refers to the combination of two or more types
of clouds and which continue to be separate entities, giving the advantages of multiple
deployment modes [149].

Cloud computing provides flexible services that help clients according to their needs,
and one of them is machine learning as a service (MLaaS). MLaaS is a range of services
that provide machine learning tools in cloud base platform. Using MLaaS, users reduce
the cost, time, risk, and resource of providing in-house solutions. All machine learning
predictive analysis, such as classification, regression, and clustering, is possible to run
using the provided service. It supports data processing, data exploration, model selection,
deployment, and result analysis. Three currently major company in cloud computing
establish their MLaaS to cope with the current trend. They are Amazon Web Service [150],
Microsoft Azure [151], and Google AutoML [152]. Cloud computing applications are
currently being used not only to offer online healthcare to people but are also being used
for monitoring and diagnosing various diseases, which also includes the prediction and
classification of CVD diseases [91,93,94,133,134,136,137].

4.3.2. Smartphone-Based Devices and Applications

One of the most efficient means of achieving mobile healthcare (mHealthcare) is
the utilization of smartphone-based devices and applications (SBDAs) [153] that are cost-
effective and has remote sensing capabilities. Primary physiological parameters, such as
pulse rate, blood pressure, electrocardiograph, body analysis, blood glucose saturation,
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weight, physical and sleeping activity, are being monitored and managed by various
commercialized SBDAs. In the case of CVD prediction and classification, SBDAs have been
extensively used [93,94,132,137]. Furthermore, SBDAs offer the capability of providing
telemedicine opportunities in remote locations while also enabling real-time on-site analysis
and is largely due to advancements in communication standards, remote sensing, software,
and cloud computing. This is especially significant in developing countries, where access
to basic healthcare service is not adequate and a large number of smartphone users are
from these countries. The technology assists patients in effectively managing and keeping
track of their medical health while also facilitating patient-doctor interaction. Overall,
the applications of SDBAs will be rise with the growing field of mHealthcare over the
next decade.

4.3.3. Use Case: An Autonomic Cloud Environment for Hosting ECG Data
Analysis Services

Work in [154] integrated mobile computing and cloud computing to develop an au-
tonomic system for analyzing ECG data. This autonomic cloud environment stores the
recorded data related to people’s health to a cloud-based information repository. Further-
more, the stored data is analyzed using software services hosted in the cloud. The system
can be utilized at different locations by several users. In addition, the mobile software in
the smartphone comprises configuration preferences that enable users to customize the
reporting frequency in which readings are sent for remote analysis. Figure 4 shows the
software architecture of this autonomic system that includes services deployed at all three
layers (software, platform, and infrastructure levels) of the Cloud computing stack.

Amazon Web Services

Web Service

Software (ECG data analysis)

Container Scaling Manager

Container

Workflow Engine

Container

Workflow Engine

Container

Workflow Engine

Aneka

Dynamic Scalable Runtime

Virtualized Computing Nodes

Encrypted Data

Trusted 
third party 

certification 
authority 

Software
Level

Platform 
Level

Infrastructure
Level

Figure 4. Software architecture of the autonomic system based on [154].

At the software layer, a web service is hosted by a scalable web server acting as a
system’s frontend where the data can be uploaded and analyzed at the client-side using
the user-friendly application. At the platform level, a middleware software is utilized that
is responsible for managing available resources and scheduling of computing tasks with an
aim to swiftly deliver the ECG analysis results with satisfactory Quality of Service (QoS) to
the user. This layer comprises three main components: Container scaling manager, Work-
flow Engine [155], and Aneka [156]. Each container hosts a workflow engine that manages
the execution of the ECG application. The container scaling manager instantiates more
containers with an increasing number of users in order to assign user requests to workflow
engines. The tasks that were created from user requests are packaged by workflow engine
and then sent to Aneka which is a workload distribution and management platform in
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Microsoft.NET framework environments and is used for accelerating applications. Further-
more, Aneka utilizes a master-worker framework to handle the communication between
the infrastructure layer and the platform layer. In addition, the “Dynamic Scalable Runtime”
module is implemented as part of the Aneka scheduling environment and is responsible for
managing the QoS of the applications running under the software layer. At the infrastruc-
ture level, third-party infrastructure service providers such as Amazon web services [150]
are used that provide pay-as-you-go computing and storage services and can be deployed
in several geographical locations. Finally, a trusted third-party certification authority is
employed for securely storing the data in the cloud storage.

4.4. Existing Software Architectures for CVD Prediction and Classification

Table 5 highlights the existing software architectures utilized for CVD prediction and
classification. Specifically, details regarding the type of CVD, denoising and AI techniques
used, and the utilization of computer paradigms are provided. As for the selection criteria
for Table 5, some of the existing software architectures, developed in the last decade,
for CVD prediction and classification are considered. Overall, this survey of software
architectures is intended to assist researchers in the selection of appropriate techniques
and computer paradigms for the development of next-generation software architectures
for CVD prediction and classification.

Table 5. Existing software architectures for cardiovascular disease (CVD) prediction and classification.

Work Year CVD Type Denoising AI
Technique AI Algorithm Used Cloud

Computing
SBDA-
Based

[132] 2010 Arrhythmia Bandpass filter DL Artificial neural
network Not utilized Yes

[90] 2012 Myocardial
infarction — ML Support vector

machine Not utilized No

[133] 2014 Arrhythmia PLI detection and
suppression [157] DL Artificial neural

network Utilized No

[91] 2015 Arrhythmia — ML k-Nearest Neighbors
Classification Utilized No

[134] 2018 Coronary artery
disease

Adaptive filter
(LMS) DL

Adaptive neuro
fuzzy inference
system

Utilized No

[158] 2018 Arrhythmia 1D-Median
Filtering DL Deep Neural

Network Not utilized No

[159] 2019 Arrhythmia — DL Deep Neural
Network Not utilized No

[92] 2019 Coronary artery
disease — ML Support vector

machine Not utilized No

[135] 2019 Myocardial
infarction DWT-based DL Bidirectional, long

short-term memory Not utilized No

[93] 2019 Arrhythmia — ML Random forest Utilized Yes

[94] 2020 Arrhythmia Bandpass filter ML CatBoost Utilized Yes

[136] 2020 Arrhythmia — DL Convolutional
neural network Utilized No

[137] 2020 Arrhythmia Anti-aliasing filter
and low-pass filter DL Convolutional

neural network Utilized Yes
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4.5. Privacy Preservation Techniques

With an increase in the usage of ECG signals along with the remote monitoring
systems, there is a rising concern for ECG data privacy. ECG data contains sensitive
information and hackers could use this information to abuse patients. Several ways could
be used to steal the ECG data from monitoring systems. Hacker close to the patient
can intercept the ECG data transmission between sensors and the patient’s smartphone.
Alternatively, the hacker could manipulate the recorded ECG signals at the decision support
server, thereby changing the health status of the patient [160]. Another issue is the added
usage of the Internet could further increase the number of security and privacy threats
while also resulting in data integrity issues [161]. Based on the Health Insurance Portability
and Accountability Act (HIPAA) [162], any medical information of the patient transmitted
on the Internet must be protected and secured. Specifically, the system must have the
capability to offer the patient control on who cannot access the patient’s data and who can.
In addition, the system must have robust and effective communication and storage security.
Therefore, ensuring data privacy is of prime importance for ECG monitoring systems.
There exist significant work in the development of privacy preservation techniques for ECG
monitoring systems. Table 6 illustrates some of the existing privacy preservation techniques,
developed in the last decade, for ECG monitoring systems while also highlighting whether
or not they utilized the cloud computing paradigm.

Table 6. Existing privacy preservation techniques used in ECG monitoring systems.

Work Year Cloud Computing Summary

[163] 2010 Not utilized Secure cross-layer-based body sensor network platform comprising critical ECG
data identification and low-delay adaptive encryption features.

[164] 2012 Not utilized Homomorphic encryption and Yao’s garbled circuits-based hybrid multi-party
computation protocol to preserve the privacy of ECG quality.

[161] 2013 Utilized
Hiding patient’s confidential information in an ECG signal by utilizing a
wavelet-based steganography technique that is an integration of encryption and
scrambling techniques.

[165] 2015 Utilized Remote monitoring system utilizing fully homomorphic encryption to the ECG
data privacy

[160] 2017 Utilized Public-key cryptosystem-based privacy preserving ECG monitoring system for
arrhythmia detection with secure communication feature.

[166] 2018 Not utilized Low-complexity privacy preserving compressive analysis utilizing
subspace-based representation for arrhythmia detection.

[167] 2018 Not utilized Low-latency privacy preserving approach for ECG monitoring systems utilizing
several ECG features-based cryptographic key generation.

[168] 2019 Not utilized An Internet of things-based ECG monitoring framework that utilizes biometric
authentication to enable privacy preserving during sharing of ECG data.

[169] 2020 Utilized SessionID/SessionKey-based privacy preserving compression model to enable
efficient ECG sharing over Internet of Medical Things.

[170] 2020 Utilized
Internet of things-assisted ECG monitoring framework that enables secure ECG
data transmission by utilizing lightweight access control, while also comprising
of a lightweight secure health storage system.

It is envisaged that future works on privacy preserving and security of ECG mon-
itoring applications using blcokchain technology will be explored by researchers soon.
Blockchain is a promising technology that could be utilized to provide better security of
storage, transfer and access of Electronic Health Records in cloud environment [171,172].
One advantage of blockchain technology is that it does not rely on trusting a third party.
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5. Format Interoperability Perspective

In this section, the data format interoperability perspective of an ECG sensor is covered.
A taxonomy of several ECG formats, comprising of a brief explanation of individual
formats, is provided followed by a survey of existing ECG format converters to show the
relationships among these ECG formats.

5.1. Overview of Digital ECG Formats

The data output formats play a significant role in the selection of new ECG systems
as the goal of current healthcare reforms is to achieve greater interoperability in health IT
systems. Specifically, the reforms target the transfer of patient’s data with ease, thereby
eliminating the need for paper-based systems. However, unlike medical imaging data that
is mostly standardized on DICOM and HL7 format, ECG formats do not have a standard
file format. Some of the commonly used file formats for ECG data are SCP-ECG, HL7
aECG, DICOM Supp. 30, IEEE11073, XML-ECG, UNISENS, etc. Work in [173] offers an
in-depth review of the existing digital ECG formats. The presence of several formats for
ECG poses severe interoperability issues when storing or accessing ECG data to or from
the cardiovascular information system (CVIS), respectively. Specifically, the different ECG
formats and their transmission options need to be addressed before installation to ensure
the transferability of waveforms generated by ECG systems to CVIS. In addition, the data
should be able to be shared with hopital’s electronic medical records in a usable format.
Figure 5 illustrates an overall taxonomy of digital ECG formats and are classified based on
[173–175] into seven different categories. They are as follows:

1 Supported by Standard Development Organizations (SDOs)

– Widely known efforts The four commonly used ECG formats supported by SDOs
are HL7 annotated ECG (HL7 aECG), computer-assisted electrocardiography
(SCP-ECG) Standard Communications Protocol, Medical waveform Format En-
coding Rules (MFER) and Digital Imaging and Communication in Medicine
(DICOM) Waveform Supplement 30. HL7 aECG [176] is an ECG format based
on XML and is an American standard from the American National Institute of
Standards (ANSI). The SCP-ECG [177] is a binary encoding ECG format speci-
fication approved by the European Committee for Standardization (CEN) and
is specifically intended for short-term diagnostic ECGs. Descriptions of the con-
tent and structure of the information to be transmitted between digital ECG
devices and host ECG systems are presented in this format. The MFER [178]
format, a Japanese standard, specializes in medical waveforms (EEG, respiratory
waveforms, ECG etc.). This format is sponsored by the Japanese Healthcare
Information systems Industry Association (JAHIS). Finally, DICOM Complement
30 [179] is a DICOM expansion for the regulation of biomedical signals such as
ECG waveforms.

– The X73 FamilyVital Signs Information Representation (VSIR) format, ENV 13734,
also known as VITAL [180] was one of the first ECG formats in the X73 family
and comprises of information and service model of object-oriented domains.
The VSIR model is further improved by FEF, ENV 14271 [181] by considering
the comprehensive nomenclature of biomedical measurements, comprising of
data items observed in intensive care units, anesthesia departments, and clinical
labs, including neurology. Finally, an update of both the VSIR and FEF versions
is the IEEE P11073-10306 X73PoC (X73-Point of Care) specialization for ECG
devices [182] format. The object-oriented design and study of the virtual ECG
interface and the virtual medical system knowledge data model exchanged with
the ECG are discussed in this format.

2 Binary Formats
Holter applications utilize a specific ECG format, for recording a large amount of
data, which is based on the requirements given by the International Society for
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Holter and Noninvasive Electrocardiology (ISHNE) [183,184]. The Hierarchical Data
Format (HDF) is another binary ECG format that is utilized for high-resolution ECG
signals [185]. In particular, HDF offers a collection of file formats and libraries that
have been built to store and organize broad numerical data volumes [186]. Work in
[187] suggested an improvement to the protocol of SCP-ECG and named it e-SCP-
ECG+. More vital signs as well as demographic data can be handled by the revised
format while also resolving some of the disadvantages of the previous protocol by
creating new tags and parts.

3 XML proposals

– General PurposeThe Philips XML format [188] utilizes XML Schema Language
and is available online along with the electrocardiograph documentation. This
format uses a lossless algorithm to compress the ECG waveform data and utilizes
a base 64 encoding scheme to encode the data into ASCII characters. Moreover,
Scalable Vector Graphics (SVG) is the design format used by Philips XML and is
capable of communicating with other display standards such as HL7 aECG or IHE
Fetch ECG [189,190]. I-Med [191] consists of a domain-independent framework
for transferring many forms of medical records, including ECG information,
which can be explained by primary features such as QRS length and text-based
interpretations. Work in [192] proposed a template solution called ecgML, for
ECG data representation and exchange, to easily incorporate ECG data into
electronic health records (EHRs) and medical guidance. The XML-ECG format
was proposed in [193] compared to other XML-based ECG variants, like HL7
aECG which ecgML, and consists of a simple structure of just six modules and is
more readable.

– Environment SpecificTo overcome the technical limitations of mobile devices, the
Mobile ElectroCardioGraphy Markup Language (mECGML) [194], which is a
minimal XML format intended primarily for ECG sharing data and storing on
smartphones, was proposed. Work in [195] proposed awareness of ECG, which is
an XML-based markup language that offers information resources and expands
reference criteria for ECG, to log a patient’s heart telemonitoring during daily
operations. For the storage and archiving of sensor data from multiple recording
systems, the Unified Data Format for Multi SENSor Data (UNISENS) format
[196] was proposed. Several data types can be recorded in the format, such as
events e.g. artifact areas, cause annotations, etc.), constant signals (e.g., thoracic
impedance, ECG, acceleration, etc., and other biological values (e.g., breathing
rhythm, blood pressure, pulse rate, etc.). The XML-BSPM format was suggested
in [197] to promote the Body Surface Potential Map (BSPM) methods and was
also checked alongside the Web-based XML-BSPM viewer [198].

4 Intended for Neurophysiology
For the neurophysiology environment, there is a need to record and transmit several
biological signals such as the electrooculogram (EOG), the electroencephalogram
(EEG) the electromyogram (EMG), etc. The standards developed to manage these
signals can also be used to store ECG signals.

– Data Format FamilyOne of the leading initiatives is the data format family that
comprises multipurpose protocols. The European Data Format (EDF) [199] is
one of the first Data Format Family initiatives and has a 16-bit format designed
for time series conversion, like polygraphic storage. In addition, EDF is simpler
and supports multiple scaling factors and sampling rates. Furthermore, the
EDF protocol was enhanced to EDF+ [200], which included several changes,
such as the ability to obtain intermittent records or the support of moment
annotations, such as parameters of the ECG. To overcome certain limitations
of EDF, the General Data Format (GDF) was proposed in [201] and supports
many helpful applications that are not widely implemented in other formats
only while providing a common event coding scheme. A 24-bit variant of the
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EDF 16-bit template, known as BioSemi Data Format (BDF) [201], was proposed
that supports EEG, BSPM, and EMG applications. Finally, an XML-based EDF
extension is proposed in [202]. This format is defined by Neurotronic and is
called the OpenXDF protocol.

– Others E1467 standard [203] is utilized to enable the free exchange of digital neu-
rophysiological data among different computer systems. For some neurophysi-
ological studies, this framework offers a method for waveform data exchange
while also offering the ability to distort and label waveform data. Furthermore,
ECG waveforms are also provided by the standard. Another digital biomedical
signal format was proposed in [204], known as the signal interchange format
(SIGIF), Supporting both raw and interpreted data, multiple mechanisms and
representations of the signal, different epochs, and external analysis. The EBS
file format [205,206] is binary and is utilized for saving Time-series multichannel
recordings and related metadata. Specifically, this format can handle various
biomedical data types such as EEG, ECG, MEG, ECoG, and other polygraphic
recordings. An XML-based format is proposed in [207] to address the inherent
incompatibility of different formats that are utilized for storing digital biomedical
time-series signals. Finally, an interleaved file format (IFF) based format for
physiological data called IFFPHYS is proposed in [208].

5 DatabasesSeveral ECG databases offer their open data format. For instance, the Phys-
ionet database [13] offers the format of the Waveform Database. The Massachusetts
Institute of Technology-Beth Israel Hospital (MIT-BIH) [14], the American Heart As-
sociation (AHA) [209], CSE [210–212], and the PTB-XL [175] are among the other
databases.

6 IHE (Cardiology Framework) The goal of the IHE Cardiology System is to incorpo-
rate current standards and promote cardiology workflow, sharing information, and
patient care. Retrieve ECG for Display (ECG) [213] stable final text is one of the
IHE Cardiology System integration profiles and provides enterprise-wide access to
ECG documents for analysis using the Portable Document Format (PDF) with vector
sketch or the type format of SVG + XML Multipurpose Internet Mail Extensions. The
integration profile of the Resting ECG Workflow (REWF) [214] describes the workflow
linked to automated electrocardiography. The REWF profile that complies with the
requirements outlined in the retrieval ECG document for the display transaction is
submitted to the displayable ECGs Waveform Communication Management (WCM)
[215] is an upcoming IHE-PCD profile that provides a way to pass near-real-time wave-
form data between a gateway and a health care information system using ISO/IEEE
nomenclature and HL7 v2 observation messages. Instead of bit maps or PDF files,
data packets in WCM will comprise raw data. Finally, standard export data format
(SEAMAT) [174] was developed by the Japanese Circulation Society to export data
belonging to ECG, catheterization, and ultrasound cardiography to external storage.

7 Ontologies ECG ontology based on the SCP-ECG file structure was proposed in
[216] to integrate and provide seamless access to heterogeneous sources in the form
of an electronic health record [217]. The National Center for Biomedical Ontology
(NCBO) Bio-Portal has developed an ontology-based annotation [218] to describe
ECGs, their methods of capture, and their waveforms. An ontology and conceptual
modeling study group named NEMO (Portuguese Nucleo de Estudos em Modelagem
Conceitual e Ontologias) [219] have created another ontology-based annotation.
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5.2. Relationships among Digital ECG Formats

Table 7 shows the survey of current ECG format converters available in the literature.
Specifically, the table offers details regarding the format input and output type, whether or
not the conversion process is reversible, and a brief description of ECG format converters.
This survey is intended to assist the researchers in understanding the relationship among
several ECG formats, thereby facilitating them in the selection of an appropriate ECG
format for their future ECG systems.

Table 7. Survey on existing ECG format converters.

Work Year Input Format
Type

Output Format
Type

Conversion
Process

Remarks

[220] 2003 SCP-ECG DICOM Not reversible

Using an online SCP-ECG to DICOM
adapter to translate the SCP-ECG
signals into the DICOM medical
environment.

[221] 2005 SCP-ECG DICOM Not reversible
SCP-ECG to DICOM one-way
mapping comprising a viewer for the
two formats.

[222] 2004 PhilipsXML HL7 aECG Not reversible
Conversion of Philips XML ECGs
into the HL7 aECG by utilizing a
PC-based application.

[223] 2007 SCP-ECG GDF, HL7 aECG Reversible

Usage of GDF as an intermediate
framework to allow the two-way
conversion between the formats
SCP-ECG and HL7 aECG.

[224] 2008 SCP-ECG XML Reversible

Integrating SCP-ECG files by
utilizing a backward-compatible ECG
adapter to convert into XML-based
relational databases.

[225] 2008 MIT-BIH ecgML Not reversible
Offers an ECG converter to support
users using applications based on
ecgML.

[226] 2010 IEEE P11073 SCP-ECG Reversible
Mapping of necessary classes and
attributes to minimize the SCP-ECG
fields and sections for IEEE P11073.

[227] 2004 SCP-ECG + VSIR HL7 aECG Not reversible

The HL7 aECG file is created by an
automated signal processing tool
named HES-EKG by combining the
patient and raw data from the
SCP-ECG record.

[228] 2004 SCP-ECG XML and ASCII Not reversible

The XML and ASCII-based formats
are accessed by transcoding the
SCP-ECG input files received from
the database.

[229] 2007 ecgML and HL7
aECG ASCII and XML Not reversible

Based on [228], access to the database
through PHP web application is
provided, and the extension includes
new formats. In addition, rendering
ECG signals are achieved through
different viewers.

[230] 2005 SCP-ECG UNIPRO and
SIFOR Reversible SCP-ECG as the central format based

multiple format converter tool.
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Table 7. Cont.

Work Year Input Format
Type

Output Format
Type

Conversion
Process

Remarks

[231] 2008
SCP-ECG,
UNIPRO, and HL7
aECG

DICOM Not reversible

An enhancement to [230] that is
based on the combination of the open
standards within a DICOM-based
picture archiving and communication
system (PACS).

[193] 2007
SCP-ECG, ECG-9x,
MFER, and HL7
aECG

XML-ECG Reversible
A converter to check the
compatibility of XML-based ECG
format with other ECG formats.

[232] 2010 PhilipsXML and
SCP-ECG DICOM Not reversible

A 12-lead ECG system based on
PACS consisting of two converters is
presented.

[233] 2010
SCP-ECG, HL7
aECG, DICOM,
and PhilipsXML

XML -based
format Not reversible A Java-based application to convert

an XML-based central format.

[234] 2011
MIT-BIH,
SCP-ECG, and
HL7 aECG

ECG ontology Reversible

A hypothesis to check the possibility
of semantic integration among ECG
data formats utilizing ECG ontology
as reference.

[235] 2017 SCP-ECG MFER Not reversible

Conversion of the digital SCP-ECG
used in clinical practice to the MFER
standard for use in health care.
Specifically, the structure of each
section of SCP-ECG is converted to
the format comprising of tag, length,
and value and expressed in MFER
format using different tags according
to the expression contents.

[236] 2018 raw ECG
SCP-ECG, HL7
aECG and ISHNE
format

Reversible

An adapter system named
ECGConvert offers interoperability
on raw ECG to HL7 aECG and
SCPECG, while also supporting
ISHNE format to HL7 aECG
conversion.

6. Conclusions and Future Directions

ECG sensors have been studied thoroughly in the literature. However, several distinct
aspects of these sensors pose significant challenges for the researchers, clinicians, and other
users to select these devices based on their requirements. In this article, a comprehen-
sive survey of ECG sensors from the perspective of their hardware components, software
algorithms and data format interoperability is carried out. The hardware perspective is
covered by introducing the general hardware architecture of an ECG sensor and catego-
rizing it into three main units: sensing, communication and battery unit. In addition,
several components and technologies belonging to these units are briefly discussed. In the
software perspective, various techniques including denoising, machine learning and deep
learning used in processing of ECG signals are discussed while also introducing the other
computer paradigms such as cloud computing and smartphone-based applications that
facilitates in the development of ECG monitoring systems. In addition, a survey of existing
literature on ECG monitoring software architectures is carried out by highlighting the
usage of these techniques and computer paradigms followed by a study on the existing
privacy preservation techniques used in ECG monitoring systems. Finally, in the ECG
data format interoperability perspective, a taxonomy of several ECG formats is provided
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comprising of a brief description on each of the individual format. Moreover, a survey
on existing converters for different ECG formats is carried out, thereby highlighting the
relationship among these formats. Overall, this article assists researchers in identifying
future room for improvements from the three perspectives (hardware, software, and format
interoperability) and facilitates the development of modern ECG sensors that are suitable
and approved for adoption in real clinical settings. As part of the future directions, an
investigation on robotics and healthcare automation and its impact on the current and next-
generation monitoring systems will be carried out. Moreover, another possible research
direction would be to explore ways to better integrate several IoT technologies and other
connected devices (especially when the patient is in a mobile unit such as an ambulance)
for the enhancement of the current ECG monitoring systems.
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Abbreviations
The following abbreviations are used in this manuscript:

ADC Analog-to-digital converter
AODV Ad hoc On-Demand Distance Vector
AI Artificial intelligence
ANN Artificial neural network
AWS Amazon Web Service
ANSI American National Institute of Standards
AHA American Heart Association
ATI-CNN Attention-based time-incremental convolutional neural network
BWD Body-worn devices
BSPM Body Surface Potential Map
BDF BioSemi Data Format
CNN Convolutional neural network
CVD Cardiovascular Disease
CBA Commercial building automation
CVIS Cardiovascular information system
DSSS Direct sequence spread spectrum
DWT Discrete wavelet transform
DL Deep learning
DICOM Digital Imaging and Communication in Medicine
ECG Electrocardiogram
HER Electronic Health Record
EOG Electrooculogram
EEG Electroencephalogram
EMG Electromyogram
EMU Energy Management Unit
EHRs Electronic health records
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FFT Fast Fourier transform
FHSS Frequency hopping spread spectrum
GDF General Data Format
HPF High pass filter
HA Home automation
HIPAA Health Insurance Portability and Accountability Act
HDF Hierarchical Data Format
IrDA Infrared Data Association
IR Infrared
ISHNE International Society for Holter and Noninvasive Electrocardiology
IFF Interleaved file format
JAHIS Japanese Healthcare Information Systems Industry Association
Li-Ion Lithium-Ion
LPF Low pass filter
LMS Least Mean Squares
LSTM Long short-term memory
MICS Medical Implant Communication System
MSE Mean-squared error
ML Machine learning
MLaaS Machine learning as a service
mHealthcare Mobile healthcare
MFER Medical waveform Format Encoding Rules
mECGQML Mobile ElectroCardioGraphy Markup Language
MIT-BIH Massachusetts Institute of Technology-Beth Israel Hospital
NIST National Institute of Standard and Technology
NCBO National Center for Biomedical Ontology
P/C Programmer/controller
PDF Portable Document Format
PACS Picture archiving and communication system
RPI Raspberry PI
RLS Recursive Least-Squares
REWF Resting ECG Workflow
STFT Short-time Fourier transform
SVM Support vector machine
SE Smart energy
SBDAs Smartphone-based devices and applications
SDOs Standard Development Organizations
SVG Scalable Vector Graphics
SIGIF Signal interchange format
TA Telecom applications
VSIR Vital Signs Information Representation
WHO World Health Organization
WSA Wireless sensor applications
WLAN Wireless networks
WT Wavelet transform
WTA Winner-take-all
WCM Waveform Communication Management
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