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Abstract: Visible image quality is very susceptible to changes in illumination, and there are limitations
in ship classification using images acquired by a single sensor. This study proposes a ship classification
method based on an attention mechanism and multi-scale convolutional neural network (MSCNN)
for visible and infrared images. First, the features of visible and infrared images are extracted by a
two-stream symmetric multi-scale convolutional neural network module, and then concatenated to
make full use of the complementary features present in multi-modal images. After that, the attention
mechanism is applied to the concatenated fusion features to emphasize local details areas in the feature
map, aiming to further improve feature representation capability of the model. Lastly, attention
weights and the original concatenated fusion features are added element by element and fed into
fully connected layers and Softmax output layer for final classification output. Effectiveness of the
proposed method is verified on a visible and infrared spectra (VAIS) dataset, which shows 93.81%
accuracy in classification results. Compared with other state-of-the-art methods, the proposed method
could extract features more effectively and has better overall classification performance.

Keywords: ship classification; feature fusion; attention mechanism; convolutional neural network;
infrared image; visible image

1. Introduction

Ship classification plays an important role in military and civilian fields, such as maritime traffic,
fishing vessel monitoring, maritime search and rescue, etc. [1,2]. However, in real life, ship classification
results are very susceptible to background settings and recognition of intra-class differences among
various types of ship has proven difficult. Therefore, ship classification has become one of the research
hotspots in pattern recognition.

The main types of ship image are synthetic aperture radar (SAR) images, visible images and infrared
images. After the launch of SEASAT in the 1970s, SAR began to be used in marine environmental
research. SAR images are immune to light and weather conditions, but they have low resolution
and are susceptible to electromagnetic interference as they are radar signals. Visible images, on the
other hand, have high resolution and possess detailed texture, but they are easily affected by light
conditions. When illumination is insufficient, the acquired image details drop significantly. Infrared
images are not affected by light conditions either. Although the resolution is not very high, it has a
clear target contour. Moreover, it has practical advantage as an infrared sensor can produce stable
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imaging. Therefore, combining visible and infrared images can improve the practicability of ship
classification system.

Ship classification methods can be generalized into two categories, one is traditional handcrafted
feature-based, and the other is convolutional neural network (CNN)-based. Traditional handcrafted
features mainly include a histogram of oriented gradients (HOG) [3], local binary pattern (LBP) [4],
Hu invariant moments [5] and scale-invariant feature transform (SIFT) [6], etc. Handcrafted features
are only suitable for use in specific applications and rely on expert knowledge.

Nowadays, with the rapid development of deep learning technology, CNN has become a
research hotspot in computer vision, with successful adoption in the fields of image classification [7],
object detection [8], and traffic sign recognition [9]. Ding et al. [10] proposes a deep CNN method
combining three types of data enhancement for ship object recognition. In literature [11] a CNN using
extreme learning machine [12,13] is proposed to recognize infrared ship images. Not only does it need
an extreme learning machine method to learn CNN features, it also requires additional integrated
extreme learning machine for classification, which doubles complexity. Li et al. [14] proposes a
CNN-based ship classification method which designed two networks built on AlexNet and GoogleNet,
and used a pre-trained model on the ImageNet dataset for transfer learning. This method achieves
good classification performance. Zhang et al. [15] proposes a multi-feature structure fusion method
for maritime vessels classification based on spectral regression discriminant analysis (SF-SRDA),
which combines structure fusion and linear discriminant analysis. However, it can only perform
separate training and testing for visible or infrared images, without integration between results
from visible and infrared images. Liu et al. [16] proposes a fusion recognition method based on
CNN. The method designs a sensible network model to extract features of three band images and
effectively fuse them. It then uses a feature selection method based on mutual information to
sort the features according to their importance, which can eliminate redundant information and
improve computational efficiency. Chen et al. [17] propose a from-coarse-to-fine CNN ship-type
recognition method. The training method of the ‘coarse’ step is similar to traditional CNN. The ‘fine’
step introduces a regularization mechanism to extract more inherent ship features, and improved
recognition performance can be obtained by fine-tuning parameter settings. Shi et al. [18] propose
a deep learning framework that integrates low-level features for ship classification. Aziz et al. [19]
propose a robust recognition method for maritime images based on multi-modal deep learning.
Huang et al. [20] propose a ship classification model that combines multiple deep CNN features and
use a fusion strategy to explore the relationship between multi-scale features. Jia et al. [21] propose
a maritime ship recognition method based on two cascaded CNNs. A shallow network is used for
speedy removal of the background area to reduce the computational cost, and a deep network is used
to classify the ship types in the remaining areas.

Most of the existing ship classification methods use a single band of infrared or visible images to
classify ships, without taking into account the complementary information within images obtained
by different sensors. There is relatively little research on ship classification methods based on visible
and infrared images fusion. The accuracy of ship classification method needs to be further improved.
Although the CNN can automatically learn high-level features from ship images, a single-scale
convolution kernel may lose some detailed information when extracting the ship image features.
In addition, attention mechanism [22] (refer Section 2.4) can focus on object area and suppress other
useless information. Applying attention mechanism to CNN can improve the quality of convolutional
feature mapping [23]. Considering also that a single feature may not be comprehensive to represent
ship images, the study proposes ship classification based on attention mechanism and multi-scale
convolutional neural network (MSCNN). Firstly, the MSCNN has been proposed to extract the visible
image features and infrared image features. Then the visible image features and infrared image features
are fused to make full use of the complementarity of different features and obtain more comprehensive
ship information. Lastly, we use the attention mechanism to enhance fusion feature representation
capability, so as to achieve more accurate ship classification results.
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Major contributions of this study can be summarized as follows: (1) a two-stream symmetric
MSCNN feature extraction module is proposed to extract the features of visible and infrared images.
The module can selectively extract those deep features of visible and infrared images with more
detailed information. (2) The visible image features and infrared image features are concatenated
to allow further use of the complementary information within different modal images, such that a
more detailed ship object description can be obtained. (3) The attention mechanism is applied to the
concatenated fusion layer to enhance important local details in the feature map, thereby improving
overall classification capability of the model.

The remainder of this paper is organized as follows. Section 2 describes the proposed classification
method in details. Section 3 introduces the visible and infrared spectra (VAIS) dataset [24] and
parameter settings, and analyzes experimental results. Section 4 summarizes conclusions and the
prospects of future work.

2. Proposed Ship Classification Method

2.1. Framework of Proposed Approach

Visible images are quite vulnerable to light conditions, which is the reason that ship classification
relying only on single-senor images is subject to many limitations and deficiencies. On the other
hand, a deep learning algorithm can automatically acquire higher-level and more abstract features in
the images and an attention mechanism can enhance the feature representation with more effective
information in the feature map. However, ship image features extraction using a single-scale convolution
kernel is prone to detail omission. Therefore, this study proposes a ship classification method based on
attention mechanism and MSCNN for the visible and infrared images, so as to combine the respective
advantages of different types of sensor image and improve accuracy of ship classification results.
The specific flow chart is shown in Figure 1. The proposed method consists of a feature extraction
module, attention mechanism and feature fusion module, and classification module. The feature
extraction module uses a two-stream symmetric MSCNN to extract the features of the preprocessed
visible and infrared image, respectively. The attention mechanism and feature fusion module first
concatenates extracted visible image features and infrared image features, and then obtains attention
weights by applying attention mechanism to the concatenated fusion feature layer to enhance key
local features, suppress unimportant features, and improve feature expression results of the model.
The classification module is composed of three fully connected layers and a Softmax output layer.
The ship classification results are obtained through Softmax output layer function. Image preprocessing
in the figure refers to image size adjustment (refer Section 2.2).
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2.2. Two-Stream Symmetric Multi-Scale Convolutional Neural Network (MSCNN) Feature Extraction Module

CNN is a feed-forward neural network architecture, which adopts local perception and weight
sharing methods. The traditional CNN contains convolutional layers, pooling layers and fully connected
layers, etc. Among them, network architecture is one of the core factors that determines classification
performance. Choosing an appropriate CNN framework to extract ship image features effectively is a
prerequisite for classification performance improvement. However, image features extraction using
single-scale convolution kernel is prone to details omission. Inspired by InceptionNet [25], this study
uses convolution kernels of different sizes in the convolution layer to extract features of different scales,
thereby enriching ship image features.

The proposed MSCNN feature extraction module consists of two identical parallel multi-scale
CNNs. MSCNN is mainly composed of 4 convolutional layers (Conv1–Conv4), 3 pooling layers
(Max Pooling1–Max Pooling3), 3 fully connected layers (FC1–FC3) and a Softmax output layer.
After Conv3, two sets of convolution kernels of different sizes (i.e., 3 × 3 and 5 × 5) are used for
parallel convolution to obtain Conv4_1 and Conv4_2, and then Conv4_1 and Conv4_2 are concatenated,
and the deep features of the ship image are extracted by using two sets of convolution kernels of
different sizes. The obtained feature map contains more detailed information to reduce information
loss in image processing. The rectified linear unit (ReLU) function is used in both convolutional layer
and fully connected layers as it can prevent gradient disappearance, make the network sparse, and it
is more efficient than the sigmoid function. In order to prevent over-fitting, Dropout technology is
used in 3 fully connected layers. In each iteration, the dropout technology can randomly hide certain
neurons, the selected hidden neurons do not contribute to the parameter updates, which can effectively
avoid overfitting and enhance the generalization ability of the network. Their respective parameters
are shown in Table 1. It can be seen that the input image size is 227 × 227 × 3. Since the original
infrared image is a grayscale image, we create a pseudo-red, green and blue (RGB) image using the
same method mentioned in literature [24], where a single infrared channel is duplicated three times.
The pooling layer adopts a maximum pooling of size 3 × 3, which reduces the dimensionality of upper
layer convolution result, simplifies calculation process, and at the same time retains more image texture.
“Padding: 1” refers to edge expansion with one circle of 0. Conv4 refers to the result that Conv4_1
and Conv4_2 are concatenated, such that output size is 13 × 13 × 512. In this study we compare the
classification results of visible ship images and results of infrared ship images with a MSCNN and the
network (referred to as CNN) that only uses 256 convolution kernels of size 3 × 3 for the convolution
operation in Conv4. Both networks are used as baseline methods (refer Section 3.4) to compare with
and validate the proposed method.

Table 1. Specific parameters of the multi-scale convolutional neural network (MSCNN).

Layer Input Size Kernel Size Filters No. Stride Padding Output Size

Conv1 227 × 227 × 3 11 × 11 64 4 2 56 × 56 × 64
Max Pooling1 56 × 56 × 64 3 × 3 - 2 - 27 × 27 × 64

Conv2 27 × 27 × 64 5 × 5 192 1 2 27 × 27 × 192
Max Pooling2 27 × 27 ×192 3 × 3 - 2 - 13 × 13 × 192

Conv3 13 × 13 × 192 3 × 3 384 1 1 13 × 13 × 384
Conv4_1 13 × 13 × 384 3 × 3 256 1 1 13 × 13 × 256
Conv4_2 13 × 13 × 384 5 × 5 256 1 2 13 × 13 × 256

Conv4 Conv4_1,
Conv4_2 - - - - 13 × 13 × 512

Max Pooling3 13 × 13 × 512 3 × 3 - 2 - 6 × 6 × 512
FC1 6 × 6 × 512 - - - - 4096
FC2 4096 - - - - 4096
FC3 4096 - - - - 2048

Softmax 2048 - - - - 6
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Feature visualization of different convolutional layers in MSCNN is shown in Figure 2, with the
visible image only as an example. It can be seen that the number of feature maps in each layer equals
the number of filters in Table 1. Different convolution kernels respond differently to various ship image
positions. The shallow layer extraction focuses mainly on texture features, with obtained feature maps
closer to the original image. Deeper layer extraction focuses more on features such as contours and
shapes, which are in general more abstract and representative. The deeper the layer goes, the lower
the resolution of the feature map.
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(c) conv2; (d) conv3; and (e) conv4.

Since the feature maps obtained by different convolution kernels of the same layer are
complementary to each other when describing ship images, one can obtain an overall feature map by
fusing these individual ones from the layer in a ratio of 1:1. Figures 3 and 4 show comparison of the
overall feature map of visible image and corresponding infrared image at CNN’s conv4 and MSCNN’s
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conv4. The feature map size is consistent with the output size of conv4 and route layer. From below,
it can be seen that MSCNN-based feature extraction responds better to ship area, i.e., the yellow area
highlighted in the feature map in Figures 3b and 4b is darker and wider than that of map in Figures 3a
and 4a. This would play a positive role in our subsequent fusion classification of visible image features
and infrared image features. In addition, it can be seen that the position of strongest response to ship
area is different between the visible image feature and infrared image feature. Therefore, the fusion of
these two features can effectively use the complementary information within different modal images,
enrich the fused information, and improve the ship classification performance.
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It is known that features extracted by the deep convolutional layer contain abundant useful
information. Furthermore, medium-term feature fusion method has achieved better classification
results according to literature [26]. In view of the above, this study focuses on fusion using features
obtained by the Max Pooling3 layer of MSCNN. Max Pooling3 layer reduces the dimensionality of the
last convolution layer (i.e., Conv4). The two-stream symmetric MSCNN feature extraction module
is shown in Figure 5. The visible and infrared image of the same ship object are respective inputs
of the two-stream network for feature extraction, and the two-stream features are processed via the
concatenated feature fusion layer after the Max Pooling 3 layer to obtain the concatenated fusion
feature. In summary, three fully connected layers and one Softmax output layer in the multi-scale
CNN are used to classify the fusion features, with Softmax output node equal to 6 (the number of ship
types in the VAIS dataset).
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The proposed ship classification model in this study also includes a training process and a testing
process. During training, the visible image and infrared image of the same object (with the same label)
are preprocessed and input into the two-stream network to extract features and conduct simultaneous
training. Then the error is calculated between the true class labels and the predicted class labels
obtained by the Softmax function. After that, the weight and bias are adjusted by back propagation
process to minimize the error. Lastly, the optimal model is saved. In the testing phase, the visible
image and infrared image of the same object (with the same label) are also preprocessed and input into
the two-stream network to extract features, and call upon the optimal model to test features, and the
predicted labels of the ship images are output. The purpose of preprocessing is to randomly crop the
training images into 227 pixels × 227 pixels. Such random cropping can not only increase the training
data, but also improve the generalization ability of the model. In this study, stochastic gradient descent
algorithm (SGD) [27] is used to minimize the cross entropy loss function. The test images are cropped
into 227 pixels × 227 pixels by center cropping. We also use data enhancement techniques such as
random horizontal flipping and z-score standardization [28] to ensure sample randomness and avoid
model overfitting.

2.3. Feature Fusion

In this study, the visible image features and infrared image features extracted by the MSCNN are
fused, and the effective information of the two features can be combined through feature fusion to
obtain a more comprehensive feature representation of the ship object. Common feature fusion [29]
methods include additive fusion, maximum fusion and concatenated fusion, etc. The expression of
feature fusion can be defined as:

F = f (X, Y), (1)

where X and Y represent the visible image features and infrared image features extracted by the
two-stream symmetric MSCNN respectively. F indicates the fusion feature, X, Y, F ∈ RHWC. H, W and
C indicate the height, width and number of channels of the feature map respectively.

Additive fusion is achieved by adding element values at the corresponding positions of the two
feature maps, with total number of channels in the fusion feature map unchanged. If a visible image
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feature is denoted as X = [x1, x2, . . . , xn], and infrared image feature is denoted as Y = [y1, y2, . . . , yn],
then additive fusion can be denoted as:

F = f (X, Y) = X + Y = [x1 + y1, x2 + y2, . . . , xn + yn], (2)

Maximum fusion is to take the element of higher value at the corresponding position of the two
feature maps as the fusion result, which can be expressed as:

F = f (X, Y) = max{X, Y} = [max(x1, y1), max(x2, y2), . . . , max(xn, yn)], (3)

It should be noted that both additive fusion and maximum fusion are only applicable to feature
maps fusion of same dimension.

On the other hand, concatenated fusion connects two feature maps directly, which can be applied
to feature maps of any dimension. The total number of fusion feature channels is the sum of all visible
image feature channels and infrared feature channels. Concatenated fusion can be expressed as:

F = f (X, Y) = X, Y = [x1, x2, . . . , xn, y1, y2, . . . , yn], (4)

Through experimental comparison, it can be seen that concatenated fusion of the visible image
features and infrared image features can achieve better classification effect (refer Section 3.4.1),
and concatenated fusion retains all the elements of the feature maps, this study adopts the concatenated
fusion method. From Table 1, it can be seen that the output size of each feature map after Max Pooling3
is 6 × 6 × 512, where 512 represents the number of channels. Hence the size of the feature map after
concatenated fusion is 6 × 6 × 1024. The detailed concatenated fusion process is shown in Figure 6.
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2.4. Feature Fusion Layer Based on Attention Mechanism

Attention mechanism (AM) [30] is a cognitive mechanism that mimics the human brain.
In visual perception, it pays attention mainly to the features of interest, and suppresses redundant
information. The attention mechanism can be integrated into the CNN framework with negligible
overhead, and trained together with CNN [31]. Inspired by the convolutional block attention module
(CBAM) [32] which allows auto-learning of pixel correlation among different feature maps, we add
the attention mechanism after feature fusion layer. By combining the learned attention weights and
the original concatenated fusion features, the model can greatly enhance local details of ship images,
thereby improving the representation ability of the existing fusion feature maps. Subsequent experiments
also prove that the addition of such module can improve the ship classification performance.

The structure diagram of the attention mechanism and feature fusion module is shown in Figure 7.
It can be seen from Figure 7 that the attention mechanism includes a channel attention module and a
spatial attention module, where the two modules are connected in series. Concatenated fusion features
are used as the input of channel attention, and the channel attention weight is calculated and multiplied
with the concatenated fusion feature to each channel to obtain the feature map of the channel attention
module, which is then used as the input of spatial attention. After spatial attention weights being
obtained, it is also multiplied with the feature map of the channel attention module to arrive at the final
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attention mechanism feature map. To avoid features loss and performance degradation, the attention
mechanism feature map and the concatenated fusion feature are added element by element to achieve
the final refined feature.Electronics 2020, 9, x FOR PEER REVIEW 9 of 20 
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2.4.1. Channel Attention Module

The channel attention module establishes a weight map to evaluate the importance of each channel.
The channel that contains more important information has higher weight, and vice versa. It focuses on
“what” it views as meaningful. The channel attention module is shown in Figure 8.
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denotes sigmoid function.

Firstly, concatenated fusion feature F serves as input feature with dimension H ×W × C.
Both average pooling and maximum pooling are then applied to input features to aggregate spatial
information of the feature map, and the channel attention descriptors Fc

avg and Fc
max of dimension

1× 1×C are obtained. These two channel attention descriptors are fed into a multi-layer perceptron
(MLP) with a hidden layer. To reduce number of parameters used, the activation size of the hidden
layer is RC/r×1×1, in which r is the compression ratio. In this study, r is set to 8 (refer Section 3.4.2).
The features of the two parallel branches are then added and processed by sigmoid activation function to
obtain the final channel attention weight map Mc. Finally, multiplication between the channel attention
weight map Mc and the original concatenated fusion feature F is done to obtain the channel-refined
feature F

′

. The calculation process of channel attention weight map Mc and channel-refined feature F
′

can be expressed as:

Mc(F) = σ(MLP(AvgPool(F)) + MLP(MaxPool(F))), (5)

F
′

= Mc(F) ⊗ F, (6)

where σ denotes the Sigmoid activation function, ⊗ denotes element-wise multiplication.

2.4.2. Spatial Attention Module

Spatial attention module obtains the weight map of features in spatial dimension, which focuses
on “where” useful information can be found, supplementing channel attention. The details of the
spatial attention module is shown in Figure 9.
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Firstly, the input feature is F
′

of dimension H ×W ×C. Maximum pooling and average pooling
are performed in parallel on the input feature in the channel dimension to obtain two descriptors
Fs

avg and Fs
max of dimension H ×W × 1, which are then concatenated. After that, the concatenated

fusion descriptor is convolved by the convolution kernels of size 3× 3 and processed by the sigmoid
activation function to obtain the spatial attention weight map Ms. Finally, the spatial attention weight
map Ms and F

′

are multiplied to obtain the features F” after spatial attention. The calculation process
of spatial attention weight map Ms and the feature F” after spatial attention can be expressed as:

Ms(F) = σ( f 3×3([AvgPool(F), MaxPool(F)]))
= σ( f 3×3([Fs

avg, Fs
max]))

, (7)

F” = Ms(F) ⊗ F
′

, (8)

where f 3×3 denotes convolution kernels of size 3× 3.
From the above analysis, we can see that both average pooling and maximum pooling are

used in the attention mechanism. Average pooling takes the average information on each channel,
whereas maximum pooling only considers the most significant information of each channel of the
feature map. Through the combination of the two pooling operations, the attention mechanism is able
to focus on the important channel and spatial feature information of the ship image, and filter out the
unimportant feature information. As a result, more discriminative features can be obtained to improve
ship classification performance.

3. Experimental Results and Analysis

3.1. Experimental Environment and Parameter Setting

The experimental environment used in this study is computer with Intel(R) Core(TM)
i9-7980XE@2.6GHz processor, GPU of NVIDIA TITAN Xp Pascal and 32GB memory. Python3.5 and deep
learning open source framework Pytorch programming are used to perform all experiments.

Experimental parameter settings are as follows. The batch size is set to 32, and learning rate at
0.001. The optimization method is the stochastic gradient descent (SGD) algorithm. The momentum
parameter is set to 0.9, with weight coefficient 0.0001. The dropout is at 0.5, and learning epochs of 500.

3.2. Experimental Dataset

The dataset used in this study is the VAIS dataset [24], which is the only available public dataset
of paired visible and long wave infrared ship images. These images were captured using a multimodal
stereo camera rig on harbours. The RGB global shutter camera was a ISVI IC-C25. The long wave
infrared camera was Sofradir-EC Atom 1024, which has a spectral range of 8–12 microns. The cameras
are tightly mounted next to each other and checked to ensure no interference. The dataset consists of
2865 images (1623 visible images and 1242 infrared images) including 1088 paired visible and infrared
images. There are a total of 154 nighttime infrared images. The number of unique ships is 264. For most
ships, only one orientation was captured; for a few, up to 5 to 7 orientations. This way, we avoid
duplicates in the dataset. The image format is png. The dataset can be divided into 6 coarse-grained
categories, namely Medium “other” ships, Merchant ships, Medium passenger ships, Sailing ships,
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Small boats and Tugboats, as shown in Figure 10. It can be seen that the background of the ship is
complex, with uneven illumination and various size. The area of visible bounding boxes ranges from
644 to 4,478,952 pixels, with mean of 181,319 pixels and median 9983 pixels. The area of infrared
bounding boxes ranges from 594 to 137,240 pixels, with mean of 8544 pixels and median 1610 pixels.
In this study, only 1088 pairs of visual and infrared images are chosen for experiment purposes.
According to the number of “official” training and test sample. A total of 539 pairs are randomly
selected as training images, and the remaining 549 pairs are test images. The number of samples in the
training set and test set are listed in Table 2. There are 138 pairs of images in Medium-other, 146 pairs
of images in Merchant, 117 pairs of images in Medium-passenger, 284 pairs of images in Sailing,
353 pairs of images in Small boats, and 50 pairs of images in Tugboats. The bicubic interpolation
method presented in a previous study is used here to uniformly adjust the size of the ship image to
256 pixels × 256 pixels.
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Table 2. Number of training and test samples for the VAIS dataset.

No. Class Train Test

1 Medium-other 62 76
2 Merchant 83 63
3 Medium-passenger 58 59
4 Sailing 148 136
5 Small 158 195
6 Tug 30 20

Total 539 549

3.3. Evaluation Metrics

The evaluation metrics of ship image classification results adopted by this study include
classification accuracy, F1-score and average feature extraction time consumption per image.

Classification accuracy is defined as the ratio of correctly classified samples to the total number of
samples. The higher the ratio is, the better the classification performance. The classification accuracy
can be expressed as:

Acc =
TP + FP

TP + FP + TN + FN
, (9)

where TP, FP, TN and FN denote the number of true positives, false positives, true negatives and false
negatives, respectively.

F1-score is a comprehensive measure of classification performance, which is the weighted average
of precision ratio and recall ratio. The maximum F1-score is 1 and the minimum is 0. It can be defined as:

F1 =
2× P×R

P + R
, (10)

Precision ratio is calculated using the number of true positives divided by predicted positive
samples. Recall ratio is computed by taking the number of true positives divided by all positive
samples. Precision and recall ratios can be expressed as:

P =
TP

TP + FP
, (11)

R =
TP

TP + FN
, (12)

To further analyze the classification results, the confusion matrix was used to visualize them.
The confusion matrix represents the mistakes caused by the classifier when dealing with multi-class
problems. The horizontal axis represents the predicted category and the vertical axis gives the true
category. Hence diagonal elements are those correctly classified ship images of each type. The diagonal
element of the normalized confusion matrix represents classification accuracy achieved by each
ship type.

3.4. Experimental Results and Analysis

3.4.1. Classification Performance Comparison

To validate its classification performance, the proposed method was compared with the baseline
method and other state-of-the-art methods under the same experimental conditions.

Comparison with Baseline Method and Feature Fusion Method

Table 3 lists out evaluation metrics, namely classification accuracy and average feature extraction
time consumption per image, and their respective results when the baseline method, feature fusion
method and proposed method are applied to VAIS dataset. Herein, the baseline methods are CNN and
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MSCNN. Herein, CNN represents Conv4 with only 256 convolution kernels of size 3 × 3. CNN_AFF
refers to additive feature fusion of infrared image features and visible image features extracted
by CNN. CNN_CFF and MSCNN_CFF represent concatenated feature fusion of infrared image
features and visible image features extracted by CNN and MSCNN, respectively. CNN_CFF_SE and
MSCNN_CFF_SE denote applying the channel attention mechanism in literature [22] to concatenated
fusion features. CNN_CFF_AM and MSCNN_CFF_AM indicate the proposed attention mechanism
being applied to process concatenated fusion features. It can be observed that classification accuracy of
visible images is higher than that of infrared images, mainly due to lower resolution and less texture
information of infrared images. MSCNN has higher classification accuracy than CNN for both visible
and infrared images, which indicates that the proposed MSCNN can extract more detailed information
with enriching ship image features. Classification accuracy using feature fusion methods is higher than
the baseline method, which means that fusing visible image features and infrared image features can
complement information from multiple sources and improve classification performance. Furthermore,
CNN_CFF attains higher classification accuracy than CNN_AFF, as concatenated feature fusion
overcomes information offset caused by addition of elements in spatial dimension. Therefore, we did
not conduct additive fusion experiments for MSCNN method. It can be seen that the classification
accuracy of the CNN_CFF_SE, MSCNN_CFF_SE, CNN_CFF_AM and MSCNN_CFF_AM methods
is higher than that of the feature fusion method, and the MSCNN_CFF_AM method (the proposed
method) achieved the highest classification accuracy. This can be explained as fused features
after attention mechanism modification can highlight key local features, suppress useless features,
and significantly enhance feature expression. The SE (squeeze and excitation) module in literature [22]
focuses on the channel information of feature map, and ignores the importance of spatial location.
The attention mechanism in this study combines channel attention and spatial attention modules,
so that each of the modules can learn “what” and “where” to see in the channel and spatial dimensions.
Hence, the proposed method can achieve better classification performance.

Table 3. Classification accuracy (%) and average time consumption for feature extraction per image
(ms) of the proposed method, baseline methods and feature fusion methods on VAIS dataset.

Method Accuracy Feature Extraction Time

CNN(baseline) Visible 90.53 0.045
Infrared 85.43 0.055

CNN_AFF Visible + Infrared 91.26 0.067
CNN_CFF Visible + Infrared 91.99 0.091

CNN_CFF_SE Visible + Infrared 92.71 0.117
CNN_CFF_AM Visible + Infrared 93.26 0.124

MSCNN(baseline) Visible 91.44 0.062
Infrared 86.52 0.058

MSCNN_CFF Visible + Infrared 92.53 0.106
MSCNN_CFF_SE Visible + Infrared 93.08 0.113

MSCNN_CFF_AM(Proposed method) Visible + Infrared 93.81 0.140

Figure 11 depicts the average feature extraction time consumption per image of the proposed
method, baseline methods and feature fusion methods on the VAIS dataset. It can be seen that in
the proposed method, the additions of feature fusion and attention mechanism bring the average
time consumption per image slightly higher than that of the baseline method; however, the former
has obvious advantages in classification accuracy and the time consumption of 0.140 ms was also
relatively short.
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proposed method, baseline methods and feature fusion methods on the VAIS dataset: (a) CNN (baseline);
and (b) MSCNN (baseline).

Classification accuracy obtained per ship class using baseline methods, feature fusion methods and
proposed method on VAIS dataset are listed in Table 4. As observed, the proposed method demonstrated
best classification results compared to the other methods. The classification accuracy of CNN_CFF_AM
is better than that of the CNN method for each type. The classification accuracy of the proposed method
is higher than that of MSCNN for all ship types except Merchant. Overall, the proposed method has
the highest classification accuracy for medium-passenger, small and tug. The classification accuracy of
the proposed method for medium-other and merchant is slightly lower than that of MSCNN_CFF_SE,
but the classification accuracy of the proposed method for medium-passenger is 6.78% higher than
that of MSCNN_CFF_SE. The classification accuracy for tugs is 100%, because of the larger difference
in appearance between the tug and other ship types, and the better image quality of the tugs in VAIS
dataset. In conclusion, the proposed method achieved the highest overall classification accuracy on the
VAIS dataset.

Table 4. Class-specific accuracy (%) of the proposed method, baseline methods and feature fusion
methods on the VAIS dataset.

Method
Class

Medium-Other Merchant Medium-Passenger Sailing Small Tug

CNN(baseline) Visible 76.32 93.65 79.66 92.65 96.41 95.00
Infrared 64.47 93.65 76.27 94.12 86.15 100.00

CNN_CFF Visible +
Infrared 77.63 90.48 88.14 96.32 95.38 100.00

CNN_CFF_SE Visible +
Infrared 73.68 96.83 86.44 97.06 96.92 100.00

CNN_CFF_AM Visible +
Infrared 77.63 96.83 86.44 97.06 96.92 100.00

MSCNN(baseline) Visible 77.63 96.82 79.66 92.65 96.92 100.00
Infrared 65.79 95.24 74.58 93.38 89.23 100.00

MSCNN_CFF Visible +
Infrared 76.31 93.65 88.14 95.59 96.92 100.00

MSCNN_CFF_SE Visible +
Infrared 78.95 98.41 86.44 96.32 95.90 100.00

MSCNN_CFF_AM
(Proposed method)

Visible +
Infrared 77.63 95.24 93.22 96.32 97.44 100.00

In order to verify the classification capability of the proposed method, we compare the F1-scores
based on baseline, feature fusion and proposed method, as shown in Table 5. It can be seen that the
proposed method achieves the highest average F1-score among 6 ship types. CNN_CFF_SE gives best
F1-score for merchant, and CNN_CFF_AM beats the rest for sailing. However the proposed one gives
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the highest F1-score for all other four ship types, and is doing almost equally well as CNN_CFF_AM
for sailing. This can be largely attributed to the addition of feature fusion and attention mechanisms in
the proposed method, in which complementary information from multi-source images are effectively
utilized and more characteristic features are properly extracted. It greatly enhances overall model
classification capability.

Table 5. F1-score of the proposed method, baseline methods and feature fusion methods on the
VAIS dataset.

Method
Class

Medium-Other Merchant Medium-Passenger Sailing Small Tug Avg. Total

CNN(baseline) Visible 0.8169 0.9440 0.8785 0.9545 0.8974 0.9268 0.9030
Infrared 0.7481 0.8939 0.7563 0.9176 0.8638 0.8333 0.8355

CNN_CFF Visible +
Infrared 0.8429 0.9421 0.8889 0.9458 0.9231 1.0000 0.9238

CNN_CFF_SE Visible +
Infrared 0.8358 0.9683 0.9027 0.9462 0.9333 0.9756 0.9269

CNN_CFF_AM Visible +
Infrared 0.8613 0.9313 0.8947 0.9706 0.9356 1.0000 0.9322

MSCNN(baseline) Visible 0.8489 0.9173 0.8868 0.9474 0.9220 0.9091 0.9052
Infrared 0.7752 0.8889 0.7857 0.9203 0.8766 0.8163 0.8438

MSCNN_CFF Visible +
Infrared 0.8345 0.9516 0.9123 0.9559 0.9265 0.9756 0.9261

MSCNN_CFF_SE Visible +
Infrared 0.8571 0.9612 0.9027 0.9632 0.9280 0.9756 0.9313

MSCNN_CFF_AM
(Proposed method)

Visible +
Infrared 0.8676 0.9375 0.9244 0.9704 0.9383 1.0000 0.9397

Comparison with Other State-of-the-Art Methods

To further verify the effectiveness of the proposed method, we compare the proposed method
with other state-of-the-art methods developed in recent years. We reimplement the state-of-the-art
methods on the VAIS dataset, and the partition method of the dataset is consistent with that of the
proposed method. The results are shown in Tables 6–8. Table 6 gives out classification accuracy of
different methods on the VAIS dataset. Table 7 illustrates the classification accuracy of each class with
different methods on VAIS dataset. Table 8 lists the F1-score using different methods on VAIS dataset.
Among them, traditional methods (HOG + SVM, LBP + SVM), AlexNet, Method [33], Method [10] and
Method [14] only process either visible images or infrared images of a single band, whereas Method [19]
uses two parallel CNNs to extract the features of visible images and infrared images, respectively,
and classifies them after feature fusion in the last fully connected layer. It can be seen from Table 6
that, compared with other methods, the proposed one achieves the best classification accuracy on
both single-band and multi-source images. It can be seen from Table 7 that the proposed method
had the highest classification accuracy for medium-passenger, sailing, small and tug. Although for
Medium-other category, the proposed method falls slightly behind Method [14] in classification
accuracy, it still beats all other methods. It can be seen from Table 8 that the average F1-score of the
proposed method is the highest. Method [19] had the highest F1-score for Merchant, and the proposed
method had the highest F1-score for all five other types. It can be concluded that the proposed method
achieves overall best classification performance, which is due to effective extraction and fusion of
visible image and infrared images and inclusion of the attention mechanism.

Confusion Matrix and Confusion Matrix Normalization of the Classification Results

Although compared with other methods, the proposed method improves the classification
performance greatly, there are still some cases of misclassification. The confusion matrix and
its normalization process using the VAIS dataset are depicted in Figure 12. It can be seen that
initially 12 Medium-other ships were misjudged as Small, with an inter-class error of 15.9%, and 3
Medium-passenger ships were misjudged as Small, with an inter-class error of 5.1%, indicating that both
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Medium-other and Medium-passenger are the classifications that can be easily confused with Small.
This is not surprising as their shapes resemble each other closely, especially when the image resolution
is low, as shown in Figure 10. Figure 13 illustrates misclassified examples of Medium-passenger ships
and Small ships.

Table 6. Classification accuracy (%) of different methods on VAIS dataset.

Method
Accuracy

Visible Infrared Visible + Infrared

HOG + SVM 88.34 82.15 -
LBP + SVM 82.33 69.76 -

AlexNet 90.35 85.06 -
Method [33] 86.52 76.14 -
Method [10] 88.89 71.58 -
Method [14] 89.25 85.43 -
Method [19] 90.16 85.25 91.62

MSCNN_CFF_AM
(Proposed method) 91.44 86.52 93.81

Table 7. Class-specific accuracy (%) of different methods on VAIS dataset.

Method
Class

Medium-Other Merchant Medium-Passenger Sailing Small Tug

AlexNet
Visible 73.68 98.41 77.97 94.85 93.85 100.00

Infrared 61.84 90.48 69.49 96.32 87.69 100.00

Method [33] Visible 71.05 96.83 77.97 88.97 89.23 95.00
Infrared 43.42 93.65 72.88 80.88 80.00 85.00

Method [10] Visible 73.68 98.41 71.19 91.18 95.38 90.00
Infrared 69.74 98.41 72.88 93.38 94.36 95.00

Method [14] Visible 82.89 95.24 83.05 96.32 86.67 90.00
Infrared 53.95 90.48 74.58 95.59 90.77 100.00

Method [19] Visible +
Infrared 75.00 96.83 76.27 96.32 97.44 95.00

MSCNN_CFF_AM
(Proposed method)

Visible +
Infrared 77.63 95.24 93.22 96.32 97.44 100.00

Table 8. F1-score of different methods on VAIS dataset.

Method
Class

Medium-Other Merchant Medium-Passenger Sailing Small Tug Avg. Total

AlexNet
Visible 0.8058 0.9538 0.8288 0.9451 0.9219 0.8333 0.8815

Infrared 0.7068 0.8906 0.7257 0.9424 0.8571 0.8511 0.8289

Method [33] Visible 0.7397 0.8531 0.8519 0.9167 0.8878 0.8444 0.8489
Infrared 0.5197 0.8027 0.6056 0.8429 0.8298 0.7556 0.7260

Method [10] Visible 0.8058 0.9051 0.8155 0.9151 0.9231 0.8000 0.8608
Infrared 0.7994 0.9254 0.8269 0.9137 0.9246 0.7917 0.8603

Method [14] Visible 0.8182 0.9231 0.8909 0.9161 0.9086 0.7826 0.8732
Infrared 0.6891 0.8906 0.7333 0.9386 0.8762 0.8000 0.8213

Method [19] Visible +
Infrared 0.8507 0.9457 0.8333 0.9493 0.9246 0.9500 0.9089

MSCNN_CFF_AM
(Proposed method)

Visible +
Infrared 0.8676 0.9375 0.9244 0.9704 0.9383 1.0000 0.9397

3.4.2. Influence of Compression Rate r on the Classification Accuracy

We carry out experiments with different r in order to find the optimal r suitable for the attention
mechanism. Figure 14 shows classification accuracy and average feature extraction time consumption
per image using CNN_CFF_AM (refer Section 3.4.2) method under different r. The purpose of r is to
reduce the number of parameters used. Since we design the attention mechanism in the feature fusion
layer to be lightweight, the difference in the number of parameters caused by different compression
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rates is ignored. In Figure 14, it can be seen that when r is 8, a good balance is achieved between
classification accuracy and average time consumption for feature extraction per image. As such, r is set
to 8 in this study.
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4. Conclusions

In this study, the authors proposed the use of an attention mechanism and MSCNN method
for accurate ship classification. Firstly, a two-stream symmetric MSCNN is adopted to extract the
features of visible images and infrared images, and the two features are concatenated such that
complementary features can be effectively utilized. After that, the attention mechanism is applied to
the concatenated fusion layer to obtain more effective feature representation. Lastly, fused features
after attention mechanism modification are sent to fully connected layers and the Softmax output layer
to obtain the final classification result. In order to verify the effectiveness of the proposed method,
we conduct experiment on the VAIS dataset. The results show that, compared with existing methods,
the proposed method can achieve better classification performance, with a classification accuracy of
93.81%. Results from F1-score and confusion matrix further validate the effectiveness of the proposed
method. However, in the presence of high intra-class similarity, the proposed method still results in
some degree of misclassification, and increases the average feature extraction time consumption per
image slightly. In future research, we will consider exploring and researching how to select the fused
features while maintaining high classification accuracy to improve the efficiency of the method.
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